JAROSLAW MACIEJEWSKI

TECHNICAL ASPECTS OF CREATING A BOT
IN THE VIRTUAL WORLD OF SECOND LIFE

2021

Version 1

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Original title: Techniczne aspekty tworzenia bota w wirtualnym $wiecie Second Life

English title: Technical aspects of creating a bot in the virtual world of Second Life

The original version can be found in the Zenodo.org scientific research repository -

https://zenodo.org/record/4729025.

DOl | 10.5281/zenodo.4729025

E-book released under the license: CC BY-NC-ND 4.0

Let us respect someone else's property and law!

Registered names and company marks are used in this e-book for identification purposes only.

If you think the author's work is valuable, please donate by sending a few pennies to https:/ko -
fi.com/nitropl

Copyright ©Jarostaw Maciejewski

Version 1

Poland, 2021

https://zenodo.org/record/4729025
https://ko-fi.com/nitropl
https://ko-fi.com/nitropl

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Table of Contents
L INEEOAUCTION. ...ttt ettt et ettt e bt e et e e sbe e et e e e bt e e sabbeeeeabbeeenanee 5
2. SECONA LITE, DOTS....coiiiiiiiiiiiiiiii ettt e e e e e e e e ettt e e e e e s e sesssatabeeeeaseeeaeseeenreeees 6
3. Comparison of bot building software in SL...........cccooviiiiiiiiiiiieee e 8
4. COTTAAR. ...ttt ettt e a et e e e at e bt et e b b a e et e et e bt e bt ettt e bt e e nhteenateea 10
A1 INETOAUCTION. ...ttt ettt ettt et e s ab e e bt e s et e e beesaneebeees 10
4.2, LLICEIISC. ..ttt ettt ettt ettt et h ettt h et e h et a e na et e nb e e bt e e 12
4.3. Creating an account on Second Life.........ccceviiiiiiiiiieiiiiieiie e e 12
4.4. Corrade installation and CONfIGUIAtION.cceiiiiiiiiiiiiieiie et 16
4.4.1. NET Core 1nStallation.ccc.ueiiiiiiiiiiiiieiieeeteeee ettt st 16
4.4.2. A system from the Windows family...........occeriiiiiiiiiiiniiiieeeee e 17
4.4.3. Linux x64 family systems (Debian family)...........cccceerviiiiiiiiiiiiiiiiee e 29
44,4, MLAC Ottt e e eatesaee bt ettt e st e et eeaeeea 30
4.5. Corrade configuration fll@S.........cccueeeiuiieeiiiieeiie et e e e e et e e e e e e nnaaeeees 32
4.5.1. Configuration. XMLcoouiiiiiiiieie ettt ettt e st e et e sate e e eanaeeeennees 32
4.5.2. NUCIEUS. XMLttt ettt e e st e e e s 39
4.6. Corrade installation and removal as a SYStem SEIVICE.........ecueervieriieriieniieeiieeeiieeeeiree e 39
4.0, 1. WINAOWS...cniiiiiitteeie ettt et et e b e et e e bt e e bt e bt et e e s bbeeabeesbaeeaeee 39
I 311 L1 b SO PSPPSR 41
4.7. Corrade.log and Openmetaverse.0og.......cccuveeriieiriieeiiieeieeeiie ettt e e eaeee s 43
4.8. Adding a bot to a group in SL, giving it permissions, disabling the option of receiving group
TTICSSAZES v eeeuvreeenrreernrreersseeensseeaassaeensseeansseeasseesssseeasssesasseeensseesnssesenssessnsseesnsseesasseesesnssseeeessnnssseeens 44
4.9. AuthoriZation NOTATION SYSTEIM.....cccuieiiieriieeiieriieeteesite et estte et e siteebeesaee e bt e ssaessnneeesenneeeennseeas 46
410, NOTHICATIONS. ..ttt ettt ettt e bt e e st e bt e st e e bt e eab e e bt e sateesbeeeabeebeesanes 47
A.11. EITOT COUCS. ..ttt ettt et et st s bttt et be et sate e b e e bae e e 60
4.12. Restrictions on Second Life.......ccc.ooiuiiiiiiiiiiiiiieee e 75
4.13. Communication With the DOt..........ccciiiiiiiiiiiii e 76
4.14. Practical use of the bot on the example of sending a group advertisement.......................... 78
4.15. Corrade integration with CasperTech...........cccooiiiiiiiiiiiiiiii e 99
4.16. DAt SIEVINE....uuveeeiieeeiieeeiieeeieeesteeerteeesteeessteeetseeeseeessseesnsaeesnseeessseeeansasaessenssssesesennnsses 103
4.17. Weak and strong reference by object name and UUID.............cocceeviiniiiinieniiienienieeeene 105
4.18. Confirmation of receiving data from the bot in the LSL script........cccceevvvvveeercciieeeeennnee. 106
4.19. BOt TACK SIZ@...ceutieiiieiieeie ettt ettt et ettt et e st e et e s et e e beesseeeabeesaeeennee e 106
4.20. Corrade protection and defense against attacks............cceccveeeciiiniiiieiiieeiiie e, 106
421, COMMENES. ...coutiiiiiiiieeieet ettt ettt ettt ettt st e st e et e e sae e e bt e sae e e bt esbeeebeessneeesannneenans 107
5. Leonardo De ATtBOt.........ooiiiii e 108
5.1. Computer parameters ('Dot ROUSE')......c.eeriiiriiiiiieiieie e 108
5.2. Bot brain structure and LSL line communication - external SCTipt..........ccccecvveerieeerveeennnne. 109
5.3. BOt OPeration @NalySiS........ceeeiieiiieriiiiiieiieeiee ettt etee sttt e st e et e et e e teesabe e beeenaeeean 116
5.4. The basics of Bullding @ DOt.........cccueveeiiiiiiiieiieeee e e e e e 123
5.4 1. INEOAUCLION. ...ttt ettt ettt b et e et e 123
5.4.2. Suggested functions for the BOt..........cccueiviiiiiiiiiiece e 133
5.4.3.BatCh fIlES...cuueiiiiiiiiiieiec e 150
5.4.4. Multitasking 1n PHP........ccooiiiiii et 152
5.4.5. Second Life - creating prim and SCIIPLS........eecvierieerieenienieeiieeie et et eiree e 155

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

6. Puzzle Grid for Arranging Objects (POSGIIA)......cc.coouiriiriiiiniiiieieieceecceceeee e 188
7. Frequently ASKed QUESLIONS.ccuieriiiiieriieetieciie et eeite et eite et e e v esteessseebaessseenseessseensseesnnnes 201
. DIICTIOMATY ...ttt ettt ettt ettt ettt e e hte et e eaeeeabeesaeeeabeesseeeabeesaeeenbeassbeenseesnseeeansaeeeannes 209
0. TMAZES USE.....cuiiieiieiieeiie ettt ettt ettt et e et eetee st e esbeeesbeesseessseesseessseeseesssaeeassseesassseesassseennns 211
10. Additional MAteTials........couieiiiiiiieieeiee ettt et 212
10.1. VPS bot installer (Powershell scripts, WIndOWS)........c.ccoveeviieriieiiienieeiienie e 212
10.2. Updating programs in bot inStaller............covevuiriiriiniiniiniiienieneeieetese et 221
10.3. mcorrade.ps1 - bot management (Powershell, Windows)...........ccccocueeeiieniiiieeniiieeeniieeennee, 222
10.4. Description of the files in bot_installer\corrade\bot_ai............ccecueeviiiiiieniiiiiiiiiieeiieeeee, 223
10.5. Task SCREAUIET........c.eeiiiieiieee et s 228

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

1. Introduction

Second Life is a virtual world, accessible via the Internet, where different people meet
together. Despite the small number of active users in relation to registered accounts, the project is
still alive. As everywhere on the Internet, there are bots - computer programs that have specific
tasks.

In this e-book you will find information about Second Life, creating your own bot,
interesting projects and solutions. Additional materials can be attached to the e-book, which will
make your work easier.

The e-book is currently translated into Polish and English, so I matched some things in both
documents:

* the US dollar (USD) is the default currency,
* the numbers are written in English.
In the future, it is planned to first release loose extensions to this e-book, and then in the

next version to combine them with the e-book into one whole.

Skills you need to work with this e-book:
* knowledge of LSL,
* knowledge of PHP,

* Dbasics of getting around Second Life, starting a group, managing a group, etc.

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

2. Second Life, bots

Second Life is an internet project developed since 2003 by Linden Research Inc., which
allows you to create a virtual world together. It may be a bit like The Sims game, but it differs from
this game in that we control our character (avatar), who does not have any skills, statistics, or
profession. Second Life is built on the principle of a grid of servers, on which each of them runs
several regions (virtual lands). As for the virtual lands in Second Life, according to data
downloaded from the portal gridsurvey.com from 2021-03-11", their total area is approximately
1,700 km?, most of the lands are under private control and labeled "Moderate'. While there are

about 65 million registered accounts in Second Life, only about 0.1% of them are active.

Last updated: 2021-03-11

Ownership General Moderate Adult Offline TOTAL Total Area (km?)
Linden 1,569 6,463 406 8,438 553
Private 1,045 9,547 6,797 11 17,400 1,140
Total 2,614 16,010 7,203 11 25,838 1,693
Linden [%] 60.02% 40.37% 5.64% 0.00% 32.66% 32.66%
Private [%] 39.98% 59.63% 94.36% 100.00% 67.34% 67.34%
Total residents 64,687,961 General [%] 10.12%

Residents online 42,328 Moderate [%] 61.96%

Residents online [%] 0.07% Adult [%] 27.88%

Data on lands and residents from Second Life

To get into Second Life, you first need to create an account on page® and download and
install the computer program. You can install the official program® or any of the supported third-
party programs here, such as Firestorm Viewer™.

Second Life does not have the world climate imposed from above, although most locations
resemble those known from real life, you can nevertheless find locations in the atmosphere of the

Middle Ages, fantasy, antiquity or sci-fi.

After logging in to Second Life, it is best to start with the configuration of the program itself
(keyboard shortcut CTRL + P) to set the program for yourself, and then get to know the program's

interface, e.g. how to walk, fly, build, chat voice, etc.

01 Website: http://www.gridsurvey.com/

02 Website: https://join.secondlife.com/?lang=en - US

03 Second Life installer: https://secondlife.com/support/downloads/
04 Firestorm Viewer installer: https://www.firestormviewer.org/

https://www.firestormviewer.org/
https://secondlife.com/support/downloads/
https://join.secondlife.com/?lang=en-US
http://www.gridsurvey.com/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

As a virtual character, we can interact with other avatars (e.g. through a voice or chat

conversation) and objects.

The program itself contains simple tools for building the world. The basic material is prim
(colloquially called 'block'), while more advanced structures can be created and imported from
Blender (so-called Mesh). Prim combined with other prims and meshes to create an object. There
can be a maximum of 255 such connections with one prim or mesh. To animate a prim, mesh or an
object, connect an LSL script to it, which is a combination of languages like C++, C#, Java and

which is compiled by mono.

Of course, having a tool for building the world at your disposal, a basic knowledge of the
LSL language does not mean that Second Life offers unlimited possibilities. Each region has a
limited number of prims stored, usually a maximum of 15,000 or 30,000 prims. You can include the
maximum size of one script, which is 64KB, and the maximum number of avatars in the entire
region of 100 people.

Bot (other names include, for example: web robot, internet robot, agent, scripted agent, NPC
(Non-Player Character), softbot) is a computer program that usually performs tasks faster and
easier than human being, does not have a physical body, can have a virtual body, emulates human
activity on the Internet, e.g. conversation with another human.

In Second Life, bots can be divided into two types:

* prim-mesh - the bot is created using prims, objects and meshes and scripted only with LSL,
* avatars - the bot is launched as a regular avatar from an external computer, communication

takes place via a programming interface that can be mixed with LSL.

Second Life's bot policy is transparent. The bot can basically do everything normal people
do in the form of avatars, however it cannot generate too much artificial traffic on the plot, copy
stuff without looking at copyright, send more than 5000 messages per day, group messages are
counted as 1 message for 1 recipient, buy MainL and region, other things mentioned in the Terms of
Service, so basically the bot can do anything according to the principle: 'what is not prohibited is

allowed'.

Bots in Second Life deal with various tasks assigned to them, e.g. they can simulate air
traffic (ATC - Air Traffic Control), manage a region (manger, security guard), manage a group,
work as hostesses, model on the catwalk showing clothes for sale, play as an actor in a mini-game,

etc.

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

3. Comparison of bot building software in SL

There are several projects on the Internet that allow you to run your own bot in Second Life.
You should consider how we will run our bot:

* Whether it will run around the clock or for several hours on certain days,
* Will it run on our home equipment or will we rent a server,
* Whether we want to use free or paid software.

Running a bot on your own hardware has the advantage that we have the bot and the
computer under our control all the time, at our home. We definitely have to be ready for electricity
and Internet charges as well as for the repair or replacement of damaged or worn-out computer
components as a result of operation. We can allocate any old computer to the computer, as long as it
meets the minimum requirements, you can buy a used SFF computer®, laptop, netbook.

When deciding to run a bot on a remote server, eg VPS, we have remote access to the server
and the bot, we must be prepared for a recurring fee for renting the server.

With VPS, we have to look for a good offer from a company that provides a VPS server
rental, so I do not want to analyze offers here, because they may be out of date very quickly. Just
enter the phrase 'vps linux'® or 'vps windows'” in the search engine depending on which system we

are looking for VPS.

Below is a list of software to run your own bot in Second Life:

* SmartBots - the bot is hosted only on the company's server, the cost of renting the bot is:
$0.32/week for the basic version (with the possibility of extending it with additional
components) and $1.92/week for the full version. SmartBot allows you to invite visitors to a
group, send an announcement at a specific time to multiple groups, monitor a group chat via
a web browser, add spammers to the blacklist, create checkpoints through which the bot will
pass (useful e.g. during trips), etc. Communication with bot is done via: LSL, HTTP.
SmartBots works with a fairly extensive list of third party software, eg for lease (e.g.
CasperLet, HippoRent), sales (eg CasperVend), advertising (eg IntelliAd). Web address:

https://www.mysmartbots.com/.

05 SFF - Small Form Factory

06 Google Search with the phrase 'vps linux' - https://www.google.com/search?gq=vps+linux
07 Google Search with the phrase 'vps windows' - https://www.google.com/search?q=vpstwindows

https://www.mysmartbots.com/
https://www.google.com/search?q=vps+windows
https://www.google.com/search?q=vps+linux

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Corrade - the bot's software should be downloaded from the developer's website. The bot
can be hosted on your own computer or on a VPS, communication with the bot is via LSL,
HTTP, MQTT, WebSockets, TCP. Works with third-party rental and sales software, such as

CasperLet, CaspetVend. Web address: https://corrade.grimore.org/.

QubicBot - software that works only on Windows. The full version costs $12, you can also
host it on the manufacturer's server, then we will pay a few cents for a week of use. The
program allows you to run an unlimited number of bots, send group and private messages,
integrate with SmartBots and PikkuBot (to exp and your possibilities). Web address:

http://qubicbot.com/.

As you can see, we have several suggestions, it's up to us which software we like.

Corrade - compatible examples will be used later in the book.

http://qubicbot.com/
https://corrade.grimore.org/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.

4.1.

Corrade

Introduction

The Dpenﬂetaverse Ecrlpted Agent

LYWIZARDRY AF 57

Picture 4.1 - Corrade logo

Corrade:

multi-functional, cross - platform software for running your own bot in the virtual world of
Second Life,

is the bridge between the user and Second Life,

supports systems: Linux ARM, Linux 64-bit, Mac OSX 64-bit, Windows 7 and newer 64-
bit,

control by internal (LSL) and/or external scripts (any programming language),

integration with external services through built - in servers:

o HTTP,

o WebSockets,

o MQTT,

o TCP.

bot configuration takes place in a web browser via the following address:

http://127.0.0.1:54377/,

o advanced configuration by editing the Configuration.xml and Nucleus.xml files
requirements:

o one of the previously mentioned operating systems installed,

10

http://127.0.0.1:54377/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

o .NET Core 3.1+,
© min. 2 GB of memory (4 GB recommended),
o stable and fast internet connection.

¢ Website WWW: https://corrade.erimore.org/

Notifications
TCP Server |4———
Commands

Web Service

| | | Web Service ‘
Node.js —

HTML Form 4 notifications

TCP Service | HTTP POST > m

AjAle(t)uery Reply HTTP POST .

etc...
| LSL Script ‘

\) Group
HTTP POST ‘ Commands
Request p
—; Corrade

Commands
WebSockets |4—
Notifications Group HTTP POST

—b| Web ;er\fice ‘

> [on]

callback
| MQTT Device | Commands
, < — — :
Publish Notifications LSL Script
Subscribe command

Picture 4.2 - The way of information flow in Corrade

Corrade connects to Second Life as a normal avatar where, like any avatar, it belongs to
some existing group in this world. In this group, he has assigned roles (one or more) with
appropriate permissions.

By default, commands can be sent via an LSL script, which can also receive responses from
the bot (callback), or this response can be redirected to an external service, such as a script on an
external server.

The same goes for notifications that receive real-time responses from the bot and can be
processed in an LSL script or by an external service.

Commands or notifications can also be sent by: TCP server, WebSockets server, MQTT
server or script written in any programming language (eg PHP, Perl, Python, Ruby, etc.), where the

response is sent in the same way.

11

https://corrade.grimore.org/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Sending a command to Corrade should be bound with a group and a password as
authorization data.

On the project's website you will find quite extensive API for the bot, and most of the
commands have examples of use. The developer also provides examples of how to use LSL scripts
on their store page in Second Life Marketplace™ (all are free to use and modify) and HTTP
templates (e.g. 2D and 3D map, group chat, etc.).

4.2. License

Corrade and related materials are licensed under the 'Wizardry and Steamworks Project-
Closed and Open-Derivatives License 1.0' (WAS PC & OD 1.0)*, which does not substantially
reverse engineer the program and requires Corrade to be identified in the materials it appears in.

The license allows you to modify the source code, use for private and commercial purposes,
copy, distribute, sublicense, re-license any material created by the same company or organization
under the WAS PC & OD 1.0 license.

The manufacturer provides the software 'is as is' without the guarantee of correct software
operation.

The technical support is at a good level, in case of errors, it is enough to write an appropriate
application on the manufacturer's website.

You may use the Corrade software for commercial purposes, however, you must visibly
identify the manufacturer of Corrade.

Helper functions, e.g. wasURLEscape, wasCSVToList, etc. are licensed under WAS PC &
OD 1.0.

4.3. Creating an account on Second Life

Creating an account on Second Life is very simple. We go to the Second Life website "
(Picture 4.3 - Second Life website), then either click the orange 'Join free' or 'Sign up' button on the

top right of the screen (Picture 4.4 - Second Life - login or registration part).

08 Second Life Marketplace - https://marketplace.secondlife.com/stores/165275

09 License https://grimore.org/licenses/was - pc - od
10 Second Life website - https://secondlife.com/

12

https://secondlife.com/
https://grimore.org/licenses/was-pc-od
https://marketplace.secondlife.com/stores/165275

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

LANGUAGE v LOGIN

SECOND

LIFE

Become a Creator

< Express yourself & create anything you can imagine

JOIN FREE

Picture 4.3 - Second Life website

Sign In Sign Up Today!

Join Second Life and become part of the Internet's largest user

created, 3D virtual community.

second Life Username: @

« Connect with friends
« Meet new pe:
+ Explore thou
« Create and ¢

th voice and text chat

Second Life Password:

f unique 3D locations

gn your own 100k.

] Remember me on this computer Membership is FREE!

Forgot your login information?

Picture 4.4 - Second Life - login or registration part

If you click 'Login' on the top right of the screen, you will be able to log into your account
and manage this account.

13

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

& LANGUAGE

Usemame:

Email

[0 Check box to receive news and special offers.

Password

Date of Birth,

Month v | Day v | Year

Security Question

J0|n Second Llfe What city were you bornin?

Make new friends and lifelong connections.
Answer.

Starting avatar gender (you can change this |ater)

@ male O Female (O Gender-VariantNon-Binary

™

1eCAPTCHA
Privicy - Terms

I'mnot arobot

[I have read and agree to the Second Life Terms and
Conditions, Privacy Policy, and Terms of Service,
including the use of arbitration and the waiver of any
class or group claim to resolve disputes

CREATE MY ACCOUNT

Picture 4.5 - Account registration page

When you come back, after clicking you will see a form to be filled in:

* Username - the name of the avatar in Second Life, it may contain letters and numbers, it is
not possible to create an avatar with your own name and surname - they all receive the

surname 'Resident’,

* Email - enter your email address to which the avatar will be registered, on this email you

will also receive Second Life notifications, e.g. saved offline messages,

* Check box to receive news and special offers - check if you want to receive news and

special offers from Second Life,
* Password - enter the password for your avatar account,
* Date of Birth - your birthdate,
* Security Question - choose the type of question securing the account,

* Answer - enter your answer to the selected security question,

14

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

* Starting avatar gender - choose the gender of your avatar: male, female, or undefined, e.g. in

a fictional character,

* I'm not robot - mark and, if necessary, solve the test that you are not setting up an account as

an internet robot,

* I have read and agree (...) - check the option if you agree to the terms and regulations of

Second Life.

After registration, you should probably confirm the willingness to create an account by

clicking on the link that will be sent to the previously provided email.

After registration and approval, we can log in to the account on the Second Life website

and to the world of Second Life.

It is recommended that you change the avatar status in your account (Picture 4.6 - Change

your avatar status on the Second Life website), however, this has no benefit, rather it increases the

statistics.

—_—e

Home

Account v I

Account Summary

Premium Membership

Account History/Statements

L$ Transaction History

Process Credit

Process Credit History 2
hange Email n

Scripted Agent Status

Mesh Upload Status
Change Name
Change Password
Partners

Billing Information

Delete Account
Events
Shop B
Land Manager B

Scripted Agent Status:

‘Scripted Agent’ is our term to describe a Second Life account that is operated by a program rather than by a real person. These are
often called 'Bots' by residents and are automated avatars that perform specific tasks inworld, generally without any human
intervention. There are Bots that manage Land tasks and Bots that model clothing in stores

If you know that a Second Life account is to be used in this way, as a 'Scripted Agent' or Bot, then we ask that you identify it as such
here

There are a few ways that Bots can be used that are considered a violation of Second Life's Terms of Service (see this article for
more details). Identifying this account as a bot allows us to improve the Second Life experience for all Residents (for example, by
improving Search results). Failure to identify an account as a Bot could result in disciplinary action if the Bot is then found to be
negatively impacting our service or otherwise causing problems

Scripted Agent Status

Current Status The avatar associated with this account is identified as being controlled
by a scripted agent (sometimes referred to as a "bot"). Please select
"change" to self-identify your avatar as controlled by a human

Identify this account as a scnptedl ® VYes |denm¥ this account as a scngued aﬁent or Bot I 4
agent? No, this account will be used by a real person

I Save Changes I 5

Picture 4.6 - Change your avatar status on the Second Life website

15

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.4. Corrade installation and configuration

4.4.1. NET Core installation

To run Corrade, you need .NET Core, which unifies the .NET framework for all known

operating systems.

On the .NET download page" (Picture 4.7 - NET download page) we can currently
find: .NET (this is what we have to install), .NET Core (this is an older version with extended
program support) and .NET Framework (an even older platform, used by older versions of
Windows systems, e.g. Windows 7'%). We are interested in the version on the left side of the screen -
NET. Next to this, click on the link 'All .NET downloads', then click on "NET 5.0 (recommended)'
as the version marked as recommended. At the top of the table, you have the latest version available
for download. Once you have located the latest version, go to the right column of the table called
'Run apps - Runtime'. Download the '"NET Desktop Runtime' x64 version for Windows or '"NET
Runtime' in the x64 version Installers. Here, too, we have the option of installing the program on

other operating systems, such as Linux or MacOS, on other processor architectures.

Run the previously downloaded program for Windows or Mac OS, go through several stages

of installation and close the program. Its operation is hassle - free.

If we will update .NET to a new version in the future, do not forget to uninstall earlier older

versions via 'Add or Remove Programs'.

11 .NET download page - https://dotnet.microsoft.com/download
12 But you don't need to be installed, .NET can be installed

16

https://dotnet.microsoft.com/download

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Windows Linux macOS Docker
NET NET NET
Core Framework
.NET 5.0 (recommended) .NET Core 3.1 NET Framework 4.8
NET is a free, cross-platform, open-source developer platform NET Core is a free, cross-platform, open-source developer NET Framework is a Windows-only version of .NET for bullding
for building many different types of applications. platform for building many different types of applications. any type of app that runs on Windows.
Download .NET SDK x64 ‘ [o] Download .NET Core SDK x64 | D Download .NET Framework Dev Pack
Download .NET Runtime “') Download .NET Core Runtime |) Download .NET Framework Runtime
AllLNET downloads AllNET Core downloads All NET Framework downloads

Picture 4.7 - NET download page

When it comes to a Linux - based system, it is worth checking first if we can install .NET

via the snap program, so it is worth installing it first, and then in the terminal enter:

sudo snap install dotnet-sdk --classic

Which will install the SDK and Runtime for NET

After that, we can postpone .NET normally through the snap:

sudo snap refresh dotnet-sdk

If our system does not allow you to install the snap program, follow the standard steps described in

the instructions on the above-mentioned page.

4.4.2. A system from the Windows family

\ In the additional materials you will find a folder with the script in PowerShell and
\y instructions for quick installation of the bot.

1. Go to the website https://corrade.grimore.org/.
Click on the button DOWNLOAD.
Click on 'corrade’.

Click on 'win-x64'.

Lol e

17

https://corrade.grimore.org/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

You will get faster by clicking on the link:

https://corrade.grimore.org/download/corrade/win-x64/.

5. Click twice on 'Last modified' and the file list will be displayed by time from youngest to

oldest.
. Click on the first ZIP you see on the list: Corrade-[VERSION]-win-x64.zip.
. Wait for it to download.

— © 0 = o

0. Find and run Corrade.exe.

Unpack the ZIP archive into a folder.
. Open the directory where the files unpacked.

Lo e sl
i ‘;Uv| v Corrade » - | 4 | | Search Corrade yel |
Organize * Open Share with + MNew folder =« 0 @
e e MName . Date modified Type Size it
|| Configuration.xsd 8/21/2020 5:12 PM X5D File 18 KB
B Desitop] coreclr.d 10/16/2020 8:18 PM Application extens.. 5,468 KB
ﬂ' E::::'::I‘:;s [Corrade.deps json 12/19/2000 711 PM JSONFile 115 K8
- (%] Corrade.dll 12/19/2020 711 PM Application extens... 7,766 KB
e |Iﬂ Corrade 12/19/2020 711 PM Application 169 KB F
i Libraries [Corrade.pdb 12/19/2000 711 PM PDB File 591 KB ‘ ﬂ
B Documents [Corrade.runtimeconfig,json 12/19/2000 711 PM JSONFile 1KB
d Music [CorradeCanfiguration.deps.json 12/19/2020 710 PM JSONFile 32K8
= P?ctures %) CorradeConfiguration.dll 12/19/2020 7:08 PM Application extens... 240 KB
B Videos [CorradeConfiguration.pdb 12/19/20200 7:08 PM PDB File 89 KB
8 Computer (%] dbgshim.dll 10/16/2020 8:18 PM Application extens... 133 KB
(%] deniszykov.WebSocketListener.dll 9/8/2020 2:43 PM Application extens... 217 KB
‘.h NT— (%) e_sqlite3.dll 8/17/2020 3:38 PM Application extens... 1,534 KB
(%) hostfxr.dll 10/19/2020 8:23 PM Application extens... 586 KB
(%] hostpolicy.dll 10/19/2020 8:23 PM Application extens... 577 KB
(%) HtmlAgilityPack.dll 12/16/2020 407 PM Application extens... 157 KB
(%) Tonic.Zlib.Core.dll 7/31/2017 10:08 PM Application extens... 86 KB
LICENSE 12/17/2020 6:19 PM Text Document 6 KB
Log4Net.config.default 8/21/2020 512 PM DEFAULT File 3KB
| logd4net.dil 10/19/2020 7:40 AM Application extens... 252 KB
| MaxMind.Db.dll 11/16/202011:04 ... Application extens... 43 KB
| MaxMind.GeoIP2.dll 11/19/202010:33 ... Application extens... 55 KB
5| Microsoft.CSharp.dll 10/19/2020 8:22 PM Application extens... T79 KB
%) Microsoft.Data.Sqlite.dll 11/26/2020 5:31 AM Application extens... 148 KB
Microsoft.DiaSymReader.Mative.amddd.dll -~ 12/4/2017 5:36 P Application extens... 1,461 KB
(%] Microsoft.Experimental. Collections.dll 1/17/2019 7:54 PM Application extens... 51 KB
|%| Microsoft.Extensions.Dependencylnjectio.. 10/19/2020 7:48 PM Application extens... 44 KB -

| Corrade
. Application

Date modified: 12/19/2020 7:11 PM

Size: 169 KB

Date created: 12/19/2020 7:11 PM

Picture 4.8 - Folder with Corrade files and the selected program

The console version of the program will be started.

18

https://corrade.grimore.org/download/corrade/win-x64/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

You will see real-time notifications regarding the Corrade software operation.
By default, this is information that since the configuration file was not found, the program started

with default settings and Nucleus is available on port 54377, where you can configure the bot.

== =S
7| CA\Users\corrade!\Desktop\Corrade\Corrade.exe EI@ o
b _IJ (7]
Loading)

m

2021-01-03 10:48:39,526 WARN Corrade - warning : Corrade : Reconfigure@r746

ble to load configuration : Nucleus will enter a configuration phase to a'I'Ic.Jw th

e creation or repair of the configuration file : Please visit the indicated Nucl
eus URL with a web browser

10: ’ 5

— Corrade Date modified: 12/19/2020 7:11 PM Date created: 1271972020 7:11 PM
Application Size: 169 KB

ol | = | A

Picture 4.9 - Corrade in the console version

11. We run the web browser without ad-blocking add-ons.

12. We enter the address: http://127.0.0.1:54377.

A screen should appear before our eyes:

19

http://127.0.0.1:54377/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

[/ =
/’Z/'[{/C'[;&[(/J.

Corrade-Nucleus: Authorization Required

Codeword nucleus

The codeword required to access Nucleus

» The default codeword for Nucleus is: nucleus

» For your own protection, please disable or add an exception for this site to any ad-blocking
addons.

» The codeword can be changed by copying Nucleus.config.default to Nucleus.config and
setting the codeword.

Picture 4.10 - Authorization of access to Nucleus

13. In the 'Codeword' field, enter the default password: 'nucleus' (without the quotes) and click
the 'Login' button.

Another screen will appear:

20

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

@@RRAE

nuclews

1 11.0.87.74 F
CONFIGURE
HEARTBEAT
VIEW LOGS
° LoGgouT
0] [0

Picture 4.11 - Nucleus - options to choose from

Here we can go to:
* 'Configure' - bot configuration,
* 'Heartbeat' - RAM and CPU consumption of the bot,
* 'View Logs' - simple viewing of bot logs,

* 'Logout' - logging out of Nucleus.

14. We will proceed to configuring our bot, so click on 'Configure'.

15. Enter the password to access Nucleus.

21

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Welcome to Corrade!

Welcome to Corrade! Please use the configurator to configure Corrade for the first
time.

Close

Picture 4.12 - Nucleus - information about the first bot configuration

Since the program does not detect the Configuration.xml configuration file, it will show us a nice
message about the possibility of configuring the bot.

16. Click on Close.
Next to the 'Confirm Configuration' button, you can switch between the simple (Normal) and the
advanced (Advanced) bot configuration.

I will cover the advanced version.

22

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

CORRADE

11.0.87.74

RV Servers Scripts Logging

| Corrage

The grid first name.

[Resident

The grid last name

The grid login password

| https:iiogin agnilindeniab.com/cgi-bin/login.cgi
The grid login URI

K

The maximal range for sensing in-world objects and avatars

Picture 4.13 - 'Login’ tab

On the 'Login' tab (Picture 4.13 - 'Login' tab):
17. we give the first and last name of our bot (the default name is: Resident).
18. bot account password.
19. The grid login URL (we leave the default for Second Life as
https://login.agni.lindenlab.com/cgi-bin/login.cgi).
20. maximum range of detection of objects and avatars in the world (you can leave the default

value).

23

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

e A

login | Groups | Startlocations ALV Servers

Group
Group name
Password
Cache members

Permissions

Notifications

Scripts Logging

Select a group to modify

el 11.087.74 I

[Wizardry and Steamworks]:Support

The name of a group that s used for authentication and must be an existing group on the grid to connect to.

The group password is

l off

used by scripts to authenticate, has r

The group member cache is used to speed up operations but may incur a performance pentalty.

[] bridge
7] execute

[interact

(71 mute

(] agentdata
] avataraction

[7] database
] friendship
[inventory

[notifications

] alert
1 avatargroup
] chatterbox
] conference
[] debug

] effect

[C] heartbeat
[location

1 map

] notice

[] parcelmap
[C] primitives
1 seripts

[C] statistics

1 tracker

Add

Delete

econdLife equivalent and is just a made up shared secret

] directory
7] grooming

] land

[system

7] animation

] avatars

[coarse

[configuration
[dialog

7] estatelist

[] inventory

[login

[F] membership
[] objectim

[particles

] region

[sit

[store

O typing

Cornmit Configuraton

(] appearance
[balance

[colliders

[control

[displayname
[friendship
[[] invite

[logs

[message

[outfit

[] permission
[regionsayto
[softban

[teleport

7] URL

Picture 4.14 - 'Groups' tab

On the 'Groups' tab we manage groups.

21. The group must exist in the world of Second Life and the bot must be a member of this

group (before configuration, it is best to log in as a bot, join the group, deselect group

notifications).

22. To add a group, first click on the 'Add' button at the bottom.

23. The group 'new group' will be added to the list.

24. From the 'Group' drop - down list, select the newly added group 'new group'.

25. The settings and permissions for this group will be loaded. We can change them freely.

26. First of all, we change the name of the group to the correct one.

27. Then we enter the password we invented (it is best if it should be 10 or more characters

long, consisting of lowercase letters, uppercase letters, numbers, with special characters it is

best to skip it - Corrade may have a problem with encoding them).

i

There is no such thing as a group password in Second Life.

The password set for the group in Corrade is an additional protection against

24

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

unauthorized access to the bot.

28. Then, in 'Cache members', we decide whether this option is to be turned on or off - it causes
that the avatar data from the group will be saved on the disk so that later operations can be
performed faster. Sometimes this option can fail and it is turned off for me.

29. Next we have a list of permissions.

We mark the necessary ones, we mark unnecessary permissions.
The permissions used by the commands we use should definitely be selected.

30. If everything is fine, go to the next tab, but here on this tab, I recommend deleting the
default group called '[Wizardry and Steamworks]: Support'. Simply select this group from
the 'Group' list and put it on the 'Delete’ button.

@@RRADE

wiclews

1 11087.74 F
e
Login Groups | StartLocations | RLV Servers Scripts Logging

These are the start locations that Corrade will attempt to start at when connecting to the grid. Region name can also be set to "last" or "home" in order to make Corrade login to the last location it connected to, respectively the home location. The order of the rows can be
adjusted such that Corrade will attempt to connect to each location starting from the top and up to the last location at the bottom. In case all locations to connect to have been exhausted and Corrade cannot connect to the grid, then Corrade will terminate.

Region X v z
last

home

Murray 119 : 32 2 30

Violet 162 z 101 z 26

Delete

127.001:5437 findechtmi

Picture 4.15 - 'Start Locations' tab

31. On the 'Start Locations' tab, indicate the starting place or places when the bot logs in to
Second Life. If there are more of these starting locations, if one place is not available when
the bot logs into Second Life, the bot will try to appear in the next place. If, however, all
places are unavailable, the bot will not log into Second Life, and a message will appear in
the logs and console that the places are unreachable.

32. To add a new starting point, we click on the 'Add' button.

25

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Then we can enter into the last line:

* last - the bot logs in to the last saved place when logging out of Second Life,

* home - the bot logs in to the starting place,

* aspecific position in Second Life by entering the name of the region, position X, Y, Z.
33. To delete a given starting point, click on the region field and then click on the 'Delete'

button.

—
@& ORIRADIE

wiclews

el 11.0.87.74 I

o et

Login Groups Startlocations | RLV | Servers Scripts Logging

Even though Corrade commands are much more powerful than RLV. Corrade has built-in support for RLV that can be enabled here.

RESTRAINED LOVE VIEWER (RLV) Bl
As per the RLV specification, cerfain RLV behaviours can be blacklisted and by ticking the behaviour names, the behaviours will be added to the RLV blacklist
Blacklist 7] attach 7] attachall [F] attachallover [£] attachalloverorreplace
[F] attachover [£] attachoverorreplace 7] clear] detach
7] detachall [[] detachme [£] hndtolder [C] getattach
[£] getblacklist [£] getgroup [£] getinv [£] getinvworn
[getoutfit [£] getpath [£] getpathnew [£] getsitid
Il getstatus Il getstatusall || remattach || remoutfit
e = B B
7] unsit 7] version 7] versionnew [F] versionnui m
|| versionnumbl

12700,

Picture 4.16 - 'RLV' tab

34. On the 'RLV' tab, you can click on the options you want to be banned.
By default, I skip this tab.

26

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

1 1108774 I
o Conatneion
Log Groups Startlocations RLV | Servers | Scripts Logging
Prefix
HTTP
The prefix to use for the HTTP server
Address
0000
The IP address for the MQTT server to listen on
Port u
M QTT § oo 1883
The port for the MQTT server to listen on.
B oo
Whether to use eflate compression for all communication
Address
0000
The IP address for the TCP server to listen on
Port
TCP l Disabled 8085
The port for the TCP server (o listen on
B oo
Whether to use eflate compression for all communication
URL
ws//0.0.0.0:8088
WEBSOCKETS l Disabled The URL for the WebSockets server to listen on
B oo
Whether to use deflate compression for all communication

Picture 4.17 - 'Servers' tab

35. On the 'Servers' tab, define which servers are to receive requests and send responses to the
bot. If they are all disabled, you can only send commands to the bot via LSL in Second Life.
To enable a given server, next to it, click 'Disabled’ and 'Enabled'.
At the server, we can specify the IP address and port (as well as whether the data should be

compressed during communication) on which to listen.

The IP address can be:

e 127.0.0.1 - the server will listen locally, so other programs and scripts must be placed on the
same computer as the bot,

* + (HTTP) lub 0.0.0.0 - the server will listen on each interface of the network card,

* specific IP address - the server will listen on the specified IP address.

27

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

CORRADE

11.0.87.74

Llogin Groups StartLocations ~ RLV Servers

WAS

SCRIPT Setect a anguage o vse orserprs
LANGUAGE

127.001:5437 T findechtml

Picture 4.18 - 'Scripts' tab

36. On the 'Scripts' tab, define whether the bot should process scripts according to WAS or
JSON.

CORRADE

11.0.87.74

Commit Configuration

Login Groups Startlocations ~ RLV ~ Servers Scripts | Logging

MESSAGE LOGGING

Disabling message logging will prevent Corrade from logging chat and other grid messages to the local filesystem.

127.00.1:54377 indexhteml

Picture 4.19 - 'Logging' tab

37. On the 'Logging' tab, define whether Corrade should log all messages from: chat, IM, etc.

28

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

38. If everything is ready, just click on the 'Commit Configuration' button, enter the
authentication password and click on 'Submit'.
If everything was successful, we will see a window that the changes have been applied, the
bot should log into Second Life, and in the console we will see further messages without

any Crrors.

4.4.3. Linux x64 family systems (Debian family)

1. Launch the terminal,

Download the zip archive from the site corrade.grimore.org/download/corrade/linux-x64,
Unpack them into a folder,

Go to the Corrade folder,

Run Corrade by typing: ./Corrade

A

Further configuration is done via Nucleus, see the chapter: (9 A system from the Windows
family.
The commands that must be entered into the terminal are shown below.

cd /tmp/

zip=$(wget -0- "https://corrade.grimore.org/download/corrade/linux-x64/?C=M;0=D" |
grep -o "Corrade-.*\.zip\">" | sed 's/Corrade-//' | sed 's/">//' | sort -hr | head -n 1
)

wget --no-check-certificate -0 corrade.zip
"https://corrade.grimore.org/download/corrade/linux-x64/Corrade-$zip"
unzip -o corrade.zip -d "$HOME/corrade"

cd $HOME/corrade

./Corrade

In the event of a problem, give permission to the folder where Corrade is located.
chmod -R 0757 corrade

29

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

After starting, messages from the program will appear:

% ubuntu@ubuntu-virtual-machine: ~/corrade X

ubuntu@ubuntu-virtual-machine:~/corrade$./Corrade

021-01-05 11:00:5
ation : Nuc g
guration file : S it the indicatec

Picture 4.20 - Corrade running on Linux

4.4.4. Mac OS

First, we need to disable the program's signature checking as Corrade is unsigned and will
be recognized as created by an unknown developer.
For this purpose:
1. Click on the 'Launchpad' icon at the bottom of the window (by default it is the second icon
from the left).
2. Enter the word 'terminal' in the search box.
3. Select the 'Terminal' program from the list.

4. In Terminal, enter the command:

sudo spctl --master-disable

Enter your account password.

If all was successful, checking has been disabled. It's best not to turn back on the Corrade.

30

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

5. We run the Safari browser.

6. We go to the site https://corrade.grimore.org/download/corrade/osx-x64/?C=M:0=D and
download the last fresh ZIP file.

7. We are waiting for the download of the file.
8. Safari will be so nice to us that it will unpack the ZIP file we downloaded for us.
9. The launched Terminal or activate the previously launched one.

10. We go to ~/Downloads (by the way we confirm the window that we want to give Terminal

access to this directory).

cd ~/Downloads

1. Do a directory listing (using the Is command) to see the name of the Corrade folder where

the latest version was extracted. Change its name to Corrade using the mv command.
11. Go to the Corrade directory.

12. Launch Corrade:

13. ./Corrade

14. Further configuration is done via Nucleus, see the chapter: GO A system from the Windows

family.

31

https://corrade.grimore.org/download/corrade/osx-x64/?C=M;O=D

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.5. Corrade configuration files

The default configuration files are:
* Configuration.xml.default,
* Nucleus.xml.default.

Just replace their names with:
* Configuration.xml,
* Nucleus.xml.

Configuration.xml is automatically created when saving changes to Nucleus.

4.5.1. Configuration.xml

The Configuration.xml file contains the bot configuration. It is saved in XML format.

Key Description
FirstName avatar name
LastName avatar name (default)
Password the password for the avatar account consists of

the prefix 1 and then the password is
encoded in MDS5, the password should be 6 -
16 characters long

LoginURI url to grid, the default will be Second Life
Servers defines the settings for embedded servers
Servers => HTTPServer settings for the HTTP server

Servers => HTTPServer => Enable server is on (1) or off (0)

Servers => HTTPServer => Prefixes => Prefix | specifies the HTTP address at which the HTTP
server will be accessible (IP address: port)

32

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Key

MQTTServer

Description

settings for the MQTT server

MQTTServer => Enable

server is on (1) or off (0)

MQTTServer => [PAddress

IP address where the server will be available

MQTTServer => Port

port where the server will be available

MQTTServer => MQTTCertificate => Path

certificate path for MQTT

MQTTServer => Compression

enable (1) or disable compression (0)

TCPServer

settings for the TCP server

TCPServer => Enable

server is on (1) or off (0)

TCPServer => [PAddress

IP address where the server will be available

TCPServer => Port

port where the server will be available

TCPServer => TCPCertificate => Path

certificate path for TCP

TCPServer => TCPCertificate => Protocol

protocol used

TCPServer => TCPCertificate => Password

the password for the certificate

WebSocketsServer

settings for WebSockets

WebSocketsServer => Enable

server is on (1) or off (0)

WebSocketsServer => WebSocketsCertificate | the path to the certificate
=> Path

WebSocketsServer => WebSocketsCertificate | password for the certificate
=> Password

WebSocketsServer => URL

The URL where the WebSockets server will be
available

WebSocketsServer == Compression

enable (1) or disable compression (0)

StartLocations

defines the starting places

StartLocations => StartLocation => Region

takes one of the values:
* home - teleport to a place marked as
'home',
* last - teleport to the place where the bot

33

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Key

Description

recently logged out,
* specific name of the region.

StartLocations => StartLocation => Position

position X, Y, Z where the bot should log in

Groups

defines bot groups and permissions to these
groups

Groups => Notifications

defines the available notifications

Groups => Password

defines a group password, the password is
saved as SHAI

Groups => Name

name of the group (existing in Second Life)

Groups => Permissions

defines the available permissions for the group

Groups => CacheMembers

specifies whether the group member cache is
enabled (1) or disabled (0)

RLV => Enable

turns on the RLV

RLV => Blacklist

defines which behaviors are disabled

Range determines the detection range of avatars and
objects

IgnoreOfflineMessages enables (10) or disables (1) the ability to
receive offline messages

Messagelogging save messages to file

Feedback determines whether diagnostic feedback is to
be sent to the manufacturer's Corrade server

ScriptLanguage defines which data format is used by Corrade

for communication (WAS or JSON)

Table 1 - Table with a description of individual variables

<?xml version="1.0" encoding="utf-8"?>

<IDOCTYPE Configuration [<!ATTLIST Configuration xmlns:xsi CDATA #IMPLIED
xsi:noNamespaceSchemalLocation CDATA #IMPLIED>]>

<Configuration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"” xmlns="urn:corrade-configuration-

34

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

schema">
<FirstName>MyBot</FirstName>
<LastName>Resident</LastName>
<Password>$1$842e4818f8ede223c9b920d4f7425c9b</Password>
<LoginURI>https://login.agni.lindenlab.com/cgi-bin/login.cgi</LoginURI>
<Servers>
<HTTPServer>
<Enable>1</Enable>
<Prefixes>
<Prefix>http://127.0.0.1:9199/</Prefix>
</Prefixes>
</HTTPServer>
<MQTTServer>
<Enable>0</Enable>
<IPAddress>0.0.0.0</IPAddress>
<Port>1883</Port>
<MQTTCertificate>
<Path>mqgtt.pfx</Path>
</MQTTCertificate>
<Compression>0</Compression>
</MQTTServer>
<TCPServer>
<Enable>0</Enable>
<IPAddress>0.0.0.0</IPAddress>
<Port>8085</Port>
<TCPCertificate>
<Path>tcp.pfx</Path>
<Password>corrade</Password>
<Protocol>T1s12</Protocol>
</TCPCertificate>
<Compression>0</Compression>
</TCPServer>
<WebSocketsServer>
<Enable>0</Enable>
<WebSocketsCertificate>
<Path>ws.pfx</Path>
<Password>corrade</Password>
</WebSocketsCertificate>
<URL>ws://0.0.0.0:8088</URL>
<Compression>0</Compression>
</WebSocketsServer>
</Servers>
<StartLocations>
<StartLocation>
<Region>Lorena Pink</Region>
<Position>
<X>9</X>
<Y>127</Y>

35

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

<Z>23</Z>

</Position>

</StartLocation>

</StartLocations>
<Groups>
<Group>

<Notifications>
<Notification>group</Notification>
<Notification>message</Notification>
<Notification>notice</Notification>
<Notification>local</Notification>
<Notification>dialog</Notification>
<Notification>permission</Notification>
<Notification>invite</Notification>
<Notification>sit</Notification>
<Notification>teleport</Notification>
<Notification>inventory</Notification>
<Notification>wind</Notification>
<Notification>sound</Notification>
<Notification>terse</Notification>
<Notification>RLV</Notification>
<Notification>ownersay</Notification>
<Notification>preload</Notification>
<Notification>MQTT</Notification>
<Notification>lure</Notification>
<Notification>economy</Notification>
<Notification>crossing</Notification>
<Notification>collision</Notification>
<Notification>cache</Notification>
<Notification>avataraction</Notification>
<Notification>agentdata</Notification>
<Notification>tracker</Notification>
<Notification>statistics</Notification>
<Notification>scripts</Notification>
<Notification>primitives</Notification>
<Notification>parcelmap</Notification>
<Notification>map</Notification>
<Notification>location</Notification>
<Notification>heartbeat</Notification>
<Notification>effect</Notification>
<Notification>debug</Notification>
<Notification>conference</Notification>
<Notification>alert</Notification>
<Notification>avatargroup</Notification>
<Notification>chatterbox</Notification>
<Notification>typing</Notification>
<Notification>store</Notification>
<Notification>region</Notification>

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

<Notification>particles</Notification>
<Notification>objectim</Notification>
<Notification>membership</Notification>
<Notification>login</Notification>
<Notification>estatelist</Notification>
<Notification>configuration</Notification>
<Notification>coarse</Notification>
<Notification>avatars</Notification>
<Notification>animation</Notification>
<Notification>URL</Notification>
<Notification>softban</Notification>
<Notification>regionsayto</Notification>
<Notification>outfit</Notification>
<Notification>logs</Notification>
<Notification>friendship</Notification>
<Notification>displayname</Notification>
<Notification>control</Notification>
<Notification>colliders</Notification>
<Notification>appearance</Notification>
<Notification>balance</Notification>

</Notifications>

<Password>4e000b85758746ec818d53513c3d3e791822fdb6</Password>

<Name>My Group</Name>

<Permissions>
<Permission>inventory</Permission>
<Permission>movement</Permission>
<Permission>grooming</Permission>
<Permission>interact</Permission>
<Permission>notifications</Permission>
<Permission>talk</Permission>
<Permission>group</Permission>
<Permission>land</Permission>
<Permission>mute</Permission>
<Permission>execute</Permission>
<Permission>bridge</Permission>
<Permission>friendship</Permission>
<Permission>database</Permission>
<Permission>system</Permission>
<Permission>directory</Permission>
<Permission>economy</Permission>

</Permissions>

<Cookies />

<CacheMembers>1</CacheMembers>

</Group>

</Groups>

<RLV>

<Enable>0</Enable>
<Blacklist>

37

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

<Behaviour>sendim</Behaviour>
<Behaviour>tplm</Behaviour>
</Blacklist>
</RLV>
<Range>64</Range>
<Language />
<PublishLanguage>1</PublishLanguage>
<IgnoreOfflineMessages>1</IgnoreOfflineMessages>
<Messagelogging>1</MessagelLogging>
<MultipleSimulatorConnections>0</MultipleSimulatorConnections>
<Feedback>0</Feedback>
<NotificationSettings>
<AutoPrune>
<Enable>1</Enable>
<Conditions>
<Condition>
<StatusCode>404</StatusCode>
<Expression>sim.+?agni.lindenlab.com:[©-9]+?\/cap/[0-
9a-fA-F\-]+?$</Expression>
</Condition>
</Conditions>
</AutoPrune>
<Scripts>
<Update>1000</Update>
</Scripts>
<Colliders>
<Update>1000</Update>
</Colliders>
<Statistics>
<Update>1000</Update>
</Statistics>
<Wind>
<Update>1000</Update>
</Wind>
<Location>
<Update>1000</Update>
</Location>
<Terse>
<Update>1000</Update>
</Terse>
</NotificationSettings>
<ScriptLanguage>JSON</ScriptLanguage>
</Configuration>

Text 1 - Bot configuration file

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.5.2. Nucleus.xml

Nucleus configuration.
* Prefix - Specifies the URL where Nucleus will be available, + stands for each IP address.
* Enabled - Determines whether the Nucleus is enabled (1) or disabled (0).

* CodeWord - defines the password to access the Nucleus.

<?xml version="1.0" encoding="utf-8"?>

<IDOCTYPE Configuration [

<IATTLIST Configuration xmlns:xsi CDATA #IMPLIED xsi:noNamespaceSchemalocation
CDATA #IMPLIED>

1>
<Configuration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema” xmlns="urn:corrade-nucleus-schema">
<Prefix>http://+:54377/</Prefix>
<Enabled>1</Enabled>
<CodelWord>nucleus</CodeWord>

</Configuration>

Text 2 - Nucleus configuration file

4.6. Corrade installation and removal as a system service

As standard, Corrade does not have the option to install the program as a system service, so

below I present how to install Corrade as a service in popular operating systems.

4.6.1. Windows

In the contrib\windows folder you will find the following files:

* install-corrade-service.bat - installs Corrade as a service (named Corrade Resident),

39

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

* nssm.exe - a program that allows you to add a handle to a program that cannot be handled as

a service by default; the program installs as a service and intercepts all system requests

(start, restart, stop) for the specific program,

* nssm-GULbat - the above program, but the ability to add and edit via the graphical user

interface,

¢ uninstall-corrade-service.bat - uninstall the service.

You can also install and uninstall the service yourself:

1. Run command prompt with administrator privileges in the root folder of the bot.

2. Enter and confirm the command: powershell.

3. Below are the commands to copy: line by line.

Attention! The following lines install Corrade as a service named: Corrade.

You can change the name of the service to yours, however, adjust all lines to include the new name

of your service.

$currentDir = $(Get-Location).Path
$binPath = "$currentDir\Corrade.exe"
install Corrade "$binPath"

.\contrib\windows\nssm.exe
.\contrib\windows\nssm.exe
.\contrib\windows\nssm.exe
.\contrib\windows\nssm.exe
.\contrib\windows\nssm.exe
.\contrib\windows\nssm.exe
.\contrib\windows\nssm.exe
.\contrib\windows\nssm.exe

.\contrib\windows\nssm.exe

set
set
set
set
set
set
set

set

Corrade
Corrade
Corrade
Corrade
Corrade
Corrade
Corrade

Corrade

4. close the command prompt window.

To uninstall the program as a service, type and confirm at the command prompt:

AppDirectory "$currentDir"
AppExit Default Restart
DisplayName Corrade

ObjectName LocalSystem

Start SERVICE_AUTO_START

Type SERVICE_WIN32_OWN_PROCESS
AppThrottle 1500
AppRestartDelay 1000

40

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

sc stop corrade

sc delete corrade

4.6.2. Linux

For Linux, we find the precompiled corrade.service file in contrib\linux, which is handled by
the SystemD daemon. You just need to copy it, configure it, and include it in the system service

startup daemon.
Open a command prompt (terminal), enter the commands one by one and confirm them:

Adding a new user named 'corrade'.

sudo useradd -m corrade

Setting a new password for the user 'corrade'.

Enter a new password twice for this user.

sudo passwd corrade

Adding 'corrade' to the group to run sudo command.

sudo usermod -aG sudo corrade

Logging in as 'corrade'.
Enter the previously established password.

su corrade
Go to the user's home directory.
cd ~

Download or copy the corrade to this folder.

Grant permissions for this folder to the new user and group: corrade.

chown -R corrade:corrade corrade

Go to the corrade folder.

41

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Then go to the folder with corrade.service.

cd contrib/linux/

copy the file to the systemd folder.

sudo cp -af corrade.service /etc/systemd/system/

edit this file:

sudo nano /etc/systemd/system/corrade.service

Here:
* in WorkingDirectory, correct the path to the corrade folder,

* in ExecStart correct the path to the corrade file (same as in WorkingDirectory only add

/Corrade) to/home/corrade/corrade.

If everything is fine, save your changes and go back to the console.

sudo systemctl enable corrade.service

sudo systemctl start corrade.service

Go through the browser to the address: http:/COMPUTER _IP_ADDRESS:54377 and configure
the bot.

If something is wrong, check the bot and system logs, maybe the folder permissions are wrong...

42

http://ADRES_IP_KOMPUTERA:54377/
http://ADRES_IP_KOMPUTERA:54377/
http://ADRES_IP_KOMPUTERA:54377/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.7. Corrade.log and Openmetaverse.log

* Logs

All text files to which Corrade registered the events are stored in the 'Logs' folder.

o

Corrade.log relates to the Corrade program,
OpenMetaverse.log refers to the world of Second Life,
log files refer to the current log files,

files with the .logNUMER extension are files archived on a given day, e.g.
Corrade.log20200912 refers to events recorded on 2020-09-12,

folder Chat

* IM - saved private conversations with the bot, the file name is the UUID of the

avatar with which the bot was talking,

* Local - saved public chat conversations, the name of the file is the name of the

region in which the bot was located,

* OwnerSay - saved calls by registration from 1lOwnerSay() function (sent by

prim/object owner), filename is prim UUID, owner, etc.

43

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.8. Adding a bot to a group in SL, giving it permissions, disabling

the option of receiving group messages

It's very easy to add a bot to a group and assign it a role with permissions.

A short chapter on how to do it using Firestorm Viewer.

ions - Contacts =~ %X Group Profile - ASCAL ? - 1'1[Group Invitation

General | Members & Roles tices Land & L$ Experiences 6

1mCall Foles Abilities Banned Res

0 your
esident Choo:

:,: Ballet Pixelle

_‘5 Builder's Brewery. B Member Donation - Title
HEDELS Nitro 0m Member
NitroPL (nitro2012pl) 0 m2 e owner

-~ , Builder's Brewery Speakeasy

Leave

@8 Chilbo Educational Guild

Corrade Bot Supporters Create... 5
Immersiva Se
g Search,

ﬂ ISTE SIG Virtual Environments

Export List
Invite..
Bl [STE SL Tour Group Choose Resident

= Leonardo De ArtBot Group Search Friends [“NearMe Search by UUID

= Leonardo De ArtBot Group - Fans Select a person nearby:

Range ™ 130 Meters
E PL LOT

=

»
C

Rickylivemusic Productions ame a Username

Rockcliffe University - Students ab Braham Armig Hadhja
pagnoca

m SL Live Arbitar Bas Arbitar
Avi Arrow Avi Arrow
BotLOT BotlOT

ﬁ s n btcut Rowlands bteut Rowlands

Dog Pluto Dog Pluto

Elric Wilberg

virtual Pioneers Fallenom

"R Frederique Sands

,‘,f Virtual worlds MOOC

SL Mooc on WizIQ

. UWA VIRTLANTIS

— L Moyet
You belong to 26 groups (16 remaining). (Love Full Perm

(s 2 ;e e ™ i Select Close
5 e 7 .

Picture 4.21 - Selecting an avatar for a group invitation

1. Select a group from the list.

2. Go to the group details.

3. Go to the 'Members and roles' tab.
4. Go to the 'members' tab.

5. Click on the 'Invite' button.

6. Click on the button that allows you to select the avatars to be invited.

44

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

7. In this window, use the appropriate tab to find your bot, which you will add to the group.
Enter its name in the appropriate field and put it on the search button, then add it to the

invitation list. If everything is ok, press the 'Select' button.

Group Invitation

Yo elect multiple Res

Resident Chooser' tc

Open Resident Chooser

BotLOT

8

Picture 4.22 - Select a role and send
an invitation to the avatar

8. We choose the role to which we will assign the bot. This role must be created beforehand,
and it is best to assign group permissions to the bot beforehand.

9. We're sending an invitation.

Now you just need to log in as a bot and accept the group invitation.

45

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.9. Authorization notation system

There is a known permission system in Second Life, which is especially visible when

editing objects. Corrade also supports this system by writing it in a specific way, e.g.
cdemvt------------ cde-vtcdemvt

This entry consists of 5 segments, each of them consisting of 6 characters, which define the type of

authorization.
The following authorization segments are: basic, everyone, group, next owner, owner.

Each character means:

* ¢ (copy),

d (damage) (used in the OpenSimulator simulator),

e (export) (used in the OpenSimulator simulator),
* m (modify),
* v (move),

et (transfer),

- (dash) - no permission.

We will take a deeper look at a previously defined example.

base group owner

cdemvt-----—------cde-vtcdemvt

everyone next owner

Picture 4.23 - Distribution of object authority

46

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

» the first 6 characters - cdemvt - mean full permissions for the 'basic' mask,
1 1 1 '

* next 6 characters - ------ - mean no permissions for the mask 'everyone',

* next 6 characters - ------ - mean no permissions for the mask 'group',

* the next 6 characters - cde-vt - mean that the following permissions are set for the 'next
owner' mask: copy, damage, export, move, transport, while the next owner cannot modify

the object,

* the last 6 characters - cdemvt - indicate full permissions for the 'owner' mask.

4.10. Notifications

A notification is a bot function that receives data from Second Life in real time and based

on which the bot can trigger a specific action.

For example, there is an 'alert' notification that receives messages regarding the region. Most
avatars receive information about restarting the region. If the bot receives such information, it can,

for example, temporarily teleport to another location.

We have another example 'balance' notification that keeps you informed about the bot's
account balance. For example, a bot can act as a seller of goods or a land rental manager in a region,
which therefore accepts payments and returns the surplus (e.g. you can rent land for a maximum of
a month and someone has paid for 2 months, so the bot has to return the money for an additional
month). If the bot receives a notification that there is no money in his account (the balance is zero
or even negative) he can send it to his administrator in the form of an IM or an email with a request

to top up the money at the checkout.

The last example I would like to give is the 'terse' notification, which returns information
about the new position and rotation of the avatar or object. You can use this notification, for
example, to track avatars in a region and check by their position that they do not violate some area
accessible only to authenticated people. If such a situation occurs, you can first send a warning to

such a person via a private message, and after e.g. 30 seconds, ban him temporarily for 1 hour.

47

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Above, I just presented possible scenarios with the use of some notifications. You can find

all notifications on the Corrade software page".

Remember to clean the bot from old notification URLs. This can be done using the 'notify’
command with the 'action' option set to 'purge' or before starting the bot, delete the State\
Notifications.xml file, for this purpose it is best to create a batch file, where first delete the State\
Notifications.xml file and then the bot is launched. If you have additional material, see the

bot_installer\corrade\bot ai\start.bat file.

I will now show the code in LSL how to install the notification, here 'message''* it will be

used to receive private messages from avatars who write to it.

/’/.\'{{///{ /l [(’.\'.\'({’/(is‘
-

- 5 June 2016
£
u Release 9.86 - added language detection.

message (Notifications)

Type Corrade progressive notification

Notification message

Data type, firstname, lastname, agent, message, language
Structure L] lIlHl;{Hl.\‘L‘hﬁ;{gtI':\'L‘]]l.‘\l‘.%.\

Description Instant messages received.

Commands None.

Last Changes Release 9.86 - added language detection.

Data Description

type The tvpe of the notification.

firstname The first name of the person sending the message.

lastname 'I.IIL' |il$\ name (lI‘T.hL' })L‘I'S()I] SCI](IiT]g T.EIL' lllCﬁ.‘\llc;L'.

agent The UUID of the person sending the message.

message The message sent.

language The 1SO639_3 code of the most probable language that the message is in.

Picture 4.24 - Documentation for the 'message’ notification

The table on the page lists the data returned from each field: notification type; name,
surname, UUID of the sender; message sent from the sender; the detected language of the message.

Below is the full LSL code for installing and using this notification.

13 Notifications - https://grimore.org/secondlife/scripted agents/corrade/api/notifications
14 https://grimore.org/secondlife/scripted agents/corrade/api/notifications/message

48

https://grimore.org/secondlife/scripted_agents/corrade/api/notifications/message
https://grimore.org/secondlife/scripted_agents/corrade/api/notifications

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

We define variables for bot UUID, group password, group name.
Under the URL variable, we will store the assigned URL from Second Life from which notifications
will come.
The TAG variable will hold the name of the script.
Function:
* setDebug() - sends a message to the owner of the prim/object (for me it's a bot),
* strReplace() - replaces characters in the text,
* wasCSVToList() - WAS function to convert CSV to list,
* wasKeyValueGet() - WAS function to get a value based on a key from the data,
* wasKeyValueEncode() - WAS function for data encoding based on RFC 4180,
* wasURLUnescape() - WAS function for decoding data based on RFC 4180,
* wasKeyValueToJSON() - WAS function that transforms linked data '&' to JSON,
* wasJSONToKeyValueData() - WAS function, which converts JSON into linked data '&'.

In the default state it assigns the script name to a variable, shows the amount of free memory
for the script, then calls the next state 'ReadConfigurationNotecard', where this state reads a note
named 'configuration' which is placed in the same prim as the script.

The note must contain the following lines:
* BOTID=BOT'S UUID,
* GROUP=GROUP_NAME,
*+ PASSWORD=GROUP'S PASSWORD.

After getting the variables from the note and assigning them to the variables in the script,
another state called 'url' is triggered, in which an attempt is made to get the URL from Second Life.
If everything is successful here, it moves to the next state called 'NotifyInstall'. In this state, we
install the expected notification. In the URL parameter, we provide the URL variable to which we
previously downloaded the URL assigned by Second Life. Of course, this could well be a URL to a
script on an external server.

We send the entire parameter array to the bot in JSON format.

In http_request() we wait for data to be received from the bot, we process it in such a way
that we just check if our command has been executed, if it is successful, we go to the next state
called 'sense', if there is an error, it is executed state 'preNotifylInstall', which basically reverts to the

current state as it will not be possible to recall the current state directly.

49

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

In the sense state, we 'listen to' incoming messages from the 'message' notification on an
ongoing basis, here we also assigned the values discussed earlier in the table on the notification
page to the variables.

It is still up to us what we do with it.

key CORRADE;
string PASSWORD;
string GROUP;
string URL = "";
string TAG;

string val;

list lmessage;
string sjump = "";

string body;

integer line;
list tuples = [];

list lprepare = [];

setDebug(string msg)

{
1l0wnerSay("["+ TAG +"] " + msg);

}

string strReplace(string str, string search, string replace) {
return 11DumpList2String(l1lParseStringKeepNulls((str = "") + str, [search], []),
replace);

}

list wasCSVTolList(string csv)

{
list 1 = [];
list s = [];
string m = "";
do
{

string a = 11GetSubString(csv, 0, 9);
csv = llDeleteSubString(csv, 0, 0);
if(a == ",")

{

50

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

if(11lList2String(s, -1) != "\"")
{

1 +=m;

m = "";

jump continue;
}
m += a;
jump continue;
}
if(a == "\"" && 11GetSubString(csv, 0, @) == a)
{
m += a;
csv = llDeleteSubString(csv, 9, 0);
jump continue;
}
i_F(a == II\IIII)
{
if(llList2String(s, -1) != a)
{
s += a;
jump continue;
}
s = 1llDeleteSubList(s, -1, -1);
jump continue;
}
m += a;
@continue;
} while(csv != "");

return 1 + m;

string wasKeyValueGet(string k, string data)

{

if(11StringlLength(data) == @) return "";

if(11stringLength(k) == @) return "";

list a = 1lParseStringKeepNulls(data, ["&", "="1, [1);

integer i = 1lListFindList(llList2ListStrided(a, ©, -1, 2), [k]);

if(i 1= -1){

string ret = 11List2String(wasCSVToList(wasURLUnescape(llList2String(a, 2*i+1))),

9);

ret = strReplace(ret, "\\r", "");

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

ret = strReplace(ret, "\\n", "");

ret = 11StringTrim(ret, STRING_TRIM);

return ret;

}

return g

string wasKeyValueEncode(list data)
{
list k
list v
data
do
{
data += 1llList2String(k, @) + "=" + 1lList2String(v, 0);
k = 11DeleteSubList(k, @, 0);
v = llDeleteSubList(v, 0, 0);
} while(1llGetListLength(k) != 0);
return 11DumplList2String(data, "&");

llList2ListStrided(data, 0, -1, 2);
11List2ListStrided(11DeleteSubList(data, @, @), 0, -1, 2);

[1;

string wasURLEscape(string i)

{

string o = "";

do

{
string ¢ = 11GetSubString(i, 9, 9);
i = 11DeleteSubString(i, @, 9);

if(c == "") jump continue;
i_F(C == n ll)
{

O += II+II;

jump continue;

}

if(c == "\n")

{
0 += "%@D" + 1lEscapeURL(c);
jump continue;

}

0 += 11EscapeURL(c);

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

@continue;
} while(i != "");

return o;

string wasURLUnescape(string i)

{
return 1lUnescapeURL(11DumpList2String(llParseStringKeepNulls(11DumpList2String(
11ParseStringKeepNulls(i, ["+"], [1), " "), ["%@D%6A"]1, [1), "\n"));
}
default
{
state_entry()
{
TAG = 1llGetScriptName();
setDebug("Free memory: " + (string)llGetFreeMemory());
state ReadConfigurationNotecard;
}
changed(integer change)
{
if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}
on_rez(integer start_param)
{
11ResetScript();
}
}

state ReadConfigurationNotecard

{
state_entry()

{
if(llGetInventoryType("configuration") != INVENTORY_NOTECARD)

{

setDebug("Sorry, could not find a configuration inventory notecard.");

53

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

return;

}

setDebug("Reading configuration file...");
line = 0;

11GetNotecardLine("configuration"”, line);

dataserver(key id, string data)

{
if(data == EOF)
{
if(llGetListLength(tuples) % 2 != @)
{
setDebug("Error in configuration notecard.");
return;
}

CORRADE = 1lList2Key(tuples, llListFindList(tuples, ["BOTID"])+1);

if(CORRADE == NULL_KEY)
{
setDebug("Error in configuration notecard: BOT ID KEY");

return;

GROUP = 1lList2String(tuples, llListFindList(tuples,["GROUP"])+1);

if(GROUP == "")
{
setDebug("Error in configuration notecard: GROUP");

return;

PASSWORD = 11List2String(tuples, 1llListFindList(tuples, ["PASSWORD"])+1);

if(PASSWORD == "")
{
setDebug("Error in configuration notecard: PASSWORD");

return;

54

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

state url;

}
if(data == "") jump continue;
integer i = 11SubStringIndex(data, "#");

if(i != -1) data = 1lDeleteSubString(data, i, -1);
list o = 11ParseStringKeepNulls(data, ["="], [1);
string k =

11DumpList2String(l11lParseStringKeepNulls(11StringTrim(11lList2String(o,9),
STRING_TRIM), ["\""1, [1), "\"");

string v =
11DumpList2String(llParseStringKeepNulls(11StringTrim(1llList2String(o, 1),
STRING_TRIM), ["\""1, [1), "\"");

if(k == "" || v == "") jump continue;

tuples += k;

tuples += v;

@continue;

llGetNotecardLine("configuration"”, ++line);

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();
}
}
state url
{
state_entry()
{
if ((GROUP == "BOTID") || (GROUP == "GROUP") || (GROUP == "PASSWORD")){
11ResetScript();
return;
}

55

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

if ((PASSWORD == "BOTID") || (PASSWORD == "GROUP") || (PASSWORD == "PASSWORD"))
{
11ResetScript();
return;
}
setDebug("Requesting URL...");
11SetTimerEvent(0.5);
}
timer(){
11SetTimerEvent(60);
11RequestURL();
}
http_request(key id, string method, string body)
{
11HTTPResponse(id, 200, "OK");
if(method !'= URL_REQUEST_GRANTED) return;
URL = body;
setDebug("Got URL...");
state NotifyInstall,;
}
changed(integer change)
{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION_START))
{
11ResetScript();
}
}
on_rez(integer start_param)
{
11ResetScript();
}
}

state NotifyInstall {
state_entry() {

56

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

110wnerSay("Binding to the Message Alert notification...");
11SetTimerEvent(0.5);

}
timer(){
11SetTimerEvent(60);
lprepare = [
"group", wasURLEscape(GROUP),
"password", wasURLEscape(PASSWORD),
"callback", wasURLEscape(URL),
"URL", wasURLEscape(URL),
"command"”, "notify",
"action", "set",
"type", "message",
" script", TAG
I
110wnerSay(wasKeyValueEncode(lprepare));
}

http_request(key id, string method, string body)

{
11HTTPResponse(id, 200, "OK");
if(wasKeyValueGet("success", body) != "True") {
110wnerSay("Failed to bind to the Message Alert notification...");
state preNotifyInstall;
}
// DEBUG
110wnerSay("IM Alert notification installed...");
state sense;
}

changed(integer change)

{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

57

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

11ResetScript();

state preNotifyInstall

{
state_entry()
{
state NotifyInstall;
}
changed(integer change)
{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION_START))
{
11ResetScript();
}
}
on_rez(integer start_param)
{
11ResetScript();
}
}

state sense {
state_entry() {
setDebug("Listen Region Restart...");

http_request(key id, string method, string body)

{
11HTTPResponse(id, 200, "OK");
string firstname = wasKeyValueGet("firstname", body);
string lastname = wasKeyValueGet("lastname", body);
string agent = wasKeyValueGet("agent", body);

string message = wasKeyValueGet("message", body);

//WHAT YOU DO NEXT?

58

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

changed(integer change)

{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();

Text 3 - Full script in LSL to install 'message’ notification with data reception

59

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.11. Error codes

When Corrade cannot process the request, it returns a reply with the error code and

message.

Below is an extensive table with error codes.

Error Code Message (English)

48 text too long

303 unable to post proposal

337 no map items found

458 group members are by default in the everyone role
616 timeout ejecting agent

1253 cannot remove owner role

1382 unknown sound requested

1458 unknown update type

1488 no dialog specified

1536 primitive not for sale

1691 unable to post event

2021 invalid version provided

2087 no avatars provided

2169 insufficient funds

2188 could not get parcel info data
2193 no avatars to ban or unban

2380 unknown image format provided
2432 invalid grab position

2707 could not find title

60

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

3098 invalid proposal quorum
3475 invalid scale

3638 no data provided

4541 group invite not found
4797 friendship offer not found
4994 unable to decode asset data
5034 unable to create item

5762 primitives already linked
6097 unknown inventory type
6330 no notice found

6617 dialog button not found
7140 no SIML response received
7168 timeout getting profile pick
7255 timeout transferring asset
7457 no permissions for item
7628 invalid proposal duration
7703 general error

8169 SQL execution failed

8241 could not find classified
8339 no event identifier provided
8411 could not start process
8653 command not found

8842 unknown tree type

8846 no host provided

9111 timeout getting 1 and users

61

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

9348 unknown animation action

9541 timeout uploading item

9703 group not configured

9924 first life text too large

9935 maximum group list length reached
10348 primitives already delinked

10374 timeout retrieving estate covenant
10522 failed to read log file

10691 timeout mapping friend

10776 group schedules exceeded

10945 invalid surface coordinates

11050 timeout getting group roles

11229 timeout getting group titles

11287 could not create role

11502 not in group

11910 no executable file provided

11979 could not retrieve pick

12320 unable to upload item data

12408 group synchronization failed

12758 no role name specified

13030 no chatlog path provided

13053 too many characters for group name
13296 invalid binormal vector

13399 no access token provided

13491 ban would exceed maximum ban list length

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

13712 timeout retrieving estate list
13764 status not found

13857 unexpected item in path

14337 unknown restart action

14634 could not eject agent

14989 no avatars found

15345 already in group

15517 eject needs demote

15719 timeout retrieving group ban list
15964 transfer would exceed maximum count
16233 invalid asset

16263 could not retrieve attachments
16450 could not retrieve mute list
16572 invalid viewer effect

16667 empty terrain data

16927 no estate powers for command
17019 unable to set home

17894 description would exceed maximum size
18463 could not retrieve object media
18490 invalid interval

18680 no pattern provided

18737 unable to process data

19011 ambiguous path

19059 no | and rights

19143 timeout meshmerizing object

63

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

19325 too many characters for group title
19343 unable to retrieve data

19862 agent not in group

20048 timeout getting avatar data

20303 notice does not contain attachment
20541 timeout getting top scripts

20547 invalid width

20822 too many characters for notice subject
20900 could not leave group

20900 invalid xml path

21106 message may not contain HTML
21160 unable to write file

21296 no topic provided

21718 no location provided

21743 event posting rejected

21833 invalid date

21894 Al feature not enabled

22119 no proposal to reject

22576 timeout requesting to set home
22655 expected folder as target

22693 primitive not found

22733 unable to join group chat

22737 object not found

22786 conference member not found
22970 timeout getting profile classified

64

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

23114 timeout waiting for sensor
23123 nucleus server error

23309 friend offline

23364 timeout getting script state
23570 invalid schedules provided
23716 classified not found

23805 no session specified

23926 unable to delete event

23932 no position provided

24939 group not open

25003 no category provided

25119 unable to retrieve transactions
25252 no SQL string provided

25329 failed rezzing child primitive
25420 could not retrieve classified
25426 timeout getting group role members
25897 unknown estate list action

25984 inventory item not found

26178 too many characters for notice message
26356 timeout retrieving group notices
26393 timeout updating mute list
26623 unable to create folder

26715 mute entry not found

26749 timeout modifying group ban list
27605 cannot eject owners

65

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

27910 timeout getting parcel list

28002 group not found

28087 no database file configured

28126 auto return time outside limit range
28247 maximum amount of classifieds reached
28353 invalid feed provided

28429 unknown move action

28487 invalid normal vector

28613 could not sit

28625 maximum manager list length reached
28866 no permissions provided

28891 invalid terraform action

29345 empty attachments

29438 no task specified

29512 empty wearables

29530 could not read XML file

29745 attachments would exceed maximum attachment limit
29947 unknown agent access

30129 could not get current groups

30207 friend not found

30293 name too large

30384 timeout downloading terrain

30473 no group power for command

30556 no description for status

31049 no button index specified

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

31126 too many characters for proposal message
31237 timeout leaving group

31267 agent has been banned

31381 timeout waiting for execution
31417 too many characters for group role description
31493 unable to go home

31868 no database path provided
32157 no consumer key provided
32164 teleport failed

32355 execution returned no result
32362 timeout getting parcels

32366 the agent already is a friend
32404 timeout creating group

32453 could not get parcel info data
32472 role not found

32528 agent is soft banned

32709 unknown wearable type

32923 timeout getting profile

33047 failed rezzing root primitive
33381 unable to reach events page
33413 cannot delete the everyone role
33564 unable to save configuration
33714 could not retrieve wearables
33717 no flags provided

33821 no notice provided

67

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

33994 unable to retrieve form parameters
34084 timeout getting group roles members
34379 proposal rejected

34749 the specified folder contains no equipable items
34869 already subscribed to feed

34964 timeout getting region

35198 could not set display name

35277 notecard message body too large
35316 parcel not for sale

35392 could not join group

35447 region not found

36068 type can only be voice or text
36121 invalid offset

36123 teleport throttled

36616 invalid item type

36675 no server provided

36684 unable to upload item

36896 no index provided

37211 timeout creating item

37470 timeout getting group members
37559 destination too close

37841 could not get primitive properties
38125 unable to obtain money balance
38184 invalid price

38271 script compilation failed

68

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

38278 unable to read file

38289 timeout waiting for display name
38504 invalid permissions

38609 timeout changing links

38624 invalid secret provided

38798 invalid face specified

38858 effect not found

38931 no label or index specified

38945 no source specified

39016 timeout getting role powers
39359 unknown type

39391 expected item as source

39613 maximum number of groups reached
39647 mute entry already exists

39787 timeout reaching destination
39921 could not set agent access

40491 no transactions found

40665 no name provided

40762 no consumer secret provided
40773 invalid number of items specified
40901 SIML not enabled

40908 cannot delete a group member from the everyone role
41007 no secret provided

41190 invalid terraform brush

41211 no terraform brush specified

69

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

41256 maximum number of roles exceeded
41257 unable to post divorce

41574 timeout rezzing primitive

41612 unknown date time stamp

41676 unknown top type

41810 invalid proposal majority

41969 unable to start conference

42051 unknown access list type

42140 group already configured

42216 no channel specified

42248 unable to save Corrade configuration
42249 inventory offer not found

42351 timeout starting conference
42536 maximum user list length reached
42798 timeout retrieving notice

42903 unknown image format requested
43003 unknown syntax type

43156 no item specified

43615 setting permissions failed

43671 unable to revoke proposal

43683 description too large

43713 fly action can only be start or stop
43767 proposal already sent

43780 timeout during teleport

43898 session not found

70

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

43982 invalid amount

43982 no folder specified

44059 unable to get event identifier

44397 timeout uploading item data

44447 unknown directory search type
44537 unknown horde balancer

44554 primitives not in same region

45074 link would exceed maximum link limit
45173 invalid angle provided

45364 could not set script state

45568 could not retrieve group ban list
46316 timeout requesting sit

46612 no partner found

46804 could not send message

46858 timeout receiving SIML response
46942 empty classified name

46990 unknown estate list

47101 no message provided

47172 timeout getting top colliders

47350 no type provided

47469 timeout getting picks

47571 too many or too few characters for display name
47624 invalid pay target

47808 cannot remove user from owner role
48110 no history found

71

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

48467 no Corrade permissions

48775 no effect UUID provided

48899 empty pick name

49113 pick not found

49640 notification not allowed

49722 failed to get display name

50003 unable to reject proposal

50203 no permission for parcel

50218 item is not a script

50405 maximum amount of picks reached
50593 maximum ban list length reached
51050 script permission request not found
51086 no name or UUID provided

52299 too many or too few characters in message
52751 timeout requesting price

53059 could not update parcel list

53066 path not found

53274 unknown material type

53494 too many characters for event description
53549 no description provided

53829 timeout getting group account summary
53947 invalid days

54084 no peers matching context

54154 scale would exceed building constraints
54214 could not create group

72

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

54450 unable to agree to ToS

54456 unknown effect

54528 description may not contain HTML
54668 unable to authenticate

54854 avatar not in range

54956 timeout retrieving estate info
55051 message too long

55091 no access token secret provided
55110 unknown mute type

55394 no matching dialog found
55755 MQTT publish failed

55979 unknown direction

56094 no schedule found

56345 unable to reach partnership page
56379 second life text too large

56901 no terraform action specified
57005 timeout uploading terrain
57085 failed to download asset

57196 no duration provided

57961 agent not found

58183 invalid rotation

58212 platform not supported

58478 could not get parcel resources
58493 default folder not found

58619 could not terraform

73

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

58751 name may not contain HTML

58870 unable to divorce

59048 invalid asset data

59103 timeout getting classifieds

59282 no path provided

59524 invalid position

59526 unknown action

60025 unknown asset type

60073 teleport lure not found

60269 asset upload failed

60427 could not get current outfit folder
60515 position would exceed maximum rez altitude
61018 folder not found

61067 unable to convert to requested format
61113 unknown entity

61317 invalid workers provided

61473 invalid status supplied

61492 unknown language

61983 unable to accept proposal

62130 invalid texture coordinates

62531 could not get 1 and resources

62646 effect UUID belongs to different effect
62753 could not rebake

63024 unable to load configuration

63486 invalid height

74

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

63597 no date provided

63713 timeout joining group

63915 no time provided

64123 invalid mute target

64179 unable to serialize primitive
64368 unknown grass type

64390 could not find parcel

64420 primitives are children of object
64423 timeout getting folder contents
64450 unknown sift

64698 could not compile regular expression
64868 invalid proposal text

65003 friend does not allow mapping
65101 no search text provided

65241 no title provided

65303 invalid url provided

65327 invalid notification types

Table 2 - Error codes

4.12. Restrictions on Second Life

development team, so that being in this world is fluid and not bothered by certain problems.

These limitations should be considered when building your own bot:

Number of prims

The world of Second Life has its limitations, which have been imposed by the project

75

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

One region can make 15,000 to 30,000 prims available to all. We have to think how many
prims we want (including the reserve) and the minimum and maximum plot size in the
region. The size of the plot and the number of primes are related - the larger the plot, the
more primes are available, however this number cannot exceed the maximum number of
primes in the region. On average, for 1024 m* of a plot with 469 prims, we will pay
approximately $2.00, it all depends on which tenant we will rent the plot from.

* The maximum length of the message is 1024 characters, longer Text will be truncated to this
size,

* llInstantMessage() - max. the number of messages sent by all sites is: 2500 messages/30

min. which gives about 83 messages/1 s,
* Maximum size of the LSL script in mono mode: 64KB,

* Maximum coordinates:
o X-256m,
°© Y-256m,
°© Z-4,096 m.

4.13. Communication with the bot

First, let's deal with the communication with the bot via the LSL script that we create inside
the prim. It also all depends on whether this prime will be part of the bot's clothes or whether it will

be standing somewhere on the plot.

If the prim is part of the bot's clothes, then the prim must be owned by the bot (we create
prim as a bot - it's best to log in as a bot). This prime will always be at the bottom. The only
downside to this is that when the bot is teleported during a region restart to another location where
scripts are forbidden by other avatars, the prim script that is part of the avatar's clothes will not run.
To deal with this problem, it is best to create a script, e.g. in PHP, which will be run e.g. every 5 - 15
minutes by the system task schedule, which will check if the bot is on the right plot [the script is
included in additional materials]. For this solution, it is best to use the llOwnerSay() command ",
which forwards the message directly to the prim owner and has virtually no limits on the number of

messages sent.

15 http://wiki.secondlife.com/wiki/L1OwnerSay

76

http://wiki.secondlife.com/wiki/LlOwnerSay

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

If the prim will be somewhere on the plot, it is best to use the llInstantMessage() function in
the script'®, which sends a private message to the bot, no matter where it is in Second Life. This
feature has a message limit of 2500/30 minutes. and applies to all properties in a given region. If
the region is reset, it can send info to the bot so that it will teleport back to the plot. The downside
of this solution is that when the region is restarted, we do not have access to this prim with this
script. It is also worth mentioning here that if we choose this solution, it is best to check in the script

from time to time whether the bot is actually present in Second Life.

What solution should you choose here? It really depends on us. I prim with the scripts
connected as invisible bot clothes, I do not have any trouble editing them, I just log in manually as a
bot, edit, save, turn off the browser, turn on Corrade and check if it works according to my
expectations, if not, then I turn off the program and repeat the steps. However, there are also primes

that use the latter solution.

Another thing to discuss is the structure of our bot's heart and brain in the virtual world.
Script everything in LSL in Second Life is unprofitable and will quickly take revenge on us,
because programming in LSL is very limited, and a single script cannot exceed 64KB in Mono

compilation mode, where 16KB is allocated to: bytecode, heap, stack.

This script limitation has the advantage of reducing the script resource consumption, as there are
several regions running on one server and countless scripts running on each of them. This makes

everything run smoothly.

The downside, however, is the inability to create scripts that would do advanced things in the virtual
world. You can either break a large script into successive smaller scripts and try to combine them
with each other, which would be a laborious task in Second Life, or transfer a large part of the bot
functionality beyond Second Life and receive the status of the implemented parts of the
functionality only in the virtual world. It also has the advantages of smaller LSL files in prim, and a
lower risk of getting a memory limit exceeded error for the compiled code (e.g. 'Script Execution
Error: Stack Collision', 'ERROR: Bytecode Set, Failure - Out of Memory'). Regardless of which
option we choose, remember that prim cannot contain many LSL scripts - they will cause a very
high load on the server, and when the region manager or Second Life service detects it, then it can

order us to slim down the scripts in prim or order us to leave the region.

16 http://wiki.secondlife.com/wiki/IlInstantMessage

77

http://wiki.secondlife.com/wiki/LlInstantMessage

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Therefore, the best idea is to move the entire processing process by the bot outside the Second Life
environment, and in Second Life itself, in LSL scripts only retrieve the execution status by the
external environment. In this situation, the 'execute' command from the bot API comes in handy,
which allows you to execute any command with parameters in the environment of the system on
which the bot is running. Additionally, the bot handles requests to invoke bot API commands over
HTTP, MQTT, TCP or WebSockets, however HTTP is the most commonly used. What does this
give us? By combining these two properties, we can run a console shell of any programming
language, such as Python, Java, C#, C++, PHP, etc., which will allow you to make HTTP requests
to the bot and receive responses from it. It also has another plus in the form of the possibility of

connecting cloud computing, etc.

4.14. Practical use of the bot on the example of sending a group

advertisement.

Time for our bot to do something specific besides providing only dry information in this
book. All commands can be found on the website grimore.org'’.
Although we will choose one command, we will discuss all use cases, using additional functions
prepared by WAS and mine on example scripts written in LSL and PHP, sending data to the bot
using WAS and JSON.

Our example command will be 'notice''®, which allows you to send a group advertisement in Second
Life. So we come to the command detail page, which is easy to read and understand. We have at
our disposal: a list of changes, examples of use, a table with parameters, etc.

First, let's take a look at the table below.

17 https://grimore.org/secondlife/scripted agents/corrade/api/commands
18 https://grimore.org/secondlife/scripted agents/corrade/api/commands/notice

78

https://grimore.org/secondlife/scripted_agents/corrade/api/commands
https://grimore.org/secondlife/scripted_agents/corrade/api/commands/notice

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Command Required Parameters Required Corrade Permissions Required Group Abilities Example

notice group, password, action group Notices=sSend Notices 11InstantMessage (CORRADE
,
wasKeyValueEncode(

"command", "notice",

"group”, wasURLEscape(GROUP),
"password", wasURLEscape(PASSWORD),
"action", "send",

"subject", "My store",

"message", "Store is updated!"

Picture 4.25 - 'Notice' command - required parameters

Here we see the required parameters: group, password (they will be repeated over and over
again with other commands), action (its detailed description is in the next table at the bottom of the
page).

The next column is 'Corrade Permissions Required'. These permissions must be enabled in the bot
group in the Corrade configuration to be able to operate the command. The easiest way is to open
the Configuration.xml file and check if there is an appropriate entry for the group. If there is no

such entry, we can add the permission to the file ourselves, then save the file and restart the bot.

<Password>63 </Password>
<Name> Group</Name>
<Permissions>
<Permission>group</Permission>
<Permission>inventory</Permission>
<Permission>movement</Permission>
<Permission>grooming</Permission>
<Permissionﬁinteract</Permission>
<Permission>notifications</Permission>
<Permission>talk</Permission>
<Permission>group</Permission>
<Permission>land</Permission>
<Permission>mute</Permission>
<Permission>execute</Permission>
<Permission>bridge</Permission>
<Permission>friendship</Permission>
<Permission>database</Permission>
<Permission>system</Permission>
<Permission>directory</Permission>
<Permission>economy</Permission>
</Permissions>
Picture 4.26 - Permissions in the configuration file

79

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

The second way is to configure the Nucleus website, where in a given group we mark the
missing permissions, but after saving the changes, Nucleus will reload the bot configuration itself,
so you do not have to manually restart the bot yourself.

Another column that may appear is 'Required Group Abilities'. They inform what
permissions the bot on the Second Life side should have to perform a given action.

This usually applies to the group or group role to which the bot has been assigned.
Group permissions will also be required for the following commands:

* ban,

* setgroupdata,

* softban,

* Dbatcheject,

* moderate,

* notice,

* gject,

* setrolepowers,

e createrole.

We have to assign the bot the possibility of sending group advertisements. It's best to create
a new role to which we assign only the bot and enable the required permissions for this role. The
last column shows an example of using the command.

Now let's look at the next table.
All parameters and sub - parameters for a given command are listed here. We read the table from
the left side.
We have parameters in the first column. For our command, there is only one, called 'action’, which
is required when uploading to the bot.
In the second column, we have the possible values that have been assigned to 'action', for our
command they are: send (sending the advertisement), list (displaying all group advertisements),
accept (accepting the attachment from the advertisement), decline (rejecting the attachment from
the advertisement) .

In our case, we choose 'send' because we will send the advertisement.

80

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Next, we have the following parameters that can be set - message (ad message), subject (ad
subject), item (ad attachment), permissions (permissions to the ad attachment). We can choose the

ones that suit us. We choose 'message' and 'subject'.

Our LSL code with sending data using WAS will look like this:

key ownerID = "YOUROWNERID"
key CORRADE;
string PASSWORD;
string GROUP;
string URL ="";
string TAG;

string val;

list Imessage;

string sjump ="";
string body;

key query;

integer line;
list tuples = [];

setDebug(string msg)

{
llInstantMessage(ownerID, "["+ TAG +"] " + msg);

}

integer StringMatch(list Iwhatsearch, string sinwhere){
sinwhere = lIToLower(sinwhere);
sinwhere = strReplace(sinwhere, "!", "");
sinwhere = strReplace(sinwhere, "?", "");

list Isinwhere = lIParseString2 List(sinwhere,[" "],[]);

integer imatch = llGetListLength(lwhatsearch);
integer imatched = 0;

integer i=0;
for(i=0; i<imatch; i++){

list Iwords = l1ParseString2List(11List2String(Iwhatsearch,i),["|"],[1);

integer j=0;
for(j=0; j<llGetListLength(lwords); j++){
if(lIListFindList(Isinwhere, [1IList2String(Iwords,j)]) >= 0){
imatched++;
}
§

81

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

H
if(imatch == imatched){
return 1;
telse{
return 0;
H
j

string strReplace(string str, string search, string replace) {
return 1IDumpList2String(11ParseStringKeepNulls((str = "") + str, [search], []), replace);

}

list wasCSVToList(string csv)

{
list1=1];
lists =[];
stringm="";
do
{

string a = 11GetSubString(csv, 0, 0);
csv = lIDeleteSubString(csv, 0, 0);
1f(a — u’u)
{

if(11List2String(s, -1) !="\"")

m= vm;
jump continue;
}
m+=a;
jump continue;
}
if(a =="\"" && 11GetSubString(csv, 0, 0) == a)
{
m += a;
csv = lIDeleteSubString(csv, 0, 0);
jump continue;
§
1f(a — u\ml)
{
if(11List2String(s, -1) != a)
{
s +t=a;
jump continue;
}
s = lIDeleteSubList(s, -1, -1);
jump continue;

m += a;

82

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

@continue;
} while(csv !="");
return 1 + m;

}

string wasKeyValueGet(string k, string data)
{
if(lIStringLength(data) == 0) return "";
if(lIStringLength(k) == 0) return "";
list a = lIParseStringKeepNulls(data, ["&", "="], [1);
integer i = lIListFindList(l1List2ListStrided(a, 0, -1, 2), [k]);
if(i 1=-1){
string ret = 11List2String(wasCSVToList(wasURLUnescape(lIList2String(a, 2*i+1))), 0);
ret = strReplace(ret, "\\r", "");
ret = strReplace(ret, "\\n", "");
ret = lIStringTrim(ret, STRING TRIM);

return ret;

}

return "";

}

string wasKeyValueEncode(list data)
{
list k = 1lList2ListStrided(data, 0, -1, 2);
list v = llList2ListStrided(l1DeleteSubList(data, 0, 0), 0, -1, 2);
data =[];
do
{
data += 11List2String(k, 0) + "=" + 1IList2String(v, 0);
k = lIDeleteSubList(k, 0, 0);
v = lIDeleteSubList(v, 0, 0);
} while(llGetListLength(k) != 0);
return [IDumpList2String(data, "&");

}
string wasURLEscape(string 1)
{

string o ="";

do

{

string ¢ = 11GetSubString(i, 0, 0);
i = lIDeleteSubString(i, 0, 0);

if(c =="") jump continue;
lf(C] u)
{

04= n+u;

jump continue;

}

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

if(c =="\n")
{
0 +="%0D" + llIEscapeURL(c);
jump continue;
H
o += llEscapeURL(c);
@continue;
} while(i !="");
return o;

}

string wasURLUnescape(string 1)
{
return
1IUnescapeURL(1IDumpList2String([IParseStringKeepNulls(lIDumpList2String([IParseStringKeepNulls(i,
[},), " "), ["%0D%0A"], [1), "n"));

}

default
{

state_entry()

{

state ReadConfigurationNotecard;

h

changed(integer change)
{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION_ START))

{
lIResetScript();

}
H

on_rez(integer start param)

{
lIResetScript();

i
}

state ReadConfigurationNotecard

{
state_entry()

{
if(lIGetInventory Type("configuration") != INVENTORY NOTECARD)

{

setDebug("Sorry, could not find a configuration inventory notecard.");
return;

}

line = 0;

84

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

llGetNotecardLine("configuration", line);

}

dataserver(key id, string data)
{
if(data == EOF)
{
if(lIGetListLength(tuples) % 2 != 0)
{
setDebug("Error in configuration notecard.");
return;

}

CORRADE = llList2Key(tuples, 1lListFindList(tuples, ["BOTID"])+1);

if(CORRADE == NULL_KEY)

{
setDebug("Error in configuration notecard: BOT ID KEY");
return;

}

GROUP = 11List2String(tuples, 1lListFindList(tuples,["GROUP"])+1);

if(GROUP ="")

{
setDebug("Error in configuration notecard: GROUP");
return;

}

PASSWORD = llList2String(tuples, 1lListFindList(tuples, ["PASSWORD"])+1);

if(PASSWORD =="")

{
setDebug("Error in configuration notecard: PASSWORD");
return;

}

state url;
}
if(data =="") jump continue;
integer i = 1ISubStringIndex(data, "#");
if(i !=-1) data = l1DeleteSubString(data, i, -1);
list o = lIParseStringKeepNulls(data, ["="], []);
string k = lIDumpList2String(11ParseStringKeepNulls(11StringTrim(11List2String(0,0), STRING TRIM),

[U\H"]’ [])’ "\HH);
string v = lIDumpList2String(IParseStringKeepNulls(1IStringTrim(1IList2String(o, 1), STRING TRIM),

[H\HIV], []), H\HH);
if(k ==""|| v=="") jump continue;
tuples +=k;

85

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

tuples +=v;
@continue;
lIGetNotecardLine("configuration", ++line);

H

changed(integer change)
{ if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION START))
{
lIResetScript();
}
H

on_rez(integer start param)
{
lIResetScript();
b
}

state url
{
state_entry()
{
if ((GROUP == "BOTID") || (GROUP == "GROUP") || (GROUP == "PASSWORD")){
lIResetScript();
return;

}

if (PASSWORD == "BOTID") || (PASSWORD == "GROUP") || (PASSWORD == "PASSWORD")){
lIResetScript();
return;

}

lISetTimerEvent(0.5);
H

timer() {
lISetTimerEvent(60);
lIRequestURL();

}

http_request(key id, string method, string body)
{
IIHTTPResponse(id, 200, "OK");
if(method != URL REQUEST GRANTED) return;
URL = body;
state CheckBotAvailable;

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

}

changed(integer change)
{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION_ START))

{
lIResetScript();

}
H

on_rez(integer start param)

{
lIResetScript();

}

state CheckBotAvailable

{

}

state_entry()

{
lISetTimerEvent(1);

}

timer() {
lISetTimerEvent(10);
query = lIRequestAgentData(ownerID, DATA ONLINE);

}

dataserver(key queryid, string data)
{
if (query == queryid)
{
if((integer)data == 1){
state SendNotice;

}
H

changed(integer change)
{
if(change & (CHANGED_ OWNER | CHANGED_ REGION | CHANGED_ REGION_START))

{
lIResetScript();

b
H

on_rez(integer start param)

{
1IResetScript();

h

87

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

state SendNotice {
state_entry() {
llInstantMessage(CORRADE,
wasKeyValueEncode(
[

"command", "notice",
"group", wasURLEscape(GROUP),
"password", wasURLEscape(PASSWORD),
"action", "send",
"subject", "test subject",
"message", "test message",
"callback", wasURLEscape(URL)

)
);
b
http_request(key id, string method, string body)
{

IIHTTPResponse(id, 200, "OK");
if(wasKeyValueGet("success", body) !="True") {
setDebug("Failed to send notice");
§
H

changed(integer change)

{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION_START))

{
1IResetScript();

}
}

on_rez(integer start param)

{
lIResetScript();

}
}

Text 4 - Full script for sending a group advertisement using WAS

Our LSL code with sending data using JSON will look like this:

88

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

key ownerID = "YOUROWNERID"
key CORRADE;
string PASSWORD;
string GROUP;
string URL ="";
string TAG;

string val;

list Imessage;

string sjump ="";
string body;

key query;

integer line;
list tuples = [];

setDebug(string msg)

{
llInstantMessage(ownerID, "["+ TAG +"] " + msg);

integer StringMatch(list Iwhatsearch, string sinwhere){
sinwhere = lIToLower(sinwhere);
sinwhere = strReplace(sinwhere, "!", "");
sinwhere = strReplace(sinwhere, "?", "");

list Isinwhere = 11ParseString2List(sinwhere,[" "],[]);

integer imatch = 11GetListLength(lwhatsearch);
integer imatched = 0;

integer i=0;
for(i=0; i<imatch; i++){

list Iwords = lIParseString2List(1IList2String(Iwhatsearch,i),["|"],[1);

integer j=0;
for(j=0; j<llGetListLength(lwords); j++){
if(1lListFindList(Isinwhere, [1IList2String(Iwords,j)]) >= 0){
imatched++;

§
}
}
if(imatch == imatched){
return 1;
telse{
return 0;
}
}

&9

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

string strReplace(string str, string search, string replace) {
return 1IDumpList2String(1[ParseStringKeepNulls((str = "") + str, [search], []), replace);

}

list wasCSVToList(string csv)
{
list1=[];
lists =[];
stringm="";
do
{
string a = 11GetSubString(csv, 0, 0);
csv = lIDeleteSubString(csv, 0, 0);
1f(a — u’u)
{
if(11List2String(s, -1) !="\"")
{
] +=m;
m= mv;
jump continue;
}
m +=a;
jump continue;
§
if(a =="\"" && 11GetSubString(csv, 0, 0) == a)
{
m +=a;
csv = lIDeleteSubString(csv, 0, 0);
jump continue;
¥
1f(a — u\un)
{
if(lIList2String(s, -1) = a)
{
s +=a;
jump continue;
}
s = lIDeleteSubList(s, -1, -1);
jump continue;
}
m+=a;
@continue;
} while(csv !="");
return 1 + m;

}

string wasKeyValueGet(string k, string data)

{
if(lIStringLength(data) == 0) return "";

90

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

if(11StringLength(k) == 0) return "";

list a = 11ParseStringKeepNulls(data, ["&", "="], []);

integer 1 = lIListFindList(lIList2ListStrided(a, 0, -1, 2), [k]);

if(i 1=-1){
string ret = lIList2String(wasCSVToList(wasURLUnescape(lIList2String(a, 2*i+1))), 0);
ret = strReplace(ret, "\\r", "");
ret = strReplace(ret, "\\n", "");

ret = lIStringTrim(ret, STRING TRIM);

return ret;

}

return "";

}

string wasKeyValueEncode(list data)
{
list k = 11List2ListStrided(data, 0, -1, 2);
list v = 1lList2ListStrided(l1DeleteSubList(data, 0, 0), 0, -1, 2);
data =[];
do
{
data += llList2String(k, 0) + "=" + lIList2String(v, 0);
k = 11DeleteSubList(k, 0, 0);
v = lIDeleteSubList(v, 0, 0);
}+ while(11GetListLength(k) != 0);
return 1IDumpList2String(data, "&");

}
string wasURLEscape(string 1)
{

string o ="";

do

{

string ¢ = 11GetSubString(i, 0, 0);
i = 1IDeleteSubString(i, 0, 0);
if(c =="") jump continue;

1f(C ——n n)
{
o0 += n_,’_u;
jump continue;
H
if(c =="\n")
{

o +="%0D" + llEscapeURL(c);
jump continue;
H
o +=11EscapeURL(c);
@continue;
} while(i I="");

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

return o;

}

string wasURLUnescape(string 1)
{
return
11UnescapeURL(11IDumpList2String([IParseStringKeepNulls(1IDumpList2String([IParseStringKeepNulls(i,
["+"], [1)," "), ["%0D%0A"], []), "\n"));

}

default

{
state_entry()
{

state ReadConfigurationNotecard;

}

changed(integer change)
{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED_ REGION_ START))

{
1IResetScript();
}
}

on_rez(integer start param)

{
lIResetScript();
}
}

state ReadConfigurationNotecard

{
state_entry()

{
if(llGetInventory Type("configuration") != INVENTORY NOTECARD)

{
setDebug("Sorry, could not find a configuration inventory notecard.");
return;

}

line = 0;

lIGetNotecardLine("configuration", line);

}

dataserver(key id, string data)
{
if(data == EOF)

{
if(lIGetListLength(tuples) % 2 != 0)

92

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

{

setDebug("Error in configuration notecard.");
return;

}

CORRADE = llList2Key(tuples, 1lListFindList(tuples, ["BOTID"])+1);

if(CORRADE == NULL KEY)

{
setDebug("Error in configuration notecard: BOT ID KEY");
return;

}

GROUP = 11List2String(tuples, 11ListFindList(tuples,["GROUP"])+1);

if(GROUP =="")

{
setDebug("Error in configuration notecard: GROUP");
return;

}

PASSWORD = llList2String(tuples, 11ListFindList(tuples, ["PASSWORD"])+1);

if(PASSWORD =="")

{
setDebug("Error in configuration notecard: PASSWORD");
return;

}

state url;
}
if(data =="") jump continue;
integer i = 1ISubStringIndex(data, "#");
if(i !=-1) data = l1DeleteSubString(data, i, -1);
list o = lIParseStringKeepNulls(data, ["="], []);
string k = IDumpList2String(IParseStringKeepNulls(1IStringTrim(11List2String(0,0), STRING TRIM),

[H\""]’ [])’ ’l\”");
string v = lIDumpList2String(IParseStringKeepNulls(1IStringTrim(1IList2String(o, 1), STRING TRIM),

[,), "™

if(k ==""1| v=="") jump continue;

tuples +=k;

tuples +=v;

@continue;
llGetNotecardLine("configuration", ++line);

}

changed(integer change)

{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION_START))

93

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

{
1IResetScript();
}
}

on_rez(integer start param)

{
lIResetScript();
}
}

state url

{
state_entry()

{
if ((GROUP == "BOTID") || (GROUP == "GROUP") || (GROUP == "PASSWORD")){
lIResetScript();
return;

}

if (PASSWORD == "BOTID") || (PASSWORD == "GROUP") || (PASSWORD == "PASSWORD")){
lIResetScript();
return;

}

11ISetTimerEvent(0.5);
h

timer() {
lISetTimerEvent(60);
lIRequestURL();

}

http_request(key id, string method, string body)
{
IIHTTPResponse(id, 200, "OK");
if(method '= URL REQUEST GRANTED) return;
URL = body;
state CheckBotAvailable;
H

changed(integer change)
{
if(change & (CHANGED_ OWNER | CHANGED REGION | CHANGED_ REGION_ START))

{
lIResetScript();

H
H

94

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

on_rez(integer start param)

{
lIResetScript();
}
}

state CheckBotAvailable

{
state_entry()

{
11SetTimerEvent(1);

}

timer() {
11ISetTimerEvent(10);
query = lIRequestAgentData(ownerID, DATA ONLINE);

dataserver(key queryid, string data)

{
if (query == queryid)
{
if((integer)data == 1){
state SendNotice;

}

changed(integer change)
{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION START))

{
lIResetScript();
}
}

on_rez(integer start param)

{
lIResetScript();
}
}

state SendNotice {
state_entry() {
llInstantMessage(CORRADE,
wasKeyValueEncode(
[
"command", "notice",
"group", wasURLEscape(GROUP),

95

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

"password", wasURLEscape(PASSWORD),
"action", "send",

"subject", "test subject",

"message", "test message",

"callback", wasURLEscape(URL)

]
)
);
H
http _request(key id, string method, string body)
{

IIHTTPResponse(id, 200, "OK");
if(wasKeyValueGet("success", body) !="True") {
setDebug("Failed to send notice");

changed(integer change)

{
if(change & (CHANGED OWNER | CHANGED REGION | CHANGED REGION_START))

{
lIResetScript();

}
H

on_rez(integer start param)

{
lIResetScript();

H
}

Text 5 - Full script for sending the group advertisement using JSON

However, in PHP, if you use my shipping function, the code will be shorter (it doesn't matter if the

shipping is using WAS or JSON):

96

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

$params = array(
"command" => "notice",
"group" => BOT_GROUP,
"password"” => BOT_PASSWORD,
"subject" => "test subject",
"message"” => "test message",

)
$ret = SendToBot($params);
print_r($ret);

Text 6 - Sending a group advertisement in PHP
I will now discuss both codes.
key ownerID = "YOUROWNERID" - here instead of YOUROWNERID we insert our avatar
UUID, which we can easily get from Firestorm Viewer.
state CheckBotAvailable - state, where we check whether the bot is available in Second Life at all,
if it is not, it simply waits for it to appear and then executes further instructions. This check is
recommended if the script prim is not part of the clothes and is standing freely somewhere on a plot
in Second Life. The check is performed every 10 seconds by the timer() function.
state SendNotice - our state where we post the announcement. We formulated our command with
additional parameters in the form of an LSL list [], where each parameter has its own value.
You may notice that some are sent to the wasURLEscape() function which encodes special
characters into a format accepted by Second Life [see FAQ].
The entire list is encoded with the wasKeyValueEncode() function, which converts
parameterl=valuel ¶meter2=value2&... to the URL and is sent to the bot using the
llInstantMessage() command.
When sending with JSON, it is much easier, because we only create a list where the values are not
covered by any functions, which is first encoded into URL form, and then into JSON form in
object-oriented form.
http_request(key id, string method, string body) - this function expects and returns data from the
bot, because we previously defined a callback (i.e. feedback) in the parameters, which will be set to
the URL given by Second Life. This is where we process further. At this point I chose to check if
the command was correctly executed.
changed(integer change) - detects changes related to the change of the owner, region or restart of
the region here and takes appropriate actions, for me it is simply restarting the script.
on_rez(integer start param) - performs an action related to the object's reservation, for me, restart

the script.

97

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Remember to check your code if it sends the command with arguments correctly and returns the
expected data.

One more topic needs to be discussed here.
A parameter value usually has one item, what if it has more than one list item? The

wasListToCSV() function comes in handy, as it converts the list to a comma separated value.

Text 7 - Convert the list to CSV

However, if we have data returned from the bot in CSV format, we can convert it to a list
using wasCSVToList().
If you use PHP, the equivalents of these functions will be: wasArrayToCSV() [we give elements of
type array()] and wasCSVToArray().
What about encoding in JSON? In the case of PHP, we don't have to create fancy functions here,
because PHP already has a built - in function to encode data in JSON, and if you use my function,
you don't have to worry about it at all.
In LSL, when encoding JSON, we also replace the value array with the wasListToCSV() function,
but we do not use the wasKeyValueEncode() function anywhere.
Then we encode everything with wasKeyValueEncode() followed by wasKeyValueToJSON(). This
way we have a ready request to the bot in JSON format.

In short, it might look like this:

11InstantMessage (CORRADE, wasKeyValueToJSON(wasKeyValueEncode(lprepare), JSON_OBJECT));

98

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.15. Corrade integration with CasperTech"
CasperTech enables simple, automated receipt of money for renting 1 and or selling
products. When renting the 1 and with the use of the CasperTech system, the system will renew the

lease itself after payment by the tenant.

1. Log in to the CasperTech website - https://let.casperdns.com/.

Coaspertech

Dive N,

We need to know who you are!

Username

If you already have an account with us,
please provide your username and

password. Password

If not, just choose a username and
password and we'll get you set up!

ok | Lost Password?

Want to create an account?

All you need to do to create an account is enter your
preferred username and password above. If you get an
error which reads "Invalid password for this user”, the
username you selected is already taken.

Picture 4.27 - CasperTech login page

2. Then select 'Bots' from the menu.

3. Click on the 'Add Bot' button on the screen.

19 Based: https://wiki.casperdns.com/index.php/Corrade

99

https://let.casperdns.com/
https://wiki.casperdns.com/index.php/Corrade

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

@0&&&&..:0

overview regions units groups rentals transactions rental log managers job lots

The Big Picture.

Here's how things are looking.

Qccupancy = 5 Avatars

Total Units Total Regions Total AV's
Occupied Avg. Occupancy nitro2012... (SLIFE)
Overdue Best Region

Unoccupied Worst Region Natoma

Weekly Income Avg. Income $0

Have you deleted some units that are still showing up here? Schedule a re-scan.

Picture 4.28 - CasperTech website after logging in

4. Select 'Corrade' from the drop - down list.

Bot Configuration

Bot Type D

SmartBots Group Inviter
SmartBots Personal Bot
Thoys Bot

Corrade

FikkuBot (Deprecated)
METABolt (Deprecated)

Picture 4.29 - Supported bot types by CasperTech

5. On the screen you will see a short information about Corrade.

6. If everything is correct, click on the 'Next' button.

100

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Bot Configuration

Bot Type Corrade E‘

Corrade is a piece of software which you run on your machine, It is completely free,

This iz a SELF-HOSTED product, so you will need to keep a Windows machine online at all times, if you
want your bot to be online permanently.

Corrade is for advanced users, The setup process may be complicated and confusing for non-technical
Lsers.

Yol can download Corrade from grimore, org.,

Mext

Picture 4.30 - Description of choosing a bot as Corrade

7. On the next screen, complete the necessary data:
* Label - name displayed on the list on the CasperTech website,
* Bot UUID - bot's UUID,
* Group name - name of the group to which the bot is assigned,
* Secure Code - password for the group, which was previously set and entered into the
bot configuration file,
* Bot Owner Avatar UUID - UUID of your avatar as the owner of the bot,
* Role Name - additional option; role name,

* Role UUID - additional option; UUID of the role.

101

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Bot Configuration

Label

Bot UUID

Group Name

Security Code

Bot Owner Avatar UUID

Role Name (Optional)

Role UUID (Optional)

10.
11.
12.

13.

14.

15.

Back “

Picture 4.31 - Bot configuration screen

On the next screen, you have the option to test your bot configuration.

Enter the name of the avatar to which the bot should send invitations to the group or remove

from the group.

We can also skip this step.

We give the name of the avatar that will be tested by the bot.

We have the option of selecting additional options:

* Don't eject avatars with this bot - don't throw avatars with this bot,

e This bot should be used on all units, unless overridden - whether the bot should serve all
lease units, unless other settings override this option.

When we click on 'Test invite', the website will send a command to the bot, which will invite

the avatar selected earlier to the group.

When we click on 'Test eject' the website will send a command to the bot, which will kick

the avatar out of the group.

If everything is ok then click on the 'Next' button.

102

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Bot Configuration

Now we'll test your bot configuration to make sure it's working.

Please enter the name of one of your avatars to invite to the group, as a test:

Click the button below to commence the test. If it doesn't work, hit the 'back’ button and check your settings.

(U Don't eject avatars with this bot

[J Default: This bot should be used on all units, unless overridden

Test Invite Test Eject

Back Next

Picture 4.32 - Screen with the possibility of testing the bot

16. If everything is fine, click on OK or next, which will save the configuration of our bot and

return to the list of bots.

4.16. Data sieving

The 2 KB limit imposed by Second Life is used when receiving data from the http request()
bot in the LSL. Above this limit, the data is truncated. To get the complete data, there are two
options: either move the command call to PHP or use the so-called data screening. Data screening
allows you to select the data that interests us and not to cut the data imposed by the above -

mentioned limit.
We have the following sifter at our disposal:
* count - gives the number of items that match the previously given regular expression
Input data: a,1,b,2,¢,3,d,4,e,5.1,6,2,7,h,8,1,9

"sift", wasListToCSV([
IICOun,tIIJ Il[e_g]ll
D)

Output data: 9

103

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Comment: After processing the data, Corrade selects as many elements from the list that are

numbers, that is: 1,2,3,4,5,6,7,8,9, so the length of this list is 9 elements.
» distinct - only returns unique items in the list
Input data: a,b,c,a,b,c,a,b,c,d,a,b,d,a,e,a,h,a

"sift", wasListToCSV([

"distinct",
1
Output data: a,b,c,d,e,h
* each - returns every specified item in the list
Input data: a,1,b,2,c,3,d,4,e,5,£,6,2,7,h,8,1,9

"sift", wasListToCSV([

"each", 2

D

Output data: a,b,c,d,e,f,g,h,i
Comment: Returns every other item in the list in the example.
* html - returns elements that match xpath HTML
* jsonpath - returns items that match a JSON path
* match - returns elements or parts of elements that match the regular expression

Input data: Item Cost 100,2,Item Cost 500,3,Item Cost 10,4,Item Cost 15

"sift", wasListToCSV([
"match", "Item Cost ([©-9]+)"

D

Output data: 100,500,10,15
* mdS - generates an MDS5 hash for the output text
* shal - generates a SHA1 hash for the output text

* permute - shows the list items on the basis of a given rotation

104

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

¢ random - returns a random item in the list
e reverse - returns the list of items in reverse order
* select - selects values based on a predefined key

Input data: Price,10,Item,Book,Price,50,Item,Chair,Price,200,Item,PC

"sift", wasListToCSV([

"select", "Price"
1,
Output data: 10,50,200
» skip - skips the specified number of leading items from the list
» take - gets the specified number of items from the list

* xpath - returns items based on an XPath

The above data sifters can be combined with each other.

4.17. Weak and strong reference by object name and UUID

In Second Life, everything has an ID, the so-called UUID (Universally unique identifier).

In Corrade, when we refer to objects, we can refer to them by their name or UUID. However,
calling an object by name is not recommended as there may be more than one object in the same
region with the same name as the searched object. Instead of operating on only one object, we will
operate on all found. We call it a poor reference. It's a much better idea to refer to an object by its

UUID, which is unique to each object in the region. We call it a strong reference.

105

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

4.18. Confirmation of receiving data from the bot in the LSL script.

Whenever you get data from the bot in the LSL script, you should confirm to the bot that the data

was received without problems.

Example:

http_request(key id, string method, string body){
11HTTPResponse(id, 200, "OK"); //confirm

If this provision is omitted, Corrade waits for a return confirmation for approximately one minute.

This one line shortens this time and Corrade may close one link sooner.

4.19. Bot rack size.

You should log in as an avatar of your bot from time to time and inspect his wardrobe. You should
delete the things he doesn't use, because on the one h and they clutter his wardrobe and on the other

h and they make Corradde need more time to cache them.

4.20. Corrade protection and defense against attacks

1. Is the configuration file properly secured? (e.g. relevant file permissions, access only to

relevant users)
2. Does the bot have access to the appropriate groups?
3. Does the bot have access to the appropriate permissions and notifications in groups?
4. Does the computer it is running on connects safely to the Internet and trusted servers?
5. Have you set resource cap to Corrade?

6. Do you use lIRequestSecureURL() instead of lIRequestURL() [MITM protection] in your
LSL scripts?

7. Is your computer protected against DDoS attacks?

106

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

8.

9.

10.

11.

Notes

4.21.

Do only trusted people have access to the computer?
Does the bot folder have the appropriate permissions?

Have you correctly defined the command to execute when using the 'execute' command?

Will unexpected changes to the system occur, e.g. deletion of important files?

Are you using lISensor and 1ISensorRepeat to get the UUID of objects?

MD5 or SHAT1 are weak passwords for generating a password, if you suspect that the bot's
account has been hacked - change the password immediately to a stronger one, which you
re-enter in the configuration file. Review the above list to see if you have done everything to

avoid hacking your account.

lIRequestSecureURL() obtains secure URLs from Second Life (HTTPS), however Second
Life uses self-signed SSL certificates, which makes it necessary to disable certificate issuer

checking. If the secure URL from Second Life causes a problem (e.g. for notifications) use

lIRequestURLY().

Comments

Commands such as getavatarpositions, getmapavatarpositions return the wrong Z coordinate
- the maximum number is 1000, so they are not recommended when getting bot coordinates
or other avatars. If you want the exact coordinates use the tracker notification or the LSL

11GetObjectDetails command.

107

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

5. Leonardo De ArtBot

5.1. Computer parameters ('bot house')

Picture 5.2 - Fujitsu ESPRIMO e5730 - back

Leonardo is run on an SFF computer, which is closed in a small handheld case. The computer was
manufactured around 2008, but it works fine.

The computer parameters are:

108

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

* operating system: Windows 7 SP1 64-bit,
* CPU: Intel Core 2 Duo E8600 @ 3.33 GHz (2 cores, 2 threads),
* memory: 4 GB RAM DDR2 - SDRAM, 400 MHz (PC2 - 6400) clock speed; only 3.65 GB
available in the system,
» graphics card: integrated Intel Q45/Q43,
* hard drive: Hitachi 160 GB HDD, SATA, disk speed - 7200 rpm,
* network:
© (main) LAN; Intel 82567LF-3, speed: 100 Mbps, connected to a WiFi router with mobile
Internet (Orange PL network),
o (spare) mobile modem: Huawei E3372 HiLink, max. 150 Mbps; Orange PL network,
* software:
o Corrade, version: 11.0.88.76 (publication date: 2021 - 01 - 06 07:12),
o Web server (XAMPP software):
= Apache 2.4.41,
= database: MariaDB 10.4.11,
= phpMyAdmin 4.9.2,
= QOpenSSL 1.1.0g,
= PHP 7.4.1 (VC15 x64, thread safe)

5.2. Bot brain structure and LSL line communication - external

script

Leonard's bot brain was built around PHP and LSL.

I chose PHP for the following reasons: I know the language very well, you write code in this

language very quickly, it allows you to limit the maximum amount of memory you can use.

The bot folder itself is currently around 2.22 GB in size, which consists of Corrade files and

folders, log files, bot brain files.

This folder consists of subfolders and subfiles (Picture 5.4 - The structure of folders and
files in the Leonardo bot):

109

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

e Other files and directories related to Corrade,
* Cache - saves Second Life data to the cache (e.g. resources, avatar data, etc.),

* Contrib (linux, windows, macosx) - contains instructions and programs on how to install

Corrade as a service in the system,

* Logs - program logs and private conversations between the bot and avatars saved to files,

public conversations from a public chat, group chat, etc.,
* mcorrade.psl + other files - my Powershell script to manage the bot along with other files,
* Nucleus - Nucleus files,
* State - saves notification files with assigned URLs from Second Life,
* php - bot brain written in PHP
© botconfig.ini - bot INI configuration file,
o cache.ini - cache file,
o composer.phar - a file for managing the Composer project dependencies,
o config.php - PHP configuration file,
© cron.bat - cron batch program,
o corrademonitorservice.php - PHP file that allows you to monitor the bot process,
o functions.php - PHP functions,
o inPolygon.class.php - PHP class that checks whether a given point belongs to a polygon,

o PHP files starting with part* - files that perform various functions by the bot; are

connected via the main servebot.php file,

o phplint.bat - batch program that checks the correctness of the syntax in the folder with
the bot brain,

o servebot.php - main PHP file that performs bot functions; connects other parts saved in

PHP files; is invoked by a bot from Second Life,

© logs - folder with files with saved events by serverbot.php,

110

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

o sl - LSL files,
o vendor - Composer dependencies folder.

If we estimate what percentage is occupied by PHP scripts and what percentage of LSL
scripts in the form of the number of lines of code, then after calculating the ratio is approx. 53 —

57% / 47 - 43%, which is quite a small difference.

LSL works as standard on the Second Life side, where it makes PHP requests (execute the
serverbot.php file) via the 'execute' command from the Corrade API, which are executed on the

computer where the bot is running.

The bot's runtime is in one prim called ArtBotStartupV1, which is worn as an invisible
garment by the bot. The bot owns this prim, and any changes to this prim require you to manually
log in as a bot and edit that prim. I do not have a problem with this here, because I rarely log in as a
bot, and even if it does, it is not bothersome for me. However, this is a plus, because the bot has
everything with it. Avatar scripts will not run if this one is on a plot where the option runs avatar
scripts, therefore, in the system's task schedule, a script is run periodically that checks if the bot is

on the right plot, and if not, it tries to teleport it.
Prima includes the following scripts:

* Bootup - is the first script to decide which scripts to run first (Picture 5.3 - The dependency
of running individual scripts in prim); it is triggered as soon as the bot logs into Second Life
or reconnects prim as part of the clothes; the bot author decides the order in which the

scripts are run,

* Debug - a script that tries to restart another script that reported an error (usually of the type:

'script not found'),

* ExhibitionWorks - a script that handles the textures received from the avatars and places

them on a joint exhibition (it is quite close to the bot stand),
e IM - a script that handles private messages from avatars,
* ListenMath - a script that handles some math functions,

* PlatformMonitor - a script that monitors the bot's workstation - if there is no object present

- creates or resizes it from the bot's cabinet,

111

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

RegionAlert - a script that monitors whether a region restart has been ordered and in this

case sends group information to Facebook and Twitter,

ReturnToHome - script that checks if the bot is on the right plot.

ON
A 4
Debug ExhibitionWorks
A
ON OFE
ReturnToHome |«QN Bootup ON IM
ON
oN OFF
4
RegionAlert PlatformMonitor ListenMath

ON

Picture 5.3 - The dependency of running individual scripts in prim

112

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Bot Folder

—% Bots' Files & Directories ‘

windows

i

Local |

OwnerSay |

php

botconfig.ini }‘7‘.{ cache.ini ‘

composer.phar }4——»{ config.php ‘

cron.bat }474,{ corrademonitorservice.php ‘

functions.php }df—b{ inPolygon.class.php ‘

part.(.*).php }47

‘ phplint.bat ‘

servebot.php }‘7"{ logs I

Isl et vendor |

Picture 5.4 - The structure of folders and files in the Leonardo bot

113

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Regardless of the script or its functions, when the data is processed, the input data is
forwarded to external PHP files that are in the bot folder, and a bot in Second Life can receive the
status of this processing. Dispatch is done with the execute command with parameters: group name;
group password; path of the file to be executed; parameters passed to the executable file; the name

of the LSL script from which the call comes for possible further recognition in the logs.

An example function to send to a PHP file looks like this:

sendPHP(1list value){
lprepare = [
"group", GROUP,
"password", PASSWORD,
"command", "execute",
"file", "php",

"parameter", "php/servebot.php " + 11DumplList2String(value, "|"),

" script", TAG
15

110wnerSay (wasKeyValueToJSON(wasKeyValueEncode(lprepare), JSON_OBJECT));

Text 8 - function to send data to an external PHP file

The PHP runtime file is entered into the global PATH system path on Windows.
The php/servebot.php file is always called and handles all PHP requests from the bot.

IIDumpList2String is an LSL function that converts a list to a character string, separating the list

entries with an appropriate delimiter (here '|' - with a vertical bar).

_script is an additional parameter that will not be processed by the bot software, however, when
analyzing the logs it allows to detect which LSL script triggered the command. Its value is stored by
the TAG variable, which holds the name of the script that is assigned when the default() {} state is
called through the 11GetScriptName() function.

Everything is sent directly to the bot by the llOwnerSay command, which does not delay the
forwarding of messages or ignore messages due to the bandwidth of other similar functions.

Everything is coded to JSON before sending.

114

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

default
{
state_entry()
{
TAG = 1llGetScriptName();
setDebug("Free memory: " + (string)llGetFreeMemory());
state ReadConfigurationNotecard;
}

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();

Text 9 - sample default() {} state in LSL script

An example use somewhere in LSL could look like this:

sendPHP(["action", "ACTIONAME", "param2", varname2]);

where the following values of the list are:

e action - ACTIONNAME = action name which must match the action name in the

servebot.php file,
* param?2 - varname2 = parameter value (there can be many parameters).

The list must have an even number of items.

115

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Since we are sending parameters to the console version of the executable program without the

graphical user interface, remember that the maximum length of the string passed as a parameter to

the executable file must not exceed 2047 characters?.

5.3. Bot operation analysis

In the period 2020-10-28 - 2020-11-23, information about the bot was collected using the

built - in 'heartbeat' notification, which sent data to an external script, which was finally saved to the

database. Since the 'heartbeat' notification returns results every 1 second, approximately 1.7 million

rows were received in the database (Picture 5.5 - Table where the data from the 'heartbeat'

notification was saved). I decided to leave only those lines that were written every full hour and

minute - as a result, out of 1.7 million lines there were about 31,000 (Picture 5.6 - Slimmed Table

with saved data from the 'heartbeat' notification). I generated charts and tables below for the 3

searched data: average CPU usage, average RAM usage, and the number of threads running.

Tabela ~ Dzialanie Rekordy & Typ Metoda poréwnywania napisow Rozmiar Nadmiar
[l heartbeat <y |[]Przegladaj 4 Struktura ‘& Szukaj ;‘i-E Wstaw g Opréznij @ Usun ~1,77@,265 InnoDB utf8mb4_unicode_ci 150.7 MB
L live 4 || Przegladaj s Struktura % Szukaj i-E Wstaw g Oproznij @ Usun 36,205 InnoDB latin1_swedish_ci 7.5 MB

2 tabel Suma ~1,806,470 InnoDB utf8mb4_general_ci 158.2 MB o8

Picture 5.5 - Table where the data from the 'heartbeat’ notification was saved

Tabela « Dziatanie Rekordy & Typ Metoda poréwnywania napisow Rozmiar Nadmiar
|| heartbeat <9y || Przegladaj 4 Struktura ‘&% Szuka) 3-:' Wstaw §gf! Oproznij @ Usuni 31,286 InnoDB utf8Bmb4_unicode_ci 3.5 MB
] live s || Przegladaj # Struktura % Szukaj }E Wstaw Igf! Oproznij @ Usuni 36,205 InnoDB latin1_swedish_ci 7.5 MB

2 tabel Suma 67,491 |[nnoDB utf@mb4_general_ci 11.0 MB 0B

Picture 5.6 - Slimmed Table with saved data from the 'heartbeat’ notification

20 https://docs.microsoft.com/en - us/troubleshoot/windows - client/shell - experience/command - line - string -

limitation

116

https://docs.microsoft.com/en-us/troubleshoot/windows-client/shell-experience/command-line-string-limitation
https://docs.microsoft.com/en-us/troubleshoot/windows-client/shell-experience/command-line-string-limitation

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

BOT CPU USAGE

L MWM»WUMMWM m WM \

2020.10.28 2020.10.30 2020.11.01 2020.11.03 2020.11.05 2020.11.07 2020.11.09 2020.11.11 2020.11.13 2020.11.15 2020.11.17 2020.11.19 2020.11.21 2020.11.23
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

Picture 5.7 - Graph of CPU usage by bot

%
MIN 0
MAX 14
AVG 0.15

Table 3 - Table with short CPU usage statistics

Based on the analysis of the graph and the table, it can be concluded that the CPU consumption by

the Corrade program is very low - at its peak it reached the value of 14%.

117

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

BOT MEMORY USAGE

(MB)

MB
3

56
2020.10.28 2020.10.30 2020.11.01 2020.11.03 2020.11.05 2020.11.07 2020.11.09 2020.01.11 2020.11.13 2020.11.15 2020.11.17 2020.11.19 2020.11.21 2020.11.23
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

Picture 5.8 - Graph of RAM usage by the bot

%
MIN 57
MAX 63
AVG 62

Table 4 - Table with a brief memory statistic

Based on the analysis of the graph and the table, it can be concluded that the RAM memory
consumption by the program is in the range of 57 - 63 MB. The computer on which the bot was
running has 4 GB of RAM, which means that the program uses memory in the range 1.39% -
1.53%.

118

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

BOT THREADS USAGE

@

2020.10.28 2020.10.30 2020.11.01 2020.11.03 2020.11.05 2020.11.07 2020.11.09 2020.11.11 2020.11.13 2020.11.15 2020.11.17 2020.11.12 2020.11.21 2020.11.23
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

Picture 5.9 - Corrade thread usage graph

%
MIN 10
MAX 15
AVG 10

Table 5 - A table with a short usage statistic of the number of threads

Based on the analysis of the graph and the table, it can be concluded that the Corrade program uses

on average 10 threads to handle the bot.

The availability of the bot will be analyzed next. Availability was tested in the period 2020-
04-15 - 2020-12-25. The data was retrieved from the Windows event log using powershell, which
retrieves events logged by NSSM (the one from registering the program as a service), which then

logs events with the status 'START control' or 'STOP control'.

powershell -Command "Get-WinEvent -FilterHashtable @{LogName=\"Application\";
ProviderName=\"nssm\";StartTime=\"2020-04-14 00:00:00\";EndTime=\"2020-12-31
00:00:00\"} | Sort-Object -Property TimeCreated | Where-Object -Property Message -Match
'START control|STOP control'| Select-Object -Property TimeCreated,Message | ConvertTo-

Csv

119

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

The result is a CSV result, where we have the time of registering the event and the message.

Everything now depends on us how we process this data (Picture 5.10 - An example of getting

information about starting the NSSM service).

I entered the data manually into the Google spreadsheet, where I automatically calculated

the differences between the dates, totals and availability of the bot (Picture 5.11 - My example

sheet for entering bot startup and crash times).

"2020-11-14
"2020-11-14

"2020-11-14

"2020-11-14
:2020—11—14
"2020-11-15
:2020—11—15
"2020-11-16
:2020—11—16
"2020-11-16
:2020-11-16

w|m|=

00:32:42"
07:10:31"
07:11:06"
23:54:45"
23:54:52"
00:28:54"
00:29:01"
08:09:46"
08:09:53"
12:39:45"
12:39:52"

e 1

Pkﬂue510—énex

,'Service
,'Service
,'Service
, 'Service
, 'Service
,'Service
,'Service
,'Service
,'Service
,'Service

,'Service

Corrade
Corrade
Corrade
Corrade
Corrade
Corrade
Corrade
Corrade
Corrade
Corrade

Corrade

received
received
received
received
received
received
received
received
received
received

received

ample of getting information about starting the NSSM service

START control, which will be handled.
STOP control, which will be handled.”
START control, which will be handled.
STOP control, which will be handled."
START control, which will be handled.
STOP control, which will be handled."
START control, which will be handled.
STOP control, which will be handled.”
START control, which will be handled.

STOP control, which will be handled.”

START control, which will be handled.

o lo|[~N|lo|als

W[l |3

2|3 oo

sum 5032:57:29 sum 1061:03:00| MIN 81,69 [

MTTF 10:37:05 MTTR 2:14:02|AVG 95,25
START END DIFFERENCE | START END DIFFERENCE [HISTORY AVG
2020-04-15 02:35:47 2020-04-15 02:35:47 0:00:00| 2020-04-15 02:35:47 | 2020-04-15 02:35:47 0:00:00| 100,00 0:00:00 0:00:00 100,0095,25
2020-04-15 02:35:47 | 2020-04-15 23:32:19 20:56:32| 2020-04-15 23:32:19 2020-04-15 23:32:45 0:00:26 99,97 10:28:16 0:00:13 99,97|95,25
2020-04-15 23:32:45 | 2020-04-15 23:41:57 0:09:12| 2020-04-15 23:41:57 | 2020-04-15 23:42:22 0:00:25 99,93 7:01:55 0:00:17 99,93(95,25
2020-04-15 23:42:22 | 2020-04-15 23:52:38 0:10:16| 2020-04-15 23:52:38 2020-04-15 23:52:47 0:00:09 99,92 5:19:00 0:00:15 99,92(95,25
2020-04-15 23:52:47 2020-04-16 00:47:45 0:54:58| 2020-04-16 00:47:45 2020-04-16 00:53:33 0:05:48 99,49 4:26:12 0:01:22 99,49| 95,25
2020-04-16 00:53:33 | 2020-04-16 00:59:15 0:05:42| 2020-04-16 00:59:15 2020-04-16 00:59:34 0:00:19 99,47 3:42:47 0:01:11 99,47(95,25
2020-04-16 00:59:34 | 2020-04-16 00:59:50 0:00:16 | 2020-04-16 00:59:50 2020-04-16 01:00:40 0:00:50 99,41 3:10:59 0:01:08 99,41(9525
2020-04-16 01:00:40 2020-04-16 18:03:06 17:02:26| 2020-04-16 18:03:06 2020-04-16 18:03:10 0:00:04 99,66 4:54:55 0:01:00 99,66|95,25
2020-04-16 18:03:10 2020-04-16 18:08:12 0:05:02| 2020-04-16 18:08:12 2020-04-16 18:29:59 0:21:47 98,76 4:22:43 0:03:19 98,76|95,25
2020-04-16 18:29:59 | 2020-04-16 18:34:15 0:04:16| 2020-04-16 18:34:15 2020-04-16 18:41:30 0:07:15 98,46 3:56:52 0:03:42 98,46 95,25
2020-04-16 18:41:30 2020-04-16 18:47:53 0:06:23| 2020-04-16 18:47:53 2020-04-16 18:48:20 0:00:27 98,45 3:35:55 0:03:25 98,45|95,25
2020-04-16 18:48:20 2020-04-16 19:00:03 0:11:43| 2020-04-16 19:00:03 | 2020-04-16 19:00:53 0:00:50 98,42 3:18:54 0:03:12 98,42(95,25
2020-04-16 19:00:53 | 2020-04-16 19:16:54 0:16:01| 2020-04-16 19:16:54 2020-04-16 19:21:08 0:04:14 98,26 3:04:50 0:03:16 98,26(95,25
2020-04-16 19:21:08 | 2020-04-21 23:32:56 124:11:48| 2020-04-21 23:32:56 2020-04-21 23:35:29 0:02:33 99,54 11:43:54 0:03:13 99,54|95,25
2020-04-21 23:35:29 | 2020-04-21 23:36:02 0:00:33| 2020-04-21 23:36:02 | 2020-04-21 23:37:04 0:01:02 99,53 10:57:01 0:03:05 99,53|95,25
2020-04-21 23:37:04 | 2020-04-21 23:54:15 0:17:11| 2020-04-21 23:54:15 | 2020-04-21 23:54:22 0:00:07 99,53 10:17:01 0:02:54 99,53|95,25

Picture 5.11 - My example sheet for entering bot startup and crash times

120

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Based on the collected data from the spreadsheet, I created a table of my bot's availability in

individual months (Picture 5.12 - Collected data on bot availability and failure rate).

At the beginning, an explanation of a few symbols:

'"TOTAL MONTH'S HOURS' - gives the number of hours in a given month,
'RU'" - sum of all times for which the bot was available,

'RE' - sum of all times the bot was unavailable,

'RU [%]' - the ratio of the bot's availability to the number of hours in a given month,

expressed as a percentage,

'RE [%]' - the ratio of bot unavailability to the number of hours in a given month, expressed

as a percentage,

'MTTR - F' - number of failures in a given month,

'MTTR' - average time from failure to repair,

'MTTF' - the average time from the last failure or launch of the bot to the next failure,
'MTBF' - mean time between failures - it is the sum of MTTR and MTTE,

'AVAILABILITY" - bot availability expressed as a percentage.

MTTR is calculated from the formula:

N
MTTR=) T,

where:

i=1

Ti - failure time,

N - number of failures.

The MTTF is calculated from the formula:

121

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

MTTF=——2"32L
N+1

where:
* Tp - bot availability time,
¢ T, - bot failure time.

¢ N - number of failures.

The availability of the bot is calculated from the formula:

MTTF

-100
MTTF+MTTR

AVAILABILITY =

By a failure, | mean any event when my bot was unavailable.

Now let's analyze the picture with the results.

DATE 2020-04-01| 2020-05-01) 2020-06-01) 2020-07-01) 2020-08-01 2020-09-01 2020-10-01 2020-11-01 2020-12-01
TOTAL MONTH'S HOURS 720:00:00| 744:00:00 720:00:00| 744:00:00 744:00:00 720:00:00 744:00:00 720:00:00 744:00:00
RU 380:34:42| 734:01:03] 669:13:54| 735:16:31] 740:00:35 6868:42:36] 234:19:11) 507:14:57] 460:00:39
RE 00:49:30 09:18:16 50:06:05 08:43:28 03:59:24 30:37:23) 509:40:08| 212:45:02] 135:03:02
RU [%] 52.86% 98.66% 92.95% 98.83%) 90.46% 95.65% 31.49%, 70.45% 61.83%
RE [%] 0.11% 1.25% 6.96% 1.17% 0.54% 4.25%) 68.50%, 20.55% 18.15%
MTTR-F 20 38 130] 80| 5] 55 11 73 22
MTTR 00:02:28 00:14:41 00:23:07 00:06:33 00:04:42 00:33:24 46:20:01 02:54:52 06:08:19
MTTF 34:14:47 18:50:18 05:06:49 09:04:39 14:13:51 12:18:37 19:31:39 06:51:17 26:28:34
MTBF 34:17:16 19:05:00 05:29:57 09:11:12 14:18:33 12:52:02 65:51:40) 09:46:09 32:36:53
AVAILABILITY 99.88% 98.72% 92.99% 98.51%) 99.45% 95.67% 29.65%, 70.17% §1.18%

Picture 5.12 - Collected data on bot availability and failure rate

The ratio of the bot's availability to the number of hours in a given month, expressed as a
percentage, varies in the range of 31.49% - 99.46%. In April, this value was small, because the bot
was launched from mid - April, then we see in the following months that the value remains in the
range of 92% - 99%, then there is a sharp drop in October, then in November it increases and in
December the bot is closed with the availability of approx. 62%. This is also visible in the ratio of
the bot's unavailability to the number of hours in a given month, expressed as a percentage, where it
is the highest in October, and then it drops. Before November, it is at a low acceptable level. On
average, the bot ran from about 5 - 34 hours a month until there was a failure. The failure in the

form of the bot's unavailability lasted from 2 minutes to even about 46 hours. At the end, you can

122

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

read the availability of the bot, which is based on the bot's availability and failure time. It can be
seen as before that in October there was a dramatic decrease in the availability of the bot due to

failures.

Why has the number of failures been so high since October? Because after updating the

program, there were various problems when the bot could not start.

On November 26, 2020, errors began to occur with the correct display of avatars - the
appearance of the avatar resembled a cloud, which usually symbolizes loading its appearance while
in Second Life. The incident was called 'Thanksgiving Bakefail'. This bug arrived to Corrade
sometime in early December, when bot closet unavailability issues began to be reported, which
prevented him from having a look at items or his appearance. The bug on the Second Life side was

fixed after about 2 - 3 weeks.

Another failure also occurred on the Second Life side in November, where the region where
the bot was located had huge delays, which caused either the inability to fire key scripts in the bot's
clothes or their slow performance. In this situation, I decided to move to another region where the

delays were minimal.

5.4. The basics of building a bot

5.4.1. Introduction

In this chapter I will show you how to build a basic bot.
Our assumptions:
* we do all processing outside the Second Life environment,
* the programming language in which we will create the bot's brain and heart outside Second
Life is PHP,
* The heart of a bot in Second Life will be in the form of a prim that will be part of the bot's
clothing.

First, check if PHP is added to the system path, which will allow us to call the PHP program from

anywhere in the system.

123

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Administrator: Wiersz polecenia - o X

Microsoft Windows [Version 10.0.19042.844]
(c) 2020 Microsoft Corporation. Wszelkie prawa zastrzezone.

C:\Users\Nitro>php -v

PHP 7.4.9 (cli) (built: Aug 4 2020 11:52:41) (ZTS Visual C++ 2017 x64)
Copyright (c) The PHP Group

Zend Engine v3.4.0, Copyright (c) Zend Technologies

C:\Users\Nitro>_

Picture 5.13 - Check if PHP is added to the system path

If after confirming the command does not appear, among others PHP version and the
information that the program was not found appears, download PHP version 7.x for Windows from

the website https://windows.php.net/download/ in the form of a ZIP archive. We choose the x64

Thread Safe version. Unpack the archive, e.g. to C:\php. Go to the system properties (Right - click
on 'This computer' or 'My computer' and then select 'Properties'). Then select 'Advanced system
settings' => on the 'Advanced' tab click on 'Environment variables'. In the 'System Variables'
section, find 'Path’, add the path to the C:\php folder to it. Confirm everything, restart the computer.
In your bot folder create a folder called 'php'. In this folder, we're going to keep the bot's

heart. It is also an easy way to call individual parts written in PHP.

124

https://windows.php.net/download/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

)

contrib de es fr Mucleus

pl

api-ms-win-core- api-ms-win-core- api-ms-win-core- api-ms-win-core- api-ms-win-core- api-rjs ore- api-ms-win-core-
file-11-2-0.dll file-12-1-0.dll handle-11-1-0.dll heap-11-1-0.dll interlocked-11-1- libraryloader-11- localization-I1-2-
0.dlil 1-0.dll 0.dlil

Picture 5.14 - The PHP folder in the Corraed folder

We go to the previously created folder.

In this folder, we will first install Composer, which allows you to easily manage project
dependencies. First, the command line runs in the PHP folder. To do this, press the left SHIFT key
and right - click somewhere on an empty area of the folder area, and then select 'Open window
here' from the menu.

Attention! If there is no such option, you can add appropriate entries to the registry or in the Start
Menu, enter cmd and then use the cd command to go to the folder of our choice.

We go to the Composer website (https://getcomposer.org/download/), where we can find commands

to enter in the command line to download Composer.

We copy all lines in one go and paste to the command line (use the right mouse button).

Command-line installation

To quickly install Composer in the current directory, run the following script in your terminal. To automate the installation, use the guide on
installing Composer programmatically.

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
php -r "if (hash_file('sha384', 'composer-setup.php') === '756890a4488ce9024fc62c561532289087f1545c228516cbf63fE

php composer-setup.php
php -r "unlink('composer-setup.php');"

Picture 5.15 - Composer installation

If everything went well, you will find composer.phar in the php folder.
To invoke Composer help, type:

125

https://getcomposer.org/download/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

php composer.phar

The most important commands are:
* php composer.phar require PackageName - installs the given package,
* php composer.phar remove PackageName - removes a previously installed package,
* php composer.phar update - updating all installed packages,
* php composer.phar selfupdate - updates Composer,

* php composer.phar outdated - shows obsolete versions of installed packages.

You can find the packages at https://packagist.org/, they are simply PHP projects that are

hosted on the GIT server. You can download them yourself without Composer, incorporate them
into your project, however you will have to keep an eye on whether there are new versions on
project pages etc., so Composer just makes the process easier.
First, let's install a package called: overtrue/phplint, which allows you to check the syntax of PHP
files. It will be useful for us while working on the heart of the bot in catching errors in PHP syntax
that may block the work of our bot.

On the packagist.org website, enter the name of this package and click on the first proposal

from the found list.

Packa gl St The PHP Package Repository ErEnEs

overtrue/phplint

overtrue/phplint PHP @ 1766494
“phplint” is a tool that can speed up linting of php files by running several lint processes at once, * 645
vansari/phplint-merger PHP @ 842
Simple XML Log Merger for overtrue/phplint xml reports * 1
nateageek/robo-phplint PHP @ 2646
This is a wrapper to the overtune/phplint, and allows it to be runin a rob® task * 2

¢ 1 » Search by [[€) algolia

Picture 5.16 - Search for a package on the Packagist website

126

https://packagist.org/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

On this page we have the details of the package. We should pay attention to the requirements of a
given package. Yes, we do not have to check its requirements for each package, because Composer
checks during installation whether the package requirements are compatible with the state of the
computer on which the package is to be installed. So if something goes wrong it will cancel the

installation and notify you which parts of the requirements do not meet your expectations.

overtrue/phplint
X composer require overtrue/phplint Maintainers

‘phplint” fs a tool that can speed up linting of php files by running Q
several lint processes at once.

Details
github.com/overtrue/phplint
Source

Issues

Installs: 1770684
Dependents: 445
Suggesters: 0

Security: 0

Stars: 641
Watchers: 20
Forks: 64

Open Issues: 1

23S 2020-12-11 17:27 UTC

dev-master
requires requires (dev) suggests 234
s php:>=55.9 + brainmaestro/composer-git-hooks: 233
* extjson: * LN 232
e n98/junit-xml: 1.0.0 » friendsofphp/php-cs-fixer: #2.16
s symfony/console: A3.2|A4.0|A5.0 » jakub-onderka/php-console- 231
+ symfony/finder: A3.0|*4.0(*5.0 highlighter: ~0.3.2 | | ~0.4 2.3.0
o symfony/process: 3.3|4.0| 5.0 2.2.0
o symfony/yaml: A3.0|74.0|A5.0 10
provides conflicts replaces 2.03
2.0.2
©MIT M fa2a2bab4f997f268171a5b12d141b2fe94e5ad0
A overtrue <anzhengchac@gmail.com>
QW #syntax #check #lint #phplint Last update: 2021-02-28 07:02:46 UTC

Picture 5.17 - Website overtrue/phplint

We return to the installation of the package.

To do this, enter in the command line:

php composer.phar require overtrue/phplint

The command will download the package with dependencies.

Comments!

127

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

* from time to time (e.g. every 2 weeks or once a month) we check packages for updates via:
php composer.phar update,

* obsolete packages - by php composer.phar outdated and, if necessary, we remove them and
install them again,

* let's also update the Composer itself.

If everything was successful, then in the folder we will find the vendor folder - our packages
are kept here, which we will include in the project, composer.json - a file with information about
what packages and what versions have been installed, composer.lock - a file with more information
about the installed packages.

Now let's create a phplint.bat file to which we copy the following content:

SET mypath=%~dp@
SET mypath=%mypath:~0,-1%

vendor\bin\phplint -j 5 --no-cache -n --exclude=vendor -vvv "Z%mypath%" -n >
phplint.txt

It allows you to use the mentioned phplint with the exclusion of the vendor folder, with full
diagnostics, where everything is saved to the phplint.txt file.

Next, we create one of the key PHP files called servebot.php (maybe a different name) to
handle requests from Second Life.
We paste the following content into it:

<?php
error_reporting(0);

chdir(__DIR__);

ini_set('memory limit', '512M");
set_time 1imit(300);
date_default_timezone set('UTC');

require_once('vendor/autoload.php');
require_once('config.php');
require_once('inPolygon.class.php');
require_once('functions.php');

$args = $argv;
$args = array_slice($args, 1);

128

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

$args = implode(' ', $args);

preg match('/\&_script\=([*&]+)/"', $args, $found);
$scriptNameExternal = (isset($found[1])) ? $found[1] : '';
$args = preg replace('/(\?|\&) ([*=]+)\=([*&]+)/"', '', $args);
$body = explode('|', $args);

$body t = array();

for($i=0;%i<count($body);$i+=2):

$body_t[$body[$i] 1 = $body[$i+1];

endfor;
$body = $body t;

switch($body['action']){

Explanation:

error_reporting(0) - disable any error reporting,

chdir() - does everything in the current folder

ini_set('memory_limit', '512M"); - sets the maximum memory limit to 512 MB for all scripts,
date _default timezone set('UTC'); - sets default time zone to universal,
require_once('vendor/autoload.php'); - attaches the file vendor/autoload.php from Composer,
require_once('config.php'); - attaches the configuration file config.php (we will create it
later),

require_once('inPolygon.class.php'); - attaches the inPolygon.class.php file related to
checking whether a given point belongs to a polygon (we will create it later),
require_once('functions.php'); - includes the functions.php file related to functions (we'll

create it later).

The following lines allow the parameters sent to this file to be converted into an array.

A bot from Second Life can trigger a character similar to:

php\serverbot.php 'parameterl|valuel|parameter2|value2 |..."

then this part of this file will transform into an array:

$body|['parameterl’'] = ‘'valuel';

$body['parameter2'] = 'value2';

The separator is a vertical line '|'.

129

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

This part of the script also, just in case, extracts the name of the LSL script that previously called
the servebot.php file (if that name was passed).
switch($body['action']) - We preimplemented a switch after the argument values for 'action', which

will be responsible for calling the action.

php\serverbot.php 'action|action name|parameter2|value2]|..."

Create the functions.php file with essentially empty content for now:

<?php

Create an inPolygon.class.php file with the following content:

<?php

/*

Description: The point-in-polygon algorithm allows you to check if a point is
inside a polygon or outside of it.

Author: Michaél Niessen (2009)

Website: http://AssemblySys.com

If you find this script useful, you can show your
appreciation by getting Michaél a cup of coffee ;)
donation to Michaél

As long as this notice (including author name and details) is included and
UNALTERED, this code is licensed under the GNU General Public License version 3:
http://www.gnu.org/licenses/gpl.html

*/

class pointLocation {
var $pointOnVertex = true; // Check if the point sits exactly on one of the
vertices?

function pointLocation() {

}

function pointInPolygon($point, $polygon, $pointOnVertex = true) {
$this->pointOnVertex = $pointOnVertex;

// Transform string coordinates into arrays with x and y values
$point = $this->pointStringToCoordinates($point);
$vertices = array();
foreach ($polygon as $vertex) {
$vertices[] = $this->pointStringToCoordinates($vertex);

130

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

// Check if the point sits exactly on a vertex
if ($this->pointOnVertex == true and $this->pointOnVertex($point,
$vertices) == true) {
return "vertex";

// Check if the point is inside the polygon or on the boundary
$intersections = 0;
$vertices_count = count($vertices);

for ($i=1; $i < $vertices_count; $i++) {
$vertexl = $vertices[$i-1];
$vertex2 = $vertices[$i];
if ($vertexi['y'] == $vertex2['y'] and $vertexi['y'] == $point['y'] and
$point['x'] > min($vertexl['x'], $vertex2['x"']) and $point['x'] <
max($vertex1['x'], $vertex2['x'])) { // Check if point is on an horizontal polygon
boundary
return "boundary";
}
if ($point['y"'] > min($vertexi['y'], $vertex2['y']) and $point['y'] <=
max($vertex1l['y'], $vertex2['y']) and $point['x"'] <= max($vertexi['x'],
$vertex2['x"']) and $vertex1['y'] != $vertex2['y']) {
$xinters = ($point['y'] - $vertexi['y']) * ($vertex2['x'] -
$vertex1['x"]) / ($vertex2['y'] - $vertexi['y']) + $vertexd['x'];
if ($xinters == $point['x']) { // Check if point is on the polygon
boundary (other than horizontal)
return "boundary";

}

if ($vertexd['x'] == $vertex2['x'] || $point['x"'] <= $xinters) {
$intersections++;

}

}
// If the number of edges we passed through is odd, then it's in the

polygon.
if ($intersections % 2 != @) {
return "inside";
} else {
return "outside";

function pointOnVertex($point, $vertices) {
foreach($vertices as $vertex) {
if ($point == $vertex) {
return true;

131

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

}

function pointStringToCoordinates($pointString) {
$coordinates = explode(" ", $pointString);
return array("x" => $coordinates[@], "y" => $coordinates[1]);

We create the config.php file into which we paste the content:

<?php

//Bot Connection

define('BOT_GROUP', ' GROUPNAME ') ;
define('BOT_PASSWORD', "PASSWORD ") ;
define('BOT_URL', 'http://127.0.0.1:8080");

//constants Second Life

define('TEXTURE_DEFAULT', '89556747-24cb-43ed-920b-47caed15465f") ;
define('TEXTURE_BLANK', '5748decc-1629-461c-9a36-a35a221fe21f");
define('TEXTURE_TRANSPARENT', '8dcd4a48-2d37-4909-9f78-f7a%eb4ef903") ;

instead of GROUPNAME, we give the name of the group to which the bot belongs,

* instead of PASSWORD we give the password to this group,

* in BOT URL we provide the URL to the bot HTTP server (127.0.0.1 - scripts are executed
locally on the same computer on which the bot will be running, 8080 - the port must be the
same as in the configuration),

* constants prefixed with TEXTURE define the UUID of textures in Second Life (default,

empty, transparent).

Now we should consider where we will store further configuration for our bot. If you have
additional materials attached to this ebook, in bot installer\corrade\bot ai\php, the configuration is
stored in a separate INI file, in this chapter we will keep everything in the config.php file.

When you make changes to this file, call phplint.bat just in case and check for any syntax

errors in the phplint.txt file.

132

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Now let's consider what 'actions' our bot is supposed to process.

My suggestions are given below.

5.4.2. Suggested functions for the bot

> Retrieving a value defined in a configuration file.

In servebot.php in switch we add:

case 'getConfig':
echo getConfig($body['name']);
break;
[11117177711711171177

It adds that part of the action called getConfig that will allow you to get the value of a constant
variable defined in config.php.

Here we have a function calling that takes a constant variable name as a parameter.

Example of calling:

php\serverbot.php 'action]|getConfig|name|NameOfConstantVariable'

In the functions.php file we add:

function getConfig($name)
{

return (defined($name))? constant($name) : ;

This function checks if a constant variable in config.php exists, if so, takes its value, if not defined,

returns an empty string.

» Cache support
In my bot project there is cache support, i.e. storing the most frequently used values by the bot
without the need to recalculate, process or query Second Life. There are two sources of writing: to

the cache.ini file or to the database. I usually choose to save to the cache file.

In servebot.php in switch we add:

case 'setCache':

133

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

setCacheValue($body['name'], $body['value']);
break;
[11171717777771771177
case 'getCache':
echo getCacheValue($body['name']);
break;
[111771171111771171177
case 'deleteCache':
deleteCacheName($body['name']);
break;
[1111717717777777177

Method of calling:

php\serverbot.php 'action|setCache|name|ParameterNameInCache|value|ParameterValue'
php\serverbot.php 'action|getCache|name|ParameterNameInCache'

php\serverbot.php 'action|deleteCache|name|ParameterNameInCache'

in config.php add:

//Database Connection

define('DB_CONNECTION', 'mysql:host=localhost;dbname=corrade');
define('DB_LOGIN', 'root');

define('DB_PASSWORD', '12345');

define('GENERAL_cacheTypeWriteDatabase', '0"');

in functions.php add:

//Insert or Update
function setCacheValue($name, $value)
{
if(getConfig('GENERAL_cacheTypeWriteDatabase') == '1"):
try
{
$pdo = new PDO(DB_CONNECTION, DB_LOGIN, DB_PASSWORD);
$pdo->beginTransaction();
$pdo->exec('LOCK TABLE cache WRITE, cache as cacheRead READ');
$stmt = $pdo->prepare('INSERT INTO 'cache' ('name', ‘'value') VALUES (:name,
:value) ON DUPLICATE KEY UPDATE value=:value');
$stmt->execute(array(

':name' => $name,

134

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

':value' => $value,
))s
$pdo->commit();
$pdo->exec("UNLOCK TABLES');

}
catch(Exception $e)
{
writeDebugFile($e->getTraceAsString());
}
else:

safefilerewriteCache($name, $value);
endif;

function writeDebugFile($msg, $type = 'warn')

{
@mkdir('logs');
safefilerewrite('logs/log '.date('d.m.Y').'.txt', date('d.m.Y H:i:s') . ' ' . $type
1 1 . $msg . Il\nll’ la+l);
}

function safefilerewriteCache($name, $value)

{
$iniCache = parse_ini_file("cache.ini", true);
$iniCache['cache'][$name] = $value;
write php_ini($iniCache, "cache.ini");
}
function safefilerewrite($fileName, $dataToSave, $mode = 'w+')
{
if ($fp = fopen($fileName, $mode))
{
$startTime = microtime(TRUE);
do
{

$canWrite = flock($fp, LOCK_EX);
// If lock not obtained sleep for © - 100 milliseconds, to avoid collision
and CPU load
if(!$canhWrite) usleep(round(rand(@©, 100)*1000));
} while ((!$canWrite)and((microtime(TRUE)-$startTime) < 5));

135

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

//file was locked so now we can store information
if ($canWrite)

{
fwrite($fp, $dataToSave);
flock($fp, LOCK _UN);

}

fclose($fp);

function write_php_ini($array, $file)

{
$res = array();
foreach($array as $key => $val)
{
if(is_array($val))
{
$res[] = "[$key]";
foreach($val as $skey => $sval) $res[] = "$skey = ".(is_numeric($sval) ?
$sval : '"'.$sval.'"");
}
else $res[] = "$key = ".(is_numeric($val) ? $val : '"'.$val.'"');
}
safefilerewrite($file, implode("\r\n", $res));
}

//Get Cache Value
function getCacheValue($name)
{
if(getConfig('GENERAL_cacheTypeWriteDatabase') == '1"):
try
{
$value =
$pdo = new PDO(DB_CONNECTION, DB_LOGIN, DB_PASSWORD);
$pdo->beginTransaction();
$pdo->exec('LOCK TABLE cache WRITE, cache as cacheRead READ');
$stmt = $pdo->prepare('SELECT 'value' from 'cache' as cacheRead WHERE

wn o,
J

name=:name');
$stmt->execute(array(
':name' => $name,

));

136

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

$data = $stmt->fetch();
$value = $data['value'];
$pdo->commit();
$pdo->exec("UNLOCK TABLES');

return $value;

}
catch(Exception $e)
{
writeDebugFile($e->getTraceAsString());
return "";
}
else:

$iniCache = parse_ini_file("cache.ini", true);
return $iniCache['cache'][$name];

endif;

//delete cache

function deleteCacheName($name)

{
if(getConfig('GENERAL_cacheTypeWriteDatabase') == '1"):
try
{
$pdo = new PDO(DB_CONNECTION, DB_LOGIN, DB_PASSWORD);
$pdo->beginTransaction();
$pdo->exec('LOCK TABLE cache WRITE, cache as cacheRead READ');
$stmt = $pdo->prepare('DELETE FROM cache WHERE name=:name');
$stmt->execute(array(
':name' => $name,
))s
$pdo->commit();
$pdo->exec("UNLOCK TABLES');
}
catch(Exception $e)
{
writeDebugFile($e->getTraceAsString());
}
else:
safefilerewriteDeleteCache($name);
endif;
}

137

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

function safefilerewriteDeleteCache($name)

{
if ($fp = fopen('cache.ini', 'w+'))
{
$startTime = microtime(TRUE);
do
{
$canWrite = flock($fp, LOCK EX);
if(!$canhWrite) usleep(round(rand(0©, 100)*1000));
} while ((!$canWrite)and((microtime(TRUE) - $startTime) < 5));
if ($canWrite)
{
$iniCache = parse_ini_ file("cache.ini", true);
unset($iniCache['cache'][$name]);
$res = array();
foreach($iniCache as $key => $val)
{
if(is_array($val))
{
$res[] = "[$key]";
foreach($val as $skey => $sval)
$res[] = "$skey = ".(is_numeric($sval) ? $sval : '"'.
$sval.'"');
}else{
$res[] = "$key = ".(is_numeric($val) ? $val : ""'.$val.'""');
}
}
fwrite($fp, implode("\r\n", $res));
flock($fp, LOCK_UN);
}
fclose($fp);
}
}

//delete all from cache
function deleteAllCache()

138

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

{
if(getConfig('GENERAL_cacheTypeWriteDatabase') == '1"):
try
{
$pdo = new PDO(DB_CONNECTION, DB_LOGIN, DB_PASSWORD);
$pdo->beginTransaction();
$pdo->exec('LOCK TABLE cache WRITE, cache as cacheRead READ');
$stmt = $pdo->prepare('DELETE FROM cache');
$stmt->execute();
$pdo->commit();
$pdo->exec("UNLOCK TABLES');
}
catch(Exception $e)
{
writeDebugFile($e->getTraceAsString());
}
else:
@unlink('cache.ini');
@unlink('php/cache.ini");
endif;
}

A question of clarification.

We have added to switch the ability to save to the cache, download values from the cache with a
given variable, delete in the cache with a given variable, delete all variables in the cache.
In config.php we added database entries and the cache type
(GENERAL cacheTypeWriteDatabase).
If this variable is:

* 0 - save to cache.ini,

e 1 - writes the cache to the database.

If you have selected to save to the database, set the correct values in the previous variables and add

a new cache table to the database:
CREATE TABLE IF NOT EXISTS ‘'cache' (
‘name' varchar(255) COLLATE utf8mb4 unicode ci NOT NULL,
‘value' longtext COLLATE utf8mb4_unicode_ci NOT NULL,
PRIMARY KEY ('name')

139

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

In functions.php, we've added all the functions that support our cache.

In addition, we find here universal functions for safe data writing to a file.

» Processing private messages
As an example, we will do the ability to process private messages sent to the bot.

In servebot.php in switch we add:
case 'serveIM':
$avatar = AvatarUUIDtoName($body['uuid']);
//check ban
if(BlackListIMExist($body['uuid'])):
SendMessageToAvatar($body['uuid'], $avatar.", I don't talk with you. You are
very rude.");
exit();
endif;
require_once('part.im.php"');
break;

1111771777111171711177

This part of the code adds an action named 'servelM'.

At the very beginning, we use the AvatarUUIDtoName() function to replace the sent UUID of the
avatar that sent the message to the bot into its name and surname, which will be used when sending
a reply (imitation of a personalized message).

Next we have a small part with the possibility of checking if a given avatar is not blacklisted. and if
it is, an appropriate message is sent.

In fact, if we do not want to protect against the stream of messages or against the use of
administrative commands by unauthorized persons, we can delete this part.

Attention! To use this option, you must configure a database connection and add a table:

CREATE TABLE IF NOT EXISTS 'blacklist.im' (
‘agentuuid' varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,
‘agentname’ text COLLATE utf8mb4_unicode_ci NOT NULL,
‘time' text COLLATE utf8mb4_unicode_ci NOT NULL,
PRIMARY KEY ('agentuuid')
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4 unicode ci;

140

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Next we have attached the part.im.php file in which we will process the messages.
It is best to develop individual parts in the switch in separate PHP files, this will allow you to
control the order in the file.

In functions.php we add:

function AvatarUUIDtoName($uuid)

{

$params = array(

"command" => "batchavatarkeytoname",
"group" => BOT_GROUP,
"password" => BOT_PASSWORD,
"avatars" => wasArrayToCSV(array($uuid))

)5

$ret = SendToBot($params);
$ret = wasCSVToArray(wasKeyValueGet("data", $ret));
return $ret[1];

function BlackListIMExist($uuid)

{

try {
$pdo = new PDO(DB_CONNECTION, DB_LOGIN, DB_PASSWORD);

$stmt = $pdo->prepare('SELECT COUNT(*) from 'blacklist.im' WHERE
agentuuid=:uuid');
$stmt->execute(array(
"tuuid' => $uuid
));
if($stmt->fetchColumn() == 1):
return 1;
endif;
return 0;
}catch(Exception $el){

return 0;

function SendMessageToAvatar($agent, $message)

{
$params = array(

‘command’' => 'tell’,

141

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

'group' => BOT_GROUP,
'password’ => BOT_PASSWORD,
'message’ => $message,
'entity' => 'avatar',
'agent' => $agent

)s

SendToBot ($params, 0);

function wasArrayToCSV($a)

{
return implode(',’,
array_map(
function($o)
{
$o = str_replace('"', '""', $%$0);
switch((strpos($o, ' ') !== FALSE) || (strpos($o,
(strpos($o, ',') !== FALSE) || (strpos($o, '\r') !== FALSE) ||
FALSE))
{
case TRUE:
return '"' . $0 . '"";
default:
return $o;
}
},%a)
)s
}

""') l== FALSE) ||
(strpos($o, '\n') l==

function SendToBot($param tab, $ACK = 1, $connectTimeout = 10, $Timeout = 30)

{
$getTypeProcessinglang = 'was';
if(file_exists('../Configuration.xml")):
$xmldata = simplexml_load_file('../Configuration.xml");

$getTypeProcessinglang = trim(strtolower($xmldata->ScriptLanguage));

endif;

if($getTypeProcessinglang == 'json'):
$postvars = json_encode($param_tab);
else:

array_walk(

142

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

$param_tab, function(&$value, $key)
{

$value = rawurlencode($key)."=".rawurlencode($value);

})s
$postvars = implode('&', $param tab);

endif;

$curl = curl_init();

curl
curl
curl
curl
curl

curl

if($

else

endi

curl
}
function
{

$csv
$csv
if(s
if(s

$csv

_setopt($curl, CURLOPT URL, BOT_URL);

_setopt($curl, CURLOPT_POST, true);

_setopt($curl, CURLOPT_POSTFIELDS, $postvars);
_setopt($curl, CURLOPT_ENCODING, true);

_setopt($curl, CURLOPT_CONNECTTIMEOUT, $connectTimeout);
_setopt($curl, CURLOPT_TIMEOUT, $Timeout);

ACK == 1):

curl setopt($curl, CURLOPT_RETURNTRANSFER, TRUE);
$return = curl exec($curl);

return $return;

ob_start();

curl setopt($curl, CURLOPT_RETURNTRANSFER, 0);
curl_setopt($curl, CURLOPT_TIMEOUT, 1);
curl_setopt($curl, CURLOPT_HEADER, 9);

curl setopt($curl, CURLOPT_FORBID REUSE, 1);
curl_setopt($curl, CURLOPT_CONNECTTIMEOUT, 1);
curl_setopt($curl, CURLOPT_FRESH_CONNECT, 1);
curl exec($curl);

ob_end_clean();

5

_close($curl);

wasCSVToArray ($csv)

= preg_replace('/\"/', '', $csv);

= preg_replace('/,/"', '",""', $csv);

ubstr($csv, 0, 1) = '""") $csv = '"' . $csv;

ubstr($csv, -1, 1) != '""") $csv .= '""';

= preg_replace('/"<([\d]+(2:\.[\d]+)?)[",\s]*([\d]+(2:\.[\d]+)?)[",\s]*([\d]+

143

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

(2:\.[\d]+)?2)>"/U", '"<$1,$2,$3>"", $csv);
preg_match_all('/"(.*)"/U", $csv, $1);
return $1[1];

function wasKeyValueGet($key, $data, $base64decode =
{

$sreturn = 5

if($LANG == 'json'):
$sret_json = json_decode($data);
$sreturn = $sret_json->$key;
if(is_array($sreturn)):

$sreturn = implode('', $sreturn);

endif;

else:
parse_str($data, $response);
$sreturn = $response[$key];

endif;

$sreturn

rawurldecode($sreturn);
preg_replace('/~\'+/",
preg_replace('/\'+$/"',
preg_replace('/\"/', '", $sreturn);

$sreturn ', $sreturn);

$sreturn ', $sreturn);

$sreturn

$sreturn = trim($sreturn);

if($base64decode):
$sreturn = base64 decode($sreturn);

endif;

if(strtolower($key) == 'success'):

$sreturn = (strtolower($sreturn) == 'true') ? '1

endif;

if(($key == 'data') && ($sreturn == 'data')):
$sreturn = '';

endif;

if(($key == 'success') && ($sreturn == 'data')):
$sreturn = 0;

endif;

return $sreturn;

false)

144

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

function BlackListIMAdd($uuid)

{
try {
$avatar = AvatarUUIDtoName($uuid);
if(str_word_count($avatar) == 1):
$avatar.=" resident';
endif;

$pdo = new PDO(DB_CONNECTION, DB_LOGIN, DB_PASSWORD);

$stmt = $pdo->prepare('INSERT INTO ‘'blacklist.im' ('agentuuid', 'agentname',

‘time') VALUES (:agentuuid, :agentname, :time)');
$stmt->execute(array(
':agentuuid' => $uuid,
':agentname' => $avatar,
":time' => strtotime('now'),
));
}catch(Exception $el){}

function BlackListIMInc($uuid)

{

try {
$pdo = hew PDO(DB_CONNECTION, DB_LOGIN, DB_PASSWORD);

$stmt = $pdo->prepare('UPDATE 'blacklist.im' SET count=count+l WHERE
agentuuid=:agentuuid');
$stmt->execute(array(
':agentuuid' => $uuid,
));
}catch(Exception $el){}

function BlackListIMDel($uuid)

{

try {
$pdo = new PDO(DB_CONNECTION, DB_LOGIN, DB_PASSWORD);

$stmt = $pdo->prepare('DELETE FROM 'blacklist.je' WHERE 'avatar' LIKE "%:avatar

%" OR 'uuid' LIKE "%:uuid%"');
return (int)$stmt->execute(array(
"ruuid' => $uuid
));
}catch(Exception $el){

145

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

return 0;

function checkPerm($avatar, $func)

{
$retValue = 0;
$params = array(
‘command’ => 'getmemberroles’,
‘group’' => BOT_GROUP,
'password’ => BOT_PASSWORD,
'agent' => $avatar,
'target' => BOT_GROUP
)
$ret = SendToBot($params);
if(wasKeyValueGet("success", $ret)):
$data = wasKeyValueGet("data", $ret);
$groups = wasCSVToArray($data);
for($i=0;%i<count($groups);$i++):
if($groups[$i] == $func):
$retValue = 1;
break;
endif;
endfor;
endif;
return $retValue;
}
W config.php doda;:

define('GENERAL_groupFunctionAdminBot', 'botmanager');

Here we give the name of the role in the group where the bot is located, where the avatars rewritten

for this role will be treated as bot administrators.

Of course, we also play this role in Second Life in this group. It does not need to be assigned any

permissions.

146

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

In addition to the aforementioned functions, we define function bodies for general sending data to
the bot (SendToBot), converting the table to CSV and vice versa, retrieving specific data obtained
from the bot.

Create part.im.php
<?php
$uuid = $body['uuid'];
$message = trim($body['message']);
$type = $body[‘type'];
[11171717111171171177
function default_no_command($uuid, $avatar){
SendMessageToAvatar($uuid, $avatar.', I\'m sorry, but I don\'t understand.');

}
[1111717717777771177
if(!empty($type)):
switch($type):
[I111717771717717177
case 'error_nosameregion':
SendMessageToAvatar($uuid, $avatar.", Sorry, you don't in the same region
as me.");
exit();
break;
[I11171777717117177
default:
default _no_command($uuid, $avatar);
exit();
break;
endswitch;
endif;

if((preg _match('/hi/i', $message)) || (preg_match('/hello/i', $message))):
$params = array(
"command" => "displayname",
"group" => BOT_GROUP,
"password" => BOT_PASSWORD,
"action" => 'get’,
)
$ret = SendToBot($params);
$avatarDisplayName = wasKeyValueGet("data", $ret);

147

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

SendMessageToAvatar($uuid, "Hello ".$avatar.", My name is ".$avatarDisplayName."
and I'm bot who is living in Second Life.");
exit();
endif;
[11177171111771171177
if(preg _match('/blim\-add/i', $message)):
if(!checkPerm($uuid, getConfig('GENERAL_groupFunctionAdminBot'))):
if(!BlackListIMExist($uuid)):
BlackListIMAdd($uuid);
else:
BlackListIMInc($uuid);
endif;

SendMessageToAvatar($uuid, $avatar.', you have not permissions to manage the
bot.");
exit();
endif;
$who = trim(substr($message, stripos($message, "blim-add") + strlen("blim-add")));
if(BlackListIMAdd($who)):
SendMessageToAvatar($uuid, $avatar.', avatar has been added to blacklist.');
else:
SendMessageToAvatar($uuid, $avatar.', avatar has not added to blacklist.');
endif;
exit();
endif;
[1111717777771771177
if(preg _match('/blim\-del/i', $message)):
if(!checkPerm($uuid, getConfig('GENERAL_groupFunctionAdminBot'))):
if(!BlackListIMExist($uuid)):
BlackListIMAdd($uuid);
else:
BlackListIMInc($uuid);
endif;

SendMessageToAvatar($uuid, $avatar.', you have not permissions to manage the
bot."');
exit();
endif;
$who = trim(substr($message, stripos($message, "blim-del") + strlen("blim-del")));
BlackListIMDel($who);

148

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

SendMessageToAvatar($uuid, $avatar.', avatar has been delete from blacklist.');
exit();
endif;
[111717177171717171177
if(preg _match('/\.getbalance/i', $message)):
if(!checkPerm($uuid, getConfig('GENERAL_groupFunctionAdminBot'))):
if(!BlackListIMExist($uuid)):
BlackListIMAdd($uuid);
else:
BlackListIMInc($uuid);
endif;
SendMessageToAvatar($uuid, $avatar.', you have not permissions to manage the
bot."');
exit();
endif;
$params = array(
"command" => "getbalance",
"group" => BOT_GROUP,
"password" => BOT_PASSWORD,
)
$ret = SendToBot($params);
$money = wasKeyValueGet("data", $ret);
SendMessageToAvatar($uuid, $avatar.', I have L$ ' . $money . ' on my bank
account.');
exit();
endif;
[1117171777717717171177

default no_command($uuid, $avatar);

Let us explain:

The $uuid variable stores the uploaded avatar UUID.

The $message variable holds the forwarded message.

The $type variable holds the message type.

The default no_command() function allows you to send a message to a given avatar that does not
underst and the command. It will be used in several places.

Next we detect if an empty Stype variable was not sent. It stores non - typical commands, e.g.

implemented a few lines further error related to the fact that the bot and the interlocutor are not in

149

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

the same region. You can also go further here and add a message to be sent when the bot and the
caller are too far apart. If the correct type of message is not detected, it sends a general message that
it does not underst and the command.
If nothing is detected in the $type variable, we basically go to the main part of message processing.
For example, we took the detection of the words 'hi' or 'hello’ in a message sent to the bot. If this
happens, it gets the bot's display name and sends a reply back to the caller.
Next we have 3 examples where permissions are checked.

e blim - add - adds an avatar to the banned list,

* Dblim - del - removes an avatar from the banned list,

» .getbalance - shows how much money our bot has on the account.
The check is done by calling the checkPerm() function, which, on the basis of the avatar's uuid and
the previously defined role, checks whether the avatar has been assigned to a given role.
If an avatar does not have the correct role in the group, it is added to the small banned counter,
where after three such checks it is added to the permanent banned list. This suggestion is obviously
too regoristic, you can skip it and just send a message that the avatar does not have permission to
execute the command. If the avatar's authorization was successful, the rest of the code is executed.
If, on the other hand, no relevant commands are found, a standard response is sent that the bot does
not underst and the interlocutor.

Of course, this is some kind of a proposal, you will decide what to add, correct, etc.

How to develop:

php\serverbot.php 'action|serveIM|uuid|uuidOfAvatar |message|message|type|typeOfMessage'’

We can add other things to our serverbot.php file to be processed by the bot.

5.4.3. Batch files

Now let's create some batch files in the root folder of the bot

start.bat
chdir /D %~dp@
@echo off

150

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

break>Cache\AgentCache.xml
break>Cache\CurrentGroupMembers.xml
break>Cache\CurrentGroups.xml
break>Cache\GroupCache.xml
break>Cache\InventoryCache.bin
break>Cache\MapFriend.xml
break>Cache\MuteCache.xml
break>Cache\RegionCache.xml

echo © > corrade_cron_inc.txt

echo © > corrade_attempt_inc.txt
del /Q State\Notifications.xml

sc.exe config Corrade start= auto

sc.exe start Corrade

exit o
Runs the bot normally, saves empty cache files, deletes the Notifications.xml file with old

notifications, sets the Corrade service to runtime, and starts the Corrade service

startWithCleanCache.bat
chdir /D %~dp@
@echo off

php -r "include \"php\config.php\"; include \"php\functions.php\"; deleteAllCache();"
START /MIN /WAIT start.bat

Deletes the cache file or deletes the cache data from the database (depending on the option) and

runs the earlier start.bat file

stop.bat
chdir /D %~dp@

sc.exe stop Corrade

sc.exe config Corrade start= disabled

Stops the Corrade service, makes the service marked as disabled.

151

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

restart.bat
chdir /D %~dp@
@echo off

START /MIN /WAIT stop.bat
timeout /T 5 /NOBREAK
START /MIN /WAIT start.bat

The file restarts Corrade based on the recall of the two previous files.

If you have additional materials, you can use the bot installer\corrade\bot ai\php files by copying
them to your bot's bot.

5.4.4. Multitasking in PHP

While working with my own bot, it turned out that I had to implement multitasking. If my
artbot exceeded the predefined time, it would return to its former place. Before the implementation,
it was difficult because the bot would st and like a salt pillar in the workplace. That's why I
implemented multitasking in PHP, where the current script runs a separate script that checks from
time to time if the script calling it has not completed its life cycle. This is very simple as the parent
script tells the next script its process number (PID) which is used to check if this process from the
original script still exists.

A separate task call might look like this:

Windows:

pclose(popen('START /B php ' . _ DIR__ . '/innyplik.php -p ' . getmypid() . ' inne
parametry’ > NUL', ‘r'));

Linux:

pclose(popen('nohup php ' . _DIR__ . '/innyplik.php -p ' . getmypid() . ' inne

parametry' < /dev/null &', 'r'));

Short;

In Windows, a separate PHP file is run with START in the background, where we pass the current

PID of the parent script along with other parameters to this file.

152

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

popen() and pclose() start the process and close the handle to it, since I am not interested in
handling it.
On Linux, we use the nohup command, which runs the command even after the user logs out of the

system.

In a separate PHP file, we need to consider how to receive the parameters.

There are a lot of projects to use here - I use ulrichsg/getopt - php which needs to be added to the
Composer dependency.

Add after attaching vendor/autoload.php

use GetOpt\GetOpt;

use GetOpt\Option;

use GetOpt\Command;

use GetOpt\ArgumentException;

use GetOpt\ArgumentException\Missing;

Then we give the code snippet responsible for processing the arguments:

//PROCESSING FROM COMMANDLINE
$getOpt = new GetOpt();
$getOpt->addOptions ([
Option::create('p', 'pid', \GetOpt\GetOpt::REQUIRED_ARGUMENT)
->setDefaultValue(-1),
1)

try {
$getOpt->process();
} catch (Exception $exception) {

$processId = $getOpt->getOption('pid');

We have yet to rethink how we will execute commands in the system itself.
By default, we can use a PHP command called shell exec() or something similar.

However, I used symfony/process in my project, which we add to the Composer dependency.

Then we add:

153

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

use Symfony\Component\Process\Exception\ProcessFailedException;
use Symfony\Component\Process\Process;
use Symfony\Component\Process\PhpProcess;

use Symfony\Component\Process\PhpExecutableFinder;

and then the code:

while(true):
if(ISREADY? == "1"):
//[1] WHAT DO YOU WANT TO DO?
break;
else:

if($processid > -1):
$os_family = strtolower(PHP_OS FAMILY);
switch($os_family):
case 'windows':
$process = Process::fromShellCommandline('powershell -Command "Get-
WmiObject Win32_ Process -Filter \"processid = ' . $processId . '\" | measure | %
{ $.Count }"");
break;
case 'linux':

$process = Process::fromShellCommandline('ps --no-headers -aux -q '

. $processId . ' | grep -v "grep" | wc -1');
break;
endswitch;
try {
$process->Run();
if(trim($process->getOutput()) == "0"):
//[1] WHAT DO YOU WANT TO DO?
break;
endif;

} catch (ProcessFailedException $exception) {

}
endif;
endif;
sleep(10);
endwhile;

We will now look at this code. We loop every 10 seconds to check if the PHP parent script is

still running. First, we check if the parent script has set ISREADS? after executing the entire script.

154

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Through ISREADY? I mean here that this script sets a variable in the cache, which is then checked
every few seconds by the child script to see if it contains the correct value. If so, it executes the rest
of the code - for example, calling a specific function that will be given instead of the line: // [1]
WHAT DO YOU WANT TO DO?. This option can of course be deleted if necessary. It is then
checked to see if the parent's PID has been passed - a number from 0 upwards. If so, then the
system on which the script is running is checked. If the detected system is Windows, the Symfony\

Process powershell command is executed with arguments:

$process = Process::fromShellCommandline('powershell -Command "Get-WmiObject

Win32_Process -Filter \"processid = ' . $processId . '\" | measure | %{ $_.Count }"');

If the detected system is Linux, Symfony\Process executes the command:

$process = Process::fromShellCommandline('ps --no-headers -aux -q . $processid .

grep -v "grep" | wc -1');

Regardless of the system, there is one goal - to check if the process with the given PID is still
running in the system. If not, the action covered by the comment // [1] WHAT DO YOU WANT TO
DO? Is performed, which is basically the same as the previous one // [1] WHAT DO YOU WANT
TO DO?. and that's basically it. Then, after the while() loop, we can give the code that will be

executed when the script receives the information that the parent script has finished its operation.

5.4.5. Second Life - creating prim and scripts

On the Second Life side, we create a prim, and in it a note called 'configuration', where we write
the following content:

BOTID=UUID_BOT
GROUP=GROUP_NAME
PASSWORD=PASSWORD_GROUP

In place of:

* UUID_BOT - we put our bot's UUID,
* GROUP_NAME - the name of the group the bot is in,
* PASSWORD GROUP - group password.
Then we create a new file with any name (preferably IM) with the following content (it depends

whether we code with WAS or JSON).

155

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

The LSL script using the WAS function looks like this (Listings\mybot\was IM.txt):

float distanceBetweenAvatars = 10.0;

key CORRADE;
string PASSWORD;
string GROUP;
string URL = "";
integer Debug = 1;
string TAG;

string val;

list lmessage;
string sjump = "";
key kAvatar;
string body;

integer line;
list tuples = [];
string type;
string agent;

string message;

key queryid;

list lprepare = [];
setDebug(string msg)

{
if(Debug == 1)

{

110wnerSay ("["+ TAG +"] " + msg);

sendPHP (list value){
lprepare = [

"group", wasURLEscape(GROUP),

"password"”, wasURLEscape(PASSWORD),

"command", "execute",

"'File"_, “php",

"parameter", "php/servebot.php

" _script", TAG

+ 11DumplList2String(value,

1),

156

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

1;
110wnerSay(wasKeyValueEncode(1lprepare));
integer StringMatch(list lwhatsearch, string sinwhere){
sinwhere = 1llToLower(sinwhere);
sinwhere = strReplace(sinwhere, "!", "");

sinwhere = strReplace(sinwhere, "?", "");

list 1lsinwhere

11ParseString2List(sinwhere,[" "1,[1);

11GetListLength(lwhatsearch);
integer imatched = 0;

integer imatch

integer i=0;

for(i=0; i<imatch; i++){

list lwords = llParseString2lList(llList2String(lwhatsearch,i),["|"],[1);

integer j=0;
for(j=0; j<llGetListLength(lwords); j++){
if(llListFindList(1lsinwhere, [11lList2String(lwords,j)]) >= 0){

imatched++;

}

if(imatch == imatched){
return 1;

}else{

return 0;

list wasCSVTolList(string csv)

{
list 1 = [];
list s = [];
string m = "";
do
{

157

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

string a = 11GetSubString(csv, 0, 0);
csv = llDeleteSubString(csv, 0, 9);

if(a == ",")
{
if(1llList2String(s, -1) != "\"")
{
1 += m;
m = llll;

jump continue;
¥
m += a;
jump continue;
}
if(a == "\"" && 11GetSubString(csv, 0, 0) == a)
{
m += a;
csv = llDeleteSubString(csv, 0, 9);
jump continue;
}
i‘F(a == Il\llll)
{
if(11lList2String(s, -1) != a)
{
S += a;
jump continue;
}
s = llDeleteSubList(s, -1, -1);
jump continue;
}
m += a;
@continue;
} while(csv != "");

return 1 + m;

string strReplace(string str, string search, string replace) {
return 11DumplList2String(llParseStringKeepNulls((str = "") + str, [search], []),
replace);

}

string wasKeyValueGet(string k, string data)

158

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

if(l1lStringLength(data) == @) return "";
if(1l1lStringLength(k) == @) return "";
list a = 1lParseStringKeepNulls(data, ["&", "="1, [1);
integer i = lllListFindList(llList2ListStrided(a, @, -1, 2), [k]);
if(i 1= -1){
string ret = 11List2String(wasCSVTolList(wasURLUnescape(llList2String(a, 2*i+1))),

0);
ret = strReplace(ret, "\\r", "");
ret = strReplace(ret, "\\n", "");
ret = 11StringTrim(ret, STRING_TRIM);
return ret;
}
return "";
}

string wasKeyValueEncode(list data)

~
1}

list
list
data
do
{
data += 1llList2String(k, @) + "=" + 11lList2String(v, 0);
k 11DeleteSubList(k, @, 0);
Y 11DeleteSubList(v, 0, 0);
} while(1llGetListLength(k) != 0);
return 11DumpList2String(data, "&");

11List2ListStrided(data, 0, -1, 2);
11List2ListStrided(11DeleteSubList(data, @, @), 0, -1, 2);

[1;

<
1}

string wasURLEscape(string i)

{

string o = H

do

{
string c = 11GetSubString(i, 0, 9);
i = 11DeleteSubString(i, 0, 9);
if(c == "") jump continue;
if(c =="")
{

159

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

0O += "+
jump continue;
}
if(c == "\n")
{
0 += "%@D" + 1lEscapeURL(c);

jump continue;

}
o += 11EscapeURL(c);
@continue;
} while(i = "");
return o;

string wasURLUnescape(string i)

{
return 1lUnescapeURL(11DumpList2String(11lParseStringKeepNulls(11DumpList2String(
11ParseStringKeepNulls(i, ["+"]1, []), "™ "), ["%eD%eA"]1, []), "\n"));
}
default
{
state_entry()
{
TAG = 11GetScriptName();
setDebug("Free memory: " + (string)llGetFreeMemory());
state ReadConfigurationNotecard;
}

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

state ReadConfigurationNotecard

{

state_entry()

{
if(1llGetInventoryType("configuration") != INVENTORY_NOTECARD)

{
setDebug("Sorry, could not find a configuration inventory notecard.");
return;

}

setDebug("Reading configuration file...");

line = 0;

11GetNotecardLine("configuration"”, line);

dataserver(key id, string data)

{
if(data == EOF)
{
if(llGetListLength(tuples) % 2 != @)
{
setDebug("Error in configuration notecard.");
return;
}

CORRADE = 1lList2Key(tuples, llListFindList(tuples, ["BOTID"])+1);

if(CORRADE == NULL_KEY)

{
setDebug("Error in configuration notecard: BOT ID KEY");

return;

GROUP = 11lList2String(tuples, 1llListFindList(tuples,["GROUP"])+1);

if(GROUP == "")
{
setDebug("Error in configuration notecard: GROUP");

return;

161

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

PASSWORD = 1lList2String(tuples, llListFindList(tuples, ["PASSWORD"])+1);

if(PASSWORD == "")
{
setDebug("Error in configuration notecard: PASSWORD");
return;
}
state url;
}
if(data == "") jump continue;
integer i = 11SubStringIndex(data, "#");
if(i !'= -1) data = llDeleteSubString(data, i, -1);
list o = 1llParseStringKeepNulls(data, ["="1, []);

string k = 11DumpList2String(11lParseStringKeepNulls(11StringTrim(
11List2String(o,0), STRING_TRIM), ["\""]1, [1), "\"");

string v = 11DumpList2String(1l1lParseStringKeepNulls(11StringTrim(
11List2string(o, 1), STRING_TRIM), ["\""1, [1), "\"");

if(k == "" || v == "") jump continue;

tuples += k;

tuples += v;

@continue;

l11GetNotecardLine("configuration", ++line);

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();
}
}
state url

162

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

{
state_entry()
{
if ((GROUP == "BOTID") || (GROUP == "GROUP") || (GROUP == "PASSWORD")){
11ResetScript();
return;
}
if ((PASSWORD == "BOTID") || (PASSWORD == "GROUP") || (PASSWORD == "PASSWORD"))
{
11ResetScript();
return;
}
setDebug("Requesting URL...");
11SetTimerEvent(0.5);
}
timer(){
11SetTimerEvent(60);
11RequestURL();
}

http_request(key id, string method, string body)

{
11HTTPResponse(id, 200, "OK");
if(method != URL_REQUEST_GRANTED) return;
URL = body;
setDebug("Got URL...");
state NotifyInstall;
}

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

163

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

11ResetScript();

state NotifyInstall {
state_entry() {
110wnerSay("Binding to the IM notification...™);
11SetTimerEvent(0.5);

}
timer(){
11SetTimerEvent(60);
lprepare = [
"group", wasURLEscape(GROUP),
"password"”, wasURLEscape(PASSWORD),
"callback", wasURLEscape(URL),
"URL", wasURLEscape(URL),
"command", "notify",
"action", "set",
"type", "message",
"_script", TAG
1;
110wnerSay(wasKeyValueEncode(lprepare));
}

http_request(key id, string method, string body)
{
11HTTPResponse(id, 200, "OK");

if(wasKeyValueGet("success", body) != "True") {

110wnerSay("Failed to bind to the IM notification..

state preNotifyInstall;

}
110wnerSay("IM notification installed...");
state sense;

changed(integer change)

{

)5

164

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))

{
11ResetScript();

on_rez(integer start_param)

{
11ResetScript();

state preNotifyInstall

{
state_entry()
{
state NotifyInstall;
}
changed(integer change)
{
if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}
on_rez(integer start_param)
{
11ResetScript();
}
}

state sense {
state_entry() {
110wnerSay("Listen IM...");

http_request(key id, string method, string body)

{
11HTTPResponse(id, 200, "OK");

165

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

type = wasKeyValueGet("type", body);
agent = wasKeyValueGet("agent", body);

message = wasKeyValueGet("message", body);
if(agent == NULL_KEY){

return;

if(11StringlLength(message) > 255){

return;
Imessage = [] + llParseString2List(message,[" "1,[1);
if(llGetListLength(lmessage) == 0){

return;

state CheckAvatar;

return;

changed(integer change)

{

if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))

{
11ResetScript();

on_rez(integer start_param)

{

11ResetScript();

state CheckAvatar {
state_entry() {

queryid = 1lRequestAgentData(agent, DATA_ONLINE);

166

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

dataserver(key DataserverQueryId, string data)

{
if(DataserverQueryId == queryid)
{
if((integer)data == 1){
state stateIM;
return;
}
}
state sense;
}

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();

state stateIM {
state_entry() {
list lbot = 11GetObjectDetails(CORRADE, [OBJECT_POS]);
list lagent = 11GetObjectDetails(agent, [OBJECT_POS]);

if(StringMatch(["where", "are", "you"], message)){
sendPHP(["action", "serveIM", "type", "whereareyou", "uuid", agent]);
state sense;

return;

if(llGetListLength(lagent) == 0){
sendPHP(["action", "serveIM", "type", "error_nosameregion", "uuid",
agent]);

state sense;

167

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

return;

}
// vector vAgentPos = llList2Vector(lagent, 90);
// float distance = 11VecDist(vBotPos, vAgentPos);
// if(distance > distanceBetweenAvatars){
// sendPHP(["action", "serveIM", "type", "error_distance", "uuid", agent]);
// state sense;
// return;
// ¥

sendPHP(["action", "serveIM", "uuid", agent, "message", message]);

state sense;

return;

changed(integer change)

{

if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))

{
11ResetScript();

on_rez(integer start_param)

{
11ResetScript();

state preSense {
state_entry() {
state sense;

changed(integer change)

{

if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))

{

168

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

11ResetScript();

on_rez(integer start_param)

{
11ResetScript();

Script file using JSON functions (Listings\mybot\json IM.txt):

float distanceBetweenAvatars = 10.0;

key CORRADE;
string PASSWORD;
string GROUP;
string URL = "";
integer Debug = 1;
string TAG;

string val;

list Ilmessage;
string sjump = "";
key kAvatar;
string body;

integer line;
list tuples = [];

string type;
string agent;

string message;

key queryid;

list lprepare = [];
setDebug(string msg)

{
if(Debug == 1)

{

1l0ownerSay("["+ TAG +"] " + msg);

169

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

integer StringMatch(list lwhatsearch, string sinwhere){
sinwhere = 1llToLower(sinwhere);
sinwhere = strReplace(sinwhere, "!", "");

sinwhere = strReplace(sinwhere, "?", "");

list lsinwhere = 11ParseString2List(sinwhere,[" "]1,[1);

integer imatch = 1lGetlListLength(lwhatsearch);
integer imatched = 0;

integer i=0;

for(i=0; i<imatch; i++){

list lwords = 1lParseString2lList(11lList2String(lwhatsearch,i),["[|"]1,[1);

integer j=0;
for(j=0; j<llGetListLength(lwords); j++){
if(1lListFindList(1lsinwhere, [11lList2String(lwords,j)]) >= 0){

imatched++;

}

if(imatch == imatched){
return 1;

}else{

return 0;

sendPHP(1list value){
lprepare = [
"group", GROUP,
"password", PASSWORD,
"command", "execute",
"file", "php",

"parameter", "php/servebot.php " + 11DumplList2String(value, "|"),
" _script", TAG

15

170

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

110wnerSay (wasKeyValueToJSON(wasKeyValueEncode(lprepare), JSON_OBJECT));

list wasCSVToList(string csv)

{

list 1 = [];
list s = [];
string m = "";
do

{

string a = 11GetSubString(csv, 0, 0);
csv = llDeleteSubString(csv, 0, 9);

if(a == ",")
{
if(llList2String(s, -1) != "\"")
{
1 += m;
m = llll;

jump continue;
m += a;

jump continue;

}
if(a == "\"" && 11lGetSubString(csv, 0, 0)
{
m += a;
csv = llDeleteSubString(csv, 0, 9);
jump continue;
}
i_F(a == Il\llll)
{
if(11lList2String(s, -1) != a)
{
S += a;
jump continue;
}
s = 1lDeleteSubList(s, -1, -1);
jump continue;
}
m += a;
@continue;

171

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

} while(csv != "");

return 1 + m;

string strReplace(string str, string search, string replace) {

return 11DumpList2String(l1lParseStringKeepNulls((str =) + str, [search],

replace);

}

string wasKeyValueGet(string k, string data)
{
if(l1lstringlLength(data) == @) return "";
if(l1stringLength(k) == @) return "";
list a = 11lParseStringKeepNulls(data, ["&", "="1, [1);
integer i = lllListFindList(llList2ListStrided(a, @, -1, 2), [k 1);
if(i 1= -1){

[,

string ret = 1lList2String(wasCSVToList(wasURLUnescape(llList2String(a, 2*i+1))),

0);
ret = strReplace(ret, "\\r", "");
ret = strReplace(ret, "\\n", "");
ret = 11StringTrim(ret, STRING_TRIM);
return ret;
}
return "";
}

string wasKeyValueToJSON(string kvp, string T) {
list data = llParseString2List(kvp, ["&", "="1, [1);
list temp = [];
do {
string k = 1lList2String(data, 0);
string v = 1llList2String(data, 1);
string o = "";
o+= "\"" + k + "\"";

if(T == JSON_ARRAY) {

o += 7,
jump type;
}
o +=":";
@type;

172

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

if((float)v =0 || v == "@") {
0 += V;
jump dump;

¥

o +="\""+ v+ "\"";

@dump;

temp += o;

data = llDeleteSubList(data, 0, 1);
} while(1llGetListLength(data) != 0);
if(T == JSON_ARRAY)

return "[" + 1lDumpList2String(temp, ",") + "1";
if(T == JSON_OBJECT)

return "{" + 11DumplList2String(temp, ",") + "}";
return JSON_INVALID;

string wasKeyValueEncode(1list data)
{
list k
list v
data
do

{

11List2ListStrided(data, 0, -1, 2);

[1;

data += 1llList2String(k, @) + "=" + 11lList2String(v, 9);
k = 1lDeleteSubList(k, @, 9);
Y, 11DeleteSubList(v, 0, 9);

} while(1llGetListLength(k) != 0);

return 11DumpList2String(data, "&");

string wasURLUnescape(string i)

11List2ListStrided(11DeleteSubList(data, @, @), 0, -1, 2);

{

return 1lUnescapeURL(11DumpList2String(11lParseStringKeepNulls(11DumpList2String(
11ParseStringKeepNulls(i, ["+"]1, []1), " "), ["%@D%@A"]1, []), "\n"));
}

string wasJSONToKeyValueData(string JSON) {
list output = [];
list symbols = [];

string data =

)
integer level = 1;

173

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

// parse JSON
do {
string ¢ = 11GetSubString(JSON, @, 9);

// we are at an object start

if(c = "{") {
if(level > 1) {
data += c;
}

// increment the level
++level;
// add the symbol
symbols += c;
// and continue
jump continue;
}
// we are at an object end
if(c = "}") {
// decrement the level
--level;
if(level > 1) {
data += c;
output += data;
data = "";
}
// pop symbols
string s = 1lList2String(symbols, -1);
symbols = 1lDeleteSubList(symbols, -1, -1);
// got an object start
if(s == "{") {
// so continue
jump continue;
}
// error
return JSON_INVALID;
}
// we are at data end or data start
if(c == "\"") {
if(level > 2) {
data += "\"";

jump continue;

174

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

@continu

} wh
// n

// pop symbols
string s = 1lList2String(symbols, -1);
symbols = 1llDeleteSubList(symbols, -1, -1);
// if we are at data end
if(s == "\"") {
// add the data to the output
output += data;
// flush data
data = "";
// and continue
jump continue;
}
// we are not a the end of data
// add the symbol back
symbols += s;
// add the current character
symbols += c;
// and continue

jump continue;

}

if(level > 2) {
data += c;
jump continue;

}

// pop symbols
string s = 11lList2String(symbols, -1);
symbols = 1llDeleteSubList(symbols, -1, -1);
if(s == "\"") {

data += c;

symbols += s;

jump continue;
}
symbols += s;
e;
JSON = 11DeleteSubString(JSON, @, ©);
ile(11StringLength(JSON) != 0);

ow encode to key-value data

list k = 11lList2ListStrided(output, 0, -1, 2);

list v = 1lList2ListStrided(11DeleteSubList(output,
output = [];

do {

9: @), 9) '1)

2);

175

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

output += 11List2String(k, ©) + "=" + 1llList2String(v, 0);
k = 11DeleteSubList(k, @, 9);
v = llDeleteSubList(v, 0, 0);

} while(1llGetListLength(k) != 0);

return 11DumpList2String(output, "&");

}
default
{
state_entry()
{
TAG = 11lGetScriptName();
setDebug("Free memory: " + (string)llGetFreeMemory());
state ReadConfigurationNotecard;
}
changed(integer change)
{
if(change & (CHANGED_OWNER | CHANGED REGION | CHANGED REGION_ START))
{
11ResetScript();
}
}
on_rez(integer start _param)
{
11ResetScript();
}
}

state ReadConfigurationNotecard
{
state_entry()
{
if(11GetInventoryType("configuration") != INVENTORY_NOTECARD)
{
setDebug("Sorry, could not find a configuration inventory notecard.");
return;
}
setDebug("Reading configuration file...");

line = 0;

176

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

11GetNotecardLine("configuration"”, line);

dataserver(key id, string data)

{

if(data == EOF)

{

}

if(llGetListLength(tuples) % 2 != @)
{

setDebug("Error in configuration notecard.");

return;

CORRADE = 11List2Key(tuples, llListFindList(tuples, ["BOTID"])+1);

if(CORRADE == NULL_KEY)

{
setDebug("Error in configuration notecard: BOT ID KEY");

return;

GROUP = 11List2String(tuples, llListFindList(tuples,["GROUP"])+1);

if(GROUP == "")
{
setDebug("Error in configuration notecard: GROUP");

return;

PASSWORD = 11lList2String(tuples, llListFindList(tuples, ["PASSWORD"])+1);

if(PASSWORD == "")

{
setDebug("Error in configuration notecard: PASSWORD");

return;

state url;

if(data == "") jump continue;
integer i = 11SubStringIndex(data, "#");

177

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

if(i != -1) data = llDeleteSubString(data, i, -1);

list o = 1llParseStringKeepNulls(data, ["="1, []1);

string k = 11DumpList2String(1lParseStringKeepNulls(11StringTrim(
11List2String(o,@8), STRING_TRIM), ["\""1, [1), "\"");

string v = 11DumpList2String(11lParseStringKeepNulls(11StringTrim(
11List2String(o, 1), STRING_TRIM), ["\""1, []), "\"");

if(k == "" || v == "") jump continue;

tuples += k;

tuples += v;

@continue;

11GetNotecardLine("configuration", ++line);

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();
}
}
state url
{
state_entry()
{
if ((GROUP == "BOTID") || (GROUP == "GROUP") || (GROUP == "PASSWORD")){
11ResetScript();
return;
}
if ((PASSWORD == "BOTID") || (PASSWORD == "GROUP") || (PASSWORD == "PASSWORD"))
{
11ResetScript();
return;
}

178

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

setDebug("Requesting URL...");
11SetTimerEvent(0.5);

}

timer(){
11SetTimerEvent(60);
11RequestURL();

b

http_request(key id, string method, string body)

{
11HTTPResponse(id, 200, "OK");
if(method != URL_REQUEST_GRANTED) return;
URL = body;
setDebug("Got URL...");
state NotifyInstall;
}

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();

state NotifyInstall {
state_entry() {
110wnerSay("Binding to the IM notification...");
11SetTimerEvent(0.5);

timer(){
11SetTimerEvent(60);

179

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

lprepare = [
"group", GROUP,
"password", PASSWORD,
"callback", URL,
"URL", URL,

"command", "notify",

"action", "set",
lltypellJ "message",
" script", TAG

s

110wnerSay (wasKeyValueToJSON(wasKeyValueEncode(lprepare), JSON_OBJECT));

http_request(key id, string method, string body)

{
11HTTPResponse(id, 200, "OK");

body = wasJSONToKeyValueData(body);

if(wasKeyValueGet("success", body) != "True") {
110wnerSay("Failed to bind to the IM notification...");
state preNotifyInstall;

}
110wnerSay("IM notification installed...");

state sense;

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED REGION | CHANGED_ REGION_START))
{
11ResetScript();
}
}

on_rez(integer start param)

{
11ResetScript();

180

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

state preNotifyInstall

{
state_entry()
{
state NotifyInstall;
}
changed(integer change)
{
if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}
on_rez(integer start_param)
{
11ResetScript();
}
}

state sense {
state_entry() {
110wnerSay("Listen IM...");

http_request(key id, string method, string body)
{

11HTTPResponse(id, 200, "OK");

body = wasJSONToKeyValueData(body);
type = wasKeyValueGet("type", body);
agent = wasKeyValueGet("agent", body);

message = wasKeyValueGet("message", body);

if(agent == NULL_KEY){

return;

181

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

if(11StringlLength(message) > 255){

return;

Imessage = [] + 11lParseString2List(message,[" "]1,[]1);

if(1llGetListLength(lmessage) == 0){

return;

state CheckAvatar;

return;

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();

state CheckAvatar {
state_entry() {
queryid = 11RequestAgentData(agent, DATA_ONLINE);

dataserver(key DataserverQueryId, string data)

{
if(DataserverQueryId == queryid)
{
if((integer)data == 1){
state stateIM;

return;

182

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

}

state sense;

changed(integer change)

{
if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))
{
11ResetScript();
}
}

on_rez(integer start_param)

{
11ResetScript();

state stateIM {
state_entry() {

list 1lbot = 11GetObjectDetails(CORRADE, [OBJECT_POS]);
list lagent = 1lGetObjectDetails(agent, [OBJECT_POS]);

if(StringMatch(["where", "are", "you"], message)){
sendPHP(["action", "serveIM", "type", "whereareyou", "uuid", agent]);
state sense;

return;

if(llGetListLength(lagent) == 0){

sendPHP(["action", "serveIM", "type", "error_nosameregion", "uuid",

agent]);

state sense;

return;

}

// vector vBotPos = 1llList2Vector(lbot, 0);
// vector vAgentPos = llList2Vector(lagent, 90);
// float distance = 11lVecDist(vBotPos, vAgentPos);
// if(distance > distanceBetweenAvatars){

183

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

//
//
//
//

sendPHP(["action", "serveIM", "type", "error_distance", "uuid", agent]);

state sense;

return;

sendPHP (["action", "serveIM", "uuid", agent, "message", message]);

state sense;

return;

changed(integer change)

{

if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))

{
11ResetScript();

on_rez(integer start_param)

{

11ResetScript();

state preSense {

state_entry() {

state sense;

changed(integer change)

{

if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START))

{
11ResetScript();

on_rez(integer start_param)

{

11ResetScript();

184

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Now let's explain the different parts:

sendPHP() - sends a command set to php/serverbot.php via bot, arguments are separated by
a vertical bar.

StringMatch() - looks for one text string in the second text string.

strReplace() - zamends one string into another string in the given text.

TAG = llGetScriptName(); - assigns a script name to a variable, for analytical purposes.
lISetTimerEvent() i timer() - the first sets the time after which the timer fires (I use a short
period here), while the second is a time block that executes every specified number of
seconds - the default is every 60 seconds, because Corrade takes the maximum time to
execute the command at home on average . If the code is successful, we can exit this block
to the next state.

1IOwnerSay() - we send everything directly to the bot as prim is owned by the bot and we
edit prim and its scripts as a bot; if the prim is placed on the plot, it is recommended to use
llInstantMessage(), and before sending the command, it is better to put the status checking
if the bot is available (using a timer) in Second Life (check the CheckAvatar status) and

until it is there, we do not send any commands.

state CheckBotAvatar {

state_entry() {

11SetTimerEvent(0.5);

timer(){

11SetTimerEvent(60);
queryid = 1lRequestAgentData(CORRADE, DATA_ONLINE);

dataserver(key DataserverQueryId, string data) {

if(DataserverQueryId == queryid) {
if((integer)data == 1){
state NastepnyStan;

185

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

changed(integer change) {
if(change & (CHANGED_OWNER | CHANGED_REGION | CHANGED_REGION_START)) {
11ResetScript();

on_rez(integer start_param) {
11ResetScript();

Next, of course, is reading the 'configuration' note, where you can find information about:
our bot's UUID, group name, group password. After loading the configuration, you go to the "url'
state, where an attempt is made to download the URL from Second Life to which notifications will
be sent.

Another very important step is to install the message notification itself, which allows you to receive
private messages sent to the bot. Everything is sent to the prim owner, the bot, by the llOwnerSay
command. If it is not possible to set the notification (an error is returned), the request to the bot to
install the notification is sent again.

When all this is successful, it is listened to - if the bot receives any private message, it will be
forwarded to the script via a notification that contains the return URL.

If that's the case, my sample script first checks the following:

* whether the agent is not a null value, ie it does not accept only zeros,

» that the length of the message is less than 255 characters,

» if the message converted to a list has no zero items.

If each question is false, the following goes to check if the sender avatar is still available on Second
Life, because if there is no sender in the virtual world, it becomes superfluous to reply to him when
he is offline.

If our interlocutor is available, the main part of the code begins:

* downloading bot coordinates,

* downloading avatar - sender coordinates,

* checking if the message contains the following keywords: where, are and you, if so, it

sends a command to the PHP file of the bot service by the bot as an intermediary with

the action: servelM, type: whereareyou and uuid as the UUID of the sender's avatar,

186

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

» checking if the sender's avatar is in the same region as the bot (non - zero list element),
* checking if the distance between the bot and the avatar is not greater than a given
number (commented out option),

* sending an avatar message to PHP support along with the sender avatar UUID.

The sample code is divided into two parts upon receipt of the message.

The first part checks the message globally, e.g. when the sender asks for a bot location. Most of the
conditions mentioned above are not checked in this section.

The second part is checking certain conditions and, if everything is correct, send it to PHP for

further processing.

If we run the script, after a few minutes we will be able to talk to our bot via private messages.

187

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

6. Puzzle Grid for Arranging Objects (PosGrid)

Manually computing coordinates for objects can be laborious, and with a complex script,

you may later encounter problems with its code analysis.

In Second Life, you can set prim rows with unique names, but this idea quickly fails,

because the limit of prims to be used on a plot or in a region will expire even faster.

A much better method I invented is the logical division of a given area (e.g. an object) into
vertical and horizontal lines (hereinafter referred to as a grid), and then determining the position of
a given point as the intersection of these two lines. The more vertical and horizontal lines, the more

precise the position of the selected point.

A detailed explanation based on examples is provided below.

Data needed to calculate the coordinate:

* O - X, Y coordinates of a point that is the center of an object in Second Life - usually these

are the coordinates of that object,
* S - object size,
* R -rotation factor (X, Y) depending on the direction of the compass rose,

« North (N) - 0,1,

East (E) - 1,0,

South (S) - 0, - 1,

West (W) - - 1,0.

* L - the number of vertical and horizontal lines (X, Y) that divide the area into identical

pieces,

* E' - the (X, Y) coordinates of the end point where the object should be positioned.

Coordinates are counted from 0.

Assumptions:

188

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

X is a floating point number with 5 decimal places, values: 0...255,
Y is a floating point number with 5 decimal places, values: 0...255,
Z is a floating point number with 5 decimal places, values: 0...4,096,
O is a floating point number with 5 decimal places,

S is a floating point number with 5 decimal places,

R is an integer with the following values: - 1,0, 1,

L is an integer that ranges from 1 to infinity,

If L is divisible by 2, then increase L by 1,

E'is an integer that ranges from 0 to infinity,

E' cannot be greater than the number of L lines,

If E'is less than O then E' =0,

If E' is greater than the number of lines L, then E' = number of lines - 1,
IfL=1thenE' =0,

In case of incorrect or incomplete data, E' = O,

To obtain a universal formula for calculating the coordinates of the ending point E, let us

consider 4 situations compatible with the compass rose, taking only the main directions: North,

South, East and West.

Data common to each picture below:

0 =(7.5),
S =(8,4),

R - depends on the rotation of the object that we share with virtual lines, it is given in front

of the image,
L=(9,3),

E'=(7,2).

189

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

We have to calculate the point P, which is the upper left corner of the object, which would
also be the starting point for the calculation of the end point E, and the width and length of a single

piece.
The method of calculating the E' coordinates is shown in the drawing below.

The index is counted from 0, e.g. for point E = (7.3) E' is (7.2), for point O = (4.5) E' it is (4.1), etc.

7m 0 .P .C
em
5m 1 O o
4m
A E B
3m 2 O @ @
0] 1 2 3 a4 5 6 7 8
2m
1m
0 im 2m 3m 4m 5m 6m 7m 8m 9m 10m 11m

Picture 6.1 - Way of counting point E'

North (N), R =(0,1), object rotation by 0°

190

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

11m

9m

8m

7m

5m O

3m © o @

2m

0 im 2m 3m 4m 5m 6m 7m 8m o9m 10m 1Mm 12m 13m 14m 15m 16m

Picture 6.2 - Way of calculating point E for the north direction

First, we calculate the width and length of a single piece in this part.
For the calculation you will need the size of the object S and the number of vertical and horizontal
lines L.

If we divide the object vertically (green line) from 3 to 11 m, every 1 m, we get 16 pieces (8 pieces
X 2 TOWS).

If we divide the object horizontally (blue line) from 3 to 7 m every 2 m, we get 16 pieces (2 pieces
X 8 rows).

It can be concluded that the number of pieces is equal when the number of lines is less by 1.

S

S =—2_
L-1

The above pattern is universal and determines the size of a single piece.

Check:

—8 :§:1
*L—-1 9-1 8

191

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

ST = Y :i:£:2
Y L—-1 3-1

Now let's calculate the coordinates of the point P, i.e. the point from which we will count the

coordinates of the point E.

Sy
P =0 ——
2
Py:Oy+—y
Check:
Sy 8
P,=0,—2=7-2=7-4=3
2 2

S
Py:Oy+—y:5+£:5+2:7
2 2

Let us now calculate the coordinates of the point E we are interested in. To calculate E we will need

P, previously calculated lengths and widths of a single piece, S ' and E.

Ex:Px+S‘X.E‘x
E,=P,—-S E’,

Check:
E =P +S -E",=3+1-7=3+7=10
E,=P,—-S ,E",=7-2:2=7-4=3

East (E), R =(1.0), object rotation 90°

192

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

11m

10m

9m @ ®,
> T

8m

7m

6m

5m L]

4m

3m

2m @
m

im @ L)
w 0

0 im 2m 3m 4m 5m 6m 7m 8m o9m 10m 1Mm 12m 13m 14m 15m 16m

Picture 6.3 - The way of calculating the point E for the eastern direction

Now let's calculate the coordinates of the point P for the eastward rotation.

PX:OX+i
2

—_— Sx
Py_Oy+?

Check:

S
PX:OX+—y:7+i:7+2:9
2 2

S, 8
P,=0,+=5+-=5+4=9
2 2

Now let's recalculate point E for the east direction.

E,=P,~S,E’,
E,=P,—S E’,
Check:

E,=P,~S ,E’,=9-2-2=9—-4=5

193

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

E,=P,—S E",=9—17=9-7=2

South (S), R =(0, - 1), rotate the object 180°

om

8m

m

6m

5m

4m

2m

0o im 2m 3m 4m 5m 6m

m

8m

a9m

Picture 6.4 - The way of calculating the point E for the south direction

Now let's calculate the coordinates of the point P for the south rotation.

Sy
P=0+—
2
S
P,=0,~2"
Check:

S, 8
P =0+—=7+-=7+4=11
2 2

S 4
— Y — — —
P,=0,-—~'=5-2=5-2=3

Now let's calculate the coordinates of E.

194

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

E=P,—-S E",
E=P,—S E

Check:
E=P,—S E ,=11-1-7=11-7=4

X X

E,=P,—S E ,=3+2-2=3+4=7

West (W), R = (- 1.0), rotation of the object by 270°

11m
10m
) m
9m @ @
8m w (]
m
6m
5m Oﬁ
4m
3m
2m
1m ﬂ.“ < @
0 im 2m 3m 4m 5m 6m 7m 8m om 10m 11m 12m 13m 14m 15m 16m

Picture 6.5 - The way of calculating the point E for the south direction

Now let's calculate the coordinates of the point P for the west rotation.

S

P =0 ——+
2

f— SX
P,=0,~="
Check:

S

P=0-2=7-%=7_7=5
2 2

195

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

o Sk 8 o,
P,=0,-~*=5-2=5-4=1

Now let's recalculate point E for the west direction.
E,.=P+S E’,
E,=P +S E",

Check:
E,=P,+S ,E ,=5+2-2=5+4=9
E,=P,+S E ,=1+1-7=1+7=8

From the above partial equations, taking into account the rotation factors, we obtain a universal

formula:
S S S S
E =0 —(=R,)+ ~—-E* R)+(—=2-R,)— Y .E° ‘R
S0 G R B R R (R
S S S S
E =0+ —*R,)-(——E " ‘R)J+(—R,)—-(——E ‘R
Check:
Common data (rewritten specially from the previous page):
* 0=(7.5),
* S=(84),
* R - object rotation factor,
* L=093),
« E'=(7,2).

E :7—(§-1)+(L-7-1)+(f-0)—(i-2-0):7—4+7+0+0:3+7:10
2 9-1 2 3—-1
N 4 4 8 8
Ey=5+(§-1)—(g~2-1)+(5~0)—(E-7-O):5+2—4+0—0=7—4=3
E=7-(8—1)+(=8 7 —1)+(%.0)= (-2 2.0)=7+4-7+0-0=11-7=4
S 2 9-1 2 3-1
4 4 8 8
Ey:5+(§-—1)—(g-z-—l)+(5-0)—(971-7-0):5—2+4+0—0:3+4:7
—7 (804870 () (A0 1)=7— CA=T74)-4=9_ 4=
E| E=7 (2 0)+(_170)+(2 1) (3_121) 7—0+0+2—4=7+2—4=9—4=5

196

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

520 (0. 0)+(B 1) (<8 71)=540-0+4—7=5+4—7=9_7=
Ey—5+(2 0) (3_120)+(2 1) (9_171) 5+0—0+4—7=5+4—7=9—7=2
E=7-(8.00+(-8 7.00+(2 —1)- (=22~ 1)=7-0+0-2+4=7—2+4=5+4=9
2 9-1 2 3-1
%
Ey:5+(io)—(i 2 0)+(§-—1)—(L-7-—1):5+0—0—4+7:5—4+7:1+7:8
2 3-1 2 9—-1

Table 6 - listing of all endpoint calculations

The PHP function implementing the above formula along with the assumptions is presented below.

function posGrid($beginPoint, $size, $ratio, $lines, $endPoint){

$returnPoint = new classPoint();

if($lines->getPointX() % 2 == 0):
$lines->setPointX($lines->getPointX() + 1);

endif;

if($lines->getPointY() % 2 == 0):
$lines->setPointY($lines->getPointY() + 1);
endif;

if($endPoint->getPointX() < 0):
$endPoint->setPointX(0);
endif;

if($endPoint->getPointY() < 0):
$endPoint->setPointY(0);
endif;

if($endPoint->getPointX() > $lines->getPointX() - 1):
$endPoint->setPointX($lines->getPointX() - 1);
endif;

if($endPoint->getPointY() > $lines->getPointY() - 1):
$endPoint->setPointY($lines->getPointY() - 1);
endif;

$x = $beginPoint->getPointX() - (($size->getPointX() / 2) * $ratio->getPointY())

197

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

+ (($size->getPointX() / ($lines->getPointX() - 1)) * $endPoint->getPointX() * $ratio-
>getPointY()) + (($size->getPointY() / 2) * $ratio->getPointX()) - (($size->getPointY()
/ ($lines->getPointY() - 1)) * $endPoint->getPointY() * $ratio->getPointX());

$y = $beginPoint->getPointY() + (($size->getPointY() / 2) * $ratio->getPointY()) -
(($size->getPointY() / ($lines->getPointY() - 1)) * $endPoint->getPointY() * $ratio-
>getPointY()) + (($size->getPointX() / 2) * $ratio->getPointX()) - (($size->getPointX()
/ ($lines->getPointX() - 1)) * $endPoint->getPointX() * $ratio->getPointX());

if($x > 255):
$x = 255;
endif;

if($y > 255):
$y = 255;
endif;

if(!in_array($ratio->getPointX(), array(-1, 0, 1))):
$x = $beginPoint->getPointX();

endif;

if(!in_array($ratio->getPointY(), array(-1, 0, 1))):
$y = $beginPoint->getPointY();
endif;

if(($lines->getPointX() <= 1) && ($lines->getPointY() <= 1)):
$x
$y

endif;

$beginPoint->getPointX();

$beginPoint->getPointY();

$returnPoint->setPointX(number_ format($x, 5, '."', ''));

$returnPoint->setPointY(number format($y, 5, '.', ''));

$returnPoint->setPointZ(number_format($beginPoint->getPointz(), 5, '.', "'));

return $returnPoint;

Text 10 - function that returns the coordinates of a point based on the object alignment logic grid

To use this function, you must attach the class.point.php file beforehand.
<?php
class classPoint {

private $X;

198

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

private $Y;
private $Z;

public function setPoint($x, $y, $z) {

$this->X = $x;
$this->Y = $y;
$this->Z = $z;

public function setPointX($x){
$this->X = $x;

public function getPointX(){

return $this->X;

Text 11 - source code of class.point.php [bot_installer\corrade\bot_ai\php\class.point.php]

Now we define our code for the calculation, we use the sample data mentioned in this chapter:
* $beginPoint - the coordinates of the center of the object (O) - example: (7,5),
* $size - object size (S) - example: (8,4),
* S$ratio - turnover factor (R) - example: (1.0),
* $lines - number of lines (L) - example: (9,3),

* S$endPoint - end point (E') - example: (7,1).

$beginPoint = new classPoint();
$beginPoint->setPoint(7, 5, 100);

$size = new classPoint();
$size->setPoint(8, 4, 0);

$ratio = new classPoint();
$ratio->setPoint(1, 0, 0);

$lines = new classPoint();
$lines->setPoint(9, 3, 0);

$endPoint = new classPoint();

199

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

$endPoint->setPoint(7, 2, 0);
$grid = posGrid($beginPoint, $size, $ratio, $lines, $endPoint);
echo 'Result: X:' . $grid->getPointX() . ', Y:' . $grid->getPointY() . ',Z:' . $grid-

>getPointZ() . PHP_EOL;

Text 12 - attempting to calculate the endpoint using PosGrid [bot_installer\corrade\bot_ai\php\functions.php]

What will give us as a result:
Result: X:5.00000, Y:2.00000,Z:100.00000
Text 13 - the result of the PosGrid function based on previously defined data

200

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

7. Frequently Asked Questions

Most of the questions and answers below can be found on the software manufacturer's

website.

Please contact me, if you have a question about Corrade.

1. Does Corrade require hosting?

Yes, Corrade requires hosting as a program. You can rent a VPS or allocate a free computer to it so

that you don't have to pay for the rental every month.

2. What can I do with Corrade?

Corrade comes pre-programmed with all browser capabilities for Second Life. With Corrade, you

can, for example, automatically accept payments for renting lands or sell items.

Corrade's possibilities are wide, you just need to read the documentation.

3. Is Corrade free?

Yes, Corrade is free. It is licensed under its own license which is not restrictive. In fact, the
manufacturer asks you to tag it when using it in other projects and not reverse engineer it on the

program's binaries.

For more information on the license, visit grimore.org®' and in the chapter: @ License.

4. If Corrade is free, is I a "product"?

I can't say it. The manufacturer ensures that it does not collect any data about the user for

monetization purposes. If you want to make a small contribution to the development of the project,

21 License WAS PC & OD 1.0 - https://grimore.org/licenses/was - pc - od

201

https://grimore.org/licenses/was-pc-od

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

you can, for example, enable the sending of diagnostic data in Nucleus, advertise the project, write

scripts and make them available to a wider audience.

5. Is Corrade OpenSource?

No, the project's source code is closed to the public. However, templates, PHP or LSL scripts are

open and you can safely modify them.

6. Which platforms can Corrade run on?

Currently Corrade has been built on the basis of .NET Core and can be run on Linux, Windows,

MacOSX, platforms (x64, ARM) that allow .NET Core to be installed.

7. How to start working and programming with Corrade?

You need to download Corrade and configure it. When it comes to programming, you need to know
the basics of Second Life LSL. It is not a difficult language to learn. On the Second Life website

you will find a rich source of knowledge about this language®.

On the Corrade website and in the manufacturer's store Corrade (Second Life Marketplace)* you

will find free examples of using Corrade.

8. How does Corrade manage access control?

Corrade manages the access control assigned to the group. In other words, you specify groups with
passwords that will be allowed to execute commands on the Corrade. Corrade doesn't care what
avatar triggers commands. This has its advantage, because you can create a script in Second Life
with the appropriate permissions (e.g. no access to the file preview), sell it, then the buyer will only

be able to modify the bot configuration note.

9. Why does Corrade use groups instead of avatars for access or permissions?

22 LSL Portal - http://wiki.secondlife.com/wiki/LSL Portal
23 Corrade Second Life Marketplace - https://marketplace.secondlife.com/stores/165275

202

https://marketplace.secondlife.com/stores/165275
http://wiki.secondlife.com/wiki/LSL_Portal

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

The groups in Second Life are at the lowest level in terms of entitlement.

Grid operators have the greatest powers in Second Life, wealth managers have only 1 and
management powers, and the powers of ordinary avatars are limited to their resources. Most of the
actions in Second Life, i.e. sharing the |1 and with someone else, streaming music on the device,
allowing the object rezz and other simple operations i.e. setting the landmark are limited by the

permissions of the group that is assigned to the land.

To ensure successful execution of commands, all commands must ask the grid for permissions
because in the absence of a GUI, Corrade will not be able to report errors and attempts to see if the
command was successful. Most of the checks performed by Corrade end up asking about the group

permission.

10. Why is Corrade unable to restart itself?

Because there are tools that better cope with restarting a given program, taking into account
conditions such as network condition and load, CPU load, traffic, etc., and on this basis decides

whether to restart the program.

11. I downloaded Corrade, set it up, but in the console I see a message that there is a

problem with logging in.

Usually there is a problem with the wrong password provided when setting up the bot.

login failed : key

Open the Configuration.xml file and find 'Password'.

Also open some MDS5 coding tool (google: mdS online).

<Password>$1$842e4818f8ede223c9b920d4f7425c9b</Password>

Delete the content between <Password> and </Password>.

Add 1 followed by the MD5 encoded password.

203

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

If your password is more than 16 characters long, change it to 6 - 16 characters long, as only such

passwords are accepted by Second Life.

12. What does "presence' mean?

In the console and program logs, you can see the error:

login failed : presence
This means that the avatar is already logged in to Second Life, you may have logged in manually
using a browser, or Corrade has previously logged out of the world incorrectly.

Attempting to log in to an account where the avatar is already logged in will cause the previous

logon to be disconnected, and the user will see a message that they have logged out of Second Life.
Corrade will try to reconnect with this error.

However, if you see an error:

login failed : ban

It means there is a temporary login lock, in which case wait a few minutes and try to login again.

13. Does Corrade work on OpenSim?

Corrade is basically compatible with Second Life protocols as they are well described. Corrade can
work on the OpenSim mesh, but the manufacturer does not guarantee that all commands will work
properly, because OpenSim is not compatible with Second Life protocols and is heavily burdened

with bugs.

14. I am sending a URL through Corrade which contains spaces, but Corrade breaks it

This happens most often for SLURL, e.g. secondlife://Some%20Simulator/32/13/34, where Corrade

converts the space to% 20 such that the link is no longer recognizable by the browser as a link.

Send link as: secondlife://Some%?2520Simulator/32/13/34, which will already run (%2520 will be
converted to %20).

204

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

15. I am trying to add a group to a Corrade configuration that contains special characters.

In XML entries, some characters are special and must be replaced with their equivalents.

Sign Equivalent

' '
< <

> >
& &

Table 7: Special characters in HTML

For example, a group named Wizardry & Steamworks must be converted into the configuration file:

Wizardry & Steamworks

16. When I send commands from LSL to a hidden group, I always get the message that

access is denied or that the group was not found.

Instead of assigning a group name to a group parameter, assign a group UUID to it. The reason is

that Corrade cannot find the group displayed in Directory Services.

17. Corrade and Proxy
Corrade has little experience with proxy or Tor servers.
It is best not to set up a proxy on a computer running Corrade.

The most common symptoms of using a proxy are:

205

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

* the wardrobe does not fully load, and an attempt to point to an item in the wardrobe returns

an error that the item does not exist,
* Corrade does not know what groups it is in,
* some notifications often fail.

So as you can see, it's best not to use proxy and turn it off on your system.

18. My bot has a problem with rezzing (or appears as a cloud)
There are two known possibilities for the bot to appear as clouds:
* Corrade carries more than one attachment per slot; Corrade supports one attachment per slot,

* Corrade does not wear: skin, eyes, hair, or shape; in Second Life, one body part must have

some accessory; Browsers tend to ban avatars that do not wear body parts.

19. Autopilot with altitude

Second Life contains a long-standing bug that causes the agent to behave arbitrarily at the height
specified for the autopilot command. If you want the bot to fly to a location instead of walking

around, consider using the 'flyto' command, which is much more versatile, or a combination of

both:
* Use the autopilot to navigate on surfaces/ground,

* Use flyto to make Corrade fly to the target.

20. Why are some wearables not reported by Corrade?

This is a problem in the libopenmetaverse library that Corrade uses where wearing some accessories
(e.g. a skirt) is not shown on the bot. This bug has been reported several times, fixed and reported

again.

This causes the commands to carry items to behave inconsistently. When these errors are fixed in

the library, the commands should now work properly.

206

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

21. The bot drops off vehicles when crossing regions

This error occurs in all known bot softwares. Nobody knows what causes this error. Most likely it is

caused in libopenmetaverse library, it has been reported several times with no remedial effects.

22. Do i need to update?
Corrade receives frequent updates to fix the reported bugs.

Before downloading, you can read the text file, which gives a short description of what has changed

in a given version.

From my personal experience, you should be happy with the development of the program, etc.,
however, I recommend that you be careful with new versions of the program, as it may turn out that
the new version breaks something in the bot functionality. In this case, it is best to take a screenshot,

report the error to the manufacturer on the website.

I personally have two bots - one operating - works on a stable version of the program, the other test
- on which the new version of the program is tested and if everything works here, then the

operating bot is updated to a newer version.

23. Which ports are used by Corrade?
Corrade uses the same ports as Second Life
TCP - 53, 80, 443, 12043, 12046, 21002

UDP - 53, 3478, 3479, 5060, 5062, 12000 - 29999

24. Do I have to restart Corrade after configuration changes?

No, you don't have to, Corrade should detect these changes itself and apply them if they were made
by Nucleus.

207

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

25. Are Wizardry and Steamworks or libraries getting any private data?

No, they don't download any private data.

26. Why shouldn't you use a proxy?

Corrade and Second Life hardly like having your computer access the Internet through a proxy
server. This causes a problem on the side of Corrade with obtaining or sending results, downloading
data from Second Life, especially regarding the avatar's wardrobe, handling notifications,
information in which groups it is located. Therefore, it is recommended that the computer on which

Corrade is running connects to the Internet directly without the use of a proxy server.

27. 1 have a problem with neotifications or feedback.

Are you using lIRequestURL()? If so, replace it with lIRequestURL() which is not a secure URL,
however this is because Second Life uses self - signed certificates for servers and Corrade may

have a problem with them.

208

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

8. Dictionary

A
API (Application Programming Interface) — it
is a set of rules that govern how a program or
programs communicate with each other.

ATC (Air Traffic air traffic

Control) -
controller.

B
Bot - a program that performs activities faster in
an automated manner that mimics a human
being.

C
Co - ordinates - they define the position of an
object, an avatar.
Compass rose - indicates the directions: north,
south, east and west.

I
IM (Instant Message) — private message sent
between two users.

L
LSL (Language Second Life) — pseudo language
created by Liden Lab., which is a combination
of C #, C ++, Java, which allows for basic
animation of objects and interaction with the
avatar.

M
Mesh - a type of graphic in Second Life that was

created in an external graphics program, such as

Blender, and imported into Second Life.

(0]
Object - primes connected with each other (or
primes with meshes) into one whole.

P
PHP - language for creating dynamic websites.
Plot - a virtual place in Second Life, which is
the result of dividing the region into smaller
parts of land.
Prim - basic building block in Second Life.
Proxy - a server that is an intermediary between
the user's computer and the target server from
which the content is to be downloaded.

R
Region - virtual | and in Second Life.
Rezz - can mean, for example, placing an object
from a closet, loading clothes, loading a texture
on an object.

S
Second Life - a virtual world accessible via the
Internet with its own community, montage
system, etc.
Second Life Marketplace - Second Life store
offering various user - created virtual goods.

U
URL - a web address that points to a specific
resource on the Internet, such as a web page or

file.

209

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

VPS - (Virtual Private Server) - virtual
dedicated server, which is designated as a

certain area on the server.

210

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

9.

Images used

* Cover - image downloaded from mepixels.com* under the Public Domain Dedication
(CCO) license,

» Image of the assigned DOI - downloaded from zenodo.org”,

* Picture 4.1 - Corrade logo - image downloaded from grimore.org” under the 'free for
compatibility' license,

* Picture 4.2 - The way of information flow in Corrade - obraz pobrany ze strony
grimore.org”’,

. - image taken from wikimedia.org® under public domain license,

. \y - image taken from wikimedia.org®; author: derex99; under the CC BY - SA 3.0

license,

. Go - image taken from wikimedia.org’; author: Fabrice Florin; under the CC BY - SA 3.0

license.

24
25
26

27
28
29
30

Website - https://www.mepixels.com/photo/bot - is - working - in - pc - 51

Zenodo website - https://zenodo.org/

Grimore.org website with logo -

https://grimore.org/ detail/secondlife/scripted agents/secondlife scripted agents corrade banner.png?
id=secondlife%3 Ascripted agents%3Acorrade%3Alogos

The website grimore.org - Corrade - https://grimore.org/secondlife/scripted agents/corrade
Wikimedia.org website - https://commons.wikimedia.org/wiki/File:Info icon - 72a7cf.svg

Wikimedia.org website - https://commons.wikimedia.org/wiki/File:CD_icon_test.svg
Wikimedia.org website - https://commons.wikimedia.org/wiki/File:Media_Viewer_Icon_- _Link Hover.svg

211

https://commons.wikimedia.org/wiki/File:Media_Viewer_Icon_-_Link_Hover.svg
https://commons.wikimedia.org/wiki/File:CD_icon_test.svg
https://commons.wikimedia.org/wiki/File:Info_icon-72a7cf.svg
https://grimore.org/secondlife/scripted_agents/corrade
https://grimore.org/_detail/secondlife/scripted_agents/secondlife_scripted_agents_corrade_banner.png?id=secondlife%3Ascripted_agents%3Acorrade%3Alogos
https://grimore.org/_detail/secondlife/scripted_agents/secondlife_scripted_agents_corrade_banner.png?id=secondlife%3Ascripted_agents%3Acorrade%3Alogos
https://zenodo.org/
https://www.mepixels.com/photo/bot-is-working-in-pc-51

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

10. Additional materials

N Additional materials are available with this e-book or on the website
y https://ko-fi.com/nitropl/shop for the author's support.

10.1. VPS bot installer (Powershell scripts, Windows)

My proprietary Corrade installer, which will install Corrade with additional programs, e.g. on VPS.
Script operation:

* adds appropriate ports to the network firewall,

* installs a set of libraries that allow many applications created with Microsoft's
programming tools to run in Windows (Visual C++ Redistributable Package for Visual
Studio 2019),

e installs the NET Framework,

* installs a number of updates to upgrade Powershell to version 5.1,

¢ installs NET Core,

* installs 7 - ZIP,

* installs XAMPP (optional)

o adding a rule of ports used by XAMPP to the firewall,

o extract XAMPP to drive C:\to path C:\xampp,

o copies Apache configuration,

o copies useful Apache modules,

o deletes the htdocs folder and copies the previously prepared folder,

© copies configuration files - my.ini and mysql.ini,

o installs services for Apache and MySQL,

© set the root password for MySQL,

© loads SQL queries from a file,

© adds PHP to the system path,

© adds a 'corrade' user with a predefined password in the MySQL permissions table
and grants permissions to the 'corrade' database which it also creates.

e [f XAMPP is not installed:

212

https://ko-fi.com/nitropl/shop

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

o unpacks PHP to C:\php,
© adds PHP to the system path,
© copies the php.ini file.

* installs Corrade

* copies bot Al to folder,

* copies bot and Nucleus configuration,

* creates shortcuts to the bot on the desktop, installs the service in the system, adds a task
to the task scheduler that checks the availability of the bot (if there is a mcorrade.ps1 file
in the bot folder).

* installs Firefox (optional),

* installs Notepad++ and copies default settings (optional),

* configures the computer (optional),

* disables unnecessary services (print spooler, disk defragmentation, fax, topics, program
compatibility assistant, Windows Update),

* turn off the animation when starting the computer,

e deletes current volume backups,

» disables the system restore option,

* disables hibernation of the system,

* cnable last access timestamp update on every directory that is listed on an NTFS
volume,

* enables encryption of files and directories on an NTFS volume,

* disables memory paging file encryption in Windows,

e disable 8.3 - character file name creation on NTFS and FAT volumes,

¢ turns off DEP,

* ignores errors during system startup,

* allows remote connection to the computer,

» disables patches for Meltdown and Specter,

* installs Rainmeter (optional),

* installs HWINFO in the system and in the Task Scheduler,

* installs 'better' settings for the command line

* adds the Task Scheduler as a shortcut on the Desktop,

* adds and sets another power plan (optional).

213

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

The installer is located in the bot _installer folder. All script actions will be written to install.log.txt.

To use the installer you need, among others 5 GB of free disk space (no, the installer will not use it,

it is only as a reservation).

I present you step by step what you need to do:
Disable UAC (User Access Control) - lower the slider level, click OK, restart the target

1.

computer.

User Account Control helps prevent potentially harmful programs fromn making changes
to your computer.
Tell me more about User Account Control settings

—
User Account Control Setti Elﬂg

.- il
Choose when to be notified about changes to your computer 1‘

Always notify

—

Newver notify

Newver notify me when:

m

® Programs try to install software or make
changes to my computer

® I make changes to Windows settings

@ MNot recommended. Choose this only if you
need to use programs that are not certified
for Windows 7 because they do not support
User Account Control.

-

[®ok || cancel |

2
3.
4

3.
#SET XAMPP INSTALL

Picture 10.1 - Disabling User Access Control in Windows

Now we are preparing to install Corrade on another computer.

Go to additional materials, to the bot_installer folder.

You have a lot of files there.

Open configs\installer.config.ps1.

$xampp_install=0

214

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

#SET MYSQL ROOT PASSWORD
$mysqlRootPassword="12345"

#SET MYSQL CORRADE PASSWORD
$mysglCorradePassword="qazwsxedc"
#INSTALL FIREFOX
$firefox_install=0

#INSTALL NOTEPAD++

$notepadpp_install=e
#CONFIGURE COMPUTER

$configurePC=0

#SET RAINMETER INSTALL
$rainmeter_install=0
#ADD and SET POWER PLAN

$powerplan=0

Here we decide what components we want to install:

1. $xampp_install=0
1 -installs and configures XAMPP*'
0 - bypasses the XAMPP related process

Below is a more detailed description for this option.

xampp_config\apache - in this folder you can define the initial Apache configuration
(‘conf' folder) and additional modules for it ('modules'). These folders mirror the tree of
folders and files in XAMPP. Copy your configuration here, remembering that on the
target computer the server is installed by default to the 'C:\xampp' folder. In the
'modules' folder, add the modules you want to be copied to the Apache modules folder
on the target computer. Make sure these modules are according to the Apache version of
the XAMPP package you want to use and that they are enabled in the target
configuration.

Initially you'll find the modules that I use - transfer speed limitation (mod bw module),
DDoS attack protection - Slowloris (mod_antiloris) and too many connections from one
IP address (mod_evasive, mod limitipconn) and I hope they will be useful, otherwise
you can use them delete from folder.

xampp_config\htdocs - contains a predefined public directory for XAMPP. Place your
scripts, pages, etc. here. It will be copied after installing XAMPP. From me you have

31 Website project: https://www.apachefriends.org/

215

https://www.apachefriends.org/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

2.

browsing the MySQL database (PHPMyAdmin®), displaying system information
(phpsysinfo™) and a script about the current PHP settings (script: phpsysinfo.php).

e xampp_config\php.ini - previously prepared php.ini file that will be copied after
XAMPP installation.

* xampp_config\my.ini - previously prepared my.ini file (for MYSQL), which will be
copied after XAMPP installation.

* xampp_config\sql.sql - SQL file with SQL queries that will be executed after XAMPP
installation - here I just added corrade database creation.

$mysqlRootPassword="12345"

Sets the initial password for MySQL root from the XAMPP package, rather use some simple

password to start with (use letters, numbers, but no special characters - you can change it later),

because the script has a problem with setting such complicated passwords and you will have to

manually regain access to Database.

3.

7.

$mysqlCorradePassword="qazwsxedc"

Sets the initial password for the user 'corrade' when creating a database from the XAMPP
package. The method of setting the password is described as above, i.e. letters and numbers
at the beginning without special characters.

$firefox_install=0

Copies a previously defined folder with Firefox.

In programs\FirefoxPortable you will find a portable version of the program that will be
copied to the target computer. You can run it normally and set profile, settings, add
bookmarks, etc. - everything will be saved in its folder.

From me you have tabs for Apache modules, faster access to Nucleus, PHPMyAdmin,
PHPSysInfo, Corrade documentation online.

$notepadpp_install=0

Installs Notepad++, after installation it copies the profile from configs\Notepad++, which
can be previously modified.

$configurePC=0

Configures the computer (recommended for Windows VPS), e.g. disables Meltdown and
Specter fixes, disables some features, disables themes, etc.

$rainmeter_install=0

32 Website project: https:/www.phpmyadmin.net/
33 Website project: https:/phpsysinfo.github.io/phpsysinfo/

216

https://phpsysinfo.github.io/phpsysinfo/
https://www.phpmyadmin.net/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Installs Rainmeter (desktop gadgets) by copying the programs\Rainmeter folder, which can
be customized.

Along with Rainmeter, HWINFO (programs\hwinfo) is installed to collect temperature from
the system and the task to Task Scheduler (tasks\hwinfo.xml).

$powerplan=0

Installs and sets a new power plan for the system (others\server.pow file) that prevents the

hard drives from turning off; turns off the screen after a minute, etc.

After setting up the script installer configuration file and possibly additional folders for each of the

options described above, we move on.

corrade\bot_ai - this folder contains files and folders that will be copied to the bot folder.
You can put the bot's brain and heart here.
In this folder you can also put files already configured: Configuration.xml and Nucleus.xml

from Corrade.

In this folder there are files from me (which is basically nothing to configure):

corrade-kill.bat - kills the bot process,

Create ShortCuts.bat - creates shortcuts on the desktop in the 'ArtBot Menu' folder,
mcorrade.ps1 - Powershell file that allows you to manage the bot,

nssm.exe - allows you to install the program as a service in the system,

restart.bat - restarts the boot,

start.bat - boot starts,

stop.bat - stops the bot,

update.bat - updates the boot.

Other files in the installer folder:

installer.ps1 - the main part of the installer,

installer.bat - a batch program that runs the installer.ps1 file with the appropriate parameters,
functions.ps1 - functions created for the installer,

configs\php.ini - php.ini file, which will be copied in case of not installing XAMPP,
programs\7zip.exe - program 7 - ZIP,

programs\php.zip - archiwum zip z PHP,

217

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

10.
11.
12.
13.

14.

programs\Root_Certificate Updater - program for updating certificates in the system,
programs\VC_redist.x64.exe - Visual C++ Redistributable Package for Visual Studio 2019
x64,

programs\VC redist.x86.exe - Visual C++ Redistributable Package for Visual Studio 2019
x86,

registry\console - restore - settings.reg - settings for the command line

System updates by updating Powershell to version 5.1:

o patches\kb4457144 - x64.msu,

o patches\kb4457144 - x86.msu,

o patches\W2K12 - KB3191565 - x64.msu,

o patches\Win7 - KB3191566 - x86.msu,

o patches\Win7AndW2K8R2 - KB3191566 - x64.msu,

o patches\Win8.1 - KB3191564 - x86.msu,

o patches\Win8.1AndW2K12R2 - KB3191564 - x64.msu.

If you want, you can modify the installer.psl1 file, add your programs to the folder and the
installation script.

If everything is ready, pack the bot_installer folder, preferably with 7 - ZIP.

Transfer the ready archive to the target computer.

Unpack the folder.

Open the bot_installer folder.

Click 2x on installer.bat.
Wait for the script to install everything and start the computer.

The installer logs the entire installation process to the install.log.txt file in the bot installer
directory, so you can then check this file for errors.

Once launched, you will see the following image:

218

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

,.‘ / 912 ay: 0 SUN-MOON
g []é‘ ;A Norise

Computer Notepad+

NETWORK

‘ 0 el g 31.60.3.63
Schedule . = i

| . 554 PM
frser|] BB ey

Picture 10.2 - Desktop after installation via script

15. This means everything is ready to go.

FAQ

1. Corrade does not work after installation
It does not work because the Corrade service is disabled by default.
To run Corrade, you have an 'ArtBot Menu' folder on your desktop and there is a shortcut called

'Artbot Start', double - click on it and Corrade should run in the background.

2. XAMPP server failed to start (no access to address http://127.0.0.1)

© Run XAMPP panel C:\xampp\xampp - control,
© View on program events,
o Perhaps the services were installed incorrectly

= Then stop Apache and/or MySQL by clicking on the STOP button,

219

http://127.0.0.1/

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

= Next, next to the program, click on v to uninstall the service,
= Then click again in the same place on X to install the program as a service,
= Give to START next to each program.
o If Apache did not start, there are many reasons for this
= To see what happened, in the C:\xampp directory, run apache start.bat,
= You will see a message from Apache what happened,
= There may be something wrong with the configuration files.

o [encourage you to use Google here.

3. I cannot log in to the server as 'root' on the MySQL server (password reset)
© Launch the XAMPP panel,
o stop the MySQL server,
© Open the file in notepad: C:\xampp\mysql\bin\my.ini,
= At the beginning of the [mysqld] section, add:

skip-grant-tables

= Save file.
© In the XAMPP panel with MySQL, select START,
© In the folder C:\xampp\mysql\bin run the command prompt,
o Enter and confirm: C:\xampp\mysql\bin\mysql.exe - - user = root,
© After logging in as root without a password, we execute further SQL commands:

FLUSH PRIVILEGES;
ALTER USER 'root'@'localhost' IDENTIFIED BY '12345';
ALTER USER 'root'@'127.0.0.1"' IDENTIFIED BY '12345';

exit

©o Now we delete the previously added skip - grant - tables in the my.ini file and save the
file.

© In the XAMPP panel, we stop and start MySQL.

o Now we can login to MYSQL as root with the password 12345.

220

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

10.2. Updating programs in bot_installer

Before packing the Corrade installer along with additional programs, think about updating
programs, as those available in additional materials may be outdated a long time ago.
For a list of programs that require attention, see the bot_installer\README.txt file.

It is enough to download the program from the given URL to the indicated location given by
the PATH path, where we agree to replace the files. Please note that if the program was a ZIP
archive then download ZIP, if EXE is EXE, MSI is MSI, etc.

221

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

10.3. mcorrade.ps1 - bot management (Powershell, Windows)

This is my Powershell script that allows me to manage Corrade.
You will find it in additional materials: bot_installer\corrade\bot ai.

To use it, copy all files and folders from this folder to the bot folder.

Run the command line (not from PowerShell) to call the program with parameters type:

powershell.exe -ExecutionPolicy Bypass -File .\mcorrade.psl -PARAMETR

where PARAMETER can be:
* -Latest - downloads and updates Corrade to the latest version,
e -Status - shows the current status of the Corrade service,
e -Start - launches Corrade,
* -Stop - stops Corrade
* -Restart - reboots Corrade,
* -InstallService - installs Corrade as a service,
e -DeleteService - removes Corrade as a service,
¢ -EnableService - enables the Corrade service,
e -DisableService - turns off Corrade as a service,
e -GetVersion - downloads the current version of Corrade,

e _CreateShortCuts - creates bot shortcuts.

222

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

10.4. Description of the files in bot_installer\corrade\bot_ai

* bot_ai\php\botconfig.ini
[general]
MonitorServices = 1
MonitorServicesAttempts = 3
MonitorServicesCheckEvery = 1
MonitorServiceCreatePrim = 1
MonitorServiceCreatePrimAxisZ = 10
botTitle = "Bot Manager"
botTitleTarget = "Bot Group"
cacheTypelWriteDatabase = @
[homeback]
enabled = ©

slurl = "http://maps.secondlife.com/secondlife/XXXXXX/112/112/23"
polygon = "<127,97,21>|<97,97,21>|<97,127,21>|<127,127,28>"

This file is a corrupted version of the configuration file for my bot.

general.MonitorServices

enables Corrade monitoring

general.MonitorServicesAttempts

defines the maximum number of attempts
after which the bot will be restarted

general.MonitorServicesCheckEvery

how much does it mean trying to check if
the bot works

general.MonitorServiceCreatePrim

or when checking the bot, try to create a
temporary prime in Second Life

general.MonitorServiceCreatePrimAxisZ

at what distance to place the provisional
prime

general.botTitle

what bot title to set (from the group)

general.botTitleTarget

target group for setting the title

general.cacheTypeWriteDatabase

cache write type: 0 - file, 1 - database

homeback.enabled

whether the procedure for checking whether
the bot is on the right plot is on

homeback.slurl

SLURL region and plot where the bot

223

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

should be

homeback.polygon plot boundaries in which the bot should
move; the limit is set by the Nitro Position
Recorder tool™.

* composer.phar (with files: composer.json, composer.lock, folder: vendor)
Dependency management for a PHP project (I gave PHPLint here for syntax checking) using
Composer™,

* class.point.php
My point definition script

$point = new classPoint(); defines a new point

$point - >setPoint(1,3,4); sets the coordinates of the point: X - 1,Y - 3,
Z-4

$point - >setPointX(1); sets the X coordinate

$point - >setPointY (3); sets the Y coordinate

$point - >setPointZ(4); sets the Z coordinate

$point - >getPointX(); gets the value of the X coordinate

$point - >getPointY(); gets the value of the Y coordinate

$point - >getPointZ(); gets the value of the Z coordinate

$point - >getPoint(); gets a point to an array

$point - >setPointFromArray(array(1,3,4)); | sets the coordinates of a point from an array

* corrademonitorservice.php
PHP script that checks the availability of the bot.
The corresponding task must be installed in the Windows task scheduler.
* cron.bat/cron.php
A cron written in PHP that can periodically call bot functions (e.g. to do something in Second Life).

The corresponding task must be installed in the Windows task scheduler.

34 Second Life Marketplace - https://marketplace.secondlife.com/p/Nitro - Position - Recorder/20479529 or the
sources folder in the additional materials

35 Website - https:/getcomposer.org/

224

https://getcomposer.org/
https://marketplace.secondlife.com/p/Nitro-Position-Recorder/20479529

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Here he can check if the bot is at home on the plot.
* inPolygon.class.php
Script that checks if a point is in a polygon.
* logs
Folder that contains text files with events logged by the writeDebugFile() function.
* phplint.bat
A batch program that checks the syntax of PHP files in the current directory along with
subdirectories.
* config.php
PHP configuration file used by other PHP files that are part of my bot's brain.
<?php
error_reporting(0);
//Bot Connection
define('BOT_GROUP', 'Bot Group');

define('BOT_PASSWORD', 'PASSWORD');
define('BOT_URL', 'http://127.0.0.1:9199');

//Database Connection

define('DB_CONNECTION', 'mysql:host=localhost;dbname=corrade’);
define('DB_LOGIN', 'corrade');

define('DB_PASSWORD', "');

//constants Second Life

define('TEXTURE_DEFAULT', '89556747-24cb-43ed-920b-47caed15465f");
define('TEXTURE_BLANK', '5748decc-f629-461c-9a36-a35a221fe21f");
define('TEXTURE_TRANSPARENT', '8dcd4a48-2d37-4909-9f78-f7a9%eb4ef903");

BOT _GROUP name of the group to which the bot belongs

BOT PASSWORD password to authenticate the command in the group

BOT URL URL to the bot (same as in the HTTP server settings in
the bot configuration file)

DB CONNECTION database connection (if you use)

DB _LOGIN database login

DB _PASSWORD database password

225

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

TEXTURE DEFAULT

UUID of the default texture (leave Second Life as is)

TEXTURE BLANK

Empty texture UUID (leave Second Life as is)

TEXTURE _TRANSPARENT

UUID of transparent texture (leave Second Life as is)

* functions.php

Functions that I use with my bot.

writeDebugFile($msg, $type = 'warn')

logs $msg events to file; default type - 'warn'

write_php_ini($array, $file)

writes data to an INI file

safefilerewrite($fileName, $dataToSave,
$mode = 'w+")

saves data to a file in a safe manner -
arguments: file name, data to write, write
mode (overwrites by default)

safefilerewriteCache($name, $value)

saves data to the cache file in a safe manner

safefilerewriteDeleteCache($name)

delete everything in the cache file safely

getConfig($nameval)

gets a value from an INI configuration file
named $nameval

clearConfig($section, $name)

deletes the $name value from $section in the
INI configuration file

setConfig($section, $name, $value)

writes $value for the $name argument in
$section

setCacheValue($name, $value)

writes the value of $value for the $name
argument to the cache file

getCacheValue($name)

gets the value for the $name argument from
the cache file

deleteCacheName($name)

clears the value for the $name argument
from the cache file

deleteAllCache()

delete the cache file

wasURLEscape($param_tab)

a function from WAS that encodes the URL

SendToBot($param_tab, SACK =1,
$connectTimeout = 10, $Timeout = 30)

sends the $param_tab parameter array to the
bot; SACK - request for a reply (value: 1) or
send and forget (0); $connectTimeout - time
to connect to the bot in seconds; $Timeout -

226

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

waiting time for a bot response in seconds

SendMessageToAvatar($agent, $message)

sends $message to avatar with given UUID
$agent in Second Life

wasKeyValueGet($key, $data,
$base64decode = false)

WAS function - gets the value from the
$data request from the $Skey key; if the data
i1s base64 encoded, it can decode
$base64decode immediately

CSV2Array($csv) converts CSV to an array
wasCSVToArray($csv) WAS function - converts CSV to an array
wasArrayToCSV($a) WAS function - converts an array to CSV

vectorStringToArray($vector)

converts a vector as a character, e.g. <1,5,4>
to array (1,5,4)

vectorArrayToString($vector)

converts a vector array to character form

vectorDistance($v1, $v2)

computes the distance between vectors that
are arrays

AvatarNameToUUID($name)

tries to get the UUID for the avatar with the
specific name $name

randomPassword($length, $keyspace =
'0123456789abcdefghijklmnopqrstuvwxyzA
BCDEFGHIJKLMNOPQRSTUVWXYZ'

)

randomizes a password of the given length
$length from the given $keyspace character
set

checkPerm($avatar, $func)

checks if a given avatar with UUID $avatar
is assigned to a specific $func role

AvatarUUIDtoName($uuid)

tries to get the avatar name based on its
UUID $uuid

getBOTUUID()

gets bot UUID

BlackListIMAdd($uuid)

adds S$uuid's avatar to the blacklist; the
avatar will not be able to talk to the bot
privately (as long as the notification is
installed)

BlackListIMExist($uuid)

checks if a given $uuid avatar has been
added to the blacklist

BlackListIMDel($uuid)

removes an avatar from the blacklist

isValidUuid($uuid)

checks if the UUID is valid

227

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

getRegionANDPos($slurl)

gets a region and position from a given
SLURL and gives them as an array

getCurrentRegion()

gets the current region that the avatar is in

RandomNumber($min, $max, $step = 1,
$float = false, $places = 5)

randomizes a number from minimum $min
to maximum $max; with the option of
specifying the $step; whether to draw as an
integer or floating point $float; with the
given number of decimal places $places

calcObjectBorderPoints($point, $size,
$ratio)

gives the boundary points for a given object
in the table; $point - the center of the object;
$size - the size of the object; $ratio - object
rotation (see PosGrid topic)

BotlsActive() checks if the bot is active
getBotPosition() gives the current position of the bot
setTitle() sets the title of the bot

posGrid($beginPoint, $size, Sratio, $lines,
$endPoint)

see topic: PosGrid

isInParcel($point =", $polygon =")

checks if a given point $point is in a polygon

¢ corradeMonitorService.bat

A batch file that runs the bot availability monitor.

10.5. Task Scheduler

If you used, for example, my original script to install the bot on your computer, 2 tasks will

be added to the system task schedule:

* ArtBot Cron - tasks that run for the bot every, e.g. 5 - 10 minutes,

* Corrade - Monitor Service - a job that monitors the Corrade process.

If you want, you can modify them for yourself.

228

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

Make sure that the task is assigned to the SYSTEM user permissions.

() Task Scheduler

Picture 10.3 - Bot tasks in the Windows Task Scheduler

_|=| x|
File Action View Help |
= zF B |
(@ Task Scheduler (Local) Name | status | Triggers Next Run Time | Last Run Time | Last Run R | Actions
= 3;“‘:?3"“‘“ Library @ ArtBot Cron Disabled Multiple triggers defined Never ArtBot -
= M'I‘C:io& % Corrade - Monitor Service Disabled At 11:39 PM on 4/21/2020 - After triggered, repeat every 15 minutes indefinitely. Never] Create Basic Task..
[weD % Create Task...
Import Task
[Display All Running Tasks
] Enable All Tasks History
9 Mew Folder,
X Delete Folder
View »
|6 Refresh
« 3
Help
4:24 PM

LR 1/24/2021 m

229

Jarostaw Maciejewski - Technical aspects of creating a bot in the virtual world of Second Life

- = x|
File Action View Help |
esin |
(@ Task Scheduler (Local) Name | status | Triggers Next Run Time | Last Run Time | Last Runf |
5‘355:\5;"“’“‘“ tibrary "% ArtBot Cron Disabled Multiple triggers defined Never _
[S At 11:20 P| 4/ After triggered, repeat every 15 minutes indefinitely. e
B Moot el Corrade - Monitor Service o o P e B e D b Never] Create Basic Task...
[weD B 7 Create Task..
Properties Import Task...
Delete Display All Running Tasks
Enable All Tasks History
9 New Folder,
X Delete Folder
View 3
| |6 Refresh
‘ 3
H Hep
General |T|igg=|§| Actions | Conditions | Settings | History (disabled) |
Name: |Corrade - Monitor Service _‘& Enabl
nable
Location: \ArtBot Export...
Author: NITRO-LAPTOP\Nitro & Properties
Description: x
Delete
Help

Security options
When running the task, use the following user account:
SYSTEM
€ Run only when user is logged on
& Run whether user is logged on or not
I~ Do not store password. The task will only have access to local resources

I~ Run with highest privileges

I~ Hidden Configure for: [Windouws Vista™, Windows Server™ 2008 |

N 4:24 PM
f R Dy

o]

Picture 10.4 - Options for the task

230

	1. Introduction
	2. Second Life, bots
	3. Comparison of bot building software in SL
	4. Corrade
	4.1. Introduction
	4.2. License
	4.3. Creating an account on Second Life
	4.4. Corrade installation and configuration
	4.4.1. .NET Core installation
	4.4.2. A system from the Windows family
	4.4.3. Linux x64 family systems (Debian family)
	4.4.4. Mac OS

	4.5. Corrade configuration files
	4.5.1. Configuration.xml
	4.5.2. Nucleus.xml

	4.6. Corrade installation and removal as a system service
	4.6.1. Windows
	4.6.2. Linux

	4.7. Corrade.log and Openmetaverse.log
	4.8. Adding a bot to a group in SL, giving it permissions, disabling the option of receiving group messages
	4.9. Authorization notation system
	4.10. Notifications
	4.11. Error codes
	4.12. Restrictions on Second Life
	4.13. Communication with the bot
	4.14. Practical use of the bot on the example of sending a group advertisement.
	4.15. Corrade integration with CasperTech
	4.16. Data sieving
	4.17. Weak and strong reference by object name and UUID
	4.18. Confirmation of receiving data from the bot in the LSL script.
	4.19. Bot rack size.
	4.20. Corrade protection and defense against attacks
	4.21. Comments

	5. Leonardo De ArtBot
	5.1. Computer parameters ('bot house')
	5.2. Bot brain structure and LSL line communication - external script
	5.3. Bot operation analysis
	5.4. The basics of building a bot
	5.4.1. Introduction
	5.4.2. Suggested functions for the bot
	5.4.3. Batch files
	5.4.4. Multitasking in PHP
	5.4.5. Second Life - creating prim and scripts

	6. Puzzle Grid for Arranging Objects (PosGrid)
	7. Frequently Asked Questions
	8. Dictionary
	9. Images used
	10. Additional materials
	10.1. VPS bot installer (Powershell scripts, Windows)
	10.2. Updating programs in bot_installer
	10.3. mcorrade.ps1 - bot management (Powershell, Windows)
	10.4. Description of the files in bot_installercorradebot_ai
	10.5. Task Scheduler

