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The federated learning paradigm can be a viable solution for handling huge datasets, and for taking advantage of powerful processing
nodes on the edge. The process of online federated learning can be employed in order to maximise the potential of federated learning
by re-training a shared model on the edge nodes and merging the updated models centrally. This approach allows edge nodes to
exchange knowledge without exchanging their own training data, thus preserving their privacy. In this work, we examine the online
federated learning approach in an extreme case of imbalanced class distribution between the central and the edge nodes. We examine
the effects of different parameters of the online federated learning process and propose a technique that boosts the classification
performance above that of the baseline centralised learning approach.

CCS Concepts: • Computing methodologies → Machine learning; Parallel Computing Methodologies; • Information systems
→ Information systems applications.
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1 INTRODUCTION

Deep learning models become popular in the analysis of text, images, video, audio or other data streams and the
extraction of high-level features, since they provide improved performance over the traditional machine learning
models. The abundance of tools, platforms and specialized hardware components that allow faster development, training
and execution of deep learning models, further increased their popularity [5]. The increased expectations from deep
learning applications consequently raised the requirements in computational resources. On the other side, the popularity
of Internet of Thing (IoT) devices created the need to process massive data quantities, efficiently and, in some case,
without breaching users’ privacy. This raised the need for deep learning on the edge or in a combination of edge and
the cloud [7]. For example, in the automotive domain, the data which are collected from self-driven vehicles can be used
to train models on the edge, but cannot necessarily be shared with other users or uploaded to the cloud. Moving deep
learning computations to the edge may help in enhancing users’ privacy [11] and for saving network bandwidth. It
may also help to train large-scale deep learning models faster, taking advantage of the distributed computing principles
and establishing the “federated learning” paradigm [13].

In federated learning, the model is trained across multiple decentralized nodes that hold their local data samples,
without exchanging them. The nodes exchange the trained models and continue training in rounds. In this work we
examine how the distribution of training samples affects the quality of the distributed trained model. We evaluate
several training alternatives and their parameters and conclude that it is beneficial for the training process to re-train
the shared model more frequently using fewer training samples in every round and consequently merge the distributed
re-trained models more frequently. Using only the training samples that are “harder” for the model to classify correctly
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and not the whole training dataset each time, further improves the federated learning process performance. It further
helps to tackle online learning issues such as catastrophic forgetting [10], which may arise from imbalanced training
data and improper sampling.

The sections that follow briefly present themost recent works in online federated learning (Section 2) and the proposed
approach and the various alternatives (Section 3). Section 4 contains a comparative evaluation of the alternatives and
depicts the effect of various decisions and parameters to the overall performance. Finally, Section 5 concludes the article
and presents our next steps.

2 RELATEDWORK

According to concept of Federated Learning the training data are distributed across multiple devices, and training takes
place locally for preventing data leakage. Handling the statistical variance problems of training data (e.g. training with
non-IID data [10]), maintaining the privacy of data on the edge [11], improving the resilience and robustness of the
federated models [1] and boosting the communication efficiency [3] and scalability [2] of the solutions are the major
research topics in the area of federated machine learning [6].

Our work mainly emphasises on the statistical challenge of handling the discordance of training samples across
edge nodes. Authors in [14] experimented with MNIST and CIFAR-10 datasets using CNNs. They created two extreme
cases (each client either receives a single class only partition, or 2 partitions from 2 randomly selected classes) and
employed the Federated Average algorithm [8] for model merging. Authors in [10] focused on the instability of the
𝐹𝑒𝑑𝐴𝑣𝑔 algorithm on non-IID datasets. Using a simplified version of the 11-layer VGG11 neural network on the CIFAR
dataset, and a 4-layer CNN on the speech commands dataset, they concluded that Top-k sparsification sampling is
more stable in such setups. Finally, authors in [9] implemented a lifelong federated learning strategy, called Federated
Curvature (FedCurv), which outperformed FedAvg, using a CNN on the MNIST dataset. They also experimented with
the number of epochs in each round.

Our approach combines the merits of online learning with the simplicity of FedAvg, by sampling the training data to
be used in each round. It also re-trains the merged model using sampled training data, thus achieving better performance
with less training. Using the WISDM Smartphone and Smartwatch Activity and Biometrics Dataset [12], we examine
the extreme case in which two nodes are trained using non-IID (non-independent or identical) data.

3 PROBLEM ANDMETHODS

The objective of online federated learning [13] is to take advantage of the additional resources and training samples
that are available either in a central node or in the edge nodes.

Table 1. The distribution of instances across classes in the two examined cases (i.e. 𝑁𝐶𝑇𝐷 and𝐶𝑟𝑇 ).

𝑁𝐶𝑇𝐷 classes 𝐶𝑟𝑇 classes
Subset Number of users A B C D Subset Number of users A B C D
𝑇𝑎 20 3956 3904 3977 𝑇1 10 1799 1834
𝑇𝑏 20 4136 4135 4135 𝑇𝑎 15 3320 3237 3162
𝑇𝑒𝑠𝑡 10 2425 2246 2432 2429 𝑇𝑏 15 2969 2970 2964

𝑇𝑒𝑠𝑡 10 2425 2246 2432 2429

In the context of this study, we implement the federated learning paradigm as depicted in Figure 1. Initially, a first
model can be trained on a central node (e.g. on the cloud) and communicated to the edge nodes (step 2). The shared
model is further trained on the edge nodes with the local samples that may have a completely different distribution
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Fig. 1. The federated learning architecture examined in this work.

across classes (step 3), or even introduce previously unseen classes. The re-trained models are sent back to the central
server (step 4), merged (step 5) and optionally retrained (step 6) with the centrally available training samples, before
being sent back to the edge nodes for another round.

We assume a classification task with 𝑛 classes (𝑐1, ...𝑐𝑛). Training dataset𝑇1 is available in the central node and can be
used for training or re-training at each round. Training datasets 𝑇𝑎 , 𝑇𝑏 , etc. are distributed on the edge nodes and used
to further train the shared model (i.e.𝑚1) on the edge nodes. Models𝑚𝑎 ,𝑚𝑏 , etc., which are trained on the edge nodes,
are sent back to the central node, and a new shared model is created, by merging them. The problems that frequently
arise from the class imbalance between sets 𝑇1 and 𝑇𝑎 , 𝑇𝑏 , etc., is that i) either the resulting models on the edge (i.e.
𝑚𝑎 ,𝑚𝑏 , etc.,) deviate from the central model𝑚1 and introduce a bias to the merge model that leads to catastrophic
forgetting of the initially seen classes, ii) or the resulting models on the edge fail to learn from new samples and thus
the whole system under-performs.

In the extreme case, each edge node may introduce samples for a previously unknown class to all other nodes
(including the central node. For example, in Figure 1, 𝑇1 contains only triangles and circles, whereas 𝑇𝑎 introduces
diamonds and 𝑇𝑏 introduces rectangles. It is important that after several training and re-training rounds the shared
model (𝑚1), used for inference on the edge nodes is able to detect all possible classes as if (or better than when) the
model was trained with all samples on the central node. In this work we examine the following alternatives:

• The centralised approach (C): The baseline approach for our case, is the centrally trained model. This is more
than a simple baseline, which assumes that all the available training samples are used for training a single model
in the central node.

• Federated learning approach (FL): In this alternative, the central model is initially trained using only 𝑇1 and
then is shared to the edge nodes, which use their own training samples 𝑇𝑎 , 𝑇𝑏 , etc. to re-train it and produce

3



PCI ’20, November 20–22, 2020, Athens, Greece Giorgas and Varlamis

models𝑚1𝑎 ,𝑚1𝑏 , etc. respectively. The final merging of the distributed models takes place in the central node to
produce a new model for sharing (𝑚2).

• Online Federated learning approach (OFL): It follows the principles of FL, but repeats the share-train-merge
process several times (i.e. rounds).𝑚1 is initially trained using 𝑇1, but in each round only a sample of 𝑇𝑎 , 𝑇𝑏 , etc.,
is used for re-training the shared model.

All the previous alternatives can slightly change if 𝑇1 (and consequently an initial model𝑚1) is not available. The
new model𝑚2 is the result of merging𝑚𝑎 ,𝑚𝑏 , etc. (trained directly on 𝑇𝑎 , 𝑇𝑏 , etc., respectively). In the following we
use NCTD to refer to this case of “no central training dataset”. Another option is to assume that the merged model
(denoted with𝑚1𝑎𝑏 in Figure 1) is retrained using𝑇1 in an attempt to avoid catastrophic forgetting. We use CrT (“central
re-training”) to refer to this case.
The proposed approach builds on the OFL alternative, by adding a training data sampling technique, for the data used
in each re-training step. This data sampling technique does what active learning techniques do [4], by selecting a subset
of the most informative samples for training. In order to choose the most informative samples each time, we employ the
model for inference first, before re-training it. Its predictions are used to filter-out the most “certain” samples and only
a percentage of ambiguous samples is used for retraining. We refer to this “Online Federated Learning with Sampling”
method as (OFLwS).

4 EXPERIMENTAL EVALUATION

As mentioned earlier, our dataset is based on a subset of WISDM Smartphone and Smartwatch Activity and Biometrics
Dataset Data Set [12]. The dataset comprises the readings from smartwatch gyroscopes (on the X, Y, Z axis), for 51 test
subjects that performed 18 diverse activities. The subset we use in our experiments contains observations from 50 users
performing four different activities (i.e. classes): A-walking, B-Jogging, C-Stairs, D-Sitting. We selected these classes to
cover a range of movements, from x-y plane only (A,B) to the z-axis too (C) and immobility (D). Instead of interpreting
the input as a single time step reading, we grouped the observations in batches of 100 time steps, using a stride of
20 time steps to avoid having many overlapping batches. We then label each batch with the activity that was mostly
observed inside the batch. The layers of the deep learning network comprise: a ConvLSTM 2D with ReLU activation, a
Dropout at 40%, a Flatten, a Dense with ReLU, a second Dropout at 20%, and a Dense with SoftMax in the output.

In the experiments that follow, we assume i) an edge-only completely distributed setup with two nodes, trained with
𝑇𝑎 and 𝑇𝑏 as shown in Figure 1, and ii) a cloud-edge setup with a central node that is trained with 𝑇1 and two edge
nodes trained with 𝑇𝑎 and 𝑇𝑏 . The 50 users of the WISDM dataset are grouped in order to form 𝑇1, 𝑇𝑎 , 𝑇𝑏 and the 𝑇𝑒𝑠𝑡
dataset as depicted in Table 1 (left and right respectively for the two cases). The tables also provide the distribution of
samples by class. The test set is the same in both cases.

In the absence of additional training in the central node (i.e. the 𝑁𝐶𝑇𝐷 case) the performance of the centralised
learning approach, trained on the merging of𝑇𝑎 and𝑇𝑏 is 0.62. The recall values per class are balanced among classes:
0.66 for class A, 0.98 for B, 0.54 for C and 0.55 for D. When an additional dataset is used for training in the central
node (i.e. the 𝐶𝑟𝑇 case, which uses the merge of 𝑇1, 𝑇𝑎 and 𝑇𝑏 ), the accuracy of the baseline method on the 𝑇𝑒𝑠𝑡 subset
drops to 0.61. The recall values per class are: 0.84 for class A, 0.99 for B, 0.02 for C and 0.62 for D. This means that the
majority of class C test instances are falsely predicted to the other three classes.

The next step is the evaluation of the online federated learning approach with sampling but without central
training (𝑂𝐹𝐿𝑤𝑆 − 𝑁𝐶𝑇𝐷). Starting from a randomly initialised model, which is iteratively trained in the two nodes
and replaced with a merged model using Federated Averaging. Depending on the number of rounds, we split the training
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dataset in equally sized partitions and use one partition per round. Since the same dataset is used at all times, training
in few rounds means that more data are used for training in each round and federated average is applied less frequently.

Fig. 2. The Accuracy of the Online Federated Learning with Sampling method (OFLwS) without (NCTD) and with (CrT) initial
training and re-training in the central node.

In order to examine the effect of training data sampling, we run four different experiments, using 10%, 30%, 50% and
100% of the training samples available at each round. The current model is used for inference first. For each training
sample we compute the entropy of probabilities to belong to each class, and keep the percentage of samples with the
highest entropy (i.e. classification uncertainty) for re-training the model. The performance of the model in the test set
is depicted in Figure 2 (left). The best accuracy (higher values are better) values achieved when different number of
training rounds take place, are reported in the plots. Results in Figure 2 (left) show that the typical federated learning
approach (without a central node) outperforms the centralised alternative. The test accuracy increases with the number
of rounds, which means that a more frequent federated averaging is beneficial. Finally, using a larger percentage of
training data per round leads to higher accuracy. However, this may have an impact on the total time needed for
training, which is 1.5 to 6 times higher in the 100% case, than in the 10% case.
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In the last experiment, we repeat the same process as before, but this time using the online federated learning
approach with sampling and central re-training (𝑂𝐹𝐿𝑤𝑆 − 𝐶𝑟𝑇 ). In this case, we begin with the training of a
central model𝑚1 and follow all the steps of Figure 1 for several rounds. The same strategy is used for selecting the
most informative training samples both for re-training the distributed and the centralized (merged) model. We also use
the same percentage ratio in both cases. The results are depicted in Figure 2 (right). Accuracy on test data improves
when training takes place in more rounds. Once again using training data sampling is 1.5 to 2 times faster than using
all data. It is interesting that using only the 10% most ambiguous samples for re-training (red line), outperforms all
other methods that use more samples for training.

In order to provide a better view of the performance of the two methods (i.e. 𝑂𝐹𝐿𝑤𝑆 − 𝑁𝐶𝑇𝐷 and 𝑂𝐹𝐿𝑤𝑆 −𝐶𝑟𝑇 )
compared with the baseline across classes, in Figures 3 and 4 we depict the recall per class. The values for the 4 different
sampling percentages, for 20 rounds of federated learning, show a drop in the recall of class C (i.e. stairs) compared to
the centralised method in 𝑂𝐹𝐿𝑤𝑆 − 𝑁𝐶𝑇𝐷 . This may due to the representation we employ, or the class imbalance of
samples, which are finally used for training, and needs further exploration. In all other cases the proposed methods
outperform the baseline.

5 CONCLUSIONS AND FUTUREWORK

This work presented a federated approach for online learning using different training sample distributions, and studied
the effect of model re-training and merging frequency in the overall model performance. Although the first results are
promising, there is still place for improvement in terms of using more edge nodes and experiment with more model
merging techniques. This is our first attempt in implementing the online federated learning paradigm considering a
cloud-edge scenario. The next plans of our work include further research on privacy preserving federated learning and
on handling the issues that arise from asynchronous online learning, such as catastrophic inference and forgetting,
adversarial attacks, etc.
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Fig. 3. Recall per class for OFLwS-NCTD (blue line) and the centralised method using all data (black line).

8



Online federated learning with imbalanced class distribution PCI ’20, November 20–22, 2020, Athens, Greece

Fig. 4. Recall per class for OFLwS-CrT (blue line) and the centralised method using all data (black line).
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