Extragalactic Spectroscopic Surveys: Past, Present and Future of Galaxy Evolution (GALSPEC2021) "Virtual" Santiago — 12-16 Apr, 2021

MAGNUM survey: dissecting galactic outflows in nearby AGN with VLT/MUSE

Giacomo Venturi FONDECYT Postdoctoral Fellow Pontificia Universidad Católica de Chile - Instituto de Astrofísica, Santiago, Chile

In collaboration with:

A. Marconi, M. Mingozzi, G. Cresci, E. Treister, E. Nardini, S. Carniani, R. Maiolino, F. Mannucci, M. Perna

Fondecvt

Actual impact of AGN feedback and how it (See e.g. Maiolino+12, Cano-Diaz+12, Cicone+14, Harrison+14,16, Carniani+15,16,17, Wylezalek+16,20, Fiore+17, Bischetti+17,18, Brusa+18, Forster-Schreiber+18,19, Leung+19, Scholtz+20, Fluetsch+19,20) operates are still hot and debated topics!

However, low-resolution at high-z makes difficult to study in detail feedback and outflow physical properties and compare with models, due to many uncertainties involved

Nearby AGN allow to spatially resolve outflow+galaxy structure to study feedback and outflow properties and structure in detail

G. Venturi

GALSPEC2021 — 12-16 Apr 2021

a

AGN FEEDBACK

AGN are thought to exert feedback on host galaxies through outflows, radiation, jets...

MAGNUM SURVEY OF NEARBY AGN Nearby (D<50 Mpc) Seyferts (9 so far) with VLT/MUSE: high resolution 10-100 pc covering central 1-15 kpc • Map outflow properties: velocity, mass rate, energetics, density...

- Gas kinematics: outflows, inflows...
- Gas excitation: from AGN, stars, shocks...

G. Venturi

• Evaluate *impact of outflows on galaxy*, model comparison

MUSE 3-color images:

Centaurus A

Circinus

NGC 4945

[OIII] Ηα **Blue stellar** continuum

G. Venturi

MAGNUM SURVEY OF NEARBY AGN

IC 5063

NGC 1068

NGC 1365

NGC 1386

NGC 2992

NGC 5643

Detailed study of ionised gas outflow properties in central kpcs

of NGC 1365 through VLT/MUSE

(Venturi et al. 2018, <u>2018A&A...619A..74V</u>)

G. Venturi

GALSPEC2021 — 12-16 Apr 2021

5

NGC 1365: MAPPING BICONICAL OUTFLOW KINEMATICS

Massive barred galaxy ($4 \times 10^{11} M_{\odot}$) hosting a low-luminosity AGN:

 $L_{AGN} \sim 2 \times 10^{43} \text{ erg/s}$

G. Venturi

NGC 1365: MAPPING BICONICAL OUTFLOW KINEMATICS [OIII] W70 [OIII] velocity - Stellar velocity

vel [km/s]

NW cone: positive velocity

 \rightarrow receding

SE cone: negative velocity

approaching \rightarrow

G. Venturi

NGC 1365: MAPPING BICONICAL OUTFLOW KINEMATICS [OIII] W70 [OIII] velocity - Stellar velocity

Left comp.: outflow blueshifted; Right comp.: disk

G. Venturi

NGC 1365: MAPPING BICONICAL OUTFLOW KINEMATICS [OIII] W70 [OIII] velocity - Stellar velocity

Left comp.: outflow blueshifted; Right comp.: disk

G. Venturi

Mass outflow rate

Outflow is not a broad wing as at low resolution

in more powerful AGN

$$\dot{M}_{\rm out} = \frac{M_{\rm out}v_{\rm out}}{\Delta R}$$

NGC 1365: OUTFLOW RADIAL PROFILES Radial profiles as a function of distance from the AGN

Decreasing trend with distance (see also Karouzos+16a,16b, Bae+17, Crenshaw+15, Revalski+18)

 But sampled only ionised gas (no neutral atomic + molecular), depending on ionising flux $\propto r^{-2}$

NGC 1365: OUTFLOW RADIAL PROFILES

Dissecting the physical properties of outflow vs galaxy disc

(Mingozzi, GV et al., 2019, <u>2019A&A...622A.146M</u>)

G. Venturi

PHYSICAL PROPERTIES: OUTFLOW VS GALAXY DISC

$[OIII], H\beta, [OI], H\alpha, [NII], [SII] and [SIII]$ divided in velocity bins

G. Venturi

⁻¹cm

Flux [10⁻

PHYSICAL PROPERTIES: OUTFLOW VS GALAXY DISC

Physical properties of outflow vs disc for every spaxels of all 9 MAGNUM galaxies

ELECTRON DENSITY (from [SII]6716/6731)

n_e disk weighted median 0.007 n_e disk median 0.006 n_e outflow weighted median 1.2 n_e outflow medi<mark>a</mark>n 0.005 disk outflow 0.004 -0.003 0.6 0.002 -0.40.001 -0.2 0.000 0.0 200 $4\dot{0}0$ 600 800 1000 n_e

MEDIAN VALUES ***** Disk : $n_e \sim 130 \text{ cm}^{-3} (170 \text{ cm}^{-3})$ ***** Outflow : $n_e \sim 250 \text{ cm}^{-3}$ (815 cm⁻³)

Outflow: $\log(U) \sim -2.75$

G. Venturi

IONISATION PARAMETER (from [SIII]/[SII])

DUST EXTINCTION (from $H\alpha/H\beta$)

MEDIAN VALUES ***** Disk : $\log(U) \sim -3.6$

MEDIAN VALUES ***** Disk : $\log(A_V) \sim 1.75$ ***** Outflow : $\log(A_V) \sim 1.02$

Mingozzi, GV+2019

Impact of low-power, compact jets on host

galaxy in radio-quiet sources

(Venturi et al. 2020, in press. <u>arXiv:2011.04677</u>)

G. Venturi

BACKGROUND: AGN FEEDBACK FROM JETS

Traditionally, jet-feedback comes from powerful 10s-100s kpc jets in radio-loud AGN $(F_{\rm radio}/F_{\rm opt} > 10)$

Jets keep galaxy halo hot preventing accretion and SF (kinetic feedback)

Capable of accelerating massive outflows

Nesvadba+21)

Rizza+2000, McNamara+2000, Bîrzan+2004,2012, Balmaverde, GV+18)

G. Venturi

offset [kpc]

Recent works indicate that also low-power (≤10⁴⁴ erg/s), compact (~kpc) jets can affect their host galaxies by pushing outflows!

150

 \bigcirc

1.5"

-350

ENHANCED LINE WIDTHS PERPENDICULAR TO JETS!

G. Venturi

Δδ [arcsec]

GALSPEC2021 — 12-16 Apr 2021

Venturi+2020

ENHANCED LINE WIDTHS PERPENDICULAR TO JETS! But outflows are normally expected and observed in the direction of the AGN-ionisation cones!

Example of NGC 4945 from MAGNUM survey:

G. Venturi

ENHANCED LINE WIDTHS PERPENDICULAR TO JETS!

Also these 4 galaxies show 'classic' asymmetric-line outflow along AGN cones and jet direction

But perpendicular gas is really different, with very **broad** and fairly symmetric profiles

OBSERVATION OF THE PHENOMENON IN OTHER WORKS

Enhanced velocity dispersion perpendicular to radio jets and ionisation

Finlez+18, Shimizu+19, Durré&Mould19, Shin+19, Feruglio+20)

The jets in all these galaxies show evidence of being at low inclinations $(\leq 40^{\circ})$ w.r.t. galaxy disc —> strong jet-disc interaction!

G. Venturi

cones observed in other galaxies hosting compact low-power jets!

(Couto+13, Riffel+14,15, Schnorr-Müller+14, Lena+15, Diniz+15, Freitas+18,

JET-DISC INTERACTION SIMULATIONS: EFFECT OF INCLINATION

G. Venturi

GALSPEC2021 — 12-16 Apr 2021

Mukherjee+2018a, Meenakshi+in prep.

ENHANCED LINE WIDTHS PERPENDICULAR TO JETS!

Spatially-resolved BPT diagrams, tracing gas ionisation source

High-linewidth regions have shock-like ratios!

Venturi+2020

All the galaxies exhibiting the phenomenon of perpendicular enhanced line velocity widths:

- All host a small-scale (≤1 kpc), low-power (≤10⁴⁴ erg/s) jet
- The jets have small inclinations ($\leq 40^\circ$) to galaxy disc —> strong jet-ISM interaction
- The perpendicular linewidth-enhanced gas (broad & symmetric lines with no coherent velocity) different from 'classic' AGN NLR outflow (asymmetric lines & coherent velocity) —> Different origin
- The perpendicular linewidth-enhanced gas exhibits shock-ionisation

perpendicular to propagation, most likely origin for the phenomenon

G. Venturi

- Jet-galaxy disc interaction, perturbing/shocking ISM and driving turbulence
 - GALSPEC2021 12-16 Apr 2021

Venturi+2020

G. Venturi

AFFECTED IONISED GAS MASS

- MAGNUM survey: nearby (<50 Mpc) Seyferts observed with VLT/MUSE, high spatial resolution and spectral coverage to study in detail ionised gas outflow physical properties and feedback
- Focus on NGC 1365 MUSE—X-rays: AGN-ionised bi-conical outflow ([OIII]) vs SF (Hα); Radial profiles of v_{out} , \dot{M}_{out} , $\dot{E}_{k,out}$, \dot{P}_{out} ; Extended (optical) vs nuclear (X-ray) wind give insights on driving mechanism
- Peculiar phenomenon: Enhanced line velocity widths observed perpendicularly to low-power lowinclination radio jets and AGN ionisation cones in 4 MAGNUM galaxies and in few recent works -> Jet-ISM interaction within galaxy disc favoured mechanism Low-power jets have larger impact on host galaxies than previously thought... Potentially important implications for AGN feedback on galaxies

G. Venturi

CONCLUSIONS

