
Checking Data-Race Freedom of GPU Kernels,1

Compositionally2

Tiago Cogumbreiro1, Julien Lange2,3

Dennis Liew Zhen Rong1, and Hannah Zicarelli14

1 University of Massachusetts Boston5
2 Royal Holloway, University of London6

Abstract. GPUs offer parallelism as a commodity, but they are diffi-7

cult to program correctly. Static analyzers that guarantee data-race free-8

dom (DRF) are essential to help programmers establish the correctness9

of their programs (kernels). However, existing approaches produce too10

many false alarms and struggle to handle larger programs. To address11

these limitations we formalize a novel compositional analysis for DRF,12

based on access memory protocols. These protocols are behavioral types13

that codify the way threads interact over shared memory.14

Our work includes fully mechanized proofs of our theoretical results, the15

first mechanized proofs in the field of DRF analysis for GPU kernels. Our16

theory is implemented in Faial (anonymized name), a tool that outper-17

forms the state-of-the-art. Notably, it can correctly verify at least 1.41×18

more real-world kernels, and it exhibits a linear growth in 4 out of 519

experiments, while others grow exponentially in all 5 experiments.20

1 Introduction21

GPUs are massively parallel devices that promise a great return on investment22

at a cost: they are notably difficult to program. In GPU programming, hundreds23

of lightweight threads share portions of arrays in parallel (without locks) —24

very different from the programming model of multithreaded programs written25

in C or Java with heavy-weight heterogeneous threads. Data-race freedom (DRF)26

analysis aims to guarantee that for all possible executions, every array cell being27

written by one thread cannot be concurrently accessed by another thread.28

In the field of static analysis of DRF in GPU programs, there is a tension29

between efficiency and correctness (no missed data-races and no false alarms)30

that thus far is unresolved. Bug finding tools [25, 26, 33] favor correctness over31

efficiency: they provide correct results at small scales, by simulating the program32

execution. Such tools are incapable of handling certain parameters symbolically33

(e.g., array size) and can easily exhaust users’ resources (e.g., loops with long34

iteration spaces or unknown bounds). Approaches based on Hoare logic [5,7,21]35

can cope with medium-sized programs, do not miss data-races, and do not require36

array size information; however, they suffer from a high-rate of false alarms and37

require code annotations written by concurrency experts. Finally, tools that can38

2 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

SMT backend

§ 5

Quantification

§ 5

SMT
Barrier
splitting

§ 4.2

L
Barrier
aligning

§ 4.1

A
Well-formed

check

§ 3

W
Inference

§ 5

CUDA S

Fig. 1: Work-flow of the verification.

cope with larger programs and do not require array size information either miss39

data-races [23] or overwhelm the user with false alarms [38].40

To appease this tension, we introduce a novel static DRF analysis that can41

handle larger programs and produce fewer false alarms than related work, with-42

out missing data-races. Additionally our analysis does not require code anno-43

tations or array size information. Our verification framework hinges on access44

memory protocols, a new family of behavioral types [1] that codify the way45

threads interact through shared memory. Our behavioral types also make evi-46

dent two aspects of the analysis that can be made separate: concurrency analysis47

(i.e., could these two expressions run in parallel?) and data-race conflict detec-48

tion (i.e., do these array indices match?).49

Contributions and synopsis This paper includes the following contributions.50

(1) In §3, we formalize the syntax, semantics, and well-formedness conditions51

for access memory protocols, which are behavioral types for GPU programs.52

This behavioral abstraction results in a simpler yet more expressive theory than53

previous works, e.g., it does not require user-provided loop invariants.54

(2) In §4, we show that our DRF analysis of access memory protocols can be55

soundly and completely reduced to the satisfiability of an SMT formula, see56

Theorems 1 and 3. Our theory and results on access memory protocols are fully57

mechanized in Coq. To the best of our knowledge, this is the first mechanized58

proof of correctness of a DRF analysis for GPU programs.59

(3) We show that our DRF analysis of access memory protocols is compositional60

when protocols satisfy a structural property, see Theorem 2. Additionally, we61

show how to transform protocols when they do not meet this property.62

(4) In §5 we present Faial, which infers access memory protocols from CUDA63

kernels and implements our theory. Our experiments show that Faial is more64

precise and scales better than existing tools.65

(5) In §6, we present a thorough experimental evaluation of Faial against related66

work [5, 23, 25, 26], the largest comparative study of GPU verification (5 tools67

in 260 kernels, 3 tools compared in 487 kernels). Faial verified 217 out of 22768

real-world kernels (at least 1.42× more than other tools) and correctly verified69

more handcrafted tests than other tools (4 out of 5). In a synthetic benchmark70

suite (250 kernels), Faial is the only tool to exhibit linear growth in 4 out of 571

experiments, while others grow exponentially in all 5 experiments.72

Our paper is accompanied by an implementation (Faial, see § A), an evaluation73

framework (inc. datasets), and proof scripts (in Coq) for each theorem. Should74

the paper be accepted, these will be submitted for artifact evaluation.75

Checking Data-Race Freedom of GPU Kernels, Compositionally 3

Listing 2.1: Examples of racy kernels, l.h.s. is from [34] and r.h.s. simplifies l.h.s.
for clarity, with one-dimensional array and thread identifier, and 1-stride loops.

1 for (int r = 0; r < N; r++) {
2 for (int i = 0; i<TILE_DIM; i+=BLOCK_ROWS)
3 { tile [tid.y+i][tid.x] = idata [index_in+i*width];}
4 __syncthreads();
5 for (int j = 0; j<TILE_DIM; j+=BLOCK_ROWS)
6 { odata[index_out+j*height] = tile [tid.x][tid.y+j];}}

1 for (int r = 0; r < N; r++) {
2 for (int i = 0; i<M; i++)
3 { tile [tid] = ...;}
4 __syncthreads();
5 for (int j = 0; j<M; j++)
6 {... = tile [tid+j];}}

2 Overview76

This section gives an overview of our approach by examining a data-race we77

found in published work [16] and [34]. We discuss the challenges that such ex-78

amples pose to the state-of-the-art of DRF analysis. Then we introduce a veri-79

fication framework based on access memory protocols: behavioral types [1] that80

codify the way threads interact via shared memory. Figure 1 gives an overview81

of the verification pipeline. We start from CUDA kernels, from which we infer82

access memory protocols. Protocols are then checked for well-formedness and83

transformed in three steps into formulas that are verified by an SMT solver.84

2.1 Challenges of GPU Programming85

GPU programming model The key component of GPU programming is the86

kernel program, or just kernel, that runs according to the Single-Instruction-87

Multiple-Thread (SIMT) execution model, where multiple threads run a single88

instruction concurrently. A kernel is parameterized by a special variable that89

holds a thread identifier, henceforth named tid. In parallel, each member of a90

group of threads runs an instantiated copy of the kernel by supplying its identifier91

as an argument. Threads communicate via shared memory (arrays) and mediate92

communication via barrier synchronization (an execution point where all threads93

must wait for each other before advancing further). Writes are only visible to94

other threads after a barrier synchronization, i.e., there is no guarantee that a95

write of a thread can be read by another before a barrier synchronization.96

GPU programming platforms usually group threads hierarchically in multi-97

ple levels, across which no inter-groups synchronization is possible. In both the98

literature [6, 23] and this work, the focus is on intra-group communication as99

inter-group errors can be seen as a special case of intra-group errors.100

Challenges We motivate the difficulty of analyzing data-races by studying a101

programming error found in the wild, reported in Listing 2.1 (left). This excerpt102

comes from a tutorial [34] on optimizing numeric algorithms for GPUs. The code103

listing transposes a matrix N-times with an outer loop indexed by variable r.104

Remarkably, the tutorial [34] does not inform the readers that Listing 2.1105

contains a subtle data-race: one transpose-operation starts (the writes to tile106

in line 3) without awaiting the termination of the previous transpose-operation107

4 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

Listing 2.2: Minimal representative example of an access memory protocol high-
lighting the data-race in Listing 2.1.

1 // r = 0
2 forU j in 0..M // for (int j = 0; j<M; j++)
3 {rd[tid+j]}; // _ = tile [tid+ i];
4 // r = 1
5 forU i in 0..M // for (int i = 0; i<M; i++)
6 {wr[tid]} // tile [tid] = _;

(the reads from tile in line 6), thus corrupting the data over time and possibly108

skewing the timing of the optimization to appear faster than it should be. We109

found a related data-race in [16], which reuses code from [34].110

Our tool, Faial, successfully identifies the program state that triggers the111

data-race in Listing 2.1: when r =1 and N =2. However, state-of-the-art tools112

struggle to accurately analyze Listing 2.1, as evaluated in Section 6 (Claim 1:113

Test 1). Symbolic execution tools, such as [25, 26], timeout for N > 1, and, in114

general, cannot handle symbolic (unknown) bounds. GPUVerify [6], a tool based115

on Hoare logic, reports a false alarm: a spurious data-race when r=0 and N=1.116

And PUG [23] incorrectly identifies the example as DRF, as its analysis appears117

to ignore data-races originating from different iterations of a loop.118

2.2 Memory Access Protocols by Example119

We now investigate the data-race in Listing 2.1 with an access memory proto-120

col. For presentation purposes, we focus our discussion on Listing 2.1 (r.h.s.),121

that simplifies the l.h.s. whilst retaining the root cause of its data-race, which122

stems from the interaction between both loops. We discuss how we support123

multi-dimensional arrays, multi-dimensional thread identifiers, and arbitrary124

loop strides in Section 5. In our Coq formalism the notion of “accesses” (and125

their dimensions) is a parameter of the theory, thus orthogonal to the theory126

presented here.127

Consider the execution of the end of the first iteration (r=0) and the beginning128

of the second (r=1) iteration of the outer-loop. In this case, the execution of the129

j-loop when r=0 is not synchronized with the execution of the i-loop when r=1 as130

there is no call to __syncthreads() in between.131

The access memory protocol in Listing 2.2 captures this partial execution132

from the viewpoint of array tile. By design access memory protocols over ap-133

proximate kernels by abstracting away what data is being written to/read from134

an array, to focus on where data is being written. The protocol models the two135

problematic loops of Listing 2.1, i.e., the j-loop when r=0 and the i-loop when r=1.136

The first loop reads (rd[tid+j]) from the array, while the second writes (wr[tid])137

to it. Evaluation of a protocol follows the SIMT model: each thread evaluates138

wr[tid] by instantiating tid with their unique identifier (hereafter, an integer),139

e.g., thread 0 yields wr[0] and thread 1 yields wr[1].140

Checking Data-Race Freedom of GPU Kernels, Compositionally 5

Analysis of unsynchronized protocols We say that a protocol is DRF when141

all concurrent accesses are pair-wise DRF, i.e., when issued by different threads142

on the same index, then neither access is a write. For instance the respective143

sets of concurrent accesses of threads 0 and 1 in Listing 2.2 is given below144

tid = 0
{rd[j] | 0 ≤ j < M} ∪ {wr[0]} DRF with?

tid = 1
{rd[1+j] | 0 ≤ j < M} ∪ {wr[1]}

When M > 1, thread 0 (l.h.s) accesses rd[1] and thread 1 (r.h.s) accesses wr[1].145

Thus, there is a data-race on index 1 of the array.146

A fundamental challenge of static DRF verification is how to handle loops.147

Symbolic execution approaches that unroll loops, e.g., [25, 26], cannot handle148

large nor symbolic iteration spaces. Static approaches that use Hoare logic,149

e.g., [5, 7, 21], require user-provided loop invariants. Another approach is to re-150

duce loops to verifying the satisfiability of a corresponding universally quantified151

formula, e.g., [24,30]. This has the advantage of being fast and not requiring in-152

variants. However, its previous application to GPU programming, i.e., PUG,153

is unsound due to the interaction between barrier synchronizations and loops,154

e.g., PUG misses the data-race in Listing 2.1. We give more details in Section 6.155

Our Approach A key contribution of our work is to identify conditions that allow156

a kernel to be reduced to a first-order logic formula, by precisely characterizing157

the effect of barrier synchronization in loops. To this end, the language of access158

memory protocols distinguishes syntactically between protocol fragments that159

synchronize from those that do not. For instance, the protocol in Listing 2.2 is160

identified as unsynchronized, as it does not include any synchronization.161

In Section 4, we show that the DRF analysis of unsynchronized protocols can162

be precisely reduced to a first-order logic formula, where universally quantified163

formulae represent loops, thus obviating the need to unroll them explicitly. For164

instance, we reduce the verification of Listing 2.2 to asking whether for all M ,165

t1, and t2, where t1 6= t2 are thread identifiers, the following holds:166

∀j1, i1, j2, i2 : 0 ≤ j1 < M ∧ 0 ≤ i1 < M ∧ 0 ≤ j2 < M ∧ 0 ≤ i2 < M =⇒
{rd[t1 + j1]} ∪ {wr[t1]} DRF with? {rd[t2 + j2]} ∪ {wr[t2]}

This formula is unprovable since rd[t1 + j1] races with wr[t2] when, e.g., t1 = 0,167

t2 = 1, j1 = 1, and M > 1. Hence, our technique flags Listing 2.2 as racy.168

Analysis of synchronized protocols The protocol in Listing 2.3 (left) models169

all the interactions over the shared array tile from Listing 2.1. This protocol170

consists of one outer loop r that contains two inner loops separated by a barrier171

synchronization (sync). The first inner loop writes (wr[tid]) to the array, while172

the second reads (rd[tid+ j]) from the array.173

This protocol illustrates how our language syntactically differentiates be-174

tween protocols fragments that synchronize from those that do not. Concretely,175

our language precludes an unsynchronized loop (forU x ∈ n..m {u}) from calling176

sync anywhere in u, and it requires that a synchronized loop (forS x ∈ n..m {p})177

6 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

Listing 2.3: Access memory protocol (left) of array tile from Listing 2.1 and its
aligned version (right).

1 forS r in 0..N {
2 forU i in 0..M { wr[tid] }
3 sync;
4 forU j in 0..M { rd[tid + j] }
5 }

aligns to

1 forU i in 0..M { wr[tid] }
2 sync;
3 forS r in 1..N {
4 forU j in 0..M { rd[tid + j] }
5 forU i in 0..M { wr[tid] }
6 sync; }
7 forU j in 0..M { rd[tid + j] }

includes at least one occurrence of sync. The superscript U (resp. S) stands for178

synchronized (resp. unsynchronized). This distinction can be inferred automat-179

ically and yields a compositional analysis, as we explain below.180

The behavior of synchronized loops is difficult to analyse because they may181

contain data-races that span more than one iteration. For instance an instruction182

of iteration r in Listing 2.3 may race with an instruction of iteration r+1.183

Our Approach In this work we show that the DRF analysis of synchronized184

protocols can safely be reduced to a first-order logic formula when such loops185

are aligned, i.e., when there is a synchronization exactly before the loop and at186

the end of its body. In Section 4.1 we show how to transform an arbitrary access187

memory protocol into an aligned protocol using a syntax-driven transformation188

technique called barrier aligning. Intuitively, barrier aligning normalizes loops189

so that they do not “leak” accesses between iterations. The right-hand side of190

Listing 2.3 shows the result of applying barrier aligning on the protocol from191

Listing 2.3 (left). Observe that the fragment before the aligned loop (line 1)192

corresponds to the unsynchronized part of the original loop (before sync). The193

original loop itself is rearranged so that the part succeeding sync is moved to194

the beginning of the aligned loop (lines 3–6). The fragment following the aligned195

loop (line 7) corresponds to the unsynchronized loop that appears after the sync196

in the original protocol.197

In Section 4.1 we show that aligned protocols enable compositional verifica-198

tion: protocol fragments between two barriers can be analyzed independently.199

This compositional analysis is possible because (i) there is no causality between200

instructions, except through sync and (ii) aligned protocols syntactically delimit201

the causality induced by sync. For instance, the aligned protocol in Listing 2.3202

can be reduced to analyzing the following three protocol fragment independently:203

forU i ∈ 0..M {wr[tid]} forU j ∈ 0..M {rd[tid+ j]}
forS r ∈ 1..N {forU j ∈ 0..M {rd[tid+ j]}; forU i ∈ 0..M {wr[tid]}; sync}

The first two protocols are handled like Listing 2.2 because they are unsynchro-204

nized. Representing a synchronized loop as a formula becomes possible when205

the protocol is aligned : both threads must share the same value for r at each206

iteration. Hence, we reduce the verification to asking whether for all N , M , t1,207

Checking Data-Race Freedom of GPU Kernels, Compositionally 7

and t2 where t1 6= t2 and the following holds:208

∀r, j1, i1, j2, i2 : 1 ≤ r<N ∧ 0 ≤ j1<M ∧ 0 ≤ i1<M ∧ 0 ≤ j2<M ∧ 0 ≤ i2<M
=⇒ {rd[t1 + j1]} ∪ {wr[t1]} DRF with? {rd[t2 + j2]} ∪ {wr[t2]}

Our technique identifies Listing 2.3 as racy since this formula is unprovable, i.e.,209

rd[t1+j1] races with wr[t2] when r = 1, t1 = 0, t2 = 1, j1 = 1, N > 1 andM > 1.210

3 Access Memory Protocols211

An access memory protocol describes the interaction between a group of threads212

and a single shared-memory location. A protocol records where in memory ac-213

cesses take place, but abstracts away from what data is read from/written to214

memory. The language of protocols distinguishes between an unsynchronized215

protocol fragment u ∈ U , that disallows synchronization, from a synchronized216

fragment p ∈ S that must include a synchronization. The syntax and semantics217

of access memory protocols is given in Figure 2. Our operational semantics is in-218

spired by the synchronous, delayed semantics (SVD) from Betts et al. [6], where219

threads execute independently and communicate upon reaching a barrier.220

Hereafter, i, j, k are metavariables over non-negative integers picked from the221

set N. An arithmetic expression n is either: an integer variable x, an integer i,222

or a binary operation on integers that yields an integer. A boolean expression b223

is either a boolean literal, an arithmetic comparison �, or a propositional logic224

connective ◦. We write n ↓ i when expression n evaluates to integer i, where225

evaluation is defined in the natural way. We overload the notation for Boolean226

expressions, e.g., b ↓ true means that expression b evaluates to true.227

Unsynchronized fragment A protocol u ∈ U either does nothing (skip), accesses228

a shared memory location o[i] (reads from/writes to index i), performs sequential229

composition, or loops. Figure 2 gives the semantics of unsynchronized protocols,230

which is parameterized by a set of thread identifiers T ⊆ N, where |T | ≥ 2.231

Evaluation of an unsynchronized protocol u by a thread identifier i, written232

u ↓i P , yields a phase, i.e., a set P ∈ P of access values α ∈ A. Each access233

value, or just access, notation i:o[j], consists of its issuing thread identifier i,234

an access mode o (read/write), and an index j. Protocol skip produces no ac-235

cesses. A memory access o[n] evaluates the index and creates a singleton phase.236

Sequencing, branching, and looping are standard. Similarly to SVD, Rule U-par237

executes a copy of the unsynchronized code u for each thread i ∈ T by replacing238

the special variable tid by the thread identifier, u[tid := i], which results in the239

union of the accesses of all threads.240

Synchronized fragment A protocol p ∈ S may perform barrier synchroniza-241

tion sync, run unsynchronized code u, perform sequential composition, and loop.242

Figure 2 gives the semantics of a protocol, notation p ↓H. Evaluation of a pro-243

tocol p yields a history (ranged over by H), i.e., a list of phases (P) that records244

how memory was accessed. We use : : as list constructor and · for the usual list245

concatenation operator. Histories are concatenated using the special �-operator.246

8 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

Syntax

N 3 i ::= 0 | 1 | · · ·
n ::= x | i | n ?n

B 3 b ::= true | false | n �n | b ◦ b
U 3 u ::= skip | o[n] | u ;u | forU x ∈ n..m {u}
S 3 p ::= sync | u | p ; p | forS x ∈ n..m {p}

o ::= wr | rd
A 3 α ::= i:o[i]
P 3 P ::= {α1, . . . , αn}

H ::= [] | P : :H

Big-step semantics for U u ↓i P u ↓T S

U-skip

skip ↓i ∅

U-acc
n ↓ j

o[n] ↓i{i:o[j]}

U-seq
u1 ↓i P1 u2 ↓i P2

u1 ;u2 ↓i P1 ∪ P2

U-for-1
(n ≥ m) ↓ true

forU x ∈ n..m {u} ↓i ∅

U-for-2
(n < m) ↓ true u[x := n] ↓i P1 forU x ∈ n+ 1..m {u} ↓i P2

forU x ∈ n..m {u} ↓i P1 ∪ P2

U-par
S =

⋃
{u[tid := i] ↓i Pi | i ∈ T }

u ↓T S

History concatenation and serialization H ·H H �H

[P1 . . . Pn] · [Pn+1 . . . Pn+k] = [P1 . . . Pn+k] (H · [P])� ([P ′] ·H ′) = H · [P ∪ P ′] ·H ′

Big-step semantics for S p ↓H

S-sync

sync ↓ [∅, ∅]

S-par
u ↓T P
u ↓ [P]

S-seq
p ↓H q ↓H ′

p ; q ↓H �H ′

S-for-1
(n+ 1 = m) ↓ true p[x := n] ↓H

forS x ∈ n..m {p} ↓H

S-for-2
(n < m) ↓ true p[x := n] ↓H forS x ∈ n+ 1..m {p} ↓H ′

forS x ∈ n..m {p} ↓H �H ′

Well-formed protocols p ∈ W

u ; sync ∈ W
p ∈ W q ∈ W

p ; q ∈ W
p ∈ W tid /∈ fv(n) ∪ fv(m)

u1 ; for
S x ∈ n..m {p ;u2} ∈ W

Data-race, safe phase, and safe history α# β safe(P) safe(H)

wr ∈ {o, o′} i 6= j

i:o[k] # j:o′[k]

∀α, β ∈ P : ¬(α# β)

safe(P)

∀P ∈ H : safe(P)

safe(H)

Fig. 2: Syntax, semantics, and properties of access memory protocols.

Checking Data-Race Freedom of GPU Kernels, Compositionally 9

A barrier synchronization creates two empty phases, corresponding to phases247

before and after synchronization. Running an unsynchronized protocol yields a248

single phase containing all accesses performed by that protocol. Sequencing two249

synchronized protocols p with q merges the last phase of the former with the first250

phase of the latter, as these two phases run concurrently. Running one iteration251

of a synchronized loop sequences the execution of the first iteration with the252

rest of the loop, by merging the last phase of the first iteration with the first253

phase of the rest of the loop. Synchronized loops in access memory protocols are254

nonempty, hence the base case is when there is one iteration left. This additional255

requirement helps with the presentation of our theory as it implies that every256

synchronized loop always executes at least one synchronization.257

A protocol is well-formed, written p ∈ W, if every unsynchronized fragment is258

followed by a barrier synchronization, every synchronized loop includes a barrier259

and is not branching on thread-local variables, i.e., tid. We write fv(p) (resp.260

fv(n)) for the free variables of p (resp. n). We discuss how well-formedness is261

enforced in Section 5.262

DRF is formalized at the bottom of Figure 2. Two accesses are in a data-race263

(or racy) when there exist two different threads that access the same index k,264

and one of these accesses is a write. Phase P is safe iff each pair of access it265

contains is not racy. History P is safe when all of its phases are safe.266

4 DRF-Preserving Transformations of Protocols267

This section presents the main steps of the DRF analysis summarized in Figure 1:268

barrier aligning (Section 4.1) and splitting (Section 4.2).269

This section also includes our key theoretical results. We establish that these270

steps preserve and reflect data-races (i.e., any and all data-races are found), see271

Theorem 1 and Theorem 3. We make precise the notion of compositionality that272

makes our approach scalable in Theorem 2.273

4.1 Aligning Protocols274

The first transformation step normalizes protocols by aligning synchronized275

loops, which in turn enables a form of compositional verification. The goal of the276

transformation is to produce protocols which belong to A, see top of Figure 3.277

Barrier aligning (or just aligning) is performed by function align, given in278

the bottom half of Figure 3. The function returns a pair whose first element is an279

aligned and synchronized protocol, and whose second element is an unsynchro-280

nized protocol. Intuitively, the pair represents a sequence which we delimitate281

syntactically. We note that the output of align, say (q, u), can be trivially made282

into an aligned protocol: q ;u ; sync. The case for synchronization is simple, align283

returns the input protocol as the first component of the pair and skip as the284

second component (the input protocol is already fully aligned). The case for285

sequence consists of the sequential composition of the pair aligned with unsyn-286

chronized code using operator (o9). Sequencing two pairs (p, u) o
9 (q, u

′) amounts287

to sequencing u to the outer-most piece of unsynchronized code present in q.288

10 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

Aligned protocols p ∈ A

u ; sync ∈ A
p ∈ A q ∈ A

p ; q ∈ A
p ∈ A q ∈ A

p ; forS x ∈ n..m {q} ∈ A

Sequencing aligned protocols o
9 : U → A → A o

9 : (A× U)→ (A× U)→ A× U

u o
9 (u

′ ; sync) = (u ;u′) ; sync u o
9 (p ; q) = (u o

9 p) ; q (p, u) o
9 (q, u

′) = (p ;(u o
9 q), u

′)

Aligning protocols align : W → A× U

align(u ; sync) = (u ; sync, skip) align(p ; q) = align(p) o
9 align(q)

align(p) = (q, u3) q1 = u1
o
9 q[x := n] u = u3 ;u2

align(u1 ; for
S x ∈ n..m {p ;u2}) = (q1 ; for

S x ∈ n+1..m {u[x := x−1] o
9 q}, u[x := m−1])

Fig. 3: Aligning protocols.

Dealing with synchronized loops is more involved. Given a loop u1 ; forS x ∈289

n..m {p ;u2}, we produce a protocol consisting of the fragment preceding the290

loop and the synchronized part of its first iteration (q1), an aligned loop starting291

at n+1, and the unsynchronized part of its last iteration (u[x := m−1]). See292

Listing 2.3 for an example of protocol aligning. We note that we can always293

unroll the loop because the analysis only considers nonempty synchronized loops;294

we discuss how to enforce this assumption in Section 5.295

We now state two fundamental properties of barrier aligning: preserving and296

reflecting DRF (Theorem 1), and enabling compositional verification (Theo-297

rem 2). Theorem 1 states that verifying DRF of a well-formed protocol p is298

equivalent to verifying DRF of its aligned counterpart.299

Theorem 1 (Correctness of Align). Let align(p) = (q, u) and p ∈ W. If300

p ↓H1 and q ;u ↓H2, then safe(H1) if and only if safe(H2).301

To state our compositionality result, we introduce a language of contexts:302

C ::= [_] | u ; sync | p ; C | C ; p | C ; forS x ∈ n..m {p} | p ; forS x ∈ n..m {C}

The base cases correspond to a hole [_] or an unsynchronized protocol (followed303

by sync). The other cases follow the structure of access memory protocols.304

Theorem 2 (Compositionality). Let C be a context, s.t. C[skip ; sync] is305

DRF, and C[skip ; sync] ↓H. For all p ∈ A, if p is DRF, p ↓H ′, and fv(p) ⊆ {tid},306

then C[p] ∈ A and C[p] is also DRF.307

Checking Data-Race Freedom of GPU Kernels, Compositionally 11

Syntax

L 3 h ::= skip | n:o[m] | h ;h | var x in n..m;h

Product of histories H ⊗H

H1⊗H2 = [P1 ∪ P2 | (P1, P2) ∈ H1 ×H2]

Big-step semantics h ⇓ H

skip ⇓ [∅]
n ↓ i m ↓ j

n:o[m] ⇓ [{i:o[j]}]
h1 ⇓ H1 h2 ⇓ H2

h1 ;h2 ⇓ H1⊗H2

(n ≥ m) ↓ true
var x in n..m;h ⇓ [∅]

(n < m) ↓ true h[x := n] ⇓ H1 var x in n+ 1..m;h ⇓ H2

var x in n..m;h ⇓ H1 ·H2

Projection trace : U → L

trace(o[n]) = tid:o[n] trace(forU x ∈ n..m {u}) = var x in n..m; trace(u)

trace(u1 ;u2) = trace(u1) ; trace(u2) trace(skip) = skip

Splitting protocols split : A → [L]

split(p ; q) = split(p) · split(q)

t1, t2 fresh h1 = trace(u)[tid := t1] h2 = trace(u)[tid := t2]

split(u ; sync) = [var t1 in 1..|T |; var t2 in 0..t1;h1 ;h2]

split(p ; forS x ∈ n..m {q}) = split(p) · [var x in n..m;h | h ∈ split(q)]

Fig. 4: Syntax and semantics of symbolic traces, and splitting of protocols.

4.2 Splitting Protocols into Symbolic Traces308

The second verification step, splitting, consists in transforming an aligned proto-309

col into symbolic traces, i.e., symbolic representations of sets of memory accesses310

which occur between two synchronizations.311

Symbolic traces Intuitively, symbolic traces are a thin abstraction over an SMT312

formula. We describe how to translate a symbolic trace to a formula in Section 5.313

We give the syntax and semantics of symbolic traces in Figure 4. Expres-314

sion skip terminates a trace. Expression n:o[m] states that thread n accesses315

index m with mode o. Expression h1 ;h2 composes two symbolic traces using316

operator ⊗, also given in Figure 4. Expression var x in n..m;h binds variable x317

in h, where variable x is an integer in the range induced from n and m. The318

semantics of a symbolic trace yields a history with a phase for each possible vari-319

12 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

able assignment. Expression skip yields a single empty phase. Expression n:o[m]320

evaluates to a singleton set that contains the access value that results from eval-321

uating the thread-identifier expression n and the index expressionm. Sequencing322

histories h1 ;h1 consists of performing the product of phases (operator ⊗), which323

consists of merging every phase of H1 with every phase of H2. A variable binder324

behaves like a skip when the range of values is empty. Otherwise, we fork two his-325

tories H1 and H2. We assign the lower bound of the set in H1, and we recursively326

evaluate a variable binder where we increment its lower bound in H2.327

Barrier splitting is the transformation from aligned protocols to symbolic traces,328

performed via functions trace and split , defined in Figure 4. Function trace329

extracts the symbolic trace of an unsynchronized program for a single thread.330

Memory accesses are tagged with the owner thread tid, and unsynchronized loops331

are converted into variable bindings. Function split returns a list of symbolic332

traces. The case for p ; q is trivial (operator · stands for list concatenation). The333

base case of split is for unsynchronized protocol fragment u, which produces a334

list containing a single symbolic trace. It introduces fresh variables t1 and t2335

that represent two (distinct) symbolic thread identifiers. The rest of the trace336

consists of the trace of u instantiated to the first thread identifier t1 followed337

by its instantiation to the second thread identifier t2. The case for synchronized338

loops simply reinterprets the loop as a variable binder. Function split leads to an339

exponential blow up wrt. nesting of synchronized loops, but this has not posed340

problems in practice, c.f., Claim 2.341

Example 1. Let p̂ = wr[tid+ 1]; rd[tid+ 2]; sync. We have that split(p̂) returns:342

var t1 in 1..|T |; var t2 in 0..t1; t1:wr[t1+1]; t1:rd[t1+2]; t2:wr[t2+1]; t2:rd[t2+2]

We show that barrier splitting preserves and reflects DRF.343

Theorem 3. Let p ∈ A, such that p ↓H1, and H2 = [H | h ∈ split(p)∧h ⇓ H],344

then safe(H1) if and only if safe(H2).345

Hence we have established that aligning (Theorem 1) and splitting (Theorem 3)346

preserve and reflect data-races, i.e., any and all data-races are found. Thus,347

the only source of approximation in our analysis stems from the inference of348

protocols from CUDA kernels, which we discuss in the next section. Theorem 3349

highlights the compositionality of our analysis, as each symbolic trace resulting350

from function split can be analyzed independently.351

5 Implementation352

In this section we present our tool, Faial, that implements the steps described353

in Figure 1. Faial takes a CUDA kernel as input and produces results that ei-354

ther identify the kernel as DRF or list specific data-races. In this section, we355

describe the implementation of the protocol inference, well-formedness checks,356

and transformation to SMT.357

Checking Data-Race Freedom of GPU Kernels, Compositionally 13

Inference This step transforms a CUDA kernel into access memory protocols358

(one for each shared array). It uses libclang [22] to parse the kernel, a standard359

single static assignment (SSA) transformation to simplify the analysis of indices360

and arrays, and code slicing to only retain code related to shared array accesses.361

We note that Faial supports constructs of the CUDA programming model that362

are not directly modeled by access memory protocols, e.g., unstructured loops,363

conditionals, function calls, and multi-dimensional arrays. To support multi-364

dimensional thread identifiers, we extend the language of protocols to support365

multiple thread identifiers, and adapt function split accordingly. The main chal-366

lenges are related to loops and function calls.367

Whenever possible loops are transformed to loops with a stride of 1 following368

ideas from loop normalization [23] and abstraction [30]. For instance, in for(int369

i=lb;i<ub;i+=s){S} we change the stride from s into 1 by executing the loop body S370

when the loop variable i is divisible by stride, i.e., the loop becomes for(int371

i=lb;i<ub;i++)if((i+lb)%s==0){S}. Similarly, a loop ranging over powers of n, e.g.,372

for(int i=lb;i<ub;i*=s), becomes for(int i=lb;i<ub;i++)if(powerof(i,s)){S}, where func-373

tion powerof(i,s) tests whether i is a power of base s. We approximate whiles as374

a structured loop with an unknown upper bound.375

Function calls that manipulate shared memory are uncommon in GPU pro-376

gramming. Additionally auxiliary functions that manipulate shared memory377

have a compiler annotation to inline their bodies, hence we can inline such calls378

easily. Faial cannot handle recursive functions, but these rarely occur in practice.379

Function calls that do not access shared memory are simply discarded.380

Well-formedness This step ensures that kernels Faial analyzes meet the well-381

formedness conditions (p ∈ W) defined in Figure 2, as well as the assumptions382

that synchronized loops iterate at least once. First, Faial annotates loops with a383

synchronized/unsynchronized tag according to the presence of sync in the loop384

body, then adjusts the precedence of sequencing to group all unsynchronized code385

preceding a sync or a synchronized loops. Synchronized loops of well-formed pro-386

tocols cannot manipulate thread-local variables (i.e., tid), an assumption shared387

by the CUDA programming model. Hence, Faial flags such kernels as erroneous.388

Next, Faial adds assertions before/after synchronized loops to check that the389

loop range is nonempty, i.e., loops execute at least once. Similarly to loops,390

conditionals are tagged as synchronized or unsynchronized. Then, Faial inlines391

synchronized conditionals, i.e., when a synchronized conditional is found, two392

copies of the input program are created and each copy is prefixed by a global393

assertion corresponding to the condition. Faial does not support synchronized394

conditionals that appear within synchronized loops. We have not found real-395

world kernels that include such a construction.396

Quantification This step transforms each symbolic trace (Figure 4) into an SMT397

formula, to check for safety, c.f., Figure 2. Essentially, the generated formula398

guarantees that the indices of array accesses are distinct when there is at least399

one write. We illustrate this straightforward transformation with Example 2.400

14 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

Example 2. The formula generated from the trace in Example 1 is given below:401

∀t1, t2 : 1 ≤ t1 < 3 ∧ 0 ≤ t2 < t1 ∧ (m1 = wr ∨m2 = wr) =⇒(
(idx1 = t1 + 1 ∧m1 = wr) ∨ (idx1 = t1 + 2 ∧m1 = rd)

)
∧
(
(idx2 = t2 + 1 ∧m2 = wr) ∨ (idx2 = t2 + 2 ∧m2 = rd)

)
∧ idx1 6= idx2

where each symbolic access is translated to a conjunction representing its index402

(idx) and access mode (m). Observe that the formula enforces that indices idx1403

and idx2 (executed by distinct threads) are different.404

For multi-dimensional arrays, we generate one pair of indices per dimension, and405

check that at least one pair is distinct.406

6 Experimental Evaluation407

We evaluate Faial over several datasets and show how it fares against existing408

approaches. We structure this evaluation in three claims.409

Claim 1: Correctness. We claim that our approach finds more bugs and raises410

fewer false alarms than existing tools. To evaluate this claim, we compare Faial411

against four state-of-the-art kernel verification tools over 10 kernels that are412

known to be tricky to analyze.413

Claim 2: Scalability. We claim that our approach scales better to larger pro-414

grams. To evaluate this claim, we compare Faial against other tools over a set415

of synthetic benchmarks designed to test the limits of each tool, in terms of run416

time and memory usage.417

Claim 3: Real-world usability. We claim that our approach is more usable418

than existing static verification tools on real-world CUDA programs. To evaluate419

this claim, we use a varied dataset of real-world DRF kernels and measure the420

false alarm rate, run time, and memory usage of Faial, GPUVerify, and PUG.421

Benchmarking environment To make our evaluation reproducible, we developed422

a benchmarking framework to automate our experiments over the different tools423

and datasets. For Claim 1 and Claim 3, we designed a tool-agnostic file format for424

kernel functions and associated metadata (e.g., expected result of DRF analysis,425

grid and block dimensions, and include directives). And for Claim 2, we created426

a tool that generates kernels according to given templates, e.g., see Figure 7.427

We evaluate Faial against the following verification tools: GPUVerify [5] v2018-428

03-22; PUG [23] v0.2; and, GKLEE [25] and SESA [26] v3.0. Experiments for429

Claim 1 use an Intel i5-6500 CPU, 7.7GiB RAM, and Fedora 33 OS, while430

Claim 2 and Claim 3 use an Intel i7-10510U CPU, 16GiB RAM, and Pop! OS.431

Excluded tools We excluded ESBMC-GPU [33] and Simulee [38] from the evalu-432

ation because we were unable to get them to run satisfactorily. Both tools have433

rudimentary support for verifying arbitrary CUDA kernels. ESBMC-GPU did not434

find a single data-race in our benchmarks, while Simulee produced false alarms435

for every DRF-kernel given.436

Checking Data-Race Freedom of GPU Kernels, Compositionally 15

Table 1: Results for Claim 1. DRF indicates that a (static analysis) tool reported
a test case as DRF. NRR indicates that a (symbolic execution) tool did not
report any data-race. Label x/y indicates that the tool reported x data-races, y
of which are actual races. Label timeout indicates that the tool did not terminate
within 90s. A test passes if the tool returns the expected result and all reported
races are valid.
Test Expected Faial GPUVerify PUG GKLEE SESA

1 transposeDiagonal Racy 1/1 0/2 DRF timeout timeout
DRF DRF 0/1 DRF timeout timeout

2 first-iter Racy 1/1 0/1 1/1 timeout timeout
DRF DRF 0/1 0/1 timeout timeout

3 last-iter Racy 1/1 1/1 0/1 timeout timeout
DRF DRF 0/1 DRF timeout timeout

4 last-iter-first-iter Racy 1/1 0/1 0/1 timeout timeout
DRF DRF 0/1 0/1 timeout timeout

5 read-index Racy 0/1 1/1 0/1 NRR NRR
DRF 0/1 DRF 0/1 NRR NRR

Number of tests passed (of 5): 4 1 0 0 0

Claim 1: Correctness437

We have selected a set of tricky kernels to expose false alarms and missed data-438

races in Faial, GPUVerify, PUG, GKLEE, and SESA. Our results are reported439

in Table 1. The dataset consists of 5 tests, each consisting of two variations440

of the same kernel: one racy and one DRF. The racy version of Test 1 (c.f.,441

Listing 2.1) contains an inter-iteration data-races. The DRF version adds a sync442

after the second inner loop. Tests 2 to 4 expose various loop-related data-races.443

Their protocols are given in Figure 5. In the racy version of Test 2 wr[tid+ 1]444

conflicts with wr[tid] of the first iteration. Similarly, in the racy version of Test 3,445

wr[tid+ 1] of the last iteration races with wr[tid]. In the racy version of Test 4 the446

last iteration of a nested loop races with the first iteration of the following loop.447

Test 5 exposes the abstraction gap between kernel and access memory protocols448

(which abstract away array elements), see Figure 6.449

Faial passes more tests than any other tool. Failed Test 5 (two false alarms)450

is caused by access memory protocols abstracting away from what data is being451

read from/written to arrays, i.e., array elements. We report on performance452

trade-offs wrt. tracking array elements in Claim 2.453

GPUVerify passes Test 5 because it tracks array elements, but fails the re-454

maining 4 tests. Some reported false alarms are ill-formed, e.g., on the racy455

component of Test 2, the report (0 : wr[tid]; 16 : wr[tid]) has disjoint indices.456

PUG obtains the worst score amongst static tools. Notably, the tool misses a457

data-race in Test 1, demonstrating its unsoundness, c.f., Section 2.1.458

GKLEE and SESA timeout for tests that include loops, as the loop bounds459

are unknown. Both tools miss the data-race in Test 5. Symbolic tools may be460

able to report data-races when the bound is known, e.g., timeouts start in Test 1461

when the bound is at least 2, in Test 2 when the bound is at least 23, 000.462

16 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

// first-iter
wr[tid+1];
forS x in 0..N {

if (x > 0)

{ wr[tid] } ;

sync}

// last-iter
forS x in 0..N {

sync;

if (tid < |T|-1)

{ wr[tid+1] } };

wr[tid + |T|]

// last-iter-first-iter
forS x in 1..N+1 {

forS y in 1..x+1 {
sync; wr[tid+x+y]}};

forS z in N*2..N*3 {

wr[tid+z +1]; sync}

Fig. 5: Protocols for Tests 2 to 4, c.f., Claim 1, where N is a free thread-global
variable. Yellow shaded code only appears in the DRF version of first-iter and
last-iter. Red shaded code only appears in the racy version of last-iter-first-iter.

// Racy kernel
A[tid] = tid ;
int x = A[tid];
A[x+1] = 0;

// Protocol A
wr[tid];
rd [tid];
wr[x+1]

// DRF kernel
A[tid] = tid ;
int x = A[tid];
A[x] = 0;

// Protocol A
wr[tid];
rd [tid];
wr[x]

Fig. 6: Kernels and protocols for Test 5 (read-index), c.f., Claim 1; x becomes a
free thread-local variable as protocols do not model array elements.

Claim 2: Scalability463

We evaluate the scalability of our approach with a synthetic dataset that aims464

at demonstrating how different kernel constructs affect run time and memory465

usage of Faial, GKLEE, GPUVerify, PUG, and SESA. Our dataset is divided into466

five categories, one per syntactical construct in the language of access mem-467

ory protocols, as well as conditionals, which are supported by our inference step,468

c.f., Section 5. Figure 7 shows the protocols of the kernel patterns we generate in469

each category: (i) repeated accesses (read then write), (ii) repeated barrier syn-470

chronizations separated by writes, (iii) repeated conditionals, (iv) increasingly471

nested unsynchronized loops, and (v) increasingly nested synchronized loops. In472

each category, we vary the problem size by repeating a pattern from 1 to 50473

times. Note that all kernels generated this way are DRF.474

Figure 8 shows the average run time and memory usage over five runs on475

logarithmic and linear scales, respectively. For each run, we set a timeout of 90s476

and we exclude any run that times out or reports a false alarm. Cutoffs in the477

memory plots are determined by the cutoffs in the run time plots.478

Overall Faial is the most scalable tool. In 4 out of 5 categories, Faial has479

the slowest growth for all experiments, and verifies all tests within 0.46s. In the480

largest problem sizes, our tool is the fastest in 3 categories (access, conditional,481

unsynchronized loop), 2nd for barriers, and 3rd for synchronized loops. Overall,482

the memory usage of Faial is competitive with other tools. Faial is the only tool483

with a near constant time/memory for up to 50 unsynchronized loops, indicating484

the scalability of reducing unsynchronized loops to universally quantified formu-485

las. Faial only times out for kernels which consists of >17 nested synchronized486

loops. However such kernels are uncommon, e.g., the levels of nested synchro-487

nized loops in the real-word kernels studied in Claim 3 are at most 3.488

Checking Data-Race Freedom of GPU Kernels, Compositionally 17

// accesses
rd [tid + n1*|T |];
wr[tid + 1*|T |];
rd [tid + n2*|T |];
wr[tid + 2*|T |];
// ...

// barriers
wr[tid];
sync;
wr[tid];
sync;
// ...

// conditionals
if tid==0
{wr[tid]};

if tid==1
{wr[tid]};

// ...

// unsynchronized loops
forU i1 in 0..N {

wr[tid];
forU i2 in 0..N {

wr[tid];
// ... }}

// synchronized loops
forS i1 in 0..N {

wr[tid]; sync;
forS i2 in 0..N {

wr[tid]; sync;
// ... }}

Fig. 7: Synthetic protocols generated for Claim 2. N is a free thread-global vari-
able, and n1, n2. . . are positive integer literals.

faial gpuverify pug sesa gklee

100

101 pug

accesses

10−1

100

barriers

10−1

100

101

conditionals

10−1

100

101

102

sesa

gklee

unsync-loops

1 8 15 22 29 36 43 50

10−1

100

101

102

sesa

gklee

sync-loops

T
im

e
(s

)

40

45

50

55

60

pug

accesses

40

45

50

55

60

65

70
barriers

40

45

50

55

60 conditionals

40

50

60

70

80
sesa

gklee

unsync-loops

1 8 15 22 29 36 43 50

50

100

150

200

250

sesa

gklee

sync-loops

M
em

or
y

us
ag

e
(M

B
)

Fig. 8: Results for Claim 2. Run time (left plots) are given on a logarithmic scale,
and memory (right plots) are given on a linear scale. Flatter and lower curve is
better. Tools annotated with a triangle are excluded due to timeouts or errors.

18 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

GPUVerify remains stable in the barrier and conditional categories but is af-489

fected negatively by loops and accesses. Loops are a known bottleneck in GPUVer-490

ify [2]. In the access category there is an exponential slowdown due to GPUVerify491

keeping track of what data is being written to/read from array.492

PUG tool remains stable with the number of barrier synchronizations but is493

affected negatively by the number of conditionals and loops. PUG is the fastest494

tool with smaller inputs, but it raises false alarms in the access category, hence495

these measurements are omitted from the corresponding plots.496

We discuss GKLEE and SESA together since SESA processes GKLEE’s NVCC497

byte code output by concretizing variables, before passing it to GKLEE itself.498

There are two main factors that affect negatively these symbolic execution tools:499

(i) the number of loops, since they unroll each loop; and (ii) the amount of book-500

keeping required to keep track of what is read from/written to memory. Figure 8501

shows clear exponential curves for the access and barrier synchronization cate-502

gories. Observe that these tools timeout immediately in the loop categories.503

Claim 3: Real-World Usability504

TCnoteR1: what is the unsupported kernel by our tool? We evaluate the usability505

of our approach by comparing Faial with other static verification tools (GPUVerify506

and PUG) on real-world kernels wrt. rate of false alarm and run time. We curated507

a set of CUDA kernels from [2], which consists of 3 benchmark suites (totaling508

227 CUDA kernels): NVIDIA GPU Computing SDK v2.0 (8 CUDA kernels);509

NVIDIA GPU Computing SDK v5.0 (166 CUDA kernels); Microsoft C++ AMP510

Sample Projects (20 kernels); gpgpu-sim benchmarks (33 kernels). All kernels are511

DRF and have been pre-processed by the authors of [2] to facilitate verification.512

Each kernel is in a distinct file, all dependencies are available, and kernels are513

annotated with minimal pre-conditions to allow for automatic analysis (e.g.,514

thread count is given).515

As we aim to evaluate fully automatic verification of three tools, we removed516

code annotations (pre-conditions and loop invariants) specific to GPUVerify. Ad-517

ditionally, we made minor changes to some kernels to meet the limitations of518

the front-end of Faial and PUG. For instance we converted nested array lookups519

to use temporary variables and inlined functions calls that operate on arrays in520

22 kernels. Another 8 kernels were modified to simplify their control flows. Our521

curated dataset will be included in our artifact submission.522

Figures 9a, 9b, and 9c give the correctness results of Faial, GPUVerify, and523

PUG, respectively. Correct refers to the true-positive rate, i.e., when the tool524

correctly identifies the kernel as DRF. False Alarm refers to the false alarm rate,525

i.e., when the tool incorrectly identifies the kernel as racy. A kernel is Unsupported526

if it makes the tool crash. A Timeout occurs when the tool exceeds the limit of527

60s to verify a kernel. The values shown are an average calculated over five runs.528

Figure 9d shows the average run time and memory usage of every true-positive529

report (we omit invalid reports) across the three tools.530

Overall Faial has the highest rate of true-positives at 96%. Our tool is second531

in terms of run time and memory usage, showing a good compromise w.r.t. time532

Checking Data-Race Freedom of GPU Kernels, Compositionally 19

Correct (C) False Alarm (F) Unsupported (U) Timeout (T)

C: 96.0% (218)

F: 4.0% (9)

U: 0.0% (0)

T: 0.0% (0)

(a) Faial

C: 67.4% (153)

F: 20.7% (47)

U: 0.4% (1)

T: 11.5% (26)

(b) GPUVerify

C: 34.8% (79)

F: 2.6% (6)

U: 62.6% (142)

T: 0.0% (0)

(c) PUG

faial gpuverify pug

0

100

101

T
im

e
(s

)

0 20 40 60 80 100 120 140 160 180 200 220

40

50

60

70

80

90

M
em

or
y

(M
B

)

(d) Run time (top) and memory usage (bottom) of true-positives. Time (resp. memory)
is cropped at 10s (resp. 100MB) and plotted on a logarithmic (resp. linear) scale.

Fig. 9: Results for Claim 3, on a set of 227 DRF CUDA kernels.

and space. Faial verifies most kernels within 1s, and all kernels that need more533

time are only verified by Faial. GPUVerify shows lower memory usage at the534

cost of a higher verification run time. PUG verifies the lowest number of kernels535

(34.8%), as most kernels are unsupported (62.6%).536

7 Related Work537

SMT-based DRF analyses Li and Gopalakrishnan propose a direct encoding of538

DRF analysis of GPU programs in SMT, with PUG [23,24]. Both PUG and Faial539

follow a similar approach of barrier splitting: having a symbolic representation540

of a canonical interleaving, and dividing up the analysis over barrier intervals.541

The two major distinctions are that (1) PUG misses inter-thread data-races in542

20 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

synchronized loops, e.g., Listing 2.1, and (2) the algorithms of PUG are unspeci-543

fied and lack soundness proofs. In [23, §6.3] the authors identify the challenge of544

detecting inter-thread data-races, but do not elaborate a solution. Ma et al. [30]545

present a similar technique to detect data-races and deadlocks in OpenMP pro-546

grams (CPU-based parallelism). However, their work does not guarantee DRF,547

and they do not formalize their algorithms. In [8], Prasanth et al. propose a548

polyhedral encoding of DRF for OpenMP programs, which is only applicable to549

programs with affine array accesses. However the prevalence of linearized array550

expressions in GPU kernels is known to stump polyhedral analysis [15].551

Hoare-logic-based DRF analyses The main drawback of Hoare-logic based tools552

is their high rate of false alarms. They also require code annotations from a553

concurrency expert to handle loops. GPUVerify [2, 3, 5, 6, 11] can verify CUDA554

and OpenCL kernels using Boogie [4] as a backend. GPUVerify also relies on a555

two-thread abstraction (pen and paper proof) — in this paper, we present the556

first machine-checked proof of the two-thread abstraction idea. VeriCUDA [19,20]557

focuses on reasoning about the functional correctness of GPU programs using558

Hoare-logic. In [21] the authors extend VeriCUDA to proving DRF. In a sim-559

ilar vein, VerCors [7] uses separation logic to prove the functional correctness560

and DRF of GPU kernels. Both VeriCUDA and VerCors expect a tool-specific561

language, hence cannot handle real-world kernels directly.562

Data-race finders include: dynamic data-race detection, symbolic-execution, and563

model-checking. Such techniques are better suited for highly detailed analysis564

in smaller kernels, and typically are unable to prove DRF. Dynamic data-race565

detection executes a kernel to find data-races on a fixed input, e.g., [13, 17, 18,566

27, 28, 32, 39, 40]. This technique only reports real data-races, but suffers from567

a slowdown of at least 10× and requires the kernel input data, which might568

be unavailable or unknown. Symbolic execution and model checking have been569

extended to detect data-races [9,10,25,33,38]. These techniques do without the570

kernel input and can detect more data-races than dynamic data-race detection.571

Miscellaneous Ferrel et al. introduce a machine-checked formalism to reason572

about the semantics of CUDA assembly [14]. Dabrowski et al. mechanize the573

DRF-analysis of multithreaded programs [12]. Muller and Hoffmann present a574

logic to reason about the evaluation cost of CUDA kernels [31].575

Session types [35] are a family of behavioral types that codify the message576

exchanges that take place over a given session, in terms of sends and receives. Ac-577

cess memory protocols are similar in that they codify the interactions that take578

place over a given shared array, in terms of reads and writes. Other behavioral579

types have been used to verify parallel and multithreaded systems that com-580

municate via message-passing [29, 36, 37]. However these do not capture shared581

memory (only message-passing), thus cannot address data-races.582

8 Conclusion583

We tackle the problem of statically checking DRF in GPU kernels, with a new584

family of behavioral types, i.e., access memory protocols. We provide a novel585

Checking Data-Race Freedom of GPU Kernels, Compositionally 21

compositional analysis of access memory protocols, along with fully mechanized586

proofs and an implementation. Our evaluation explores challenging and diverse587

benchmarks (229 real-world and 258 synthetic kernels) to demonstrate that our588

approach is more precise (false alarms and missed alarms), scalable (time/mem-589

ory growth), and usable (real-world kernels correctly verified) than other tools.590

References591

1. Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P.M.,592

Gay, S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins, F., Mascardi,593

V., Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos, V.T., Yoshida,594

N.: Behavioral types in programming languages. Foundations and Trends in Pro-595

gramming Languages 3(2-3), 95–230 (2016). https://doi.org/10.1561/2500000031596

2. Bardsley, E., Betts, A., Chong, N., Collingbourne, P., Deligiannis, P., Donaldson,597

A.F., Ketema, J., Liew, D., Qadeer, S.: Engineering a static verification tool for598

GPU kernels. In: Proceedings of CAV. vol. 8559, pp. 226–242. Springer (2014).599

https://doi.org/10.1007/978-3-319-08867-9_15600

3. Bardsley, E., Donaldson, A.F., Wickerson, J.: KernelInterceptor: Automating GPU601

kernel verification by intercepting kernels and their parameters. In: Proceedings of602

IWOCL. pp. 1–5 (5 2014). https://doi.org/10.1145/2664666.2664673603

4. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A604

modular reusable verifier for object-oriented programs. In: Proceedings of FMCO.605

p. 364–387. Springer (2005). https://doi.org/10.1007/11804192_17606

5. Betts, A., Chong, N., Donaldson, A.F., Ketema, J., Qadeer, S., Thomson, P., Wick-607

erson, J.: The design and implementation of a verification technique for GPU ker-608

nels. Transactions on Programming Languages and Systems 37(3), 1–49 (2015).609

https://doi.org/10.1145/2743017610

6. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a611

verifier for GPU kernels. In: Proceedings of OOPSLA. pp. 113–132. ACM (2012).612

https://doi.org/10.1145/2384616.2384625613

7. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of614

GPGPU programs. Science of Computer Programming 95(P3), 376–388 (2014).615

https://doi.org/10.1016/j.scico.2014.03.013616

8. Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral model617

for SPMD programs and its use in static data race detection. In: Proceedings of618

LCPC’16. pp. 106–120. Springer (2017). https://doi.org/10.1007/978-3-319-52709-619

3_10620

9. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In:621

Proceedings of HVC. pp. 203–218. Springer (2012). https://doi.org/10.1007/978-622

3-642-34188-5_18623

10. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic crosschecking of floating-624

point and SIMD code. In: Proceedings of EuroSys. pp. 315–328. ACM (2011).625

https://doi.org/10.1145/1966445.1966475626

11. Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-627

step semantics for analysis and verification of GPU kernels. In: Proceedings of628

ESOP. pp. 270–289. Springer (2013). https://doi.org/10.1007/978-3-642-37036-629

6_16630

12. Dabrowski, F., Pichardie, D.: A certified data race analysis for a Java-631

like language. In: Proceedings of TPHOL, pp. 212–227. Springer (2009).632

https://doi.org/10.1007/978-3-642-03359-9_16633

https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1016/j.scico.2014.03.013
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1007/978-3-642-34188-5_18
https://doi.org/10.1007/978-3-642-34188-5_18
https://doi.org/10.1007/978-3-642-34188-5_18
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1007/978-3-642-37036-6_16
https://doi.org/10.1007/978-3-642-37036-6_16
https://doi.org/10.1007/978-3-642-37036-6_16
https://doi.org/10.1007/978-3-642-03359-9_16

22 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

13. Eizenberg, A., Peng, Y., Pigli, T., Mansky, W., Devietti, J.: BARRACUDA:634

Binary-level Analysis of Runtime RAces in CUDA programs. In: Proceedings of635

PLDI. pp. 126–140. ACM (2017). https://doi.org/10.1145/3062341.3062342636

14. Ferrell, B., Duan, J., Hamlen, K.W.: CUDA au Coq: A framework for machine-637

validating GPU assembly programs. In: Proceedings of DATE. pp. 474–479 (2019).638

https://doi.org/10.23919/DATE.2019.8715160639

15. Grosser, T., Ramanujam, J., Pouchet, L.N., Sadayappan, P., Pop, S.: Optimistic640

delinearization of parametrically sized arrays. In: Proceedings of ICS. pp. 351–360.641

ACM (2015). https://doi.org/10.1145/2751205.2751248642

16. ul Hassan Khan Khan, A., Al-Mouhamed, M., Fatayer, A., Almousa, A.,643

Baqais, A., Assayony, M.: Padding free bank conflict resolution for CUDA-644

based matrix transpose algorithm. In: Proceedings of SNPD. pp. 1–6 (2014).645

https://doi.org/10.1109/SNPD.2014.6888709646

17. Holey, A., Mekkat, V., Zhai, A.: HAccRG: Hardware-accelerated data647

race detection in GPUs. In: Proceedings of ICPP. pp. 60–69 (2013).648

https://doi.org/10.1109/ICPP.2013.15649

18. Kamath, A.K., George, A.A., Basu, A.: ScoRD: A scoped race detec-650

tor for GPUs. In: Proceedings of ISCA. pp. 1036–1049. IEEE (2020).651

https://doi.org/10.1109/ISCA45697.2020.00088652

19. Kojima, K., Igarashi, A.: A Hoare logic for SIMT programs. In: Proceedings of653

APLAS. vol. 8301, pp. 58–73. Springer (2013). https://doi.org/10.1007/978-3-319-654

03542-0_5655

20. Kojima, K., Igarashi, A.: A Hoare logic for GPU kernels. Transactions on Compu-656

tational Logic 18(1), 1–43 (2017). https://doi.org/10.1145/3001834657

21. Kojima, K., Imanishi, A., Igarashi, A.: Automated verification of functional correct-658

ness of race-free GPU programs. Journal of Automated Reasoning 60(3), 279–298659

(2018). https://doi.org/10.1007/s10817-017-9428-2660

22. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program661

analysis & transformation. In: Proceedings of CGO. pp. 75–88. IEEE (2004).662

https://doi.org/10.1109/CGO.2004.1281665663

23. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU664

kernel functions. In: Proceedings of FSE. pp. 187–196. ACM (2010).665

https://doi.org/10.1145/1882291.1882320666

24. Li, G., Gopalakrishnan, G.: Parameterized verification of GPU ker-667

nel programs. In: Proceedings of IPDPSW. pp. 2450–2459 (2012).668

https://doi.org/10.1109/IPDPSW.2012.302669

25. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:670

Concolic verification and test generation for GPUs. In: Proceedings of PPoPP.671

vol. 47, pp. 215–224. ACM (2012). https://doi.org/10.1145/2370036.2145844672

26. Li, P., Li, G., Gopalakrishnan, G.: Practical symbolic race checking673

of GPU programs. In: Proceedings of SC. pp. 179–190. IEEE (2014).674

https://doi.org/10.1109/SC.2014.20675

27. Li, P., Ding, C., Hu, X., Soyata, T.: LDetector: A low overhead race detector for676

GPU programs. In: Proceedings of WoDet (2014), http://wodet.cs.washington.677

edu/wp-content/uploads/2014/02/wodet2014-final14.pdf678

28. Li, P., Hu, X., Chen, D., Brock, J., Luo, H., Zhang, E.Z., Ding, C.: LD: Low-679

overhead GPU race detection without access monitoring. Transactions on Architec-680

ture and Code Optimization 14(1), 1–25 (2017). https://doi.org/10.1145/3046678681

29. López, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconce-682

los, V.T., Yoshida, N.: Protocol-based verification of message-passing par-683

https://doi.org/10.1145/3062341.3062342
https://doi.org/10.23919/DATE.2019.8715160
https://doi.org/10.1145/2751205.2751248
https://doi.org/10.1109/SNPD.2014.6888709
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1007/978-3-319-03542-0_5
https://doi.org/10.1007/978-3-319-03542-0_5
https://doi.org/10.1007/978-3-319-03542-0_5
https://doi.org/10.1145/3001834
https://doi.org/10.1007/s10817-017-9428-2
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1109/SC.2014.20
http://wodet.cs.washington.edu/wp-content/uploads/2014/02/wodet2014-final14.pdf
http://wodet.cs.washington.edu/wp-content/uploads/2014/02/wodet2014-final14.pdf
http://wodet.cs.washington.edu/wp-content/uploads/2014/02/wodet2014-final14.pdf
https://doi.org/10.1145/3046678

Checking Data-Race Freedom of GPU Kernels, Compositionally 23

allel programs. In: Proceedings of OOPSLA. pp. 280–298. ACM (2015).684

https://doi.org/10.1145/2814270.2814302685

30. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis686

of concurrency errors in OpenMP programs. In: Proceedings of ICPP. pp. 510–516.687

IEEE (2013). https://doi.org/10.1109/ICPP.2013.63688

31. Muller, S.K., Hoffmann, J.: Modeling and analyzing evaluation cost of CUDA689

kernels. Proceedings of the ACM on Programming Languages 5(POPL) (2021).690

https://doi.org/10.1145/3434306691

32. Peng, Y., Grover, V., Devietti, J.: CURD: A dynamic CUDA692

race detector. In: Proceedings of PLDI. pp. 390–403. ACM (2018).693

https://doi.org/10.1145/3192366.3192368694

33. Pereira, P., Albuquerque, H., Marques, H., Silva, I., Carvalho, C., Cordeiro, L.,695

Santos, V., Ferreira, R.: Verifying CUDA programs using SMT-based context-696

bounded model checking. In: Proceedings of SAC. pp. 1648–1653. ACM (2016).697

https://doi.org/10.1145/2851613.2851830698

34. Ruetsch, G., Micikevicius, P.: Optimizing matrix transpose in CUDA. NVIDIA699

CUDA SDK Application Note 18 (2009), https://www.cs.colostate.edu/700

~cs675/MatrixTranspose.pdf701

35. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing702

system. In: Proceedings of PARLE. LNCS, vol. 817, pp. 398–413. Springer (1994).703

https://doi.org/10.1007/3-540-58184-7_118704

36. Vasconcelos, V.T.: Session types for linear multithreaded functional705

programming. In: Proceedings of PPDP. pp. 1–6. ACM (2009).706

https://doi.org/10.1145/1599410.1599411707

37. Vasconcelos, V.T., Ravara, A., Gay, S.: Session types for functional mul-708

tithreading. In: Proceedings of CONCUR. pp. 497–511. Springer (2004).709

https://doi.org/10.1007/978-3-540-28644-8_32710

38. Wu, M., Ouyang, Y., Zhou, H., Zhang, L., Liu, C., Zhang, Y.: Simulee: Detecting711

CUDA synchronization bugs via memory-access modeling. In: Proceedings of ICSE.712

pp. 937–948. ACM (2020). https://doi.org/10.1145/3377811.3380358713

39. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GRace: A low-overhead mechanism714

for detecting data races in GPU programs. In: Proceedings of PPoPP. pp. 135–146.715

ACM (2011). https://doi.org/10.1145/1941553.1941574716

40. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GMRace: Detecting data races in GPU717

programs via a low-overhead scheme. Transactions on Parallel and Distributed718

Systems 25(1), 104–115 (2014). https://doi.org/10.1109/TPDS.2013.44719

https://doi.org/10.1145/2814270.2814302
https://doi.org/10.1109/ICPP.2013.63
https://doi.org/10.1145/3434306
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/2851613.2851830
https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1145/1599410.1599411
https://doi.org/10.1007/978-3-540-28644-8_32
https://doi.org/10.1145/3377811.3380358
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1109/TPDS.2013.44

24 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

A Demonstration of Faial720

Here we present a demonstration of Faial in three examples.721

Example 3. The following is command-line usage of Faial on Listing 2.3 (l.h.s).722

In addition to CUDA kernels, Faial allows for the evaluation of access memory723

protocols stored in the proto file type as shown. Barrier aligning is also shown.724

// Source protocol725
$ cat inter− iteration.proto726
shared tile ;727
const global N,728

global M,729
local tid ,730
where distinct [tid] &&731
N > 0 && M > 0;732

733
foreach (r in 0.. N) {734

foreach (i in 0.. M) { rw tile [tid]; }735
sync;736
foreach (j in 0.. M) { ro tile [tid + j]; }737

}738
739

// Step 3: aligned protocol740
$ faial −A −−steps 3 inter−iteration.proto741
; a−lang742
; a−prog 1743
locations : tile ;744
globals : N, M;745
locals : tid ;746
invariant : (proj ($T1, tid) != proj ($T2, tid) && N > 0) && M > 0;747

748
code {749

sync;750
foreach (i in 0 .. M) {751

rw tile [tid];752
}753
sync;754
foreach* (r in 1 .. N) {755

foreach (j in 0 .. M) {756
ro tile [tid + j];757

}758
foreach (i in 0 .. M) {759

rw tile [tid];760
}761
sync;762

}763
foreach (j in 0 .. M) {764

ro tile [tid + j];765
}766
sync;767

}768
; end of a−lang769

770
// Final analysis771
$ faial inter− iteration.proto772
*** DATA RACE ERROR ***773

774
Array: tile [1]775
T1 mode: R776
T2 mode: W777

778
−−−−−−−−−−−−−−−−779
Globals Value780

−−−−−−−−−−−−−−−−781
M 2782

Checking Data-Race Freedom of GPU Kernels, Compositionally 25

−−−−−−−−−−−−−−−−783
N 2784

−−−−−−−−−−−−−−−−785
r 1786

−−−−−−−−−−−−−−−−787
788

−−−−−−−−−−−−−−−−789
Locals T1 T2790

−−−−−−−−−−−−−−−−791
i 0 0792

−−−−−−−−−−−−−−−−793
j 1 0794

−−−−−−−−−−−−−−−−795
tid 0 1796

−−−−−−−−−−−−−−−−797

Example 4. To show intermediate languages within Faial, we now run Example 1798

from Section 4.2. Here we show the inlined protocol, aligned protocol, flattened799

phases, and generated booleans.800

// Source protocol801
$ cat example−1.proto802
shared A;803
const local tid804

where distinct [tid];805
806

rw A[tid + 1];807
ro A[tid + 2];808
sync;809

810
// Step 1: inline assignments and replace key−values811
$ faial −A −−steps 1 example−1.proto812
locations : A;813
globals : ;814
locals : tid ;815
invariant : proj ($T1, tid) != proj ($T2, tid) ;816

817
code {818

rw A[1 + tid];819
ro A[2 + tid];820
sync;821

}822
823

// Step 3: aligned protocol824
$ faial −A −−steps 3 example−1.proto825
; a−lang826
; a−prog 1827
locations : A;828
globals : ;829
locals : tid ;830
invariant : proj ($T1, tid) != proj ($T2, tid) ;831

832
code {833

sync;834
rw A[1 + tid];835
ro A[2 + tid];836
sync;837
sync;838

}839
; end of a−lang840

841
// Step 6: flatten phases842
$ faial −A −−steps 6 example−1.proto843
; flatacc844
; acc 1845
location : A;846

26 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

locals : tid ;847
pre : true ;848
{849

rw[1 + tid] if proj ($T1, tid) != proj ($T2, tid) ;850
ro[2 + tid] if proj ($T1, tid) != proj ($T2, tid) ;851

}852
; end of flatacc853

854
// Step 7: generate booleans855
$ faial −A −−steps 7 example−1.proto856
; symbexp857
; bool 1858
array : A859
predicates : ;860
decls : tid$T2, tid$T1, $T2$mode, $T2$idx$0, $T1$mode, $T1$idx$0;861
goal : ((tid$T1 != tid$T2 && ($T1$mode ==1 && $T1$idx$0 ==1 +tid$T1)) || (tid$T1 != tid$T2 &&862

(($T1$mode ==0 && $T2$mode ==1) && $T1$idx$0 ==2 +tid$T1))) && (((tid$T1 != tid$T2863
&& ($T2$mode ==1 && $T2$idx$0 ==1 +tid$T2)) || (tid$T1 != tid$T2 && (($T2$mode ==0 &&864
$T1$mode ==1) && $T2$idx$0 ==2 +tid$T2))) && $T1$idx$0 ==$T2idx0);865

; end of symbexp866
867

// Final analysis868
$ faial example−1.proto869
*** DATA RACE ERROR ***870

871
Array: A[2]872
T1 mode: W873
T2 mode: R874

875
−−−−−−−−−−−−−−−−876
Locals T1 T2877

−−−−−−−−−−−−−−−−878
tid 1 0879

−−−−−−−−−−−−−−−−880

Example 5. To demonstrate usage on a real-world CUDA kernel, Faial is run on881

a matrix transpose from [34], c.f., Listing 2.1 (l.h.s.). The inferred protocol is882

also shown. Note that Faial handles the representation of multiple arrays in the883

same protocol, but each array is analyzed independently.884

// CUDA kernel source885
$ cat transposeCoalesced.cu886
#include <cuda.h>887

888
#define TILE_DIM 16889
#define BLOCK_ROWS 16890

891
__global__ void kernel (float* odata, float * idata , int width, int height , int nreps) {892

893
__requires(height == 2048);894
__requires(width == 2048);895

896
__shared__ float tile[TILE_DIM][TILE_DIM];897

898
int xIndex = blockIdx.x * TILE_DIM +threadIdx.x;899
int yIndex = blockIdx.y * TILE_DIM +threadIdx.y;900
int index_in = xIndex + (yIndex)*width;901

902
xIndex = blockIdx.y * TILE_DIM +threadIdx.x;903
yIndex = blockIdx.x * TILE_DIM +threadIdx.y;904
int index_out = xIndex + (yIndex)*height ;905

906
for (int r=0; r < nreps ; r++) {907

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {908
tile [threadIdx.y+i][threadIdx.x] = idata [index_in+i*width];909

}910

Checking Data-Race Freedom of GPU Kernels, Compositionally 27

911
__syncthreads();912

913
for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {914
odata[index_out+i*height] = tile [threadIdx.x][threadIdx.y+i];915

}916
}917

}918
919

// Inferred protocol920
$ faial −b 16,16 −g 64,64 −A −−steps 0 transposeCoalesced.cu921
arrays : tile , odata, idata ;922
scalars : width, nreps , height , gridDim.y, gridDim.x, blockIdx.y, blockIdx.x, blockDim.y,923

blockDim.x;924
pre : ((((proj ($T1, threadIdx.x) != proj ($T2, threadIdx.x) || proj ($T1, threadIdx.y) != proj ($T2,925

threadIdx.y)) && blockIdx.x <gridDim.x) && threadIdx.x <blockDim.x) && blockIdx.y <926
gridDim.y) && threadIdx.y <blockDim.y;927

928
code {929

local threadIdx.y;930
local threadIdx.x;931
assert (height == 2048)932
assert (width == 2048)933
local xIndex = (16 * blockIdx.x) + threadIdx.x;934
local yIndex = (16 * blockIdx.y) + threadIdx.y;935
local index_in = xIndex + (yIndex * width);936
local xIndex = (16 * blockIdx.y) + threadIdx.x;937
local yIndex = (16 * blockIdx.x) + threadIdx.y;938
local index_out = xIndex + (yIndex * height) ;939
foreach (r in 0 .. nreps) {940

foreach (i in 0 .. 16; i + 16) {941
rw tile [threadIdx.y + i , threadIdx.x];942
ro idata [index_in + (i * width)];943

}944
sync;945
foreach (i in 0 .. 16; i + 16) {946

rw odata[index_out + (i * height)];947
ro tile [threadIdx.x, threadIdx.y + i];948

}949
}950

}951
952

// Final analysis953
$ faial −b 16,16 −g 64,64 transposeCoalesced.cu954
*** DATA RACE ERROR ***955

956
Array: tile [15, 14]957
T1 mode: W958
T2 mode: R959

960
−−−−−−−−−−−−−−−−−−−961
Globals Value962

−−−−−−−−−−−−−−−−−−−963
blockIdx.x 0964

−−−−−−−−−−−−−−−−−−−965
blockIdx.y 0966

−−−−−−−−−−−−−−−−−−−967
nreps 2968

−−−−−−−−−−−−−−−−−−−969
r 1970

−−−−−−−−−−−−−−−−−−−971
972

−−−−−−−−−−−−−−−−−−−−−973
Locals T1 T2974

−−−−−−−−−−−−−−−−−−−−−975
i 0 0976

−−−−−−−−−−−−−−−−−−−−−977
i1 0 0978

28 T. Cogumbreiro, J. Lange, D. Liew Z.R., and H. Zicarelli

−−−−−−−−−−−−−−−−−−−−−979
threadIdx.x 15 14980

−−−−−−−−−−−−−−−−−−−−−981
threadIdx.y 14 15982

−−−−−−−−−−−−−−−−−−−−−983

	Checking Data-Race Freedom of GPU Kernels, Compositionally

