
Product Programs in the Wild: Retrofitting
Program Verifiers to check Information Flow

Security (Artifact)

Marco Eilers, Severin Meier and Peter Müller

April 29, 2021

1 Getting Started
The artifact is a VirtualBox VM image that contains our implementation
and benchmarks, i.e., Nagini with the information flow extension, the prod-
uct program implementation for Viper, and SecC for comparison. To run it,
simply import it into an up-to-date version of VirtualBox (we tested with
version 6.1) that has the VirtualBox extension pack installed. It uses 8GB
of RAM and four logical cores by default; if these values are too high for
your system, feel free to adjust the number of cores, but the VM requires
6-8GB of RAM to work correctly.

The image contains an installation of Ubuntu 20.04. Both the user name
and the password are “artifact”.

For a quick check to ensure that the setup works, you can for example
try the following two steps:

1. Nagini: Run the following commands from a new terminal:
cd n a g i n i
n a g i n i −− s i f=t r u e t e s t s / s i f −t r u e / v e r i f i c a t i o n / examples / b a n e r j e e . py

This should result in the following output (modulo timings):
V e r i f i c a t i o n f a i l e d
E r r o r s :
The p r e c o n d i t i o n o f method setName might not ho ld .
A s s e r t i o n LowVal (n) might not ho ld . (b a n e r j e e . py@76 . 8)
V e r i f i c a t i o n took 17 .82 seconds .

2. SecC: Run the following commands from a new terminal:
cd s e c c
. / SecC . sh examples / case−s t u d i e s / cav2019 . c

This should result in the following output (modulo timings):

1

examples / case−s t u d i e s / cav2019 . c
th r ead1 . . . s u c c e s s (t ime 374ms)
th r ead2 . . . s u c c e s s (t ime 72ms)
t h r e a d 1 _ i n s e c u r e . . . caught i n s e c u r e
t h r e a d 2 _ i n s e c u r e . . . caught i n s e c u r e

2 Artifact Overview
In this document, we will first give an overview of the data available in the
artifact; then we will describe the general setup and usage of the modified
Nagini tool, show how to replicate the experiments done in the paper, give
an overview of the source code of all involved programs, and finally show
how to re-create the artifact VM using the supplied “setup_vm.sh” script.

The home folder of the artifact user in the VM contains the following
important files and directories:

• Paper: the submitted version of our paper can be found on the desktop
and in the home folder of the “artifact” user.

• The “nagini” directory contains the sources of the modified Nagini
verifier, along with all Nagini benchmarks (in the “tests” subfolder).
Nagini has been pre-installed and can be run by simply executing
“nagini <options> path/to/file.py” from the command line.

• The “secc” directory contains the sources and benchmarks of the SecC
verifier. These have also been compiled; SecC can be run using the
script “/home/artifact/secc/SecC.sh”.

• While the “nagini” directory already contains a pre-compiled version
of the Viper tool Nagini builds on, the “viper” directory contains the
sources of the Viper tool, including the standard Viper language and
backend verifiers, as well as the language extensions added for verify-
ing information flow security and the implementation of the product
program construction on the Viper level.

• The “scripts” directory contains scripts to automatically re-create the
experiments from the paper.

• The “logs” directory contains the outputs we got when running said
scripts in the VM

• The “docs” directory contains setup and usage instructions and a tu-
torial for Nagini that explains the supported specification language.

2

3 General Tool Setup and Usage
Here, we describe the general usage of the Nagini implementation that was
modified to support verification of information flow security; to see how to
exactly replicate the evaluation from the paper, see the next section.

Nagini is available open source under the Mozilla Public License 2.0; its
source code is hosted publicly on Github1. The branch used in this artifact
is named “cav_artifact”. This branch contains a pre-compiled version of the
Viper verification infrastructure that Nagini depends on; Viper’s sources are
also available open source under the MPL 2.0, and available on Github2

Installation instructions for Nagini can be found in the aforementioned
Github repository, or in this VM in the file “docs/README.rst”. In this
VM, Nagini has already been installed.

To run Nagini, execute “nagini <options> path/to/file.py”, where the
file is a Python 3 file (version 3.5 or newer are supported) that has been
annotated with type hints according to PEP484, and that contains specifi-
cations in Nagini’s own specification language. As an example, a supported
file looks as follows:
from n a g i n i _ c o n t r a c t s . c o n t r a c t s import ∗

def abs (x : i n t) −> i n t :
Ensu re s (R e s u l t () >= 0)
Ensu re s (I m p l i e s (Low(x) , Low(R e s u l t ())))
i f x >= 0 :

r e t u r n x
r e t u r n −x

This file first imports Nagini’s contract library; it then defines a func-
tion that computes the absolute value of an integer. The function’s input
parameter and its return value are annotated with a type hint (they are
both integers), and two calls to the “Ensures” function at the top state two
postconditions of the function, namely, that the returned result will be non-
negative, and that if the input value is low (non-secret), then the result of
the function will be non-secret as well.

A tutorial for Nagini’s specification language, including the specification
constructs used for information flow verification, can be found in the Wiki
of Nagini’s Github repository3 or in this VM in “docs/tutorial.md”.

The most important command line options supported by Nagini are the
following:

• “–sif=v” activates verification of information flow security properties
by using the product program construction. v can either be true for

1https://github.com/marcoeilers/nagini
2Viper consists of several repositories which can all be found under https://github.

com/viperproject/; we will discuss the relevant repositories in one of the following sec-
tions.

3https://github.com/marcoeilers/nagini/wiki

3

proving ordinary non-interference for sequential programs, poss for
proving possibilistic non-interference for concurrent programs, or prob
for proving probabilistic non-interference for concurrent programs, as
described in the paper.

• “–benchmark=n” will verify the given file n times in a row and measure
and output the verification times. We use this option to measure times
for our evaluation.

• “–ignore-obligations” disables the checking of some liveness properties
that Nagini normally proves by default (e.g., that all locks that are
acquired by a thread are eventually released again, so that no other
thread waits for a lock infinitely long). Proving these liveness proper-
ties sometimes requires additional specifications and can impact veri-
fication time; where these checks are not needed (in particular, when
comparing with SecC, which does not prove any liveness properties),
we use this option to focus on proving information flow security only.

• “–print-viper” will print the Viper program that Nagini generates from
the input Python program. When information flow verification is ac-
tivated, the printed program will be the modular product program of
the encoded Python program.

• “–counterexample” will lead Nagini to print a counterexample for ev-
ery verification error, i.e., for every statement or piece of specifica-
tion that could not be verified. As an example, consider a version
of the example above where the second postcondition is simply “En-
sures(Low(Result()))”: this is not correct, since the output obviously
leaks secret information if the input is secret. Nagini will show that
the postcondition does not hold, and show states from two executions
s.t. low values are equal in both executions:
V e r i f i c a t i o n f a i l e d
E r r o r s :
P o s t c o n d i t i o n o f abs might not ho ld .
A s s e r t i o n Low(R e s u l t ()) might not ho ld . (a r t t e s t . py@5 . 1 2) .
F i r s t e x e c u t i o n :
Old s t o r e :

x −> F a l s e
Old heap : Empty .
Cu r r en t s t o r e :

x −> Fa l s e ,
R e s u l t () −> F a l s e

Cu r r en t heap : Empty .

Second e x e c u t i o n :
Old s t o r e :

x −> True
Old heap : Empty .
Cu r r en t s t o r e :

x −> True ,
R e s u l t () −> True

4

Cur r en t heap : Empty .

In this example, the input values are non-equal between both execu-
tions (since they are high), and therefore the result values are non-
equal as well, which violates the postcondition. Note that, in Python
3, booleans are a subtype of integers, which is why Nagini in this case
generates a counterexample where integer variables contain boolean
values.

4 Reproducing Results from the Paper
We have included scripts to automatically run the experiments to reproduce
tables 1, 2, and 3 in the “scripts” folder. We have also included the results
we got when running these scripts in the “logs” folder.

Note that, for all benchmarks, the results of running them in a VM with
four logical cores will differ from the ones we got when running the evaluation
for the paper, which we did on a machine with 12 physical and 24 logical
cores, not using a VM. In particular, it is expected that tests that can be
verified concurrently using many cores (which Nagini/Viper does by default)
will slow down substantially more when reducing the number of available
cores than tests that could only be verified mostly sequentially in the first
place. Additionally, Nagini/Viper by default starts a verification thread for
every logical core on a machine; the overhead caused by this can mean that
simple examples actually verify more quickly on a four core machine than
on a 12/24 core machine.

4.1 Table 1

The results in Table 1 can be reproduced by running “scripts/table1.sh”,
which will run Nagini 8 times on each of the examples in Table 1 with the
respective appropriate settings. Users may feel free to increase the num-
ber of repetitions; we chose 8 because some repetitions are needed for the
JVM to warm up (which is why the first few runs are generally slower) and
deliver good performance (we state in the paper that measured times were
after JVM warmup) but we wanted to keep the time to run the examples
somewhat reasonable.

The paths to the respecitve examples are printed out, so that the files
(which include annotations that state which error messages are expected)
can be inspected manually. As stated in the paper, the examples were
adapted from Eilers, Müller and Hitz, ESOP 2018 / TOPLAS 2020; for
comparison, the original versions can be found online4 and also in the direc-
tory “other-benchmarks” in the home directory in the VM.

4http://viper.ethz.ch/modularproducts/

5

4.2 Table 2

For Table 2,

• “scripts/table2-nagini-sif.sh” reproduces column TN (Nagini with in-
formation flow verification enabled)

• “scripts/table2-nagini-no-sif.sh” reproduces column TNP (Nagini with
information flow verification disabled)

• “scripts/table2-secc.sh” reproduces column TS (SecC with information
flow verification enabled)

As before, for Nagini, we do 8 repetitions per example, except for the
two longest-running examples with information flow verification enabled,
where we have set the number of repetitions to 4 to keep running times
reasonable. Note that we have observed that verification times for these two
examples can fluctuate quite a bit (e.g. between barely over one minute and
10 minutes).

Here, Nagini is used with the “–ignore-obligations” option throughout
to avoid verifying liveness properties not checked by SecC (as explained in
the previous section).

4.3 Table 3

For Table 3,

• “scripts/table3-products.sh” reproduces column TSIF (Nagini with the
product construction enabled)

• “scripts/table3-noproducts.sh” reproduces column T (Nagini with the
product construction disabled)

Here, we do not use Nagini’s benchmark option, but instead run the
test suite directly; as a result, Nagini will check if the verification result is
the same (i.e. conforms to the annotations inside the test files) with and
without the product construction. For JVM warmup, four “warmup” files
are run at the beginning of the test suite. Note that the relevant tests are
the ones marked as “verification” tests; they are followed by a number of
“translation” tests that only check if Nagini rejects invalid inputs, which are
not included in Table 3 (since the programs are rejected and therefore not
verified) and can be ignored.

5 Source Code Description
Here, we will give pointers to the relevant source code.

6

5.1 Viper

Viper is implemented in Scala. The “viper” directory contains the sub-
directories “silver” (the Viper language), “silicon” and “carbon” (Viper’s
backend verifiers), as well as “silver-sif-extension” and “silicon-sif-extension”.
The latter two contain extensions of the Viper AST with nodes for informa-
tion flow specifications and code that performs the product construction.

In particular, in “silver-sif-extension”

• “src/main/scala/SIFAstExtensions.scala” contains classes like “SIFLow-
Exp”, representing the assertion low(e), and “SIFLowEventExp()”,
representing lowEvent.

• “src/main/scala/SIFAstExtensions.scala” also contains classes that im-
plement statements like break and continue (“SIFBreakStmt” and
“SIFContinueStmt”) which, as mentioned in the paper, are statements
that Nagini previously encoded using goto statements, but which now
have special AST nodes, which makes it easier to construct a product
program.

• “src/main/scala/SIFExtendedTransformer.scala” constructs a product
program of an (extended) Viper AST.

“silicon-sif-extension” is only relevant when using counterexamples; it
translates a counterexample for a Viper product program back to two sepa-
rate counterexamples of the original Viper program (one for each execution).

5.2 Nagini

Nagini is implemented in Python but used Viper via a library that allows
interacting with a JVM from Python. The pre-compiled Viper JAR files
are contained in “src/nagini_translation/resources/backends”. In general,
“src/nagini_contracts” contains contract functions like “Ensures”, “Result”
and “Low” that are to be imported and used in code to express specifi-
cations, and “src/nagini_translation” contains the code that encodes an
annotated Python program into a Viper program, invokes a Viper backend,
and subsequently translates errors back to the Python level.

Since the product transformation is performed on the level of the encoded
Viper program, Nagini’s implementation only required few adaptations to
enable information flow specifications:

• As mentioned above, “nagini_contracts” now contains additional func-
tions like “Low” and “LowEvent”

• In “nagini_translation”, “main.py” offers the “–sif” command line op-
tion and invokes the product transformation if it is used (line 138)

7

• Some of the translator classes that perform the actual encoding from
Python to Viper (contained in “nagini_translation/translators”, for
example the statement translator that contains methods like “trans-
late_stmt_Assign” and “translate_stmt_While”) have been subclassed
(in “nagini_translation/sif/translators”), either to encode new spec-
ification functions like “Low” (in the contract translator) or to use
the new extended Viper AST nodes for break, continue, and other
statements that are normally encoded using gotos (e.g., the “SIFState-
mentTranslator”, which extends the ordinary “StatementTranslator”,
overrides function “translate_stmt_Break”).

• Additional checks have been added in the ordinary translator classes
where necessary. For example, as described in the paper, the statement
translator adds an assertion to check that the branch condition of every
if-statement is low if probabilistic non-interference is verified (line
1011 and following in “nagini_translation/translators/statement.py”).

6 Re-Creating the Artifact
The file “setup_vm.sh”, included on Zenodo, can be executed as root in
a fresh Ubuntu 20.04 VM from the home directory; it will re-create the
entire artifact VM (i.e., download and compile/install all tools, download
all benchmarks and logs).

8

