
Lisp in the middle
using Lisp to manage a Linux system

Michael Raskin∗
raskin@mccme.ru,raskin@in.tum.de

Technical University of Munich
Garching bei München

ABSTRACT
In the Lisp community one can still find some nostalgia for the time
of Lisp machines. The defining feature that has been since lost is
having a powerful programming language as the main method of
controlling the system behaviour.

Unfortunately, to the best of our knowledge, there are few mod-
ern systems that try to revive this approach. Moreover, regardless of
the configuration language in use, managing the system as a whole
is usually associated purely with managing a global persistent state,
possibly with parts of it getting enabled or disabled in runtime.

We present a system design and a description of a partial imple-
mentation of Lisp-in-the-middle, a system based on the common
GNU/Linux/X11 stack that uses Common Lisp for runtime system
policy and per-user policy. We prioritise ease of achieving com-
patibility with niche workflows, low rate of purely maintenance
changes, and minimising the unnecessary interactions between the
parts of the system unless requested by user.

CCS CONCEPTS
• Software and its engineering → Operating systems; Applica-
tion specific development environments;

KEYWORDS
operating systems, Linux, Lisp machines
ACM Reference Format:
Michael Raskin. 2021. Lisp in the middle: using Lisp to manage a Linux
system. In Proceedings of the 14th European Lisp Symposium (ELS’21). ACM,
New York, NY, USA, 9 pages. https://doi.org/10.5281/zenodo.4724166

1 INTRODUCTION
Since the timewhen Lispmachines were in use, a variety of software
has emerged that allows to use some flavour of Lisp to control some
subset of the computer environment.

Among these projects, Emacs [1] probably enjoys the widest
adoption. While many people use it mainly for editing text, there
are plugins that add functionality ranging from email client to
a window manager. Other projects used as parts of their main
environment by some people are StumpWM [2] (window manager
∗The author is supported by an ERC Advanced Grant (787367: PaVeS)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.4724166

for X11) and Guix/Guix-SD [3] with Shepherd [4] (package manager
based on Guile Scheme, a service management tool based on Guile,
and a GNU/Linux distribution based on them).

There are interesting projects implementing entire bare-hardware
OS in Lisp, such as Mezzano [5], Movitz [6] and LOSAK [7]. To the
best of our knowledge, all of them were (and Mezzano currently is)
developed inside virtual machines.

We experiment with using Common Lisp for access policies and
glue code in the context of runtime system management. Unlike
many modern tools for system state management and system policy
management, we consider the case of a user with programming
experience and explicit preferences about the details of the work-
flows and access control. Thus we do not consider the simplicity
of a language used to be important, but the expressive power of a
language is an important advantage. As the user has specific pref-
erences related to the workflows, interactions working without the
need to enable them explicitly are not as important as the reduction
of unexpected changes caused by the updates. Additionally, tools
to explicitly restrict unwanted interactions can be useful.

We aim to provide an environment close to the range of exotic
GNU/Linux distributions with some access to the Lisp-implemented
system functionality to shell-based workflows.

The Lisp code in the system generally implements the answers
to the two main questions. What things should happen together,
and what access control is necessary for privileged operations.

For example, when opening a laptop at home, one might want
multiple things to happen. After a WiFi connection is established,
the instant messaging client should reconnect and set the status. If
the password manager has been locked, it should ask for the master
password. If email fetching is paused for some reason, it should
be enabled again. Screen brightness that matches the environment
should be set. At the same time, screen brightness change and WiFi
reconfiguration are operations requiring root access, so there should
be some policy describing under which condition these changes
are allowed to happen. Both parts are usually managed via a mix
of manual actions, shell scripts, and service configuration settings
in various languages.

Another example requiring configurable combination of system
management operations with a subset of them being privileged is
launching an application in a restricted and partially isolated envi-
ronment. This is desirable both from the point of view of reducing
the average impact of vulnerabilities in unreasonably complex ap-
plications such as office suites and modern graphical web browsers,
and from the point of view of restricting unintended interactions
between simultaneously running applications or the runs of the
same application.

https://doi.org/10.5281/zenodo.4724166
https://doi.org/10.5281/zenodo.4724166


ELS’21, May 03–04 2021, Online, Everywhere M. Raskin

For example, a user might want to launch a Firefox instance that
only has network access via the university proxy, no access to most
of the user files, and read/write access to a specified directory with
article PDF files.

A large part of the impulse for experimentation was getting
tired of keeping track of changed systemd default settings that
needed to be reconfigured back to the previous default values or
worked around. Note that such motivations raises importance of
some negative requirements, i.e. a tool not doing undesired things
is no less important than the tool having the desired features.

In the current state the Lisp-in-the-middle system replaces some
configuration and tools with Lisp code and keeps the general struc-
ture of a GNU/Linux environment. As it is intended to adapt to
niche workflows, it does not impose much of a global structure; it
is more a collection of tools that turned out to be convenient for
specific tasks. We believe that experiments with alternative system
structures or alternative interaction approaches require either a
massive upfront investment, or something that can be almost imme-
diately used as a day-to-day environment and gradually extended
from the inside. While the former approach might allow a much
better eventual outcome in the case of success, we follow the latter
one to reduce the risk. We hope that future expansion of the Lisp
layer in the Lisp-in-the-middle system will lead to accumulation of
tools and experience useful both for building a non-standard system
on top of the standard low-level parts of GNU/Linux software stack,
and for providing isolated and controllable instances of software
packages required for interoperability. Examples of hard-to-replace
packages are web browsers and office file format editors.

Centralised management of the system by interoperating dae-
mons is what systemd does after expanding its scope from being
an init system and daemon supervisor. Unlike systemd, we aim to
provide configuration by defining or replacing the functions that
make policy decisions. We also want to allow multiple replaceable
daemons to manage different parts of the system without tight
coupling between the daemons.

Currently the system exists as a small set of libraries and tools,
some in Common Lisp, some in amix of Nix/Shell/C, and an example
system definition using these libraries and tools.

2 AN EXAMPLE INTERACTION: REDUCING
POWER CONSUMPTION

We proceed to describe a small example of the events triggered
when a user requests to reconfigure the system in the runtime. The
user has unplugged the laptop from an AC power supply and plans
to use the laptop without AC power supply for a significant amount
time. Thus the user wishes to reduce the power consumption of the
system. To achieve that, the user calls the disconnect function in
an unprivileged Common Lisp image. This might be done via a REPL
or via a command-line parameter to a newly started image. The
disconnect function is defined in a way similar to the following.
(defun disconnect

(&key kill-ssh kill-wifi kill-bg (brightness 1)
(cpu-frequency "min") kill-matrixcli
standby-options standby kill-mounts)

(when kill-mounts
(loop for d in (directory (~ "mnt/*/")) do

(& fusermount -u (namestring d))))
(alexandria:write-string-into-file "10"
(format nil "~a/.watchperiod" (uiop:getenv "HOME"))
:if-exists :supersede)

(! web-stream-updater-starter quit)
(uiop:run-program "rm ~/.update-web-streams-*"

:ignore-error-status t)
(ask-with-auth

(:presence t)
`(list

(set-cpu-frequency ,cpu-frequency)
(set-brightness ,brightness)
,@(when kill-wifi `((kill-wifi "wlan0")))))

(when kill-ssh
(ignore-errors (stumpwm-eval `(close-ssh-windows)))
(! pkill "-HUP" ssh-fwd) (! pkill "-HUP" -f /ssh-fwd))
(when kill-bg (kill-background-process-leaks))
(when kill-matrixcli
(! pkill -f /matrixcli) (! pkill -f " matrixcli"))

(! x-options)
(when standby (apply 'standby standby-options)))

Depending on the current needs, it might stop unnecessary back-
ground processes (SSH sessions, stuck Firefox instances in the back-
ground X session, IM clients, retrieval of web feeds), unmount net-
work filesystems, change the refresh rate of the status bar, reduce
CPU frequency and screen brightness, turn off the WiFi interface,
reconfigure the X session in case an external monitor has been
disconnected, and suspend the laptop to RAM. Some of these oper-
ations are performed using previously written shell scripts, some
are implemented inside this function, some are called from another
part of the configuration.

Some parts of the disconnect functions require privileged op-
erations. In particular, we will consider the part corresponding to
the change in the CPU frequency and the screen brightness. As
the function is executed inside a non-privileged process, it asks the
system management daemon to perform the privileged operations.

2.1 Inter-process requests
If the disconnect function is called with the default arguments,
the following form gets executed.
(ask-with-auth

(:presence t)
`(list

(set-cpu-frequency "min")
(set-brightness 1)))

The ask-with-authmacro expands to the code that connects to
the system management daemon socket to send the request, possi-
bly wrapping it into some authentication or authorisation exchange.
In this section we describe how the requests are represented and
sent.

The main Common Lisp system management daemon creates
a listening socket with an address on the file system to receive
requests. The requests are s-expressions, containing strings and
numeric literals. Symbols (except NIL) are deliberately not allowed
for two reasons. First, there are differences in symbol treatment
between Lisps (mainly related to representing packages or modules



Lisp in the middle ELS’21, May 03–04 2021, Online, Everywhere

when serialising a symbol), while lists, strings and most numbers
are represented in the sameway. The identical representation across
the Lisp language family should make migration (as well as using
multiple policy daemons in different languages for managing dif-
ferent parts of the system) easier. Second, one of the obvious use
cases for allowing some symbols in the requests is passing some
part of the request as keyword parameters to a function. We want
to discourage such an approach, because policies defined in such a
way are likely to allow more than intended. Utility functions for
personal use are likely to gain additional keyword parameters over
time, and expanding their interface should not require complete
review of all the possible requests. As a simple example, a function
that converts files to a different format might eventually gain an
extra keyword argument to remove original files in case of success.
In that case, the right to pass it arbitrary keyword arguments might
become more sensitive.

There is a special package for request handlers. The request must
be a list; the first element must be a string, which is looked up (after
converting to the upper case) in the package to find the handler
that will be executed with the rest of data as parameters. Each
connection also has a hashtable of extra data. This extra data can be
used, for example, in the process of authentication of requests. The
extra data can be freely read and modified by the request handlers.

For example, a request ("SET-CPU-FREQUENCY" "min") will
lead to a call
(socket-command-server-commands::set-cpu-frequency

context "min")

where context might contain, for example, information whether
this is a part of a larger request that has been authorised by the
physically present user.

For convenience, the ask-with-auth macro allows the user to
pass symbols inside the requests. Each symbol is replaced with a
string representing its name. Hence calling the disconnect func-
tion leads to the following request content after replacing the sym-
bols with their names.
("LIST"

("SET-CPU-FREQUENCY" "min")
("SET-BRIGHTNESS" 1))

However, we do not allow these operations to be requested by
an arbitrary process without confirmation from the user, thus the
conversations with the server is more complicated.

2.2 Authentication and authorisation
Before executing a request the daemon usually needs to check if
the policy allows such a request. The policies are defined by Lisp
code executed by the daemon. The management daemon provides
a few ways to either verify the client’s claims about its identity or
to ask the physically present user whether the command should be
permitted.

The simplest and fully automatic way of authentication is verify-
ing that the client has the claimed user ID. This is done by writing a
random token into a file readable only by the target UID and asking
the client process to provide the token. A simple way of authorising
a request with slightly larger impact is to ask the physically present
user to confirm that the request should be executed.

Consider for example the ask-with-auth invocation inside the
disconnect function. This macro always performs UID authenti-
cation, and additional authorisation by the physically present user
is requested in this case. First the client process sends a request to
confirm having access to the files only readable as user raskin.
("REQUEST-UID-AUTH" "raskin")

The server replies with the filename containing the key. The
client reads the key and uses it to send an authenticated request,
which requires additional authorisation via confirmation from the
physically present user. Here the timeout for the user reaction is
15 seconds. The request demands to change two settings: CPU
frequency and screen brightness.
("WITH-UID-AUTH" "JDPBTP56Y3LALB6FMA54"

("WITH-PRESENCE-AUTH" "T"
("PROGN" ("SET-CPU-FREQUENCY" "min")

("SET-BRIGHTNESS" 1))
15))

The daemon switches to a specially reserved virtual terminal
to separate the communication between the daemon and the user
from the programs in the normal user session. After a switch to
a dedicated virtual terminal, the user is presented with the list of
operations to confirm or cancel. If the user confirms the request, the
daemon adjusts CPU frequency and screen brightness using sysfs
virtual filesystem provided by the Linux kernel for interaction with
drivers. Afterwards the daemon reports the success or failure to
the client process.

As screen resolutions vary in a wide range, but font size config-
uration in plain Linux kernel-rendered virtual terminal using the
fbcon driver is limited, we use a reduced interface to graphics on
virtual terminals (framebuffer) provided by the Linux kernel with
fbterm, a framebuffer terminal emulator with vector font support.

2.3 Integration with existing scripts
Sometimes an existing script in another programming language
is modified to use management daemon requests instead of, for
example, sudo.

We mainly use a saved Lisp image with all the relevant library
code loaded and allow the scripts to just execute it passing the
Lisp code for performing a request. A shell script can then include
something similar to the following.
lisp-shell.bin --eval '(ask-with-auth (:presence t)

`("SET-BRIGHTNESS" 1))'

3 OBTAINING INFORMATION FROM THE
WEB

Web browsing is performed in a tiered manner: in the best case,
plain HTML is downloaded, then it is parsed using
cl-html5-parser [12], and then the parsed data is converted to a
plain text representation using our Thoughtful Theridion library
[13]. The download might be automated using Throughful Therid-
ion’s web page walker DSL. If the page requires Javascript to fetch
the content, a background Firefox instance with Marionette remote
control is started to obtain the data, save the HTML and also the
corresponding text representation. In the unfortunate case where
an interactive web browser is required, an isolated (typically per



ELS’21, May 03–04 2021, Online, Everywhere M. Raskin

site) instance of Firefox (or Chromium for sites failing to work in
Firefox) is used.

The latter two cases include starting a browser in an isolated
environment. This happens with the assistance of the system man-
agement daemon. As an example, evaluating the following code in
an unprivileged Lisp instance will start a virtual X session, launch
Firefox with full network access and limited file system access, open
the ELS page, select the current year, wait for the second page to
load and return the URL of the image.
(uiop:launch-program "xdummy :9")
(with-new-firefox-marionette

() (() :netns nil :display 9)
(prog1 (progn

(marionette-set-url
"https://european-lisp-symposium.org/")

(ask-marionette-parenscript
`(ps:chain document document-element

(query-selector "a.current") (click))
:wait-ready t)

(first
(ask-marionette-parenscript
`(return (ps:chain

document document-element
(query-selector "span.imagery img")
src)))))

(marionette-close)))

While the substance of the task is the code passed to the calls to
ask-marionette-parenscript, we are interested in the request to
the daemon that happens due to the with-new-firefox-marionette
macro.

The main part of the expansion is a call to the firefox function
that launches Firefox in an isolated environment with limited file
system access and, if requested, network access restricted to ac-
cessing the selected proxy. The function also tells Firefox to enable
the Marionette external control framework. This framework has
been initially implemented for automated testing of Firefox itself.
Marionette is also used as a foundation for Geckodriver, a tool for
automated testing of websites in Firefox. The instance can be used
for interactive browsing or for automated interaction with some
websites.

To run Firefox (or any other command) in an isolated environ-
ment, the client process sends a request to the system management
daemon. We do not show a complete request here because it has
too many parameters. The request contains the configuration for
the files that should be available inside, which devices such as
sound cards and video cameras should be made accessible to the
application, what network access should be provided, etc.

3.1 Sandboxing
The request to run some command in an isolated environment al-
lows a client process to claim a fresh user ID and run some code
under this UID for partial access control. It is also possible to re-
quest isolation using some of the technologies developed for Linux
containers. For example, many vulnerabilities in the desktop pro-
grams when opening a malformed document have significantly less
impact if the corresponding program has neither network access

nor write access to anything outside the current directory. Using
a unique UID also allows controlling the scope of daemons like
PulseAudio that insist to be run only once in a user session and are
required by some software. This functionality permits controlling
the interaction between the non-Lisp components of the system.

The user has access to launching programs in isolated environ-
ments via a normal Lisp function, similar in purpose to uiop:run-program
but with numerous keyword arguments to describe the desired en-
vironment and functionality available to the program.

3.2 Window management integration
If the firefox function was called with the :stumpwm-tags key-
word argument, all the windows created by this Firefox instance will
be automatically assigned the specified window tags by StumpWM.
These tags can be used to manipulate the windows as desired. The
implementation is as follows.

GUI applications launched in isolated environments can be distin-
guished, for example, by the internal host name of the environment.
We have expanded StumpWM support of the X11 protocol window
properties and provide functions to assign window tags based on
window properties. In particular, the Inter-Client Communication
Conventions Manual standard provides access to the hostname of
the client application and the Extended Window Manager Hints
standard provides access to the process ID and hostname of the
client application via X11 window properties.

On the StumpWM side we add a socket with an address on the
file system. Before launching the isolated application, we evaluate
code in StumpWM that establishes correspondence between the
chosen hostname of the isolated environment and the desired tags.

4 UPDATING THE SYSTEM
An important operation on most systems is updating the system
itself. When a user updates the system, there are two parts of the
task: a new persistent state of the system needs to be constructed,
and a subset of runtime state needs to be reinitialised based on
the new persistent state. The user initialises the system update by
calling full-refresh function in an unprivileged Lisp instance.

For the first part we use Nix package manager [8]. First we
call Nix from the unprivileged client process to prepare the new
persistent state. As Nix installs each package, from glibc to the
overall system state, into its own path, asking the Nix daemon
(provided by Nix) to construct the new persistent state is non-
destructive and can be done without special privileges. Then the
client process asks the daemon to set the newly created system state
as the active system state. This is a privileged operation; unlike
more frequent operations like adjusting the screen brightness here
the user is asked to enter the system root password for confirmation
instead of just pressing enter. This operation essentially just changes
the target of one symbolic link on the filesystem.

To update the runtime state of the daemon, the client process
sends the request to the daemon to exit; a new instance of the
daemon is automatically started whenever the old one exits. Any
data that needs to survive such restarts is stored in external SQLite
databases, mostly on RAM-backed filesystems. Such external stor-
age of the runtime daemon state reduces the risks in case of errors
in policy code leading to unhandled conditions in the daemon, as



Lisp in the middle ELS’21, May 03–04 2021, Online, Everywhere

well as makes it easier to share the runtime state with a different
daemon. In addition to the fully functional Common Lisp system
daemon, updating the system is also supported a proof-of-concept
Guile system daemon.

Some of the other daemons running in the system can also be
restarted after the update by normal requests to the daemon.

5 LISP IMPLEMENTATION LIMITATIONS AND
WORKAROUNDS

Common Lisp implementations (including SBCL), as well as porta-
bility libraries such as uiop, often expect that spawning other pro-
grams will be done in a relatively limited way. There are two kinds
of cases where we currently choose to use a workaround.

The first case is starting programs that need access to the termi-
nal input. The most annoying situation is the case of a long running
program that we might want to interrupt. Unix shells intended to
spawn such a case have special code for handling interruptions
while a program is running in the foreground. However, if the pro-
gram is launched from an SBCL REPL using sb-ext:run-program
or uiop:run-program, pressing Ctrl-c leads to a different, less
desirable behaviour. Both the program and the Lisp session inter-
pret Ctrl-c normally; the program exists as desired, and the REPL
starts a debugger caused by an interactive interrupt. Similarly, it is
also possible to break some expectations regarding the input/output
stream (for example, Ctrl-d can be caught both by the program
invoked and the Common Lisp implementation).

A simple way to avoid this problem is to make sure the spawned
program has its own separate pseudo-terminal. Using a terminal
multiplexer like screen and running interactive programs in a new
screen window is usually an acceptable workaround. We provide a
macro !! which interprets its argument in the same as the ! macro
does, but asks screen to start the command in a new window
instead of starting it directly. Of course, an obvious way to avoid
that is to run workflows in a traditional shell, spawning a Lisp
instance when necessary.

The second case is using special system functionality, for exam-
ple file locks. For Common Lisp implementations it is more natural
to implement concurrency as multiple threads in a shared address
space. However, this means that system APIs intended for use in a
multi-process model are not fully usable. We use existing wrapper
programs for such functionality or write small helper executables in
C. For example, if the use of POSIX flock function for file locking
is desired, we spawn a separate process that acquires a lock, reports
success when the lock is acquired, then waits for the command to
release the lock.

6 OVERALL STRUCTURE OF THE SYSTEM
The initial boot is performed in a way pretty similar to other
GNU/Linux distributions. The customisation of this stage is done
via a shell script. Once the system runs with the normal storage
properly set up, a minimalistic init process sinit is launched for
the core system tasks (releasing the process memory structures
of the processes that terminate after their corresponding parent
processes has terminated, and handling the system shutdown), and
the main Lisp process is started.

The Lisp process starts the login processes on the virtual termi-
nals, and launches the daemons (such as CUPS printing daemon
and OpenSSH) according to the policy. Afterwards the system Lisp
daemon starts listening on a Unix domain socket on the file system
for requests. The requests are used for operations requiring special
access in a way similar to the way sudo or doas are used. Using a
Unix domain socket for communication instead of e.g. a local HTTP
server allows us to send file descriptors. Passing file descriptors is
used in the context of isolated environments.

A large part of the scripts for launching the daemons and of the
daemon configuration files is generated using the code from NixOS
GNU/Linux distribution.

We do not currently use any service supervision system, mostly
because restricting the global interactions leads to a limited set
of system-wide services with failure modes that are invisible to a
service supervision system anyway.

A small library is provided for writing both the system-wide
policy code and the user-level policy code. We will now describe
the provided functionality.

7 OTHER RELATED FUNCTIONALITY
7.1 Authentication and authorisation
Request authorisation by the physically present user supports some
extra features.

The client can provide extra text to explain to the user why
the request has been sent. Sometimes authorising the request will
require the user to enter a password, either their own, or belonging
to a specified other user on the system (usually the root user).
The password request and entry will happen in the same reserved
virtual terminal to prevent abuse of input interception in the X11
protocol. The same mechanism can be used by a client process to
request an application-specific password from the user without the
password going through the normal input channels of the current
session.

7.2 Isolated environments
Our protocol for requests supports forwarding some status mes-
sages to the client as they happen without waiting for the entire
request to finish. For example, when starting a command in an
isolated environment, it is possible to have the standard output
(or the exit code of the program) as a return value, but forward
the error messages as they appear. This is based on sending the
file descriptors through the socket and thus requires the socket to
be a Unix domain socket as opposed to a TCP socket. The same
functionality also allows to run a command-line program in an
isolated environment but provide it with the input from the current
pseudo-terminal.

While the client process has a lot of freedom in configuring
what files are accessible inside the sandbox, it may be sensible to
impose some limitations. For example the following policy says
that an empty tmpfs (temporary memory-based filesystem) can be
mounted wherever the requesting process wishes, but real files and
directories can either be provided at their true location, or inside
/tmp/ or /home/, or at a location without any well-knownmeaning.
This restricts the possibilities for requesting access to an installed



ELS’21, May 03–04 2021, Online, Everywhere M. Raskin

setuid program inside the sandbox and confusing the program with
fake entries inside /etc/.
(defun nsjail-mount-allowed-p (from to type)

(or
(equal type "T") (equal from to)
(and
(or

(alexandria:starts-with-subseq "/home/" from)
(alexandria:starts-with-subseq "/tmp/" from))

(or
(alexandria:starts-with-subseq "/home/" to)
(alexandria:starts-with-subseq "/tmp/" to)
(equal "/tmp" to)
(not (find

(second (cl-ppcre:split "/" to))
*well-known-directories* :test 'equalp))))))

On the current system the risks of abusing setuid binaries are
further reduced by having only 4 setuid binaries. There is some
separate support for generating safe contents for specific files inside
/etc/ such as /etc/passwd (but not /etc/shadow).

7.3 Miscellaneous Lisp utilities
For many system administration tasks, the simplest way to perform
them on GNU/Linux involves invoking utility programs and parsing
their output. We provide some tools to simplify manipulating shell
commands, and tool-specific wrappers for some commands.

We provide a function to parse the network address list returned
by the ip network configuration tool, as well as a few trivial wrap-
pers for the most common network configuration modifications,
including WiFi state control via wpa_supplicant. We currently
assume that the configuration of wpa_supplicant is managed sep-
arately.

We wrap some of the basic Nix package management operations,
basic user account manipulation operations, power management
etc.

In the spirit of the standard with-open-file macro and multi-
ple with-. . . macros provided by Lisp libraries, we implement
shell-with-mounted-devices macro that attaches a file system
or multiple file systems on removable devices, launches a speci-
fied shell command (by default it opens a new shell window in
the current screen session) and detaches the file systems when
the command finishes. Many graphical environments based on
GNU/Linux offer graphical shortcuts to attach a file system on the
USB drive and to launch a file manager or a terminal for that file
system, but we are not aware of environments that provide an op-
tion to tie automatic disconnection of a file system with the lifetime
of the corresponding terminal or file manager.

Of course, the functionality provided for lifetime tracking of a
non-blocking command can be used for implementing other related
functionality, such as deactivating the screen saver for the lifetime
of a video player when the video player doesn’t implement screen
saver interaction on its own. From the low-level point of view,
the lifetime tracking of the child process is based on letting it
inherit an open file descriptor; in most cases the file descriptor will
be inherited by any descendant processes, which we consider a
desirable behaviour.

7.4 Tracking process windows with StumpWM
We also provide the automatic-tagging functionality for unsand-
boxed applications, however this only works if the initially started
process is the one creating windows. This restriction is absent when
isolation is used for launching the application, because we can as-
sign a unique hostname to the container and the application will not
change it. Note that the hostname and process ID are reported by
the application who can deliberately violate the protocol, but most
applications use some GUI libraries that reveal the data correctly.

8 COMPARISON TO OTHER APPROACHES
8.1 Similarities and differences with Guix-SD

goals
While Guix and Guix-SD also use a Lisp (namely, Guile Scheme)
to configure the system, our goals are different. Guix and Guix-SD
are intended to provide Lisp-based management and Lisp APIs for
constructing the system. GNU Shepherd manages the system in the
runtime, but it is intended for managing only the set of running
daemons, and for use via command-line. It also provides APIs that
mirror the command line invocations.

In our case, the goal is to experiment with controlling the run-
time state of a system and with providing Lisp APIs for runtime
fine-tuning as opposed to building a preconfigured system once.
An example of a difference is access to privileged commands. Guix-
SD uses the standard sudo mechanism and allows to specify the
contents of the /etc/sudoers configuration file. Our system im-
plements a custom protocol for requesting privileged operations,
and the access policy is configured by defining Lisp functions.

Guix could have been used instead of Nix for package manage-
ment; the choice of Nix here was motivated by package availability.

8.2 Request authentication and authorisation
A custom protocol for checking the UID of the other process is
providing functionality pretty similar to the getsockopt system
call with SO_PEERCRED option. However, we verify the current user
ID of the client. In contrast, getsockopt checks the identity of the
process that has initially established the connection; this could be,
for example, the parent process of the current one that did not close
the socket before spawning the current process. The behaviour we
use is more similar to the behaviour achieved when using sudo. (As
an aside, iolib does not have full support for SO_PEERCRED.)

Our protocol allows authorising multiple operations as a batch.
In this case the user will need to take an action only once, but full
information about all the actions will still be provided. This differs
from the typical situation with sudo where either each operation
requires separate authorisation, or authenticating a session leads
to all requests in the next few minutes are granted.

In many cases, the physical presence of a user is relevant: for
example, a user with physical access can shutdown the system
using the power button, so physical presence can be enough to
initiate safe shutdown; but the same user logged in via SSH might
not want to be able to shutdown the system too easily. Our solution
seems to be more robust than the usual ones when a user has
both SSH and physical login session and also has some programs
running in a pseudo-terminal accessed from both of the sessions



Lisp in the middle ELS’21, May 03–04 2021, Online, Everywhere

(e.g. using screen). In such a setup the standard policy mechanisms
of checking whether a user has any physical session, or whether
the current program is a descendant of physical login do not answer
the question whether the request comes from a physically present
user.

8.3 Isolated environments
The goals of the system include running software in isolated envi-
ronments. Linux namespaces support permits to construct some
isolated environments even without administrator access. It is still
desirable to assign single-use user IDs to different isolated envi-
ronments as an extra layer of protection. However, for things like
network isolation it does not matter whether the namespace has
been constructed as root or as user. This allows us to run a relay
for limited network access in an environment that is almost fully
isolated save for the networking, then create a nested sandbox with
access to the relay socket but not the host networking (figure 1).

Thus it would be convenient to have a tool with nested isolation
support. This makes service-oriented isolation options, including
Shepherd service sandboxing, less attractive. An intermediate op-
tion would be something like systemd-nspawn, but it requires that
the entire system is managed by systemd.

Standalone options range from pretty limited unshare to fully
featured options such as Firejail, nsjail, Bubblewrap, and others.

We use nsjail [9] tool for the low-level work necessary for cre-
ation of isolated environments, as it supports many various options
and seems stable. For example, nsjail supports presenting speci-
fied parts of filesystem inside the isolated environment, choosing
whether to use or not each kind of isolation supported by the Linux
kernel, resource limits, user and group ID handling, etc. As the
invocations of nsjail are generated by the Common Lisp code,
flexibility and feature availability are more important than conve-
nience of manual invocations of availability of predefined isolation
profiles.

8.4 Integration with shell scripts
Of course, it is possible to reimplement the authentication protocol
in the language of the script. On the other hand, maintaining im-
plementations of the protocol in multiple programming languages
increases the cost of updating the protocol.

Another approach is to have a separate management daemon
running with the user’s permissions, and use file system access
control to allow requests to such a daemon only from the client
programs with the same user ID. The user daemon will execute
the requests. It can have access to both the user Lisp scripts not
requiring special permissions and to sending a request to the system
management daemon.

A benefit of the chosen approachwith starting a saved Lisp image
is the possibility to see the parent process ID. Another benefit, which
is only relevant for scripts running in a terminal, is that the Lisp
image providing the communication with the system management
daemon can write to the terminal. A possible drawback is a higher
memory use, although most of the data in a saved Lisp image is
mapped read-only from the image on the disk and can be shared
between multiple process.

8.5 Package management
Most system-wide package managers such as dpkg and rpm typi-
cally contain some notion of package conflicts, leading to annoying
interactions between the parts that we would prefer to keep sepa-
rated and not interacting.

To have a solid foundation for managing the runtime state, we
choose a tool for managing the packages that minimises unwanted
interactions such as package conflicts, and ensure a requested state
regardless of the previous state. If we want these properties to
apply to the base system, the most natural options are Nix [8]
and GNU Guix [3]. Both the Nix package manager and the Guix
package manager inspired by Nix restrict the notion of package
conflicts by installing each package into its own directory. That
way, installation of a package is not seen as a change in the globally
shared mutable system state; instead, the installed packages are
treated as a garbage-collected pool of immutable data structures.
Updating the system with this approach is closer to constructing a
new list out of cons cells (reusing some of list elements), than to
updating the elements in-place in a sequence.

Both package managers have distributions based on them, NixOS
and GuixSD; in this case the entire system is defined as a package
with some dependencies, allowing to keep multiple versions of the
entire system and choose between them on boot without unnec-
essary duplication of the installed packages. This allows both to
install individual packages and to reuse parts of the system (e.g.
configuration files and service definitions) without running the
entire distribution.

Of course some persistent data such as PostgreSQL databases
needs to be converted to newer formats during some upgrades, so
the abstraction is not perfect. However, the cost and the risk of a
typical update of a system with some exotic packages installed are
lowered significantly.

We use the Nix [8] package manager. While Guix, which has
started as a rewrite of Nix into Guile, seems to be a natural choice for
a package manager in a Lisp OS, we currently use Nix [8] because
of a larger packaging community. In particular, Nixpkgs have better
Common Lisp package coverage than GuixPkgs. However, we use
only some parts of NixOS, because NixOS uses systemd.

8.6 Communication with StumpWM
There are alternative ways to send commands to StumpWM. One
of them relies on setting the window properties of the root window.
Unfortunately, this approach has no access control and cannot
handle concurrent commands. The generic SWANK [14] debugging
interface is often used for a similar purpose. However, it uses a
local network port that also can be accessed by all the applications
granted unconstrained network access.

8.7 Choice of implementation language
The overall design of the system and the supporting tools do not
require specifically Common Lisp or a Lisp-family language. How-
ever, many languages in the Lisp family possess all the strong sides
we consider required for comfortable use in such a setup, such as
REPL and macro support.

While scsh [10] would be a natural choice for migrating Shell
workflows into a REPL with a more powerful language, Common



ELS’21, May 03–04 2021, Online, Everywhere M. Raskin

firefox socat socat
University

proxyTCP
(local)

FS
socket

TCP

Network isolation

FS isolation

Figure 1: Providing limited network access inside isolated environment

Lisp library availability provides an advantage for some parts of the
system, as libraries such as SQLite3 FFI are readily available. An-
other language option could be Julia [11], which has macro support
and REPL, as well as solid FFI support and a very active ecosys-
tem. However, a higher level of activity comes with a drawback
as breaking changes happen more often. A tangible benefit of the
Common Lisp ecosystem is the tendency to expand the tools more
often than to change them with an impact on existing use.

In any case, we want to avoid a system design that would lock in
too many decisions. We want to make gradual migration between
multiple different system management daemons reasonably easy,
including the case when they are written in different languages
(maybe even outside the Lisp family). In particular, we want to
allow running two system management daemons simultaneously
and making requests to both of them. Moreover, it would be nice
to allow the daemons to have overlapping areas of control.

Note the system also has some small utility programs imple-
mented in C specifically to be invoked from Common Lisp code.
Such programs are useful when it is desirable to invoke low-level
system functionality from a separate process, not just a separate
thread, for example due to thread-safety concerns.

9 FUTURE DIRECTIONS
There are many things that need to be wrapped in a Lisp API; too
many to attempt listing them.

We will introduce support for more authentication checks, such
as a protocol for confirming the process ID of the program that
makes a request and looking up the corresponding executable. On
the one hand, this requires adding support for getsockopt with
SO_PEERCRED to some FFI library; on the other hand, the race con-
ditions need to be evaluated to avoid the case where a program
sends a request and immediately uses exec to replace itself with
a different executable. This can be useful to provide some reliable
context.

Implementing service supervision could be useful for some cases.
A modern computing environment often consists of multiple

interacting devices. Our model already includes multiple commu-
nicating agents without complete trust between them. It would
be interesting to try managing a multi-device environment using
interacting policy daemons.

An interface to prevent a denial of service by a misbehaving
program issuing too many requests requiring user confirmation is
needed.

Some alternative interfaces based on JSON or XML could be pro-
vided for easier integration with client code in different languages.

Providing an option to use lightweight VMs instead of containers,
probably reusing some of the SpectrumOS [15] work, would expand
the options for isolation.

Two daemons could be used to make it easier to fix broken
updates without reboot and without logging in as root.

10 CONCLUSIONS AND LESSONS LEARNED
Using a system management daemon running Lisp policy code is a
simple way for gradually increasing the part of the environment
managed in runtime via Lisp, reducing the amount of necessary
upfront work. Unlike existing solutions, authorisation policies for
privileged system reconfiguration actions are written in a high-level
general-purpose programming language (in our case, Common
Lisp). Another atypical feature naturally arising from our use of an
extensible protocol is the possibility to authorise multiple related
actions via a single user interaction without loss of transparency.
Tools developed for isolation and testing can be reused by such a
system for reducing unwanted interaction between the non-Lisp
system parts. We think such an approach will be an integral part of
a realistic project to regain some of the benefits of Lisp OS on the
modern hardware without losing the ability to interact with the
full range of tools and formats considered portable.

In general we observe that the optimistic expectations about the
effort of making a system managed by Lisp code the day-to-day
system were not too far from truth.

We observe that implementing the system-level and user-level
policies in Lisp immediately suggests convenient system-level func-
tionality in the spirit of idiomatic Lisp code that is usually over-
looked in other environments. An example is the use of with-. . .
macros.

In a somewhat disappointing way, it turned out that for many
tasks the author finds Shell workflows running Common Lispwhere
needed more convenient than alternative workflows based on the
Common Lisp REPL.

The current code of the system is available at
https://github.com/7c6f434c/lang-os.

https://github.com/7c6f434c/lang-os


Lisp in the middle ELS’21, May 03–04 2021, Online, Everywhere

ACKNOWLEDGMENTS
The author would also like to thank the anonymous referees for
their valuable comments and helpful suggestions on presentation.

REFERENCES
[1] GNU Emacs project page. Retrieved on 16 February 2018. https://www.gnu.org/

software/emacs
[2] StumpWM project page. Retrieved on 16 February 2018. https://github.com/

stumpwm/stumpwm
[3] Ludovic Courtès. Functional Package Management with Guix. European Lisp

Symposium 2013, Madrid, Spain. Retrieved on 16 February 2018. https://arxiv.
org/abs/1305.4584

[4] GNU Shepherd project page. Retrieved on 07 March 2021. https://www.gnu.org/
software/shepherd

[5] Mezzano project page. Retrieved on 16 February 2018. https://github.com/froggey/
Mezzano

[6] Movitz project page. Retrieved on 16 February 2018. https://www.common-lisp.
net/project/movitz/

[7] LOSAK project page. Retrieved on 18 February 2018. http://losak.sourceforge.net/
[8] Eelco Dolstra, Merijn De Jonge, Eelco Visser. Nix: A Safe and Policy-free Sys-

tem for Software Deployment. Large Installation System Administration Con-
ference 2004. Retrieved on 16 February 2018. http://nixos.org/~Eeelco/pubs/
nspfssd-lisa2004-final.pdf

[9] nsjail project page. Retrieved on 07 March 2021. https://github.com/google/nsjail
[10] Olin Shivers, Brian D. Carlstrom, Martin Gasbichler, and Mike Sperber. Scsh

Reference Manual Retrieved on 07 March 2021. https://scsh.net/docu/html/man.
html

[11] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman. Julia: A Fast
Dynamic Language for Technical Computing. Retrieved on 07 March 2021.
https://arxiv.org/abs/1209.5145

[12] cl-html5-parser project page. Retrieved on 07 March 2021. https://github.com/
rotatef/cl-html5-parser

[13] Thoughtful Theridion project page. Retrieved on 07 March 2021. https://gitlab.
common-lisp.net/mraskin/thoughtful-theridion

[14] Superior Lisp Interaction Mode for Emacs project page. (Includes Swank debug-
ging protocol implementation) Retrieved on 07 March 2021. https://common-lisp.
net/project/slime/

[15] SpectrumOS project page. Retrieved on 22 March 2021. https://spectrum-os.org/

https://www.gnu.org/software/emacs
https://www.gnu.org/software/emacs
https://github.com/stumpwm/stumpwm
https://github.com/stumpwm/stumpwm
https://arxiv.org/abs/1305.4584
https://arxiv.org/abs/1305.4584
https://www.gnu.org/software/shepherd
https://www.gnu.org/software/shepherd
https://github.com/froggey/Mezzano
https://github.com/froggey/Mezzano
https://www.common-lisp.net/project/movitz/
https://www.common-lisp.net/project/movitz/
http://losak.sourceforge.net/
http://nixos.org/~Eeelco/pubs/nspfssd-lisa2004-final.pdf
http://nixos.org/~Eeelco/pubs/nspfssd-lisa2004-final.pdf
https://github.com/google/nsjail
https://scsh.net/docu/html/man.html
https://scsh.net/docu/html/man.html
https://arxiv.org/abs/1209.5145
https://github.com/rotatef/cl-html5-parser
https://github.com/rotatef/cl-html5-parser
https://gitlab.common-lisp.net/mraskin/thoughtful-theridion
https://gitlab.common-lisp.net/mraskin/thoughtful-theridion
https://common-lisp.net/project/slime/
https://common-lisp.net/project/slime/
https://spectrum-os.org/

	Abstract
	1 Introduction
	2 An example interaction: reducing power consumption
	2.1 Inter-process requests
	2.2 Authentication and authorisation
	2.3 Integration with existing scripts

	3 Obtaining information from the web
	3.1 Sandboxing
	3.2 Window management integration

	4 Updating the system
	5 Lisp implementation limitations and workarounds
	6 Overall structure of the system
	7 Other related functionality
	7.1 Authentication and authorisation
	7.2 Isolated environments
	7.3 Miscellaneous Lisp utilities
	7.4 Tracking process windows with StumpWM

	8 Comparison to other approaches
	8.1 Similarities and differences with Guix-SD goals
	8.2 Request authentication and authorisation
	8.3 Isolated environments
	8.4 Integration with shell scripts
	8.5 Package management
	8.6 Communication with StumpWM
	8.7 Choice of implementation language

	9 Future directions
	10 Conclusions and lessons learned
	Acknowledgments
	References

