

RAD:CAL

A FUNDAMENTAL BREAKTHROUGH IN DETECTING ATMOSPHERIC RADICALS

Prof. Justin Holmes, University College Cork

A FUNDAMENTAL BREAKTHROUGH IN DETECTING **ATMOSPHERIC** RADICALS

Who Am I?

Professor of Nanochemistry University College Cork (UCC), Ireland

Academic Experience

- > 25 yrs in materials chemistry and nanoscience
 - Research on new (nano)materials for electronic, energy & environmental applications

Commercialisation Experience

- Co-founder of the UCC spin-out company Glantreo in 2006
- Have worked with & licensed technology to large & small companies

My Motivation

To use my knowledge and experience to develop environmental technologies that will benefit the health and well-being of all citizens.

www.radical-air.eu

Email: j.holmes@ucc.ie Twitter: @mcag_ucc Web: www.ucc.ie/en/mcag/

RAD[:]CAL

A FUNDAMENTAL BREAKTHROUGH IN DETECTING ATMOSPHERIC RADICALS

Air Pollution

AIR POLLUTION – THE SILENT KILLER

"Air pollution is the single greatest environmental health risk"

- World Health Organization

Atmospheric radicals: "Detergents of the atmosphere"

- Paul J Crutzen, Atmospheric chemist & Nobel Prize winner

RAD:CAL

A FUNDAMENTAL BREAKTHROUGH IN DETECTING **ATMOSPHERIC** RADICALS

Challenge of Detecting Radicals

NOW

- Currently, detecting radicals is ٠ complex, cumbersome and expensive
- Only a few labs worldwide can • detect radicals

FUTURE

- RADICAL is developing a break-• through way of detecting radicals with a small, low-cost electronic sensor that can be deployed globally
- This will revolutionise how we • understand and model these key drivers of air quality

1.5 m

RAD^{CAL}

A FUNDAMENTAL BREAKTHROUGH IN DETECTING **ATMOSPHERIC** RADICALS

www.radical-air.eu

Electrically Detecting Radicals

RAD[:]CAL

A FUNDAMENTAL BREAKTHROUGH IN DETECTING ATMOSPHERIC RADICALS

Building an Electronic Nose

2014-2019 – Silicon nanowire sensors to detect proteins in liquids

Streptavidin:

- ➢ 580 zM (580 × 10^{−21} M)
- Approaching single molecule detection

Georgiev, Y. M. et al., Nanotech., 2019, 30, 324001.

2020-2024 – Silicon nanowire sensors to detect radicals in gases (the atmosphere)

A FUNDAMENTAL BREAKTHROUGH **IN DETECTING ATMOSPHERIC** RADICALS

RADCAL Future Vision

- Radical sensors in use • across global networks of air quality monitors
- Better understanding • of the role radicals play in air quality regulation
- Improved air quality ٠ forecasting and mitigation
- Spin-off applications for low-cost radical gas sensors

Air quality map from the European Environment Agency

- Extended into other areas: ٠
 - Other environmental pollutants ammonia, NO_2 , SO_2 . •
 - e-health applications monitoring radicals in the human body ٠
 - Food security & surveillance ٠

- Want to know more?
- Interested in collaborating?
- Interested in the technology?

FOLLOW US

- www.radical-air.eu info@radical-air.eu @radical-air
- n radical-air

MARTCOM

