
GUIs for research software:
Why are they relevant?

Dr Diego Alonso Álvarez

Senior Research Software Engineer

RCS-ICT, Imperial College London

Contents

1. Does my RS deserve a GUI?

2. Knowing your users

3. Pros and Cons of GUIs for RS

A graphical user
interface is

about the user
If they do not like using it, then the GUI is

either not needed or it is badly done

Types of research software

Libraries Frameworks CLI Apps GUI Apps

Types of research
software: Libraries

 Toolboxes meant to be used in
other software

 Often related to mathematical
operations

 Or data manipulation

 Or accessing certain hardware

 Using them requires doing
some coding

Libraries

Frameworks

Types of research
software: Frameworks

 Tightly coupled with research in
some area of knowledge

 Often bring to the table a variety of
tools rather than a single
functionality

 Include domain specific data in
addition to code (universal
constants, material properties, etc.)

 Using them requires doing some
coding

 With an extra layer of code, parts of
them could become apps

CLI Apps

Types of research
software: CLI apps

 General purpose tools are
often facilitators of research

 Domain specific tools are often
HPC-oriented

 Do one thing only, although
often with many arguments to
modify the default behavior

 Do not require coding, but
using the terminal

Types of research
software: GUI apps

 The GUI is the whole point of
the application

 Most web apps fall into this
category

 A wide range of people can
often used them – at least, run
them!

GUI Apps

Do they need a GUI?

Frameworks CLI Apps

 Now that depends on the user’s
needs

 Having a GUI is not incompatible
with other ways of using the
software

 A GUI does not need to cover all
functionality of the software

One software:
many ways of

using it
Know your software to decide if a GUI

makes sense at all

Know your users to decide if they will
benefit from having a GUI

This Photo by Unknown Author is licensed under CC BY-ND

https://www.flickr.com/photos/yoshimov/33632889/
https://creativecommons.org/licenses/by-nd/3.0/

Types of users Sven, postdoc
Fond of open science and outreach.
Should focus on his research, but
enjoys too much showing what they
do in his group at schools and
public events. Does not know
anything about coding but he is an
excellent science communicator.

Kristoff, postdoc
Has 3 screens, a split keyboard and
rarely uses the mouse. Hopes to
finish his research in cybernetics
and HCI on time for the RS Summer
Science Exhibition.

Anna, postdoc
Likes to have things done. Needs
publications to progress in her
career and become a lecturer. Does
not mind coding but is not one of
her strengths. Prefer to spend time
in the lab or outdoors doing field
work than in front of her laptop.

Olaf, PhD student
Still figuring out the purpose of his
PhD. Has lots of data to analyse in
the HPC and has inherited some
Fortran code from a former PhD to
do it. Likes R… Fortran no so much.
Knows he procrastinates way too
much tuning his Linux workstation.

Elsa, Professor
Manages a research group of 6
postdocs and a dozen students. She
is writing 3 grant proposals and 2
review papers. She was a great
coder but hasn’t written a single
line of code in 10 years. Need all
results by yesterday.

Oaken, technician
Is a perfectionist and is obsessed
with efficiency. The less lab users
need to do, the lower the chances
they do something wrong. Thinks
the software controlling the lab
equipment is dreadful.

Count with the user when creating
something that is meant for the user

• Users with different degrees of expertise
• Users from different fields
• Ask those who are not users yet, but that could become

Ask them what they are trying to
accomplish

Ask them what barriers/challenges are they
facing when using the software

• If there is already a GUI, ask for feedback about it
• If there is not, ask them to sketch how they imagine a

potential GUI would be

Ask about the GUI

Generating user personas

Software: A python framework to extract statistical data out of series of spectra
taken from luminescent algae, among other things

User Persona Who are they? What is their main
goal?

What is their main barrier
or challenge when using
the software?

Experimentalist
postdoc

Postdoc working on a
fix term contract in
a big research group.
Has some supervisory
and teaching duties,
as well.

Have the tons of data
generated by the
experiments analysed to
get some statistical
information and generate
plots for their papers.

Cannot code. Often have to ask
colleagues to write a script and
run the tool for them with
different options, but it is time
consuming for everyone and
problematic to transfer all that
data from one computer to
another.

User personas are semi-fictional characters based on current (or ideal) users

https://www.hotjar.com/blog/user-personas/
https://careerfoundry.com/en/blog/ux-design/how-to-define-a-user-persona/

https://www.hotjar.com/blog/user-personas/
https://careerfoundry.com/en/blog/ux-design/how-to-define-a-user-persona/

Example: Git – Who uses what?

CLI app

https://git-scm.com/downloads/guis

Within IDEs Standalone GUI app

https://git-scm.com/downloads/guis

GUIs for RS come
with benefits…

and a price to pay
Including a GUI is a key decision to be taken
as soon as possible in the creation process.

You need to plan for all that it involves, the
good and the bad

This Photo by Unknown Author is licensed under CC BY-NC

https://www.freepngimg.com/png/27297-software-transparent-image
https://creativecommons.org/licenses/by-nc/3.0/

The bright side
of having a GUI

Accessibility

Usability

Reproducibility

Impact

Accessibility

Separates user from developer

• Disabilities
• Language

Accounts for users' needs

• Non-coders
• Non-experts in that field
• Students/children

No end-user knowledge of programming is required

Usability

• Reduces the learning curve and the time it takes to become proficient

Learnability

• Focus on research inputs/outputs not on technical details

Efficiency

• The visual dimension makes it easier to remember how to use the tool
after a break

Memorability

https://www.nngroup.com/articles/usability-101-introduction-to-usability/

Reproducibility

• The user is offered only the options that can be used at that time

There is less scope for misusing functionality

• Feedback and corrected values provided immediately

Can implement validation checks at user input

Input values explicit and visually accessible

Impact

• Potential pool of new contributors
• More people providing feedback on usability and errors

Increases the user base

Increases citations

• Researchers behind the tool
• RSE/RSE team developing it

Increases the visibility

The dark side of
having a GUI

Time

Complexity

New skills

Designer

Time

• Development time
• Testing time
• Deployment

Translates to higher costs

• To clients
• To showcase the app to stakeholders, investors or at a conference

Delays the delivery of the application

Complexity

• To provide tests for
• That can have bugs that need to be sorted out
• That depends on extra libraries with their own issues

More code

• To maintain the separation of concerns
• That support multi-threaded execution
• To accommodate user interaction

New architecture

New Skills

• New GUI toolkits/frameworks
• Separate programing languages

Coding skills

• Gain knowledge on GUI-related software architectures
• Testing techniques for GUIs
• New development paradigms, like event-driven programming

Software architecture and techniques

Designer

• Appropriate layout to maximise efficiency
• Familiar with accessibility issues of different types of users

Know the psychology of users

• Deal with proportions and distribution of widgets
• Appropriate combination of palettes of colors and fonts
• Might be able to create custom logos and icons

Good “taste” for creating a pleasant look&feel

Take away points

Not all software needs a GUI

• Having a GUI does not exclude
other ways of using the
software

• Only some parts of the software
might benefit from a GUI

Know your users

• Those who already are and
those who could become one

• Count with them when deciding
if including a GUI and what to
include in it

Pros and Cons of GUIs for RS

• A GUI brings benefits to the
software at multiple levels,
specially in terms of usability

• But it is a big undertaking,
requiring time, effort and new
skills

	GUIs for research software: Why are they relevant?
	Contents
	A graphical user interface is about the user
	Types of research software
	Types of research software: Libraries
	Types of research software: Frameworks
	Types of research software: CLI apps
	Types of research software: GUI apps
	Do they need a GUI?
	One software: many ways of using it
	Types of users
	Count with the user when creating something that is meant for the user�
	Generating user personas
	Example: Git – Who uses what?
	GUIs for RS come with benefits… and a price to pay
	The bright side of having a GUI
	Accessibility
	Usability
	Reproducibility
	Impact
	The dark side of having a GUI
	Time
	Complexity
	New Skills
	Designer
	Take away points

