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Abstract

The spatiotemporal variability in deep ocean mixing influences the global overturning cir-
culation, which transports, absorbs, and mixes nutrients, and heat through the ocean. It is
currently an open question what the relative contributions by a variety of candidate mech-
anisms to deep ocean mixing are. It is widely believed that internal waves are the dominant
source of deep ocean mixing. This thesis investigates the spatiotemporal variability of the
internal wave field in the Scotia Sea, a region in the Southern Ocean. The Southern Ocean
has strong surface winds and deep ocean flows, therefore being a prime location for the
generation of wind waves, internal tides, and lee waves. The relative contributions to the
kinetic energy of these different types of waves is quantified as a proxy for deep ocean mix-
ing. To investigate the spatiotemporal variability of the internal wave field, and estimate
the different contributions to deep ocean mixing, a 3D, nested, numerical ocean model is
run for one year. A novel filtering technique is applied to the flow field, separating it into
wave and nonwave components. In our model, we find that the M2 internal tide has the
largest kinetic energy of the different wave bands analysed at all depths in the Scotia Sea,
and therefore has the most potential to contribute to deep ocean mixing. In addition, the
M2 internal tide is found to be more variable in time than expected (±15%). The second
largest contribution to the kinetic energy in the internal wave field at all depths is made
by near-inertial waves, which was found to be highly variable (±63%). The kinetic energy
contained in the lee wave frequency band is found to be the third largest contribution to
the internal wave field near the bottom of the ocean. Therefore, it likely makes a smaller
contribution to deep ocean mixing than has been suggested by recent studies. In addition,
our results suggest that the M2 internal tide must be considered as a potentially important
source of mixing, and current mixing parameterisations may need to be updated to take
the temporal variability of the M2 internal tide into account.
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Chapter 1

Introduction

This chapter has four sections. In section 1.1, the global meridional overturning circulation
will be discussed. In section 1.2, the various types of waves that are relevant for this work
are briefly explained. In section 1.3, general internal wave theory will be reviewed, and
then particularised for three types of waves that we consider here. Finally, in section 1.4,
the aims of this thesis will be outlined.

1.1 The global meridional overturning circulation

The global meridional overturning circulation (MOC) is the large scale convective motion
of the ocean. It is often referred to as the global ocean conveyor belt. Fluid parcels move
up and down in different locations (overturning) and, on average, most of the motion oc-
curs along longitudinal lines (meridional). Important movements also occur latitudinally,
however. The MOC is responsible for absorbing, transporting, and mixing heat, carbon,
and nutrients in the ocean, and plays a major role in the global climate system. And as we
will discuss, internal waves, which are waves traveling through the interior of the ocean,
are thought to be important in sustaining the MOC.

The simplest view of the overturning circulation is that dense water forms near the poles in
each hemisphere, sinks to the bottom of the ocean, is subsequently horizontally transported
to the equator, and then upwells. In this view, as pointed out by Munk and Wunsch
(1998), one might expect the deep ocean to be filled with dense water. Only dense water
near the surface ocean would be heated by surface forcing and upwell. That is, only an
overturning circulation would occur in the surface ocean, and the rest of the ocean would
be filled with cold, dense water. However, this assumes that isopycnals (lines or surfaces
of equal density) are flat across the ocean, while in fact, isopycnals that outcrop near the
poles can be found to go down to approximately 1 km (Garrett, 2001). Hence, surface
forcing is indirectly applied down to approximately 1 km. From this, continuing with
the above view, one might then expect that below 1 km depth, the ocean would contain
unmoving cold, dense water. This is not the case, however. Deep ocean diapycnal mixing1

allows dense water to mix upwards. Munk (1966) suggested that in order to maintain
the observed stratification2, given global dense water formation of approximately 25-30
Sverdrups (Sverdrups are 106 cubic metres), a deep ocean diapycnal mixing value of 10−4

m2/s would be required. Globally, this would require approximately 2 TW of energy input
into deep ocean mixing (Munk and Wunsch, 1998; Wunsch and Ferrari, 2004).

1Diapycnal refers to transfers between adjacent density layers.
2Stratification refers to the local vertical density gradient in a fluid column.

1



§1.2 Overview of internal waves 2

Multiple authors have proposed the 2TW energy for deep ocean mixing is supplied by
near-inertial internal waves, generated by the wind, and internal tides (Munk and Wunsch,
1998; Garrett, 2001; Wunsch and Ferrari, 2004), although this remains an active area of
research. However, as pointed out by Webb and Suginohara (2001), deep ocean mixing
might only need to mix deep water around Antarctica until it reaches the density of
deep water in the Southern Ocean. From there, Ekman suction brings the fluid to the
surface, where it is modified by surface forcing. Ekman suction is upwelling caused by
wind-driven divergence of water near the surface; that is, when water is displaced near
the surface, it must be replenished. Once the fluid is near the surface, it is modified
by surface forcing. Webb and Suginohara (2001) estimate this might reduce the mixing
necessary to approximately 0.6 TW. In addition, Griffiths and Hughes (2004) and Hughes,
Hogg, and Griffiths (2009) suggest that available potential energy is also important to
the global overturning circulation, in particular, the available potential energy conversion
might provide an additional 0.5 TW to the approximate 2 TW required. Taken together,
given that the 2TW energy necessary is exact, this result implies that only approximately
0.1 TW would be necessary to go into mixing. There are a range of views in the literature
on this subject. In any case, deep ocean diapycnal mixing is a necessary process in
sustaining the global MOC.

The spatiotemporal distribution and variability of deep ocean mixing remains poorly un-
derstood, yet it is thought to have major consequences for the global climate system.
Melet, Legg, and Hallberg (2016) and MacKinnon et al. (2017) suggest that both the
magnitude and spatiotemporal distribution of deep ocean mixing affect ocean carbon and
heat uptake, main thermocline thickness, and consequently both the regional and the
global mean climate state, as well as future climate change on shorter time scales. Thus it
is imperative to understand the spatiotemporal variability in deep ocean mixing, which in
turn requires understanding the spatiotemporal variability in the the ocean internal wave
field, which is the topic under investigation in this work.

1.2 Overview of internal waves

The spatiotemporal variability of the internal wave field depends much on the types of
internal waves that are present and their relative magnitudes, which depends on a number
of factors with such as the local latitude, depth, bathymetry, the time of year, the presence
of storms, and strong bottom flows. Internal waves may be categorised by their generation
mechanism into three types, though there are more. Here we will provide a brief overview
of the different types of internal waves that will be relevant to this work, and a brief
conceptual outline of internal wave propagation, before going into theory.

In short, lee waves are generated by deep ocean mean flows impinging on seafloor topog-
raphy. In more detail, a bottom mean flow U0 advects fluid parcels towards a topographic
obstacle. As the fluid parcels cross the obstacle, they are forced out of their position of
neutral buoyancy. The buoyancy force attempts to restore the fluid parcel to its position
of neutral buoyancy but overshoots. Consequently, the fluid parcel thus continues to os-
cillate, radiating waves away from the lee of the hill. Lee waves have a frequency given
by kU0, where k is the wavenumber3 associated with the topography, and U0 the bottom
mean flow. Lee waves are generated near the bottom of the ocean, and are thought to
decay over approximately the first 2 km above their generation site, and thereby induce

3A wavenumber K is the inverse of the wavelength λ, related by K = 2π/λ.
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Name Ang. freq. (rad/s) Freq. (cpd) Description
ωlee kU kU Lee wave frequency
fmodel 2πΩ sin (ϕ) 1.658 Inertial (Coriolis) frequency
M2 1.405 ×10−4 1.932 Semi-diurnal tidal frequency
S2 1.454 ×10−4 1.999 Semi-diurnal tidal frequency
O1 6.76 ×10−5 0.9288 Diurnal tidal frequency
K1 7.292 ×10−5 1.003 Diurnal tidal frequency
P1 7.252 ×10−5 0.9984 Diurnal tidal frequency
Q1 6.496 ×10−5 0.8928 Diurnal tidal frequency
N2 1.379 ×10−4 1.896 Semi-diurnal tidal frequency
K2 1.458 ×10−4 2.006 Semi-diurnal tidal frequency

Table 1.1: List of Lagrangian frequencies of different types of waves. Lee waves have a Lagrangian

frequency of kU , where k = 2π/λh is the horizontal wavenumber, λh is the horizontal wavelength,

and U is the bottom mean flow velocity, measured approximately 200 m from the bottom. Near-

inertial waves are close to, but above f . Note that f in fact varies, but the model uses a constant

value of f0. The frequencies from M2 to K2 are tidal constituent frequencies with which internal

tides propagate. Note that there are multiple semi-diurnal and diurnal frequencies.

bottom enhanced mixing, as well as being a major energy sink of geostrophic eddies (Scott
et al., 2011; Nikurashin and Ferrari, 2011; Nikurashin, Vallis, and Adcroft, 2013; Yang et
al., 2018). The mechanism by which waves in general contribute to mixing is by breaking
and inducing turbulence. Nikurashin and Ferrari (2011) estimate the global energy input
into lee waves to be approximately 0.2 TW.

Secondly, near-inertial waves are internal waves with a frequency near the inertial fre-
quency (Coriolis frequency), which is the frequency due to the rotation of the Earth,
projected onto the local vertical axis. It is the frequency of the oscillation that attempts
to restore a fluid parcel to its original position. However, unlike normal harmonic oscil-
lators, it restores the fluid parcel not by exerting an opposite force to the direction of
displacement, but by acting perpendicular to the direction of motion. Without any exter-
nal forces, or changes in the Coriolis frequency, the fluid parcel would move in a circle back
to its original position. The Coriolis frequency is defined by f = 2πΩ sin (ϕ), where Ω is
Earth’s rate of rotation, and ϕ is the latitude. Near-inertial waves are generated by surface
forcing, and surface wind stress in particular. Wind stress induces surface waves. The
mixed layer has a small buoyancy frequency, and thus wind-generated near-inertial waves
are not likely to be generated within it. At the bottom of the mixed layer is the thermo-
cline, from which the buoyancy frequency increases. The surface waves cause undulations
in the layers at and below the thermocline. These can be thought of as displacements of
fluid parcels from their position of neutral buoyancy, similar to the lee wave generation
process. As the parcels oscillate, they radiate waves. Near-inertial waves exhibit higher
shear than other types of internal waves (Ferrari and Wunsch, 2009; Alford et al., 2016).
The amount of energy fluxed into near-inertial waves is estimated to be 1 TW (Munk and
Wunsch, 1998; Wunsch and Ferrari, 2004).

Thirdly, internal tides, or tidal waves, are internal waves generated by the gravitational
potential in the Earth-Moon-Sun system with the moon supplying the main part of the
energy to internal tides. The various orbital motions in this system result in what are
referred to as barotropic tides, which have various diurnal (daily) and semi-diurnal (half-
daily) frequencies, commonly referred to as tidal constituents. These are listed in 1.1. As
the moon orbits the Earth, the barotropic tides move back and forth across bathymetry
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and generate internal tides in the same way that lee waves are generated. One of the key
differences between lee waves and internal tides is that internal tides have a consistent
frequency set by the orbits of the moon around the Earth, and the Earth around the Sun,
whereas lee waves have a frequency set by the mean bottom flow, and the wavenumbers
associated with the seafloor topography. The amount of tidal energy generated in total
is 3.7 TW (Egbert and Ray, 2001), which is the amount going into the barotropic tides
mostly dissipated by internal tides in the deep ocean and over continental shelfs. Of this,
approximately 1 TW goes into internal tides in the deep ocean (Wunsch and Ferrari,
2004).

Fourth, there are spontaneously generated waves. These waves are commonly created at
sharp density gradients (Shakespeare and Hogg, 2017). These waves make the fluid dy-
namics of the ocean more dynamic and complicated. In a idealised model, Shakespeare
and Hogg (2017) finds that 70% of the generated waves re-enter the mean flow. However,
this transfer from the spontaneously generated waves back to the mean flow does not nec-
essarily occur locally. The magnitude of spontaneous generation globally is currently not
clear, but it possibly provides an important contribution to the internal wave field, and to
bottom mixing. Because of the direction of propagation of spontaneously generated waves
being highly vertical, the waves might make a contribution to deep ocean mixing.

In Fig. 1.1, a conceptual schematic of internal wave propagation is shown. Inertial waves
are defined as internal waves that oscillate at the inertial frequency, while gravity waves
are defined as internal waves that oscillate at the buoyancy frequency N . These are the
outer extremes of the internal wave spectrum. The Coriolis force and the buoyancy force
are the restorative forces that define internal waves. Internal waves occur at frequencies
|f | < ω < N . The figure was taken from Shakespeare (2019).

To illustrate the relative magnitudes of different types of internal waves, an example of a
power density spectrum, which shows the kinetic energy per unit frequency, is shown in
Fig. 1.2 from Brearley et al. (2013). The plot shows the observed spectra for a region with
a latitude of 56◦ S, South-East from Patagonia in the deep ocean. It is difficult to observe
a lee wave signal in a spectrum in an Eulerian frame due to lee waves being stationary.
They travel with the mean flow. However, the near-inertial and tidal signals can clearly
be observed and have been marked on the plot. The yellow line on the plot is the inertial
frequency. In the observed region, the M2 internal tide has a frequency close to the inertial
frequency, and so it is difficult to distinguish the signals.

1.3 Internal wave theory

The Lagrangian and Eulerian frame of reference

When discussing internal waves, it is necessary to understand the difference between an
Eulerian frame of reference and a Lagrangian frame of reference. An Eulerian frame of
reference has fixed points in space at which various quantities are measured through time,
such as the speed or the temperature, while the Lagrangian frame of reference is relative
to fluid parcels, measuring the quantities not at fixed points in space, but at the fluid
parcels which change their positions through time. Unless motion is uniform everywhere,
it is a moving frame of reference with the distance between its coordinates changing with
time.
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Figure 1.1: This schematic shows the physics of Internal wave propagation. Inertial waves are

internal waves at the inertial frequency, while gravity waves are internal waves at the buoyancy

frequency N . Internal wave have frequencies ω that satisfy f < ω < N , and thus propagate both

horizontally and vertically. This figure is taken from Shakespeare (2019).

Set-up of the problem

In fluid dynamics and oceanography, the central equation that describes all physics are the
Navier-Stokes equations. These equations are particularised for different physical regimes.
As discussed above, the Coriolis force is important to the investigation of internal waves
in realistic scenarios. Hence, we begin our investigation of internal waves with the Navier-
Stokes equations for a rotating fluid

ut + u · ∇u+ f ẑ × u = −1

ρ
∇p+ g + ν∇2u, (1.1)

ρt +∇ · (ρu) = 0, (1.2)

where u = (u, v, w) is the velocity vector with x, y, and z velocity components, f is the
inertial frequency, p is the pressure, g is gravity, ν is the kinematic viscosity, and ρ is the
density. In this section, we make six assumptions.

1. The mean flow velocity only has a constant, nonzero velocity component in the
x-direction U0.

2. The fluid is inviscid (ν∇2u = 0)

3. Each of the variables can be split into a mean component and a perturbation com-
ponent such that there is a balance between the mean components and a balance
between the perturbation components.

4. Non-linear effects are negligible.
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FIG. 10. (a) Correlation coefficients between integrated spectral density of KE in a number of
frequency bands and 17-day mean subinertial current speed (overlapping 17-day segments,
Welch spectral estimate, 8 Hamming windows) from current meters and the moored ADCP.
Regions enclosed by black lines indicate areas where the correlation is significant at the 5%
level; and (b) average kinetic energy spectrum (u00 1 y00)2/2 sorted by subinertial current speed.
For frequencies greater than 0.7 cpd, 10 individual spectral estimates are averaged to reduce the
error. The symbols at the left of the spectrum represent 95% confidence intervals for the
spectra, assuming a x2 model, while the symbols on the right represent the same quantity for
the averaged spectra for frequencies exceeding 0.7 cpd. Tidal and inertial frequencies are
marked.

NOVEMBER 2013 BREARLEY ET AL . 2301

Figure 1.2: The kinetic energy spectrum taken from Brearley et al. (2013) for different bottom

flow speeds. Note that this is the total kinetic energy, not the wave kinetic energy. Hence, lee waves

cannot be distinguished from the background flow. However, the kinetic energy in the two diurnal

and two semi-diurnal frequencies, and the Coriolis frequency can be readily observed, though it is

difficult to distinguish them from one another.
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5. The world is quasi-2D; that is, none of the dependent variables depends on y.

6. ρ ≈ ρ0 (Boussinesq approximation)

The first assumption is arbitrary. It does not matter which direction the flow is in, and
it is simply convenient to pick a direction that aligns with one of our axes. The second
assumption is approximately true away from the boundary layer. In addition, the effect
of the viscous term is too small even at the boundary layer for it to have any significant
effect on the generation and propagation of the waves. The third assumption is also
arbitrary. The fourth assumption is approximately true over timescales of approximately
a day. The fifth assumption is the weakest assumption. However, for waves that are
simply propagating, without anything occurring along the way that interferes with their
propagation, this is roughly true. The quasi-2D assumption means that we retain three
dimensions of space, but without any variables being dependent on the y-dimension. The
problem is essentially the same as in 3D, but shows the physics a bit clearer. Finally, the
Boussinesq approximation can be made since ρ′ << ρ. It is kept in in the gravity term,
however, since there it becomes sufficiently large.

With these assumptions, we can simplify our problem. First, consider the momentum
equation (1.1). Enforcing these assumptions leaves us with the following

ut + U0ux + f ẑ × u = − 1

ρ0
∇p+ g. (1.3)

Using assumption 2, we can seperate the mean component of the balance from the per-
turbation component. This is also true for g. Implicitly, we have g = ρ0+ρ′

ρ g. Hence, after
subtracting the mean balance of the flow, we are left with the perturbation component of
the equation

u′t + U0u
′
x + f ẑ × u′ = − 1

ρ0
∇p′ − ρ′

ρ0
gẑ. (1.4)

In addition, from the conservation of mass equation, we can obtain the buoyancy equation
and the continuity equation. Linearising, we obtain

ρt + U0ρ
′
x + ρ0u

′
x + w′(ρ0)z + ρ0w

′
z = 0. (1.5)

In addition, note that using the vector identity ∇ · (ρu) = ∇ρ · u+ ρ(∇ · u), we find that
ρt +∇ · (ρu) = 0 ≡ ρt + u · ∇ρ + ρ(∇ · u) = 0. Assuming incompressibility, the density
for any Lagrangian fluid volume does not change with time. That is, Dρ/Dt = 0. Since
Dρ/Dt = ρt + u · ∇ρ = ρ(∇ · u), we find that

Dρ

Dt
= ρ(∇ · u) (1.6)

=⇒ ∇ · u = 0. (1.7)

Hence, multiplying by g/ρ0, we can reduce (1.5) to

bt + U0bx + w′N2 = 0, (1.8)

where b ≡ − g
ρ0
ρ′, and N2 ≡ − g

ρ0
∂ρ0
∂z , which gives us our buoyancy equation. Note that

since ρ0 = ρ0(z), this is equal to N2 = − g
ρ0
dρ0
dz . From here onwards, we will drop the

primes and assume each of the dependent variables is a perturbation quantity.
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Wave propagation

From above, the final equations for our internal wave problem are

ut + U0ux + f ẑ × u = − 1

ρ0
∇p+ bẑ, (1.9)

bt + U0bx + wN2 = 0, (1.10)

∇ · u = 0. (1.11)

As discussed in section 1.1, lee waves, near-inertial waves, and internal tides are generated
by being lifted from their position of neutral buoyancy. Hence, for this problem, we assume
a buoyancy perturbation given by b = N2ζ, where ζ is a height perturbation. By taking
some derivatives of equation (1.9 to 1.11) and making some substitutions, we obtain the
following [

(∂2x + ∂2z )(∂t + U0∂x)2 −N2∂2x − f2∂2z
]
w = 0. (1.12)

Since the set of operations on the LHS is a linear operator, we can assume a plane wave
solution of the form

w = w0e
−i(kx+mz+ωt), (1.13)

where k is the horizontal wavenumber, m the vertical wavenumber, and ω the Lagrangian
frequency. Substituting this into Eq. 1.12, and rearranging, we find the dispersion rela-
tion

ω = kU0 ±
√
k2N2 +m2f2

k2 +m2
. (1.14)

The first term on the RHS in the equation is referred to as a Doppler shift. The presence
of a mean flow can change the effective frequency of the wave in the Eulerian frame of
reference. This equation can be rearranged for the slope of wave propagation

m

k
=

√
N2 − (ω − U0k)2

(ω − U0k)2 − f2
. (1.15)

Note that as the waves propagate upwards or downwards, N can change. Hence, their
wave slope can change with height. A wave travelling from the bottom to the top will have
an increasingly horizontal wave slope, while a wave traveling from the top to the bottom
will have an increasingly vertical wave slope. In addition, note that it is possible to obtain
a simpler expression by setting U0 to 0 for the above equation, as well as subsequent
equations, giving a simpler picture of the physics of the problem. Using the dispersion
relation, we can find also find the horizontal and vertical group velocities. The horizontal
group velocity (∂ω/∂dk) is given by

ch = U0 +
(N2 − (ω − kU0)

2)((ω − kU0)
2 − f2)

(N2 − f2)(ω − kU0)
. (1.16)

Note here that the Doppler shift kU0 can also change the horizontal velocity of the wave.
Note that U0 can be both positive and negative, so it can reduce and enhance the horizontal
group speed of the wave. The vertical group velocity (∂ω/∂m) is given by

cz =
1

k(ω − U0k)

√
(ω − U0k)2 − f2
N2 − (ω − U0k)2

.

(
N2 − (ω − kU0)

2
) (

(ω − U0k)2 − f2
)2

N2 − f2
(1.17)
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This equation only holds true if the waves are freely propagating (without damping). That
is, when

f2 ≤ (ω + U0k)2 ≤ N2 or N2 ≤ (ω + U0k)2 ≤ f2 (1.18)

The former case is true throughout most of the ocean. However, the latter case is true in
only special circumstances, such as flow being very close to the topography. This means
that through some small boundary layer, the waves are damped. Since this is very small
in general, this reduction in N2 is unlikely to have much of an effect on wave propagation
or generation. In the absence of a mean flow in the open ocean U0 = 0, f2 ≤ ω2 ≤ N2.
Without a mean flow, waves can freely propagate until they reach the critical latitude (if
they do) where the inertial frequency becomes greater than their frequency. From that
point onwards, the waves either reflect or become damped and dissipate quickly. However,
with the presence of a mean flow, the frequency of the wave is effectively shifted and so
allows propagation past the critical latitude. This shift due to the presence of a mean flow
is referred to as Doppler shifting.

Lee waves

By definition, lee waves are topographically generated internal waves with zero Eulerian
frequency. That is, in an Eulerian frame of reference, they are indistinguishable from
the mean flow. In a Lagrangian frame, however, the waves have a frequency of kU0. By
definition, a wave must satisfy the f2 to N2 range, and so lee waves in a Lagrangian frame
have a frequency range of f2 < k2U2

0 < N2. From Eq. 1.15, the wave number ratio for a
lee wave is given by

m

k
=

√
N2 − U2

0k
2

U2
0k

2 − f2
, (1.19)

where ω has simply been set to zero, since it is the Lagrangian frequency. The Eulerian
frequency of a general internal wave would be ω + U0k.

Lee waves are thought to play a major role in the dissipation of mesoscale eddies, which
are geostrophic4 rotating structures of order 100 km in size. One of the outstanding
problems in the literature on lee waves is the amount generated, and where they terminate.
For example, in a modelling study by Nikurashin, Vallis, and Adcroft (2013), lee wave
generation and bottom mixing were quantified in the Southern Ocean. They found that
80 % of lee wave energy was dissipated in the bottom ocean, which is the region from the
seafloor to 2 km above. However, an observational study by Waterman, Naveira Garabato,
and Polzin (2013) found that only 2-20 % of lee wave energy is dissipated in the bottom
ocean. What this difference should be attributed to is still an open question, though
multiple answers have been suggested.

Waterman, Naveira Garabato, and Polzin (2013) suggested three possible answers. The
first answer is non-local mixing, which refers in particular to mixing in a different water
column. If the mixing occurs in the same water column, it is not considered non-local
mixing, even if it occurs far above the generation site. Second, it is possible that the
mixing occurs higher up in the water column. That is, not within the first 2 km from the
sea floor. Third, there might be non-linear effects.

4In oceanography, geostrophy refers to the condition of fluid flow where there is a balance between
pressure and the Coriolis force.
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A few other answers are possible too. One process not often considered is reflection. Wave
reflection can cause waves to travel up and down the ocean multiple times before they
dissipate. It possible that the generated waves dissipated outside of the region considered,
which would result in a lower amount of observed dissipation, or vice versa. This fact
implies that the difference found could both be smaller or larger. In addition, Shakespeare
(under review) suggests that internal tides reduce lee wave generation. Taking tides into
account would thus decrease the lee wave generation found in Waterman, Naveira Gara-
bato, and Polzin (2013), and thereby increase the lee wave bottom dissipation percentage
from the 2-20% to some higher range.

Internal tides

Petterson (1908) is often considered to be the first to have identified internal tides. As
reviewed in Garrett and Kunze (2007), early observations by (Nansen, 1902) motivated
two-layer stratified5 fluid experiments (Zeilon, 1912) that led to an understanding of the
significance of interfacial waves6. Internal tides are interfacial waves generated by the tides
near bottom topography. Many observations and experiments have since investigated the
dynamics of internal tides in the ocean. Early theory of internal tides is often considered
to have been developed by Cox and Sandstrom (1962). Baines (1973) considered the
generation of internal tides by surface tides interacting with bottom topography in the
acoustic limit. In the acoustic limit, the horizontal excursion distance of fluid parcels
advected by the background covers only some fraction of the width of an obstacle. Only
Mork (1968) had considered the general problem of internal wave generation by a simple
harmonic flow moving back and forth across topography in a stratified fluid. His results,
however, were only valid for conditions in which the horizontal scales of the flow were
much larger than the vertical scales. Bell (1975a) and Bell (1975b) considered the general
problem of internal wave generation in the limit where the ocean is semi-infinite so that any
effects on the generation due to propagation, such as reflection, could be ignored.

By definition, tides are internal waves of tidal frequency, as listed in Table 1.1. Hence,
from Eq. 1.14, the slope of these waves is simply given by

m

k
=

√
N2 − (ωt + U0k)2

(ωt + U0k)2 − f2
. (1.20)

Generally, internal tides have strong signals at each of their harmonics. This is because
the fundamental frequency is sensitive to the slope of the obstacle, the first harmonic is
sensitive to the gradient in the slope, the second harmonic in the gradient of the gradi-
ent of the slope, and so forth Bell, 1975a. Without Doppler shifting, tides generate two
beams on both side of the topographic obstacle. However, with Doppler shifting, asym-
metric generation occurs. If the Doppler shifting is sufficiently strong, pushing one of the
propagation slopes to below horizontal, one of the beams is not generated at all.

Near-inertial waves

Early theoretical work on near-inertial waves was done by Fu (1981). Based on then recent
experiments, he examined the spectral peak that occurred near the inertial frequency and

5Stratification of fluids refers to the structure of density layers and the spatial gradients between them.
6Interfacial waves simply refers to waves propagating along the interface of two different density layers.
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remarked that it could either be due to local forcing or due to remote forcing. Focusing
on the remote forcing, he developed a turning-point theory that agreed quite well with
observations. Further theory was developed by Gill (1984) on ocean’s response to storms.
He identified two stages. In the short first stage, while storms are still present, surface
currents are generated. In the second stage, once the storm has passed, the ocean under-
goes Rossby readjustment. During Rossby readjustment, the ocean returns to equilibrium
by generating near-inertial waves. and Garrett (2001), and important observations were
gathered by D’Asaro et al. (1995), D’Asaro (1995a), and D’Asaro (1995b). These indicated
that locally generated near-inertial waves are significant. In fact, generally, near-inertial
waves are seen as predominantly wind-generated. However, near-inertial waves are gen-
erated by other mechanisms too. These include wave-wave interactions, lee waves, and
geostrophic adjustment, and it is not clear what the relative contributions are by each
(Alford et al., 2016).

In the open ocean, near-inertial waves, like all internal waves, obey the dispersion relation
shown in Eq. 1.14, and their wave slope by Eq. 1.15 For near-inertial waves, ω ≈ f , which
implies in general that ω2 << N2. Hence, the wave slope gives k/m ≈ N/(ω2 − f2).
Near-inertial waves thus have a more horizontal wave slope due to their frequency ω being
close to the inertial frequency. For normal values of N (order 10−5), and f (order 10−4),
k/m << 1. Ignoring any Doppler shifting, the dispersion relation can then be simplified
to ω ≈

√
(f2 + k2)/(m2N2). The vertical group velocity ∂ω/∂m is then

cz ≈
k2N2

fm3
=

(ω2 − f2)3

kNf
. (1.21)

Near the surface, the wind stress is balanced by the Coriolis force. That is, the governing
equation is

ut − f∇(v, u, 0) = − 1

ρ0
∇τ . (1.22)

(Alford et al., 2016). A resonant frequency here is approximately at f , since it naturally
oscillates at f . For a detailed analysis of resonance near the inertial frequency, see Whitt
and Thomas (2015). Hence, when wind stress inputs energy near the surface at a host of
frequencies, most of the energy will be transmitted near the inertial frequency. The total
energy flux is given by F = Ecz, where F is the total flux (F+ + F−), where F+ is the
upwards and F− is the downwards flux, E is the sum of the kinetic and potential energy,
and cz is the vertical group speed. The spectral peak does not occur at f though since the
energy input might peak at f , the vertical group speed increases with frequency. Since
the flux is the kinetic energy times the group speed, the spectral peak occurs slightly to
the right of the inertial frequency. Finally, the spectral is also determined by the relative
contributions by locally generated waves and remotely generated waves.

1.4 Aim

The aim of this thesis is to characterise the spatiotemporal variability of internal waves
with a view to deep ocean mixing, and the types of internal waves that are relevant
in the Scotia Sea in the Southern Ocean by running a 3D model in MITgcm. We will
use a novel filtering technique referred to as Lagrangian filtering, which will enable us
to clearly distinguish waves from the background flow. The results will be compared to
current observations. Due to unprecedented insight into the internal wave field in the
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Scotia Sea, we can reinterpret some of the observations based on our results. Finally, by
running a model for one year, we will be able to discuss the seasonality of various internal
wave signals, as well as events, which allows for understanding the temporal variability of
observational results.

In Chapter 2, the method set-up, the topographic dataset, and the Lagrangian filtering
method will be described in detail. In Chapter 3, the results will be shown, interpreted,
and briefly discussed. In Chapter 4, the most salient findings from our model will be
discussed with a focus on the temporal variation of the internal wave field. Finally, in
Chapter 5, we will summarise the results, discuss the implications of the results, consider
the caveats and limitations of this work, and outline directions for future work.



Chapter 2

Methods

Chapter 2 has three sections. In section 2.1, we will describe the model set-up, including
the physical regimes that were investigated. In section 2.2, we will discuss the seafloor
topography used in the model and a modification of the topography based on newly
available data. Finally, in section 2.3, we will describe the main analysis technique used
to examine model output.

2.1 Model set-up

We use the Massachusetts Institute of Technology general circulation model (MITgcm)
to simulate the primitive equations in an f -plane for one year. In order to allow eddies
to form, and to able to track fluid parcels for more than one week, we used a large
low-resolution domain. As shown in Fig. 2.1, the domain ranges from −60◦ to −52◦ in
longitude and from −75◦ to −40◦ in latitude with a 150 × 150 km high resolution region
centred on a region in which high-resolution, multi-beam soundings were recently taken
(Jesse Cusack, pers. com.) The model has a horizontal resolution of 700 m in the high
resolution domain, which tapers to 3.5 km in the larger domain. The whole domain has 200
depth levels with depth resolution ranging from 7 m to 32 m. The model uses Smagorinsky
viscosity horizontally, which calculates the local dissipation based on the divergence in u
and v, and a constant vertical viscosity (see Table 2.1). It has an implicit free surface, a
no-slip bottom boundary, and open side boundaries.

The model is run with three configurations in order to understand the underlying physics
of each regime:

1. Boundary forced (B)

2. Boundary and surface forced (S)

3. Boundary, surface, and tidally forced (T)

For configuration B, daily-updated sponges force temperature, salinity, and horizontal
velocities at the side boundaries with data from the GLORYS12V1 product (2017). Con-
figuration S has the same boundary forcing, and is forced at the surface using surface
wind velocity, precipitation, evaporation, potential temperature, net short wave radiation,
net long wave radiation and sensible heat flux fields from ERA5 Reanalysis (2017) data,
which are hourly. Configuration C has the same boundary and surface forcing, and is
tidally forced by a tidal potential over the 3D domain using TPOX8 atlas 30c data from
the Tidal Model Driver (TMD) (Egbert and Erofeeva, 2002).

13
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Parameter Value Description
bottomDragQuadratic 10−3 Quadratic bottom drag coefficient (1)
f0 1.206× 10−4 Reference Coriolis parameter (1/s)
viscAz 10−5 Vertical eddy viscosity coefficient (m2/s)
viscC2smag 5 Smagorinksy harmonic viscosity parameter

(non-dim)
no slip sides F Viscous boundary conditions: no-slip sides
no slip bottom T Viscous boundary conditions: no-slip bottom
diffKhT 0.1 Laplacian diffusion of heat laterally (m2/s)
diffKzT 10−5 Laplacian diffusion of heat vertically (m2/s)
diffKhS 0.1 Laplacian diffusion of salt laterally (m2/s)
diffKzS 10−5 Laplacian diffusion of salt vertically (m2/s)

Table 2.1: Model parameters (applied to all configurations).

2.2 The seafloor topography

To generate the topography, the GEBCO 2014 SID Grid, version 20150318 was used
(www.gebco.net). In Fig. 2.1a the larger domain topography is plotted. The rectangle in
the centre of the domain is a high-resolution region, which has a horizontal resolution of 30
arc seconds, and is plotted in Fig 2.1b. In the North-West, Southern tip of South-America
is displayed in black, and in the North, the Falkland Islands. The yellow-saturated region
is the continental shelf surrounding South-America. Significant mid=ocean ridges are
present in the centre and the North-East of the domain.

The wavenumbers associated with lee wave generation are a function of the gradients in the
topography, and thus it is important that the topography of the model closely matches the
real topography. Comparing the GEBCO topography to a higher resolution topographic
data set obtained from multi-beam soundings (Jesse Cusack, pers. com.), we found that
there was a significant difference in the local topography. In Fig 2.1c, GEBCO topography
is plotted for the region inside the rectangle in Fig 2.1b, and the high-resolution multi-
beam soundings are displayed on the right. Note here that the topography is shown as it
is in the model, for which it had to be interpolated to the 700 m horizontal grid. In the
GEBCO data, the absolute maximum in height is found in the North-Eastern part of the
feature, while in the multi-beam soundings, the maximum is found in the Southern part.
In addition, the GEBCO data has two peaks, while the multi-beam soundings disclosed
a single peak. These differences would likely result in a different wave field, such as a
different spatial distribution of wave generation and propagation.

To address this problem, the higher resolution bathymetry was integrated with the GEBCO
topography in the centre of the domain. To smoothly integrate it, a region was cut out of
the multi-beam soundings data set, placed inside the GEBCO data, and tapered near the
boundaries. The boundaries of the region ran along relatively flat topography to ensure
no artificial mounts were created in the process, which are a potential source of error.
The North-Western region of the domain contains the Southern end of Patagonia, which
contains many small-scale channels. These caused numerical instability in the model, and
were therefore masked as land in the model.
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Figure 2.1: The seafloor topography used in the model are shown. The full domain topography

is shown in (a), where the black region indicates land. A contour map of the region inside the red

rectangle in (a) is shown in (b). This plot shows the main analysis region referred to as the domain

of interest. Contour maps of the region inside the red rectangle in (b) are shown in (c) and (d). (c)

displays the GEBCO topographic data set, whereas (d) is based on recent multi-beam soundings

(Jesse Cusack, pers. com.). (d) has been integrated with the GEBCO topography for use in the

model.
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2.3 The Lagrangian filtering method

The Lagrangian filtering method has has previously been used by Nagai et al. (2015) and
Shakespeare and Hogg (2017), and is outlined in section 2.3 below. It combines the idea
of the Lagrangian frame of reference with the idea of a Fourier filter. In fluid dynamics
and oceanography, the purpose of such a filter is to track waves relative to the mean
flow, and thereby separate the wave from the nonwave components of the flow. This is
made possible by the fact that waves have a minimum frequency in a Lagrangian frame
of reference. Below the inertial frequency, waves become damped, and dissipate quickly.
However, in a Eulerian frame of reference, waves do not have a minimum frequency due
to Doppler shifting and relative vorticity. Doppler shifting occurs as a consequence of
the presence of a mean flow, and shifts the frequency of the wave in a Eulerian reference
frame. Lagrangian filtering is thus particularly important for identifying lee waves, since
they are stationary. That is, in a Eulerian reference frame, they are difficult to distinguish
from the mean flow because they have the same frequency. However, Lagrangian filtering
is beneficial for all types of waves by providing a clear distintion between the wave field
and the nonwave field.

The full domain algorithm

In general outlines, the algorithm is as follows:

1. Distribute parcels throughout the full domain at the start and end time

2. Advect this initial parcel distribution forwards in time

3. Seed parcel distributions at regular time intervals and backward advect them (for
better concentration of parcels)

4. Fourier transform the associated quantities (u, v, w, p, ρ) of the resultant parcel
paths

5. Set the signal below some scaling factor s (e.g. s = 0.9) times the inertial frequency
f equal to 0

6. Inverse Fourier transform the same quantities to obtain the wave paths

7. Interpolate the wave paths back to the Eulerian X-Y grid

By removing the nonwave component of the flow, which is defined as having frequency
below the inertial frequency, the result is the wave component. Note that part of the
nonwave component (the band-pass filter being 0.9f) is not filtered to account for the
numerical resolution in frequency space and partly to account for relative vorticity causing
waves to be generated slightly below the inertial frequency.

In more detail, first, in order to ensure all regions of the domain are well-resolved, one
option is to distribute parcels based on the regional divergence of the horizontal velocities
u and v. Without using a divergence-based distribution, these regions might have a low
parcel concentration with time due to parcel advection. Another option is to distribute
parcels at regular time intervals. The initial distribution is simply advected forward in
time, while distributions seeded at regular time intervals after that are advected both
backward and forward in time. The purpose of seeding at multiple times is increasing
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parcel concentration and thereby better resolving the flow in regions that would otherwise
have low parcel concentrations.

Second, the parcels are advected using a second-order Runge-Kutta method, which is a
numerical scheme for solving ordinary differential equations in time, such as initial-value
problems. As the parcels are advected, their locations, as well as the quantities of interest
(e.g. u, v, w, p, ρ), are stored. After Fourier transforming these quantities in time, a high-
pass filter is applied which sets the signal below 0.9f (where f is the inertial frequency, or
synonymously, Coriolis frequency) equal to 0. Taking the inverse Fourier transform results
in the Lagrangian wave paths in the time domain. That is, a three-dimensional array of
the quantities of interest together with X and Y-locations of each particular fluid parcel
through time. Using the X and Y-locations, the quantities can be interpolated from the
Lagrangian field to the original X-Y grid. This final step results in a two-dimensional grid
of the wave components of each of the variables of interest.

The continuous seeding algorithm

For the filtering of the model data in this project, I modified the full domain algorithm
described above to obtain higher accuracy parcel paths. Instead of seeding a uniform
distribution of parcels at the beginning and then at regular time intervals, it seeds a
uniform distribution over the domain of interest at every time step. In short, the method
is as follows:

1. Distribute parcels uniformly over the X-Y grid in the domain of interest

2. Advect the parcels forwards in time (by 84 hours)

3. Advect the parcels backwards in time (by 84 hours)

4. Fourier transform the associated quantities (u, v, w, p, ρ) of the resultant parcel
paths

5. Set the signal below 0.9f (the inertial frequency) equal to 0

6. Inverse Fourier transform the same quantities at the original X-Y grid (made possible
by starting the parcels on the X-Y grid)

7. Repeat this every time step

One difference between the two algorithms is the number of parcels required. This is due
to different approaches. The full domain algorithm obtains the Lagrangian paths, and
then interpolates these to the X-Y Eulerian grid, while the continuous seeding algorithm
only obtains the Lagrangian paths that exactly intersect each grid point in the domain of
interest. With the approach of the full domain algorithm, there is no prior knowledge of
where the parcels go, and therefore, they are distributed over the full domain. The con-
tinuous seeding algorithm, however, does have prior knowledge, since it seeds the parcels
at every time step exactly on every grid point in the domain of interest, and therefore
requires less parcels.

In order to achieve this, however, it requires seeding at every time step. This has at
least two benefits and one drawback. One consequence is that it does not require inter-
polation, which has the dual benefit of increasing computational efficiency and accuracy.
The former is true because less parcels are required, and the latter is true because it has
resolution equal to the grid scale by having a parcel at every grid point in the domain of
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interest. The drawback is that seeding at every time step increases the number of times
forward and backward advection needs to be completed, thereby reducing computational
efficiency.

The net difference in efficiency for this model is that the continuous seeding algorithm
requires approximately twice the computational time compared to the full domain algo-
rithm. However, the improved accuracy can be important, since low parcel concentrations
can lead to a number of problems. One important problem is poor interpolation, which
can result in missing important features in the wave field, and sometimes even artificial
generation of waves.



Chapter 3

Results

3.1 Global overview

The model configurations and depth levels for analysis are laid out in Table 3.1. As stated
in section 2, there are three forcing regimes. Run B is boundary forced, run S is boundary
and surface forced, and run T is boundary, surface, and tidally forced, where the tidal
forcing acts at all depths throughout the domain. The forcing regimes are mostly analysed
at three depth levels (horizontal cross sections), which are at 100 m, 1400 m, and 3200 m
depth. The topographic cross-sections at each of these depth levels for the subdomain are
displayed in Fig. 3.1. Hence, there are 9 different cases, referred to by their forcing regime
(or run) and their depth level, such as B100 or T3200, for example, as laid out in Table
3.1. Note that for all runs, the continuous seeding algorithm of the Lagrangian filtering
method described in section 2.3 was used to obtain the wave component of each variable,
unless specified otherwise. In addition, recall that the Lagrangian filtering method outputs
the variables in the time domain. For the wavenumber and frequency parts of the results,
a Fourier transform of that signal was taken to obtain the properties of the waves in the
Eulerian frame of reference.

The three forcing regimes were chosen to cumulatively add different types of waves, and
analyse the effects of each. Run B is boundary forced, and thus generates flow across the
domain, including a mean bottom flow. The mean bottom flow generates lee waves. In
addition, spontaneous wave generation is possible by sharp density fronts, though these
occur less than in run S, since the surface forcing in run S generates larger density gradients
than without surface forcing. The boundary forcing also induces small amplitude near-
inertial waves, which contribute negligibly to the total kinetic energy. Run S allows for
the generation of strong near-inertial waves since it is surface forced, and in particular,
wind forced. Finally, run T allows for the generation of barotropic and internal tides. The
total and wave kinetic energy for each of these runs is shown in Fig. 3.2 at each depth

Boundary forced Surface forced Tidally forced

100 m B100 S100 T100
1400 m B1400 S1400 T1400
3200 m B3200 S3200 T3200

Table 3.1: The forcing regimes and depth levels, and what they will be referred to. Note that

the forcings accumulate from left to right. That is, run B is boundary forced, run S is boundary

and surface forced, and T is boundary, surface, and tidally forced.

19
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Figure 3.1: The topographic cross-sections at each depth level for different analysis regions,

referred to as the subdomain, the domain of interest, and the micro-domain.

level. Note that for the tides, the barotropic component has been filtered.

The motivation for the choice of these specific depth levels is the measurement of the
generation and dissipation of the waves. The first depth level at 100 m is approximately
at the thermocline, which separates the mixed ocean layer from the deep ocean. It is close
to the location of near-inertial wave generation and surface spontaneous wave generation.
It might seem preferable to take a cross-section at a higher depth level, however, it becomes
increasingly difficult to distinguish waves from background noise. The third depth level at
3200 m is only hundreds of meters removed from most of the bottom topography in the
domain of interest, and thus is near the generation site of lee waves and internal tides. It
also contains a cross-section of local topography, as can be seen in Fig. 3.1. The second
depth level at 1400 m was chosen in order to measure what happens in between the other
two depth levels. It is close to the middle, and is free from topographic cross-sections in
the domain of interest. The different sizes of subdomains and their terms of reference are
shown in Fig. 3.1.

The model domain is in the Scotia Sea in the Southern Ocean. Hence, the Antarctic
Circumpolar Current (ACC) is present, which is a current that flows clockwise around
Antarctica. The ACC is known to have high flow speeds. In the model runs, the mean
surface flow speed was generally varied around 1 m/s. The kinetic energy associated with
the ACC can be seen in Fig. 3.2. In addition, winds are also strong over the Southern
Ocean, therefore generating a strong near-inertial wave field, as will be seen in the next
section.



§3.1 Global overview 21

Figure 3.2: Wave kinetic energy and non-wave kinetic energy for forcing regimes B, S, and T at

thee three depth levels for analysis in the subdomain. The black regions are cross-sections of the

local topography. The model time of the snapshot is after 20 weeks (24 April 2010), at 12:30 PM.
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3.2 Spatial variability

In Fig. 3.2, the wave kinetic energy for all runs and depth levels are plotted. On the left is
the wave kinetic energy. On the right is the non-wave kinetic energy. Due to the magnitude
of each, and the logarithmic plotting, the non-wave kinetic energy is indistinguishable from
total kinetic energy. The first thing that becomes clear is the increase in wave kinetic
energy as more forcings are introduced. Run B has the least wave kinetic energy, while
run T has the most. In addition, each of the individual forcings, from boundary forcing to
tidal forcing, increases in its kinetic energy contribution to the internal wave field. Tides
generate the most wave kinetic energy by far, as will be seen in the next section. Clearly,
it is not only the magnitude of the kinetic energy that changes. As more forcings are
introduced, both the internal wave field’s structure as well as total flow field’s structure
are altered. The spatial variability is mainly controlled by the presence of topography.
The surface wind stress is a large factor as well, but is difficult to observe both due to the
high level of noise in the wind stress, the low spatial resolution available, and the fact that
near-inertial waves travel almost entirely horizontally with a variable wave slope.

In run B, an eddy (a large-scale rotating structure ranging from tens to hundreds of km
in size) of approximately 100 km in size is present in the centre of the domain. Near the
surface, this is where most of the kinetic is present. Note that due to the presence of
islands in the North (the region from the left to the top corner of the domain as presented
in the figure) the ACC is obstructed, and therefore the non-wave flow has little kinetic
energy. In the depth level below, at 1400 m, the eddy is still present. However, the transfer
to the internal wave field is negligible. The strongest signal here is lee waves generated
at the bottom of the ocean, as can be seen in the depth level below, at 3200 m. At this
level, the coherent eddy observed above is still present, but constrained by the topography.
Many meandering streams can be observed, shaped by the seafloor topography. Strong
lee wave generation occurs near topographic obstacles, both those observable in the figure,
and those below the cross-section. The closer to the obstacle, the greater the wave kinetic
energy. A likely explanation for the wave kinetic energy being focused in the location of the
eddy is flow trapping by the eddy’s relative vorticity (Kunze, 1985). Waves mostly reflect
when they encounter a region where the effective inertial frequency is higher than their
frequency. The eddy’s relative vorticity increases the effective inertial frequency. Hence, as
the waves propagate upward, and the relative vorticity increases, particularly away from
the centre of the eddy, the waves are constrained to propagate within the bounds set by
the eddy.

In run S, the surface forcing has complicated the non-wave flow. B coherent eddy is
not present here. Note, however, that this is not necessarily typical. The time of the
snapshot is the same as above for the purpose of comparison. In the internal wave field,
we find a strong presence of near-inertial waves, many recognisable as wind waves. Wind
waves are long in one direction, and short in the perpendicular direction. These waves
propagate mostly horizontally. Hence, at the lower depth levels, most of the near-inertial
waves present would be from outside the domain of interest. However, in the South-East,
it seems that we can some correspondence in the internal wave field between the 100 m
depth level, and the 1400 m depth level. This is likely an example of the near-inertial
chimney, which is a mechanism by which eddies trap near-inertial waves with their large
relative vorticity, and propagate them downward. The non-wave flow structure at 1400 m
is largely the same as that of 100 m. At the bottom depth level, however, the wave and
the non-wave flow have changed significantly. The non-wave flow appears similar to the
non-wave flow in run B at the bottom depth level. There are many separate streams. In
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the internal wave field, the near-inertial waves are clearly still present, as can be inferred
from comparison with the bottom level of B. However, the long-short horizontal structure
that typified near-inertial waves higher up is no longer apparent here. In addition, though
obscured by the relatively strong near-inertial wave kinetic energy, we can see the presence
of lee waves, particularly near the topography.

In run T, the non-wave flow does have an eddy in the South-Eastern corner, as well as
a particularly coherent smaller one near the centre. Both leave a small, but noticeable
mark on the internal wave field. The internal wave field looks different again to the forcing
regime that came before it. This is due to the presence of both barotropic and internal
tides. For example, in the Northern region, unlike B and S, topographic obstacles near the
surface become a generation site for the internal wave field due to the presence of the tides.
And compared to S, the internal wave field contains more small-scale waves. However,
at the surface, we can still clearly see the strong presence of near-inertial waves. Note
that due to fact the barotropic tide was not filtered out during the Lagrangian filtering
stage, the kinetic energy in the wave field is stronger than it would be otherwise. As will
be discussed later, with the barotropic tides filtered, the near-inertial waves dominate the
kinetic energy near the surface. At the 1400 m depth level, we can still see the presence of
the larger eddy in both the mean and wave kinetic energy. The lengths of the near-inertial
waves are shorter than they were in S. At the bottom depth level, the non-wave flow looks
similar to B and S. The internal wave field, however, now has a strong internal tide signal,
generated by the seafloor topography.

The kinetic energy in the wavenumber-frequency space is shown in Fig. 3.3. Recall that
B100 refers to the 100 m depth level of the boundary forced run, S1400 to the boundary and
surface forced run at 1400 m depth, and T3200 to the boundary, surface, and tidally forced
run at 3200 m. The scale of the domain of interest allowed for horizontal wavenumbers k
to be observed down to the scale of 10−4 m−1, where k = 2π/λh and λh is the horizontal
wavelength of a wave.

First, consider run B in Fig. 3.3. In the Eulerian frame, lee waves are close to zero
frequency, and can be observed on the left of Fig. 3.3. They have a large wavenumber
range, going from 10−4 m−1 to 3×10−3 m−1. They peak in wavenumber around 3×10−3

m−1, which corresponds to a 6 km wavelength, approximately. As they move closer to
the surface, however, the lower wavenumber lee waves decay less than those of higher
wavenumber. This is as expected, due to shorter wavelength internal waves experiencing
higher shear stress, and therefore are more prone to breaking. This is accounted for in
the model by using a Smagorinsky model viscosity, which scales with the divergence of
the velocity field. We can also observe a small band near the inertial frequency, which is
strongest from 0 to the the lowest wavenumber we can resolve of 10−4 m−1/s.

Second, consider run S in Fig. 3.3. The lee wave signal is present for run S too, though
it is reduced. The wavenumber containing the most kinetic energy is also the lowest band
here, though it generates waves at higher wavenumbers too. This is not unexpected, since
near-inertial waves generally have the highest kinetic energy in low wavenumbers.

Third, consider run T in Fig. 3.3. The internal tides (the barotropic tides have been
filtered out here), also all generate waves over a large range, but again the most kinetic
energy is contained the lowest band from 0 to 10−4. The frequencies of these waves will
now be considered in more detail.
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Figure 3.3: Wave kinetic energy for as a function of wavenumber and frequency for runs B, S,

and T at three depth levels in the domain of interest.
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Figure 3.4: The N -scaled kinetic energy spectral density plots for the boundary forced regime

(B), the surface forced regime (S), and the tidally forced regime (T) at three different depth levels

at the 100 m, 1400 m, 3200 m depth levels. Plot S and T have vertical lines plotted across them,

indicating the inertial frequency f , the M2 tidal frequency, and the S2 tidal frequency.

3.3 Kinetic energy by frequency band

In this section, we will examine the different types of waves and their associated kinetic
energy. As can be seen directly from Eq. 1.15, upward wave propagatation results in
the wave slope becoming increasingly horizontal due to the Brunt-Vaisala frequency N
increasing with height. To correct for this effect, and thereby allow comparison of the
kinetic energy at the different depth levels, we divide it by the Brunt-Vaisala frequency
N . When comparing the N -scaled kinetic energy at the different depth levels, we can gauge
the dissipation of the waves. To see why, note that the energy flux is given byEflux =
czE, where E = KE + PE, KE is kinetic energy, PE is potential energy, Eflux is the
energy flux, and cz is the vertical group speed. The energy flux is the energy the waves
transport from their generation site, while the wave kinetic energy is the kinetic energy
associated with the group speed of the wave (mostly the horizontal group speed, since
vertical propagation is generally much smaller than horizontal propagation). The vertical
group speed scales by 1/N . Hence, by dividing the kinetic energy by N , we obtain a
measure that scales roughly with the energy flux.

The yearly average N -scaled kinetic energy spectral density is plotted for run B, S, and T
(see Table 3.1) at the 100 m, 1400m, and 3200 m depth levels in Fig. 3.4. We use linear
plots to give a clear indication of the dissipation. First, consider Fig. 3.4B. Lee waves
are stationary waves by definition, and thus have a frequency of zero in a Eulerian frame
of reference. Hence, the spectra peak at zero frequency, where it has an amplitude of 6.4
× 10−3 m2s for the bottom depth level. By the time they reach the 1400 m depth level,
5% of the original signal is left. This is in line with findings by Nikurashin and Ferrari
(2011) and Nikurashin, Vallis, and Adcroft (2013), who found that lee waves decayed in
the bottom ocean (the bottom 2 km of the ocean). At the 100 m depth level, spectral
density is of the same order of magnitude, which is likely due to flow trapping, which will
be discussed in more detail later.

In Fig. 3.4S, the spectral density for run S is plotted, centred around the inertial frequency.
Because near-inertial waves are mostly generated by surface forcing, and wind stress in
particular, the strongest signal is at the 100 m depth level. The kinetic energy at the
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3200 m depth level is 90% of the original signal, and 75% at 1400 m. Near-inertial waves
thus decay less quickly than lee waves. The decay rate is line with the literature, and
the suggestion by Wunsch and Ferrari (2004) that near-inertial waves might be a good
candidate for deep ocean mixing. At the 100 m depth level, the near-inertial peak is
slightly offset to the left of the inertial frequency. At 1400 m, the near-inertial peak
is at the near-inertial frequency, and at 3200 m, it slightly offset to the right. This
spread of peak frequencies is likely due to high relative vorticity near the surface, setting
the effective inertial frequency to less than f , thereby allowing waves to be generated
over a slightly larger range. As the wave propagate downward, the relative vorticity
decreases over all space horizontally, increasing the effective inertial frequency over all
space horizontally, and thereby causes dissipation of near-inertial waves above the new
effective inertial frequency.

Brearley et al. (2013) also investigated the internal wave field in the Scotia Sea, but by
observation. The latitude of the mooring site ranged from 56◦ 5’ S to 55◦ 57’ S. At 56◦

S, the near-inertial and the M2 tidal frequencies are very close to each other. The near-
inertial frequency is f = −1.206× 10−4 s−1, while the M2 frequency is 1.405× 10−4 s−1,
giving a ratio of |f |/M2 = 1.17. Hence, it is difficult to distinguish these signals. Due
to the resolution used in Brearley et al. (2013), the near-inertial peak was approximately
two frequency steps removed from the M2 frequency. Without a method to distinguish
the two, they conclude that the peak is mainly due to the near-inertial signal. However,
with better frequency resolution, the results from this model suggest that the M2 internal
tide is dominant, being about an order of magnitude larger near the bottom of the ocean.
Even at 100 m depth, we find that the M2 internal tide has greater horizontal kinetic
energy than near-inertial waves.

In Fig. 3.5, the spectral density for run T is plotted. Since run T is the most realistic
of the runs, this is the most comparable graph in this work to the kinetic energy spectral
density of Brearley et al. (2013). However, Brearley’s spectral density plot shows the total
kinetic energy, while Fig. 3.5 shows the wave kinetic energy. Fig. 3.5 has a clear lee
wave signal with an amplitude at 0 frequency of 2 ∗ 10−3 m2s. However, the maximum lee
wave amplitude is two orders of magnitude smaller than the M2 peak at the 3200 m depth
level. Two peaks occur at tidal frequencies O1 and K1, despite that O1 and K1 being
sub-inertial. For wave propagation we require f2 < σ2 < N2. However, this does not
imply that internal waves cannot be generated below the inertial frequency. When they
are, they simply dissipate very quickly after. This result underscores the importance of
using the Lagrangian frame of reference for the analysis of internal waves. Further along
the spectrum, we find the near-inertial peak (depicted with a yellow line) and the M2 peak,
as discussed above. Before the harmonics of M2 and the other semi-diurnal frequencies,
we find a peak of the same order of magnitude as the K1 peak at M2+ K1.

Surprisingly, despite the fact that internal tides are generated near the seafloor, and despite
the spectral density being divided by N , the spectral density at 3200 m at the semi-diurnal
frequencies and above is less than the spectral density at 1400 m, which in turn is less than
at 100 m. Lee waves, on the other hand, follow the expected pattern of having highest
spectral density at 3200 m, less at 1400 m, and still less at 3200 m. This suggests that
the internal tides are subject to a process that lee waves are not, or at least not to the
same degree. The likely explanation for the spectral density increasing away from the
bottom is that due to Doppler shifting, the M2 internal tide becomes flow trapped. The
Doppler shift increases away from the seafloor. Hence, the elevated kinetic energy with
height is possibly due to trapped waves inducing a reservoir of kinetic energy near the
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Figure 3.5: Comparison of the wave kinetic energy vs frequency of the three runs at each depth

level. The peak at zero frequency of run B is due to lee waves. The highest peak for run S is at the

inertial frequency f , and each subsequent peak for run S is a harmonic of the inertial frequency.

The highest peak for run T is the M2 the internal tide, of which the harmonics can also be observed.

The local maximum to the left of the inertial peak is the K1 internal tide.
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surface.

3.4 Temporal variability

In this section, we will consider temporal variations in the N -scaled kinetic energy of the
internal wave field. To obtain a global overview of the temporal variability, the scaled
kinetic energy spectral density has been plotted as a function of frequency and time for
the domain of interest in Fig. 3.6. To obtain the kinetic energy as a function of frequency
and time with high frequency resolution, a four-week window was taken surrounding each
point in time, and taking the Fourier transform in time of the already Lagrangian filtered
variables over that window. The higher frequency resolution comes at the cost of increasing
the time window, which effectively means that each point in time is a 28-day moving
average. This frequency resolution is 2.6 × 10−6 s−1, which is necessary to accurately
distinguish the M2 signal from the near-inertial signal.

From Fig. 3.6, it is apparent that there is both seasonality in the signal, as well as multi-
day events. Consider Fig. 3.6B3200 first, where lee waves dominate the spectral density.
For this run, there is little seasonality in the signal, but there are multi-day events. From
approximately 50 to 100 days, there is a strong spectral density signal. Another high
generation period occurs later from approximately 150 days to 180 days with a peak not
from the zero frequency to 2.6×10−6 s−1, but from 2.6×10−6 s−1 to 5.2×10−6 s−1. The
frequency implies that this is a lee wave signal. This suggests that strong Doppler shifting
is present. Another period of high generation spans 260 to 320 days. Given that each point
is a 30-day moving average, it is unknown whether these three periods of high lee wave
generation is due to multiple events or a sustained event. As can be seen in B1400 and
B100, lee wave spectral density decreases with depth for each of the three events.

In Fig. 3.6S100, we can see a clear near-inertial signal. The frequency band to the right
of the near-inertial band is a harmonic at 2f . And to the left we find a clear lee wave
signal, which increases in energy with depth in S1400 and S3200. Because of the narrow
frequency band over which the tides have kinetic energy, it is difficult to see see the
temporal variability in this figure. Therefore, we integrate the kinetic energy over the
bands and show it on a line plot later.

In Fig. 3.6T100-T3200, we can see the same wave types as in run B and S, and distinguish
three peaks from different internal tides (actually five, but O1 and K1, and M2 and S2

are too close together to distinguish them in this plot). These are the diurnal internal
tides, near-inertial waves, and the semi-diurnal internal tides, respectively. The near-
inertial band can be seen just slightly to the left of the M2 tidal peak. To analyse this
data further, we will integrate the kinetic energy over lee waves, spontaneously generated
waves, near-inertial waves, and each of the internal tides.

In Fig. 3.7, the scaled kinetic energy integrated over the lee wave frequency band is plotted
for B100. Along the frequency dimension, the scaled lee wave kinetic energy decreases until
a near-inertial kinetic energy signal begins to appear, which is just after the local minimum
of 1.12 × 10−4 s−1. For lee waves, the average scaled kinetic energy was integrated from
zero frequency up to this local minimum. There are three clear periods of high generation.
According Bell (1975a), lee wave generation is mainly a function of bottom flow velocity.
To check this, we correlate the lee wave kinetic energy with the bottom flow velocity. As
discussed earlier, the 28-day window for the time Fourier transform by which we obtained
the scaled kinetic energy in the frequency-time domain implies that effectively we have a
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Figure 3.6: The horizontal wave kinetic energy as a function of frequency and time for all runs

and depth levels. Note that the signal through time is a 28-day moving average due to having

a 28-day moving time window for the Fourier transform in time to produce this plot. This is

necessary to clearly distinguish the near-inertial signal from the M2 internal tide.
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Figure 3.7: Lee waves and trapped lee waves for run B. The graph on the left is scaled lee wave

kinetic energy, measured at the 3200 m depth level, while on the right is the near-inertial signal

(note that it is much smaller than the lee wave signal) at the 100 m depth level.

28-day moving average. Correlating this signal with the bottom flow velocity gave a poor
correlation coefficient.

Fortunately, the difference between the scaled kinetic energy over the whole spectrum and
the lee wave integrated kinetic energy is negligible. Hence, to check the effectiveness of
linear theory for lee waves, we correlate the spatial average of the wave kinetic energy for
run B, which is effectively the lee wave kinetic energy. The normalised wave kinetic energy
at each depth level, as well as the normalised bottom flow velocity, are plotted in Fig. 3.8.
Our results are in good agreement with linear theory with a cross-correlation coefficient
at the 3200 m depth level of 0.81 with a 0± 0.5 day lag (the bottom flow velocities have
a time resolution of 1 day). In addition, we find that for the for 1400 m depth level, the
correlation was 0.71 with a 1±0.5 day lag, and for the 100 m depth level, also a correlation
of 0.71 but a 2± 0.5 day lag. Hence, the the average vertical group speed of lee waves is
approximately ∆x/∆t = 3100 m /48 hours = 7× 10 m/hour.

In the right panel of Fig. 3.7, the near-inertial signal has been plotted. This was obtained
by taking a frequency band around the inertial frequency. Since the lee wave energy
declines with frequency, there was a local minimum to the left of the near-inertial frequency
peak. We took the difference between the frequency of the local minimum and the peak
frequency and multiplied that by two to give a band around the near-inertial frequency.
The mean lee wave signal across this band is found by taking the kinetic energy at the
frequency directly to the left and the right of the band, and taking the average of those
two. This is subtracted from the average kinetic energy over the near-inertial band. In
the right panel of Fig. 3.7, the solid curve indicates the fundamental frequency, and
the dashed curve the first harmonic. One possibility for the signal at the near-inertial
frequency is described in Nikurashin and Ferrari (2010). As lee waves break, they deposit
their momentum to the mean flow. The momentum decreases the amplitude of the mean
flow, and induces near-inertial waves, similar to wind stress at the ocean surface.

Run S has strong near-inertial wave generation, mainly wind-generated. This scaled kinetic
energy in this frequency band is shown in Fig. 3.9. Like Danioux et al. (2011), we find
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Figure 3.8: Normalised bottom flow speed and normalised lee wave kinetic energy for the bound-

ary forced run. The bottom flow speed is normalised by the mean of the bottom flow speed. The

lee wave kinetic energy at every depth level is normalised by the mean of lee wave kinetic energy at

the bottom. Note that the kinetic energy is not divided by N here. Hence, with increasing height,

the wave slope becomes more horizontal, giving the waves more horizontal kinetic energy.

a harmonic at 2f . In their study, Danioux et al. first run their model for 450 days to
allow mesoscale eddy energy to achieve statistical equilibrium, and build up a mixed layer.
After also applying some surface forcing except for wind for a period of 10 days to obtain a
stable mixed layer depth, they apply a wind forcing uniformly to the whole domain for 20
days. Unlike their simulation, we find that the peak at the harmonic is approximately two
orders of magnitude smaller at any point in time. This run has signs of both seasonality
and multi-day events. Due to the waves requiring approximately 100 days to reach the
ocean bottom, it is difficult to distinguish the initialisation signal from the real signal.
However, the spatial average shown in Fig. 3.9b, which is not a moving average, the
signal appears very different. The moving average smooths the peaks, and better shows
the initialisation effect. However, after a peak occurs at 118 days, it is not clear when the
initialisation phase is over. At minimum, it seems to be approximately 150 days, but it is
possible that it takes much longer to stabilise. To investigate this further, the model needs
to be run for a longer period of time. However, it is clear from this signal that there are
many multi-day events, which for peaks larger than the mean range from about one week
to about three weeks. These are likely associated with periods of sustained high winds,
such as during storms. Regarding the harmonic 2f , note that it largely follows f , except
during the initialisation period. However, while each of the peaks in f are of the same
order of magnitude, they become increasingly small for 2f .

Correlating the spatial mean surface wind stress τ with the spatial mean kinetic energy
gives a cross-correlation coefficient of 0.38 for the domain of interest and a lag of 80 hours,
which is 3 days and 8 hours. This gives an average vertical group speed of 1.25 m/hr
between the surface and the 100 m depth level. Assuming this is constant across depth,
it would take approximately 100 days for the waves to reach the bottom depth level. To
show the correlation, both the mean surface wind stress and the mean kinetic energy at
100 m for the surface forced run have been plotted in Fig. 3.10, where the S100 signal
has been shifted backwards in time to match the predicted lag. The wind stress is very
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Figure 3.9: Scaled kinetic energy in the near-inertial wave band (left) and mean-normalised scaled

kinetic energy in the near-inertial wave band on the right. Label f refers to the frequency band

around f , 2f around 2f , and ωS is the spatial average of the scaled kinetic energy for run S. Since

nearly all kinetic energy is in the f band, the spatial average effectively shows the kinetic energy

in f . The difference is that the f band is effectively a 28-day average, while the spatial average is

instantaneous kinetic energy. The y-axis for (b) is in units of each signal’s mean.

Figure 3.10: Mean-normalised near-inertial wave kinetic energy and surface wind stress τ . The

y-axis is thus in units of each signal’s mean.
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Figure 3.11: The kinetic energy scaled by N for different types of waves and frequency bands

across which the scaled kinetic energy was integrated at 100 m. Note the the near-inertial signals

were taken from run S. All other signals were found by partitioning the frequencies in run T.
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noisy. For the first 70 days, the correlation coefficient is 0.54, higher than for the whole
time period. The reason that the cross-correlation coefficient decreases with time is likely
that near-inertial waves become flow trapped, causing the kinetic energy to be noisy at
later times.

To show the relative magnitudes and the variation of the internal wave field near the
surface, the middle, and the bottom, each wave type has been plotted in Fig. 3.11, 3.12,
and Fig. 3.13. In Fig. 3.11, the scaled kinetic energy for different types of waves are
plotted for the 100 m depth level. Despite being close to the surface, the M2 internal tide
is the strongest here, ranging from 4 × 10−1 to 1 m−1, which are separated by a factor
of 2.5. The near-inertial band has a minimum of 7× 10−2 m2s and maximum of 1 m2/s,
which is more than an order of magnitude difference. The strength of the M2 internal
tide relative to near-inertial waves is surprising. It seems likely that this is due to flow
trapping of the M2 internal tide near the surface, creating a reserve of kinetic energy near
the surface.

The M2 signal at 100 m fluctuates much less than the near-inertial signal. The reason
for this difference is that the M2 tide is dependent on the barotropic tides, which are
dependent on the lunar cycle, and thus provides a fairly constant source of energy, while
the near-inertial waves are mostly induced by wind stress near the surface, which is largely
dependent on the season, as well as weather events. In addition, the initialisation phase
increases the variability in time. The propagation of the internal tides is dependent on N .
It appears that the strength of the signal of M2 near the surface is partly controlled by the
stratification in the middle of the ocean. The first harmonic of the M2 frequency varies
very similarly to the M2 signal, and the same is true for the second and third harmonic.
The 2M2 harmonic ranges from 9 × 10−3 to 5 × 10−2 m2s, thus varying more than the
principal frequency.

The other frequency bands make only a small contribution to the scaled kinetic energy in
the internal wave field at 100 m depth. In particular, lee waves here are insignificant, as
they have largely decayed. The near-inertial and the M2 frequency bands dominate the
internal wave field at 100 m in the Scotia Sea. Second to third-order contributions are
made by the 2M2 harmonic.

The spectral bands at the 3200 m depth level are plotted in Fig. 3.12. The near-inertial
signal here is more than an order of magnitude smaller, as expected. Lee waves are are
somewhat more significant, though at any point in time, other than during spin-up, they
are more than an order of magnitude, sometimes two orders of magnitude, smaller. Note
that the lee wave signal here is different from that shown in earlier figures due to the
above being the lee wave signal in forcing regime B, while here the lee wave signal is
that measured for run T. The near-inertial signal here, despite being generated near the
surface, is larger than that lee wave signal. The first harmonic of the M2 internal tide is
comparable to lee waves, though again, with less fluctuation. The harmonics of M2 vary
more, however. The fundamental frequency band keeps in between 3 m2/s and 4 m2/s, the
first harmonic between 0.03 m2/s and 0.9 m2/s, the third harmonic between 0.004 m2/s
and 0.01 m2/s, and the fourth harmonic between 7 ×10−3 m2/s and 2 ×10−2 m2/s.

Regarding the 3M2 band, the M2+K1 band, and the K1 band, there is an interesting
interplay between them through time. First, there is an initialisation period. In the first
30 days, the signals decrease. After the initialisation period, initially the 3M2 band is at
approximately three times the kinetic energy of the other two bands, while the M2+K1

band and the K1 band are largely on top of each other. Then the three signals converge,
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Figure 3.12: The kinetic energy scaled by N different types of waves and frequency bands across

which the energy was integrated at 3200 m. Note the the near-inertial signals were taken from run

S. All other signals were found by partitioning the frequencies in run T.
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but just before they touch, the K1 frequency band gains more kinetic energy than the
other two, now having more than 3M2 signal. Around 200 days, the signals converge
again, due to K1 losing energy. The M2+K1 is generally the lowest, except for a period
near the end, where the K1 band is the smallest. The 3M2 and K1, however, often diverge
and converge, while also having some period where they have largely the same amount
of kinetic energy. In summary, it seems that the 3M2 band, the M2+K1 band, and the
K1 band have underlying variables that drive these convergences and divergences of their
kinetic energy. One reason might be wave-wave energy exchanges between these bands.
The fact that the K1 is trapped, while M2 is not is also likely to play a role, with variables
such as the local Doppler shift and the relative vorticity influencing the temporal variation.
This requires further investigation.

The 4M2 signal here is negligible to any of the others, as well as the 2f band. Near
the bottom in the Scotia Sea, the M2 internal tide dominates the N -scaled kinetic energy
spectrum at all tides, with only a second to third-order contribution by the near-inertial, lee
wave, and 2M2 frequency bands. Combined, however, these last three can still contribute
a first-order kinetic energy contribution. Finally, the interplay between the 3M2 band, the
M2+K1 band, and the K1 band requires further investigation.

Now we consider the depth level at 1400 m, in between the two generation depth levels.
The N -scaled kinetic energy is plotted Fig. 3.13. At this depth level, the scaled kinetic
energy in the M2 band is approximately an order of magnitude larger than near-inertial
band. The M2 band ranges from 0.2 to 0.5 m2s , while the near-inertial band ranges
from 7× 10−3 to 4× 10−2 m2s. The next most significant frequencies are 1 to 2 orders of
magnitude smaller. Only the 2M2 band occasionally has second-order effects at times. The
harmonics of M2 all largely follow the same pattern again as the fundamental frequency. At
this level, it appears that the 3M2+K1 frequency band correlates well with M2 frequency
band (or its harmonics). Whether it is the harmonics that control the energy in this band
or the fundamental frequency requires further investigation.
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Figure 3.13: The kinetic energy scaled by N different types of waves and frequency bands across

which the energy was integrated at 1400 m. Note the the near-inertial signals were taken from run

S. All other signals were found by partitioning the frequencies in run T.



Chapter 4

Discussion

This work found and characterised the different types of waves present in the Scotia Sea
in the Southern Ocean, and examined the spatial and temporal variation of the internal
wave field, and the implications for deep ocean mixing. There are a number of idealised
studies that have investigted the generation and propagation of internal waves, such as
Nikurashin, Vallis, and Adcroft (2013), Shakespeare and Taylor (2015), and Yang et al.
(2018). Various observational studies have investigated the internal wave field, such as
Brearley et al. (2013), or a combination of a model with observations by satellite altimetry,
such as by Alford et al. (2019). There are only a small number of papers that employed
high resolution numerical ocean models to directly model the generation and propagation
of internal waves. Rayson et al. (2011) employed a realistic model with variable resolution
with a resolution of 1 to 3 km in regions of internal wave generation to investigate internal
tide generation on the continental shelf. Mashayek et al. (2017) ran a high-resolution
ocean model for 250 days to quantify vertical turbulent mixing by using numerical tracers.
Rath, Greatbatch, and Zhai (2014) investigated the spatiotemporal variability of near-
inertial waves in the Southern Ocean using a lower resolution (1/10)◦ model for more
than thirty years. However, to the author’s knowledge, no earlier work has examined the
spatiotemporal variability of the internal wave field in a high resolution model under a
realistic forcing regime, which gives this work unprecedented insight into the internal wave
field present in the Southern Ocean, and the Scotia Sea in particular. In addition, the
model was run for one year, which enabled the quantification of the temporal variability
in the different wave types, which at present is poorly constrained. Finally, this work used
a unique and novel filtering technique (see section 2.3) to rigorously separate the wave
component of the flow from the nonwave component, which made it possible to quantify
the kinetic energy in the three wave types that are thought to be the main sources of deep
ocean mixing.

In Fig. 4.1, the mean and standard deviation of the scaled kinetic energy in time for each
wave band is plotted at the 100 m, 1400 m, and 3200 m depth levels. The key wave types
are the M2 internal tide, near-inertial waves (NIW), and lee waves. Below we will discuss
the main findings in detail.

4.1 The M2 internal tide

In our model, out of all wave types analysed, the M2 internal tide has the largest N -scaled
kinetic energy in the internal wave field at all depth levels in the Scotia Sea. Near the
bottom of the Scotia Sea, at 3200 m depth and excluding the initialisation phase, the M2

internal tide had a mean value of 0.31 m2/s, while near-inertial waves had a mean value
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Figure 4.1: Scaled wave kinetic energy at 3200 m, 1400 m, and 100 m depth. The mean buoyancy

frequency N at each of these depth levels was 0.0065 s−1, 0.0067 s−1, and 0.0076 s−1, respectively.
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of 0.016 m2/s, lee waves had a mean value of 0.0046 m2/s, and the 2M2 harmonic had a
mean value of 0.0055 m2/s. The M2 internal tide has the largest amount of kinetic energy
at this depth, having one order of magnitude more scaled kinetic energy than the next
largest wave type. This result implies that the M2 internal tide has the most potential to
transfer kinetic energy to deep ocean mixing in the Scotia Sea.

In our model, there is significant temporal variability in the M2 internal tide in the Scotia
Sea. Excluding the initialisation phase, the M2 internal tide had a standard deviation of
0.048 m2/s which is 15% of the mean. Given that the Fourier transform of the Lagrangian
filtered kinetic energy used a 28-day moving time window, the output is essentially a
moving average of 28 days. The maximum and minimum values reported here are thus
a lower bound on the variability; if the signal could be directly observed, the minimum
value would be lower and the maximum value would be higher. The significant temporal
variability in the M2 internal tide implies that any observation that quantifies the kinetic
energy in the M2 internal tide over some period gives the kinetic energy only for that
particular period, and cannot be assumed to be representative of the signal throughout
the year. On a technical note, our result above underscores that it is not always preferable
to maximise the moving time window over which the Fourier transform in time is taken.
Reducing the time window results in better time resolution in time-frequency space but
worse frequency resolution, while increasing it results in better frequency resolution but
worse time resolution. For this work, it was important to distinguish the M2 internal
tide from near-inertial waves, which is why a relatively longer moving time window was
chosen.

4.2 Near-inertial waves

In our model, near-inertial waves make the second largest contribution to the scaled kinetic
in the internal wave field in the Scotia Sea at 100 m and 1400 m depth, and the fourth
largest at 3200 m depth. At 100 m depth, near-inertial waves had a mean value of 0.36
m2/s, while the M2 internal tide had a mean value of 0.82 m2/s, and the 2M2 harmonic had
a mean value of 0.025 m2/s. Lee waves, diurnal frequencies, the near-inertial harmonic,
and the 3M2 harmonic all have scaled kinetic energy of an order of magnitude or more
smaller than the 2M2 harmonic. The Southern Ocean is known to have strong winds, so
it is expected that near-inertial waves have scaled high kinetic energy in the Scotia Sea.
However, it is surprising that near-inertial waves have less mean scaled kinetic energy
than the M2 internal tide. Brearley et al. (2013) conducted an observational study of
the Scotia Sea to investigate the eddy contribution to enhanced deep ocean mixing in
the Southern Ocean. Though not the focus of their study, the strong peak that occurs
close to f was attributed to near-inertial waves. At 56◦ S latitude, the inertial frequency
f = 1.2 × 10−4s−1, while the M2 internal tide has a frequency of 1.4 × 10−4s−1. High
frequency resolution is necessary to be able to distinguish near-inertial waves from the
M2 internal tide at this latitude. By running our model for one year, and using a 28-day
moving time window, and having a separate surfaced case from a surface and tidally forced
case, we were able to clearly separate the relative contributions made by the near-inertial
wave band and the M2 internal tide. Given the near inertial waves’ relatively large scaled
kinetic energy at the 100 m depth level, near-inertial waves have less than but comparable
potential to to the M2 internal tide to transfer transfer kinetic energy to mixing near the
surface in the Scotia Sea. However, at the 3200 m depth level, the relatively low mean
scaled kinetic energy in the near-inertial wave band internal tide implies that, on average,
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it has little potential to transfer significant amounts of kinetic energy to deep ocean mixing
compared to the M2 in the Scotia Sea.

In our model, near-inertial waves also have strong temporal variability in the Scotia Sea
at all depth levels. Based on the Fourier transform in time of the Lagrangian filtered
kinetic energy, at 100 m depth, excluding the initialisation phase, near-inertial waves had
a standard deviation in time of 0.22 m2/s, which is 63% of the mean (0.36 m2/s). It
achieved a maximum scaled kinetic energy of 0.97 m2/s, and a minimum value of 0.075
m2/s. The scaled near-inertial kinetic energy over the full year thus varies by more than
one order of magnitude. Unlike the M2 internal tide, for near-inertial waves we have both
the moving average of the scaled kinetic energy and the instantaneous scaled kinetic energy
with two qualifications. First, the instantaneous scaled kinetic energy is over all frequencies
rather than just the near-inertial band. However, from the Fourier transformed signal, we
found that nearly all kinetic energy in run B is in the near-inertial band. The difference
between the total kinetic energy in run B and the near-inertial band is negligible. Second,
the instantaneous values were found to be approximately a factor of π smaller than the
Fourier transformed kinetic energy. The instantaneous scaled kinetic energy was found
to have peaks throughout the year where it was near to or greater than the maximum
value found in the Fourier transformed kinetic energy. At the 100 m depth level, despite
the fact that near-inertial waves have a mean value that is smaller than the M2 signal,
during storms near-inertial waves can have have greater scaled kinetic energy than the
M2 internal tide. Therefore, even more so than for the M2 internal tide, observations of
near-inertial waves for periods of time shorter than one year are not representative of the
signal throughout the year in the Scotia Sea, and likely in other regions too. Even at the
3200 m depth level, peaks occurred which were approximately 20% of the M2 internal tide
mean.

4.3 Lee waves

Lee waves make the third largest contribution of scaled kinetic energy to the internal wave
field at the 3200 m depth level in our model, and the fourth largest at the 1400 m and 100 m
depth level. At the 3200 m depth level, excluding the initialisation phase, lee waves had a
mean scaled kinetic energy value of 0.0046 m2/s. This is a surprising result. Lee waves are
thought to be a major source of deep ocean mixing in the Southern Ocean (e.g. Nikurashin,
Vallis, and Adcroft (2013)). One reason might be that earlier literature has quantified lee
wave generation in idealised case studies and by using linear theory. No previous works
have directly modelled lee waves in a high-resolution, wave-permitting regional model
under a realistic forcing regime. The relatively small contribution of scaled kinetic energy
to the internal wave field by lee waves in our model suggest that lee waves might only make
a small contribution to deep mixing. However, running a model with a realistic forcing
regime at higher resolution would more completely resolve the internal wave spectrum
and other smaller scale processes. Lee wave generation is known to be sensitive to rough,
small-scale topography and thus it is possible that higher spatial resolution increases lee
wave generation.

The temporal variability of lee waves in our model at 3200 m depth was as strong as the
temporal variability in near-inertial waves at 100 m depth. Excluding the initialisation
phase, lee waves had a standard deviation in time of 0.0029, which is 63% of the mean
(0.0046 m2/s). It has a correlation coefficient of 0.81 with the deep ocean mean flow in the
model, which corresponds to the Antarctic Circumpolar Current (ACC). The ACC is the
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current that runs clockwise around Antarctica, and is mainly forced at the boundaries of
the model, and modified by surface and tidal forcing (see Fig. 3.2). This strong correlation
implies that the temporal variability in the ACC mainly controls lee wave generation in
the Scotia Sea. This result providence evidence that linear theory accurately predicts lee
wave generation in a partly lee wave resolving model. It remains an open question whether
this will continue to apply in a model with a realistic forcing regime with higher than 700
m resolution. In addition, the variability of the lee wave signal, as for near-inertial waves,
is likely to increase when smaller scales are resolved.



Chapter 5

Conclusions

5.1 Summary

We configured a high resolution, regional model to have realistic boundary, surface, and
tidal forcing to investigate the internal wave field in the Scotia Sea. This thesis relied
strongly on the Lagrangian filtering technique. The full domain algorithm was adapted to
be more accurate, while also making it relatively more efficient. Using Lagrangian filtering,
the internal wave field was separated from the non-wave component of the flow. In our
model, we found that the most significant contribution to the N -scaled kinetic energy in
the internal wave field is by the M2 internal tide throughout depth in the Scotia Sea. The
M2 internal tide was found to be more temporally variable than expected (±15%), and
cannot be assumed to be constant throughout the year. Near-inertial waves made the
second largest contribution of scaled kinetic energy throughout depth. The near-inertial
wave signal was found to be highly variable in time (±63%). Lee waves made the third
largest contribution to the scaled kinetic energy near the bottom, and the fourth largest
(after the 2M2 harmonic) at 1400 m and 100 m depth. Lee waves were found to be as
variable as near-inertial waves (±63%).

5.2 Implications

This work suggests that the M2 internal tide has the most kinetic energy to potentially
contribute to deep ocean mixing. In our model, near-inertial waves have an order of
magnitude less scaled kinetic energy than the M2 internal tide, and thus have less potential
to contribute to deep ocean mixing. Given the scaled kinetic energy in the lee wave band,
our model suggests that lee waves likely make smaller contributions to deep ocean mixing in
the Scotia Sea than the M2 internal tide and near-inertial waves. This result is surprising,
since various idealised simulations of the internal wave field over the last ten years suggest
that lee waves make a significant contribution to deep ocean mixing. In particular, the
Southern Ocean, due to its rough topography and high bottom flow speeds, is considered
to be the prime location for lee wave generation.

For global circulation models, our model suggests that future parameterisations of mixing
should consider the temporal variability the M2 internal tide, as well as its temporal
variability. Our model was configured for the Scotia Sea. In other regions, near-inertial
waves might be a stronger signal and thus more dominant in their contribution to deep
ocean mixing. However, even in the Scotia Sea, our model suggests that though the mean
contribution by near-inertial waves is less, there are periods of time that can last a week
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or more where near-inertial waves make second-order contributions to the kinetic energy,
and thus are more likely to contribute significantly to deep ocean mixing. The strong
correlation in time between lee wave generation and the deep ocean mean flow suggests
that lee waves can be accurately described in terms of the temporal variations in the
Antarctic Circumpolar Current.

5.3 Caveats

Higher resolution would resolve important smaller scale phenomena. By resolving a larger
part of the internal wave spectrum, internal wave generation would possibly increase.
Lee waves in particular are generated at smaller scales. On the other hand, by using
a higher resolution, in certain regions, a bottom mixed boundary layer might form due
to topographic interactions inducing turbulence. Such a bottom mixed boundary layer
which would have a very small buoyancy frequency and thus would reduce internal wave
generation. This work would have benefited from running the model for a longer period
of time, enabling us to more robustly analyse the seasonality in the internal wave field.
By running only a single year, it was difficult to distinguish model equilibration from the
seasonal cycle. Much of the analysis was done across horizontal cross-sections of the ocean,
which made the characterisation of certain properties of the wave field more challenging.
This work would also have benefited from directly outputting the Smagorinsky viscosity
(the parameterisation used for the attenuation of kinetic energy in the flow) throughout
the year, which would have enabled us to investigate the connection between the scaled
kinetic energy in each wave type and the dissipation of that energy.

For various purposes, it is preferable to consider the vertical energy energy flux rather than
the horizontal kinetic energy. However, from computing the net vertical energy flux, there
appeared to be significant reflections in the internal wave field. causing the fundamental
frequency of the wave field to have little net energy flux. This motivated the choice of
looking at the kinetic energy instead. By scaling the kinetic energy byN , the kinetic energy
roughly scales with the total energy flux (rather than the net energy flux). This is because
the vertical energy flux is related to the kinetic energy through the vertical group speed,
which depends on the buoyancy frequency N , the wavenumber k, the inertial frequency
f , and the frequency ω. By dividing by N , the effect of changes in the horizontal kinetic
energy due to changes in the wave slope is taken into account. However, it does not take
into account changes in the wavenumber. Hence, any non-linear interactions that occur
between wavenumbers are not visible for analysis. Since the domain is an f -plane, the
inertial frequency does not change and does not cause any difference between the energy
flux and the kinetic energy. And the last variable, the frequency ω, is taken into account,
since the scaled kinetic energy is analysed in the frequency.

5.4 Future work

Further work using the same model, but for a shorter period of time using a higher
resolution with data being output at all depth levels would enable further analysis of many
different types of important internal wave dynamics, including wave-wave interactions,
mixing, dissipation, and generation. Having hourly data at all depths would allow for
quantifying eddy-wave energy exchanges, and enable accurate quantification of trapping
compared to reflection in the ocean. The relative amounts of trapping and reflection has
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implications for deep ocean mixing, as well as for fraction of the different types of waves
that reach a critical level before they reach the surface, and then contribute to mixing at
that location. In our model, we found that the M2 internal tide was not only strong near
the bottom, but also near the surface. Further research should consider investigating the
M2 internal tide contribution to near-surface mixing in the Scotia Sea, and other regions
in the ocean with average seafloor depths of approximately 3.5 km.
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