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Decomposed stellar kinematics of bulge and disk for 826 SAMI galaxies (Oh et al. 2020 MNRAS.495.4638

Galaxy - We used the Penalized Pixel-Fitting method (pPXF; Cappellari & Emsellem 2004; Cappellar1 2017) to
‘? " R simultaneously fit stellar kinematics of galaxy bulges and disks with a photometric priors (ws and wp) which
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~ a . have been derived from photometric bulge-disk decomposition for each spaxel over the galaxy (Casura et al.
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'Y - A two-component kinematic fitting sometime yields unphysical solutions originated from local minimum of y?.

Oh et al. (2020) introduces a new subroutine of PPXF for dealing with degeneracy 1n the solutions (see also

0 - - We spectroscopically decomposed bulge and disk kinematics for 826 SAMI galaxies with various morphological
» & types. Our sample 1s the largest to date with spectroscopic bulge-disk decomposition and the first such sample to
e . include all morphological types.

Galaxv bulge and disk are kinematically distinct

Yloalaxy - We show that the bulge and disk components are kinematically distinct
0.8F ry y - The Are (spin parameter proxy) —e (ellipticity) plane 1s often used as a diagnostic
06l i for fast and slow rotators (Emsellem et al. 2007; 2011):
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Gas kinematics is more sensitive to power sources than stellar kinematics

- The gas velocity dispersion (Ggas) measured using emission lines 1s not always smaller than the
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the PSF (Re/Rpsr); the ratio of the stel

stellar velocity dispersion (Gstar). The difference in the velocity dispersions (Gstar/Ggas) correlates with
| various galaxy properties (e.g. stellar mass, size, age, star-formation rate SFR, etc.).
1 - Three parameters are suspected to have causal connections to (Gstr/Geas), Which also explain the

other galaxy parameters: the relative size of the galaxy and
ar and gas velocity gradients (V' Vstar/ V' Vgas), and '"AGN-

ne star-forming sequence 1n emission-line diagnostics)

- The impact of beam smearing (which depends on both Re/Rpsr and V' Vtar/ V' Vgas) 18 crucial when

: q - There still 1s a correlation between ‘AGN-ness’ and ostar/0gas €ven after allowing for the impact of
Pearson r = ~0.68 beam smearing. The ‘AGN-ness’ can be a proxy for the accretion rate of the central black hole. Jets,
outflows, turbulence powered by the central black hole may boost the dispersion of gas kinematics.
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Xthree = log (V Vstar/ V' Vigas) - 1.15 log (Re/Rpsr) + 0.95 (AGN-ness)  dispersion.

- In conclusion, the gas velocity dispersion 1s more sensitive to power sources than the stellar
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