Experimental / BIM Extended

Experimental / BIM Extended

API Version: 1.0.0

Manage the BIM entities not integrated in the service Mature / BIM Sync.

10of 16

INDEX

. PERSONS

—

.1 GET /persons

.2 PUT /persons

.3 GET /persons/{guid}

.4 DELETE /persons/{guid}
.5 HEAD /persons/{guid}

_ A A

. TASKS

1 GET /tasks

2 PUT /tasks

3 GET /tasks/{guid}

4 DELETE /tasks/{guid}

.5 HEAD /tasks/{guid}

6 GET /tasks/{guid}/statuses

7 PUT /tasks/{guid}/statuses

8 GET /tasks/{guid}/statuses/{status_guid}

9 DELETE /tasks/{guid}/statuses/{status_guid}
.10 HEAD /tasks/{guid}/statuses/{status_guid}

N N N N N DNDNDNDMNDNDDNDDN

. UXVS

.1 GET /uxvs

.2 PUT /uxvs

.3 GET /uxvs/{guid}

.4 DELETE /uxvs/{guid}
.5 HEAD /uxvs/{guid}

W W www w

a A b W W W

O© 0 O N o o O

11
12

13
13
13
14
14
15

2of 16

API
1. PERSONS

1.1 GET /persons

List Persons
List GUIDs of all the persons.

REQUEST

No request parameters

RESPONSE

STATUS CODE - 200: Successful Response
RESPONSE MODEL - application/json

1.2 PUT /persons

Put Person

Register the person with the service based on its GUID.

REQUEST
REQUEST BODY - application/json
Fgepresent a person involved with the system.
guid=* PATTERN:
emailx PATTERN:
}
RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{
Array of object:
loc*
msg*
typex
}]
}

3of16

1.3 GET /persons/{guid}

Get Person
Get the data of the specified person.

REQUEST
PATH PARAMETERS

NAME TYPE DESCRIPTION

*guid string GUID of the person
PATTERN: *a-zA-Z0-9_.:-]+$

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json
{

Represent a person involved with the system.

guid=* PATTERN:

email* PATTERN:

}
STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{
Array of object:
loc*
msg*
typex
}
}

1.4 DELETE /persons/{guid}

Delete Person

Unregister the person from the service and delete all the related data.

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION
*guid string GUID of the person

PATTERN: *[a-zA-Z0-9_.:-]+$

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

40f16

STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{

Array of object:
loc*
msg*
typex*

}]

}

1.5 HEAD /persons/{guid}

Head Person
Check whether the person has been registered with the service.

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION
*guid string GUID of the person

PATTERN: *[a-zA-Z0-9_.:-]+$

RESPONSE

STATUS CODE - 200: The person has been registered with the service.

RESPONSE MODEL - application/json

STATUS CODE - 404: The person has not been registered.
STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{
Array of object:
loc*
msg*
typex
}]
}

50f 16

2. TASKS

2.1 GET /tasks

List Tasks
List GUIDs of all the tasks

REQUEST

No request parameters

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

PATTERN:

2.2 PUT /tasks

Put Task

Register the task with the service based on its GUID.

REQUEST

REQUEST BODY - application/json
{

Represent a task on a construction site.

guid=*

name*
long_description*
subtasks*
scheduled_start*
scheduled_end*

related_products* [{
Array of object: Represent a building element.

guid* PATTERN:

revision_url#
urlx
}]
}

RESPONSE

STATUS CODE - 200: Successful Response
RESPONSE MODEL - application/json

STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json
{

PATTERN:

PATTERN:

6 of 16

detail [{
Array of object:

loc*

msg*

type*
}]

2.3 GET /tasks/{guid}

Get Task
Get the data of the specified task.

REQUEST

PATH PARAMETERS

NAME TYPE DESCRIPTION

*guid string GUID of the task
PATTERN: Ma-zA-Z0-9_..--]+$

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json
{

Represent a task on a construction site.

guid* PATTERN:

namex
long_description*

subtasks* PATTERN:

scheduled_start*
scheduled_end=*
related_products* [{

Array of object: Represent a building element.

guid=* PATTERN:

revision_url=*
url=*
}]
}

STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{

Array of object:
loc*
msg*
type*

}

}

70f16

2.4 DELETE /tasks/{guid}

Delete Task
Unregister the task from the service and delete all the related data.
REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION
*guid string GUID of the task

PATTERN: Ma-zA-Z0-9_..-]+$

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{

detail [{
Array of object:

loc*

msg*

type*
}]

2.5 HEAD /tasks/{guid}

Head Task
Check whether the task has been registered with the service.
REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION
*guid string GUID of the task

PATTERN: *[a-zA-Z0-9_.:-]+$

RESPONSE

STATUS CODE - 200: The task has been registered with the service.

RESPONSE MODEL - application/json

STATUS CODE - 404: The task has not been registered.
STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

8 of 16

detail [{
Array of object:

loc*

msg*

type*
}]

2.6 GET /tasks/{guid}/statuses

List Task Statuses
List GUIDs of all the taks statuses.

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION
*guid string GUID of the task

PATTERN: *[a-zA-Z0-9_.:-]+$

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

PATTERN:
STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{

detail [{
Array of object:

locx*
msg*
typex*
1]
}

2.7 PUT /tasks/{guid}/statuses

Put Task Status
Register the task status with the service based on its GUID.

REQUEST

PATH PARAMETERS

NAME TYPE DESCRIPTION

*guid string GUID of the task
PATTERN: A[a-zA-Z0-9_.:-]+$

9of 16

REQUEST BODY - application/json

{
guid=* PATTERN:
task_guid=* PATTERN:
timestamp*
statusx* ALLOWED:
progress between 0 and
notes

}

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{

Array of object:
loc*
msg*
type*

}]

}

100

2.8 GET /tasks/{guid}/statuses/{status_guid}

Get Task Status
Get the data of the specified task status.
REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION
*guid string GUID of the task

PATTERN: A[a-zA-Z0-9_.:-]+$

*status_guid string
PATTERN: *[a-zA-Z0-9_.:-]+$

GUID of the task status

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json
{

guid=* PATTERN:

100of 16

task_guidx* PATTERN:

timestamp*

statusx* ALLOWED:
progress between 0 and
notes

}
STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{

Array of object:
loc*
msg*
type*

1]

}

2.9 DELETE /tasks/{guid}/statuses/{status_guid}

Delete Task Status

100

Unregister the task status from the service and delete all the related data.

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION
*guid string GUID of the task

PATTERN: Ma-zA-Z0-9_..-]+$

*status_guid string
PATTERN: *[a-zA-Z0-9_.:-]+$

GUID of the task status

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{
Array of object:
loc*
msg*
typex
}]
}

11 0f16

2.10 HEAD /tasks/{guid}/statuses/{status_guid}

Head Task Status
Check whether the task status has been registered with the service.

REQUEST

PATH PARAMETERS

NAME TYPE DESCRIPTION

*guid string GUID of the task
PATTERN: *a-zA-Z0-9_..-]+$

*status_guid string GUID of the task status

PATTERN: Ma-zA-Z0-9_..-]+$

RESPONSE

STATUS CODE - 200: The task status has been registered with the service.

RESPONSE MODEL - application/json

STATUS CODE - 404: The task status has not been registered.
STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{

Array of object:
loc*
msg*
typex*

}]

}

120f16

3. UXVS

3.1 GET /uxvs

List Uxvs
List GUIDs of all the UxVs.

REQUEST

No request parameters

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

PATTERN:

3.2 PUT /uxvs

Put Uxv

Register the UxV with the service based on its GUID.

REQUEST

REQUEST BODY - application/json
{

Represent an unmanned vehicle.

guid=* PATTERN:
kind* ALLOWED:

name*
description*
image_url+*

}
RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{

Array of object:
loc*
msg*
type*

1]

}

13 of 16

3.3 GET /uxvs/{guid}

Get Uxv
Get the data of the specified UxV.

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION
*guid string GUID of the UxV

PATTERN: *[a-zA-Z0-9_.:-]+$

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json
{

Represent an unmanned vehicle.

guid=* PATTERN:
kind=* ALLOWED:
name*

description*

image_url*

}
STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{
Array of object:
loc*
msg*
type*
}]
}

3.4 DELETE /uxvs/{guid}

Delete Uxv

Unregister the UxV from the service and delete all the related data.

REQUEST
PATH PARAMETERS
NAME TYPE DESCRIPTION
*guid string GUID of the UxV

PATTERN: *[a-zA-Z0-9_.:-]+$

14 0f 16

RESPONSE

STATUS CODE - 200: Successful Response

RESPONSE MODEL - application/json

STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{

detail [{
Array of object:

loc*
msg*
type*
}]
}

3.5 HEAD /uxvs/{guid}

Head Uxv
Check whether the UxV has been registered with the service.

REQUEST

PATH PARAMETERS

NAME TYPE DESCRIPTION

*guid string GUID of the UxV
PATTERN: Aa-zA-Z0-9_..-]+$

RESPONSE

STATUS CODE - 200: The UxV has been registered with the service.

RESPONSE MODEL - application/json

STATUS CODE - 404: The UxV has not been registered.
STATUS CODE - 422: Validation Error

RESPONSE MODEL - application/json

{
detail [{

Array of object:
loc*
msg*
typex*

}]

}

150f 16

16 of 16

