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Abstract
We report on a systematic analysis of phosphorus diffusion in silicon on insulator thin film via
spin-on-dopant process (SOD). This method is used to provide an impurity source for
semiconductor junction fabrication. The dopant is first spread into the substrate via SOD and
then diffused by a rapid thermal annealing process. The dopant concentration and electron
mobility were characterized at room and low temperature by four-probe and Hall bar electrical
measurements. Time-of-flight-secondary ion mass spectroscopy was performed to estimate the
diffusion profile of phosphorus for different annealing treatments. We find that a high
phosphorous concentration (greater than 1020 atoms cm−3) with a limited diffusion of other
chemical species and allowing to tune the electrical properties via annealing at high temperature
for short time. The ease of implementation of the process, the low cost of the technique, the
possibility to dope selectively and the uniform doping manufactured with statistical process
control show that the methodology applied is very promising as an alternative to the
conventional doping methods for the implementation of optoelectronic devices.

Keywords: spin on dopant, four-probe, SOI doping, P diffusion, ToF-SIMS

(Some figures may appear in colour only in the online journal)

1. Introduction

The functionality of semiconductors relies strongly on the
impurities that can be added to the intrinsic materials to
change their electrical, physical, and optical properties. Uni-
form doping to realize ultrashallow junctions at transistor-like
device source and drain has been a key point of the effort
toward device scaling [1–3]. In traditional semiconductor

device fabrication, the doping is carried out using mainly
three methods: ion implantation, in situ co-deposition, or
doping furnaces. Ion implantation is an excellent process that
allows high level of control on both the dose of implanted
impurity atoms and the implantation depth [4–6]. However,
the conventional ion implantation process, which relies on the
bombardment of semiconductors with energetic ions, is
incompatible with nanostructured materials, such as one-
dimensional (1D) nanowires. Furthermore, it induces severe
crystal damage which requires also an annealing step to
reconstruct the crystal and activate the implanted impurities.
Very high temperature are usually needed, limiting its
applicability to platforms that can substain high thermal
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budget processes. These aspects make ion implantation a
delicate and costly process. In co-deposition techniques, such
as chemical vapor deposition (CVD), the dopant is directly
introduced in the growth chamber by a carrier gas [7–10].
This approach offers an excellent control of the dopant con-
centration and solubility, which can be tuned by changing the
vapor pressure of the source and the temperature of the sub-
strate during the thin films deposition. However, in CVD
method the presence of toxic and explosive gases requires
many safety precautions, making it an expensive and dan-
gerous technique. Moreover, this approach lacks spatial
control as it affects homogeneously the full wafer surface. In
doping furnaces, doping is achieved by exposing the wafers
to a flux of dopant atoms from the sublimation/evaporation of
a solid/liquid source or from a gas source. Dopant diffusion
into the substrate is promoted by heating the wafers for the
time needed to achieve the desired doping profile. Typically,
doping furnaces can be hosted only in large facilities and can
accommodate a large quantity of substrates. However, due to
the hazardous nature of the dopant sources, this step often
requires a very long time in a controlled environ-
ment [11, 12].

To overcome the difficulties of conventional technologies
and their correlated costs, tremendous research efforts have
been taken in recent years to develop new strategies for
introducing dopants into semiconductor materials such as
monolayer doping [13–16] or spin on dopant (SOD) [17–23].
In this work we applied a SOD treatment with rapid thermal
annealing process (RTA) to drive-in the dopants from the
SOD polymeric film into the silicon substrate, without mod-
ifing the surface energy, requiring covalent attachment
methods, such in surface-initiated polymerization [2] and
grafting of functionalized polymers [24, 25]. The SOD film
provides an impurity source for semiconductor junction fab-
rication, and due to the convenience and simplicity of use, it
greatly reduces the reliance on the traditional facilities for
doping diffusion. SOD based treatments have become
increasingly popular due to their simple, uniform doping

profile, high yields, and possibility to introduce both n- and
p-type doping [26, 27]. The advantage of SOD over the
aforementioned methods relies in its low cost, simple control
of the process and its adaptability to different platforms,
achieving a uniformity of the coated film on large substrates.
Moreover, it eliminates the need for dangerous gases and their
related safety precautions, it is more environmentally friendly,
and reduces manufacturing costs. Additionally, unlike CVD
method and furnace-based doping approaches, the SOD
process allows selective doping via lithographically patterned
areas, similarly to ion implantation [28]. The possibility of
diffusing the SOD only in specific areas is very interesting for
new nanoelectronic applications: for instance, in the fin field
effect transistor the channel has not to be doped, giving the
gate higher ability to control threshold voltage, which is a
very important property when the transistor is scaling down,
while the source and drain regions can be doped locally by
SOD process. Here, we have targeted high doping levels
-even though perfectly localized- to address the needs of
FinFET devices for plasmonic and quantum applications
[29, 30]. Clearly, such devices will not be the only perspec-
tive potentials of applications, but the necessity of having a
high level of localized doping, makes them one of most
challenging devices.

In this work we systematically investigate the diffusion
of phosphorous from a SOD source in silicon on insulator
(SOI) wafers, RTA treatments are performed using different
temperatures and process times, leading to the optimization of
the desired final doping concentration. By a systematic ana-
lysis of the electrical characterizations, the values of P dif-
fusion electrically activated, the doping and mobility were
extracted and compared with the chemical P diffusion
obtained through time of flight secondary ion mass spectro-
metry (ToF-SIMS) analyses measurements, demonstrating a
successful control of dopant diffusion on SOI susbtrates. At
the end, a localized doped Si-based nanodevice is tested as
validation of the SOD procedure.

Figure 1. Representation of the doping treatment using SOD P508. (a) SOI wafer sketch; (b) SOI wafer spin coated with SOD P508;
(c) annealing steps on a hot plate; (d) activation of the diffusion of P using the RTA treatment; (e) doped sample after the cleaning procedure.
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2. Methods

The optimization of the SOD treatments was carried out using
a (001) SOI substrate, featuring a 125 nm thick Si layer on a 1
μm buried oxide (BOX) (figure 1(a)). After a cleaning process
(ultrasonic treatment with acetone, isopropanol, and
N-methyl-2-pyrrolidone) the SOI wafers were spin-coated
with the commercial SOD P508 (composition: 8% P and 5%
SiO2) for 30 s at speed of 3000 rpm (figure 1(b)). This process
was carried out in a temperature and humidity-controlled
environment to prevent cloudiness of the SOD layer. To
evaporate the volatile solvent contained in P508, the samples
were baked on a hot plate at 55 °C for 10 min and then at 120
°C for 15 min (figure 1(c)). The two baking steps were
necessary to avoid cracking of the SOD film. The diffusion of
the dopant in silicon was performed by RTA. Different
annealing temperatures and times were tested to study the
behavior of the diffusion profile and the resulting doping level
as reported in table 1. In each process the RTA system
ramped up in 9 s to the annealing temperature, which was
maintained for process times in the 10–90 s range. The
samples were cooled down in a controlled way by flowing the
N2 in the chamber (figure 1(d)). The remaining SOD layer
was removed by rinsing in a HF solution (5% vol) for 1 min,
followed by an oxygen plasma asher treatment for 30 min at
1000W to remove any organic contamination. A final HF
rinse (5% vol) for 30 s (figure 1(e)) is performed to remove
any SOD residues. The reproducibility of the process was
validated by processing three different samples batches. After
the doping treatment by SOD and the cleaning of the samples,
devices for four-probe measurements and Hall bar shaped
devices were fabricated (figure 2). The four-probe devices
fabrication includes just one step of optical lithography,
where a positive resist is patterned before the metal deposi-
tion. The metallic contacts were obtained by electron beam

evaporation of 7 nm of Ti, 50 nm of Au and 100 nm of Al
followed by a lift-off process (figures 2(g), (h)). The Ti was
used as a prime to increase the adhesion of Au to the Si
substrate, Al allowed us to increase the final thickness of the
metals to facilitate the bonding. The Hall bar shaped devices
consist of a mesa, patterned by optical lithography and
transferred to the substrate by dry etching (CF4 plasma),
(figure 2(b)). Specifically, the adhesion promoter TI PRIME
was spin-coated at 3000 rpm for 5 s, then the positive resist
AZ 5214E was spin-coated in two different steps at 750 rpm
for 5 s and at 4000 rpm for 40 s. After the optical lithography,
the samples were dipped for 15 s in dilute HF to remove the
native oxide layer on the surface right before the contacts
deposition. Finally, to obtain ohmic contacts we performed
the same procedure reported for the four-probe devices. To
improve the quality of the contacts, by lowering the contacts
resistivity, the samples were annealed in a furnace at 300 °C
for 180 s [31]. Samples were characterized electrically
according to the Van der Pauw method [32], and carrier
density and Hall mobility were extracted from Hall effect
measurements. This electrical characterization was carried out
using a permanent magnet creating a 0.204 T magnetic field at
room temperature, and an electromagnet which applied a
magnetic field ranging from 0 to 1 T at 3 K with an accuracy
of 3 mK. The temperature has been measured with a Cernox®

negative temperature coefficient RTD made of ceramic oxy-
nitride. The phosphorous profile was obtained by ToF-SIMS
analyses operating in negative mode and sputtering an area of
500×500 μm2 using Cs+ ions at 1 keV and an area of
50×50 μm2 using Ga+ ions at 25 keV. Phosphorous quan-
tification was performed according to a calibration procedure
that was widely discussed in a previous paper [33]. Finally,
by a combination of electron beam lithography and reactive
ion etching a Si-based nanodevice using the same SOI sub-
strate before descripted is realized: a SiO2 hard mask is

Table 1. Parameters of the rapid thermal annealing treatments of all the samples analyzed. Series A–B–C–D–E samples used for four-probe
measurements: for a fixed temperature, different annealing times have been characterized, keeping the ramp up (9 s) constant. Series G
samples used in ToF-SIMS analyses. Series H samples used for mobility measurements.
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realized and the SOD spincoated in selective areas. The I/V
characterization at room temperatures has been carried out to
confirm the localized doping optimized by SOD treatment.

3. Results

The doping concentration ND was obtained by measuring
the resistivity ρ of each sample with the dual configuration

four-point probe method [34]. The two resistances RA and RB

associated with the corresponding contacts are reported in
figure 3. From these characteristic resistances the sheet
resistance RS and the electrical resistivity r can be obtained
by:

p
=

+
R

R R
2

ln 2 2
, 1S

A B

( )
( )

r = R x , 2S Si ( )

Figure 2. Representation of the fabrication steps. (a) UV exposure of the spin-coated sample; (b) after development, the Si layer is etched by
CF4 plasma; (c) second exposure using a negative resist (d) metal evaporation. (e),(f) 3D representation and plan view of the Hall bar
structures: contacts 2–4 and 3–5 are used for longitudinal voltage, contacts 2–3 and 4–5 for transverse voltage measures; (g), (h) 3D
representation and plan view of the contacts used for four-probe.
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where xSi is the thickness of the conductive layer [35]. In this
analysis, the top Si layer (xSi=125 nm) is considered com-
pletely and homogeneously doped, neglecting that P atoms
have a limited penetration depth as detected by the ToF-SIMS
analyses reported below. Since the contacts were positioned
in the middle of the sample and not in the corners of a square
sample, a correction factor of 2 (in the equation (1)) is
reported in the numerator in the classical Van der Pauw
configuration [36]. The model described by Thurber et al was
used to find concentration using the measured resistivity [37].
According to this model it is possible to define a parameter x
as the logarithm of the ratio between the measured resistivity
r and the normalization value r = W1 cm0

r
r

=x log 3
0

( )
⎛
⎝⎜

⎞
⎠⎟

and the quantity P as the product between the electronic
charge q, the measured resistivity r and the electrically active
doping density ND:

r=P q N . 4D ( )

Then, solving equation (5) using the parameters reported
in table 2 and the normalization factor P0 equal to 1 V s cm−2:

=
+ + +
+ + +
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the doping concentration ND is obtained from equations (4)
and (5):
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The ND values should be considered as a lower bound of
the doping concentration. In fact in the evaluation of the
resistivity, we considered the whole thickness of the SOI,
125 nm in our case. Although the Tof- SIMS characterizations
(shown below) confirm a gradient of the chemical diffusion of
phosphorus, in this analysis we consider a uniform distribu-
tion of the electrically active phosphorus because it was not

possible to perform four-probe measurements at the various
depths levels. By increasing the annealing time and temper-
ature it was possible to obtain a high level of doping in sili-
con. For an annealing time below 30 s a doping level of 1019

atoms cm−3 can be achieved at an annealing temperature of at
least 880 °C, while on increasing the annealing time to 90 s,
the same level can be obtained for annealing temperatures just
at 860 °C. The maximum reached dopant density measured
by four-probe method is about 7.8×1019 atoms cm−3 for
90 s annealing time at 915 °C.

Considering the samples annealed in the range between
860 °C and 915 °C and characterized by four-probes mea-
surements, the doping concentration is a linear function of the
square root of the annealing time as reported in figure 4. This
same behavior is predicted by the diffusion model assuming
that (1) the Si thickness is few times larger than the diffusion
length of the dopant, and (2) the SOD acts as an infinite
source of dopant in contact with a semi-infinite medium [38].
Following this model, the doping level is the integral of the
diffusion profile of the concentration of dopant normalized
with the depth of the Si layer (xSi) in which the dopant dif-
fuses. By applying this model the doping concentration has a
linear dependence on the square root of the annealing time:

ò p
= = µ

+¥
N

x
c x t x

x

c
Dt t

1
, d

1 2
, 7D

Si 0 Si

0( ) ( )

where =c x t c, erfc ,x

Dt0 2( )( ) c0 being the doping con-

centration at the SOD/silicon interface, and it is assumed to
have a solubility limit of c0=3.5×1020 atoms cm−3 for
phosphorus [39]. The doping concentration as a function of
the square root of the annealing time is reported in figure 4,
where different temperatures have been considered. From the
angular coefficient of linear fit of the data m ,fit the diffusivity
of phosphorus in Si can be calculated:

p=D
m x

c2
. 8fit Si

0

2

( )
⎛
⎝⎜

⎞
⎠⎟

From the experimental data, the diffusivity values for
samples annealed at 860 °C, 880 °C, 900 °C, 915 °C and
920 °C are 1.73×10−14 cm2 s−1, 3.15×10−14 cm2 s−1,
7.10×10−14 cm2 s−1, 9.13×10−14 cm2 s−1 and
1.34×10−13 cm2 s−1 respectively. From the data of diffu-
sivity taken from the four-probe measurements, it is possible
to extrapolate the value of the activation energy (Ea) of
phosphorus diffusion in Si according to the definition of the
diffusivity by the Arrhenius equation = -D D e0

E
k T

a
B( ) where

kB is the Boltzmann constant and T the annealing temperature.
From the linear fit of the natural logarithm of diffusivity

= -D Dln ln E

k T0
a

B
( )( ) ( ) in function of T−1), the activation

energy of 3.88 eV has been obtained. This value is in
agreement with the phosphorus activation energy obtained by
others using a similar SOD product but other annealing
treatments [40, 41]. To characterize the chemical diffusion
profile of phosphorous, some ToF-SIMS analyses have been
carried out (G series in table 1). The chemical profiles for
different species diffused by RTA with various annealing

Figure 3. Schematic representation of the electrical measurement of
the four-probe configuration for the characteristic resistance (a) RA

and (b) RB.

Table 2. Parameters used in equation (5) [30].

A
0

A
1

A
2

A
3

−3.0951 −3.2303 −1.2024 −0.13679
B

0
B

1
B

2
B

3

1 1.0205 0.38382 0.041338
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time and temperatures were compared in figure 5. The longer
the annealing time, the higher the concentration of P in the Si
substrate was detected. However, by increasing the temper-
ature, oxygen impurities (detected as SiO3) diffused from the

SOD films into the first nm of the silicon film, resulting in the
formation of a partially oxidized SiOx layer in each sample,
with a progressively increasing thickness as the annealing
time increases, without limiting the electric transport

Figure 4. Linear fitting of the experimental data obtained from four-probe measurements of samples annealed at 860 °C (R-squared 0.96) blue
line, at 880 °C (R-squared 0.98) red line, at 900 °C (R squared 0.98) gray line, at 915 °C (R squared 0.99) green line and at 920 °C (R squared
0.97) red line.

Figure 5. Doping profiles for different chemical species (Si black line—P red line—SiO3 green line) diffused by RTA with annealing time of
5 s, 10 s and 20 s at the annealing temperature of 900 °C (a) and 915 °C (b).
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properties as reported by the mobility values in table 3. A
phosphorous signal is detected in first 15–30 nm with a
relatively long tail extending towards the Si/BOX interface,
confirming a gradient of the phosphorous chemical diffusion.

In order to continue the characterization of the samples,
Hall bar measurements were performed in order to obtain
the doping concentration and the electron mobility. The
Hall mobility is obtained from the ratio between the Hall
coefficient of the material RH and the resistivity ρ. By
exploiting the six-contact Hall bar geometry, an average
value of the Hall coefficient RH can be obtained in
order to limit the negative effects caused by the non-uni-
formities of the sample. The resistivity ρ, instead, is
obtained from:

r =
V

I

Wx

L
, 9Si ( )

where V is the longitudinal voltage (figure 2(f)), W and L are
respectively the width of the conductive channel of the Hall
bar and the length between the voltage probes. The mea-
sured data are reported in table 3.

The doping concentrations are similar at 300 and 3 K,
while the mobility values are higher at low temperature. The
main factors that affect the mobility in an extrinsic semi-
conductor are impurity scattering, phonon scattering, and
electron–electron scattering: the role of impurity scattering
becomes more important as the doping density increases or
when the temperature decreases [42]. According to [43],
samples characterized by high doping levels are more dif-
ficult to measure and are not particularly affected by the
variation of the temperature. The measured mobility values
are in agreement with those of silicon samples doped with P
using different techniques [44, 45], confirming the validity
of doping mechanism with fast and low-cost SOD process.
Finally, it is shown the capability of doping selective area
through a Si-based nanodevice. From an SOI with a device
layer of 145 nm are fabricated four Si pads linked through a
200 nm wide channel as reported in figure 7. To selectively
doped two of the four pads (respectively contacts 1 and 3)
and to leave the inner nanometric intrinsic channel, a SiO2

mask is created figure 8. After the SOD doping treatment at
880 °C, an electrical catherization is performed between all
contacts. The I–V curve reported in figure 7(a) shows an
ohmic profile between the two SOD doped contacts (con-
tacts 1 and 3), while no current is observed between the
undoped ones (pad 2 and pad4), confirming the selective
doping validation procedure.

4. Conclusions

In this work, we exploited the spin-on dopant process on SOI
wafers. By tuning the RTA treatment parameters, we are able
to diffuse the phosphorous into the silicon layer with different

Table 3. Experimental value of the doping density level and the
electron mobility of 3 samples from Hall bar measurements carried
out at 300 K and at 3 K.

Figure 7. Sem image of the inner part of the four contacts with
nanometric intrinsic channel (width 150 nm) before the SOD
treatment; (a) ohmic behavior of the device measuring I in function
of V between contact 1 and 3. The current reaches value of hundreds
of μA.

Figure 8. Sem characterization of the SiO2 hard mask that cover the
nanometric channel and all the structures except for the contact 1 and
contact 3.

Figure 6. Linear fitting of the natural logarithm of the diffusivity
values extrapolated from the experimental data to obtain the
phosphorous activation energy.
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depth profiles. In contrast with the typical doping processes,
the SOD diffusion is a low cost process and it does not
damage the crystal structure. By electrical characterization at
room and low temperatures, the activated phosphorous con-
centration, the carrier mobility, and P diffusivity have been
measured. We show that by SOD treatment, a high level of
n-type doping greater than 1×1020 atoms cm−3 can be
reached. The Tof-SIMS analyses reveal that the phosphorous
profiles depends to the RTA time. The possibility of doping
with high doses, in confined areas and at a low cost is of great
interest for quantum devices, Fin-FET and similar devices.
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