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Abstract 1 

Population size is a key predictor of extinction risk and is critical to listing species in IUCN 2 

threat categories. Assessing population size can be particularly difficult for gregarious species, 3 

such as parrots—one of the most threatened bird families—whose ecology and behavior generate 4 

multiple sources of uncertainty that need to be addressed in monitoring efforts. To improve 5 

estimates of abundance for the endangered Vinaceous-breasted Parrot (Amazona vinacea), we 6 

combined extensive roost counts over the global range of the species (Argentina, Paraguay, 7 

Brazil) with an intensive regional survey designed to address five sources of uncertainty about 8 

parrot abundance in western Santa Catarina state (WSC), Brazil, in 2016 and 2017. We estimated 9 

abundance at both regional and whole-range scales using N-mixture models of replicated count 10 

data, which account for imperfect detection. The regional-scale estimate was 1,889 ± 110 and 11 

1,872 ± 37 individuals for 2016 and 2017, respectively; global abundance was estimated at 7,795 12 

± 260 and 8,492 ± 276 individuals for the same two years. We found no statistical evidence of 13 

population change at either scale of the analysis. Although our assessments of abundance and 14 

geographic range are larger than those currently reported by the IUCN, we suggest the 15 

Vinaceous-breasted Parrot should remain in the ‘Endangered’ IUCN threat category pending 16 

further investigation of population trends. We recommend that roost-monitoring programs for 17 

parrots consider and address sources of uncertainty through adequate field protocols and 18 

statistical analyses, to better inform assessments of population size, trends, and threat status.  19 

Key-words: endangered species, imperfect detection, N-mixture model, Psittacidae, roost count, 20 

Vinaceous-breasted Parrot. 21 

 22 
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1. Introduction 23 

Population size is arguably the most important state variable in population biology (Gaston, 24 

1994); along with range size, it is the best predictor of extinction risk (Lawton, 1995) and plays a 25 

central role in population management (Caughley, 1994; Norris, 2004). Abundance is directly 26 

implicated in three of the five IUCN (International Union for the Conservation of Nature) criteria 27 

for listing species in threat categories (Mace et al., 2008). Among the animal groups in most 28 

urgent need of abundance information, parrots (Psittaciformes) stand out for having the highest 29 

number of threatened species of all non-passerine bird orders (Olah et al., 2016). Of 394 extant 30 

species of parrots, 117 (29%) are listed as threatened, and 81 of these are declining, according to 31 

the IUCN (BirdLife International, 2020). The key causes of parrot population decline are habitat 32 

loss—due to deforestation and agroindustrial expansion—, and nest poaching —due to the illegal 33 

pet trade (Berkunsky et al., 2017; Olah et al., 2016; Wright et al., 2001). However, statistical 34 

estimates of parrot population size remain difficult to obtain and are available for very few 35 

species (Dénes et al. 2018; Marsden and Royle, 2015). 36 

The globally endangered Vinaceous-breasted Parrot (VBP; Amazona vinacea) is 37 

restricted to the Atlantic Forest biome, mostly within Brazil but with small areas of occurrence in 38 

the Argentinian province of Misiones and in eastern Paraguay (Carrara et al., 2008; Cockle et al., 39 

2007; Prestes et al., 2014; Segovia and Cockle, 2012; Fig. 1). VBPs appear to be associated with 40 

the ancient Paraná Pine (Araucaria angustifolia; Cockle et al. 2019; Collar et al., 2017; Tella et 41 

al., 2016), but they also forage and nest in other trees (Bonaparte and Cockle, 2017; Cockle et 42 

al., 2007; Prestes et al., 2014), and their incompletely known geographic range extends beyond 43 

the current range of Araucaria forests (Carrara et al., 2008; Cockle et al., 2007; Collar et al., 44 

2017). As with many other parrot species, incomplete knowledge about the VBP geographic 45 
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range and population size results in part from movements associated with temporal variation in 46 

food availability (Renton et al., 2015; Webb et al., 2014). Seasonal movements reportedly 47 

coincide with the fruiting of Ocotea puberula, Podocarpus lambertii, Vitex megapotamica, 48 

Juçara palms (Euterpe edulis), and Araucaria pines (Collar et al., 1992; Forshaw, 2010; Prestes 49 

et al., 2014). Unpredictable movements make it difficult to anticipate where parrots will be, or 50 

whether parrots seen in different places are the same or different individuals, presenting 51 

interesting challenges to the estimation of population size. According to the IUCN, the extant 52 

geographic range of the VBP covers approximately 145,700 km2 (BirdLife International and 53 

Handbook of the Birds of the World, 2016; Fig. 1). This range consists of five major patches 54 

(>10,000 km2), and eleven relatively small patches (<1000 km2). Average distance between 55 

major patch centroids is 834 ± 379 km, revealing a discontinuous VBP distribution. Such 56 

discontinuity reflects not only the species’ true range, but also the scarcity of information about 57 

population structure and movements. Accordingly, the IUCN recently updated the range map 58 

with a larger, ‘possibly extant’ layer that encloses all of the patches above (Fig. 1).  59 

One traditional method to assess parrot abundance is to count individuals as they enter or 60 

leave communal roosts, a technique used for VBP over the last two decades (Casagrande and 61 

Beissinger, 1997; Abe, 2004; Cougill and Marsden, 2004; Cockle et al., 2007; Segovia and 62 

Cockle, 2012). Our field observations prior to this work suggest that, as in many parrot species, 63 

VBPs disperse in pairs across the species’ range while courting and breeding (July–December), 64 

begin congregating in communal roosts towards the end of the breeding season (December –65 

January), and may or may not continue to use these roosts throughout the entire non-breeding 66 

period (until June). As a result, during the January-June non-breeding period, the number of 67 

VBPs can vary from fewer than ten to hundreds of individuals, both among roosts and among 68 
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days at the same roost (Abe, 2004; name1, unpublished data). When August begins, there are 69 

virtually no parrots left at communal roosts and the population is once again dispersed across 70 

hundreds of nesting sites. Despite difficulties inherent to locating roosts and counting the number 71 

of individuals, roost counts remain one of the most popular and cost-effective ways of assessing 72 

the abundance of parrots (Matuzak and Brightsmith, 2007; Dénes et al., 2018).  73 

Roost count design varies but always involves locating roosts, choosing the appropriate 74 

time for counting, and actually counting a number that is as close as possible to the real number 75 

of animals present (Casagrande and Beissinger, 1997). In order to improve knowledge of the 76 

distribution and abundance of parrots from roost counts, one should approach the three tasks of 77 

locating, timing, and counting in a way that minimizes the magnitude of five key sources of 78 

uncertainty about the end result. Although we focus on one parrot species, the same sources of 79 

uncertainty arise for researchers assessing the abundance of other gregarious species, such as 80 

flamingos (Caziani et al., 2007) or bats (Mohd-Azlan et al., 2001; Walsh and Harris, 1996). The 81 

first and second sources have to do with locating roosts. First, there is uncertainty about the 82 

extent of the VBP’s distribution. When does a gap in the range map represent true absence of the 83 

species vs. absence of observations? This problem is well represented by the difference between 84 

the IUCN ‘Extant’ and ‘Possibly Extant’ ranges in Figure 1. The second source is uncertainty 85 

about density of roosts at the regional scale. At what point should one stop trying to find more 86 

roosts to free time for studying known roosts in detail? The third source of uncertainty concerns 87 

movement of individuals between roosts and constrains the timing of counts: if roosts correspond 88 

to isolated local populations, different roosts could be counted at any time throughout a non-89 

breeding season. If, on the contrary, individuals move between roosts, researchers must account 90 

for such movements or count parrots at multiple roosts simultaneously. The fourth and fifth 91 
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sources of uncertainty relate to the counting technique itself, and address, respectively, false 92 

positive and false negative observations of individuals. A false positive happens when by 93 

mistake a parrot is counted twice or more. A false negative happens when a parrot that is present 94 

at a site is not counted because it was overlooked.  95 

This paper offers an assessment of VBP abundance for the years 2016 and 2017. We 96 

follow a two-pronged approach that combines data from two spatial scales, two counting 97 

techniques, and two research teams. At the regional scale, we estimate the number of VBPs in 98 

Western Santa Catarina/Brazil (WSC; Fig. 2) while seeking to address all five sources of 99 

uncertainty listed above. We chose to focus the regional research on WSC because a) being an 100 

area of intense agro-industrial activity with no previously published VBP observations, it has 101 

been left out of the species’ IUCN Extant map; b) it sits between two important VBP habitat 102 

areas in different countries (Misiones, in Argentina, and the Araucaria forests of Eastern Santa 103 

Catarina, in Brazil), and c) based on our previous experience, we expected to find roosts that 104 

were not yet documented in WSC. At the whole-range scale, we provide a global statistical 105 

estimate of the species based on counts of parrots observed in all VBP roosts known to us, 106 

throughout the entire range of the species. 107 

 108 

2. Methods 109 

2.1. Whole-range sampling 110 

Whole-range sampling took place over 98 sites spanning an area from northern Minas Gerais, in 111 

the north, to northeastern Rio Grande do Sul, 1,500 km to the south. The area extends west to, 112 

and includes eastern Paraguay, as well as the Argentinian province of Misiones (Figure 1). 113 

Approximately one quarter (22) of the count sites are inside the IUCN Extant range of the VBP, 114 



 
 

 6 

with the remaining three quarters (76) outside. Sites correspond to regularly-used roosts and to 115 

points of frequent flyover by parrots at dawn and dusk (Supplemental Material Table S1). Our 116 

research team and collaborators identified the count sites, sometimes over decades of VBP 117 

observation (e.g. Cockle et al., 2007; Segovia and Cockle, 2012). All sites are located within the 118 

Atlantic Forest, defined by the southeast Atlantic portion of the ‘tropical and subtropical moist 119 

broadleaf forest’ eco-region of South America (Olson et al., 2001).  120 

Sampling at the whole-range scale was carried out by 26 volunteer teams (Supplemental 121 

Material Table S1) coordinated by name5 and name4. Counts took place in 2016 (24–26 March 122 

in Argentina, 29 April to 15 May in Paraguay and Brazil) and 2017 (24 April to 15 May in 123 

Paraguay and Brazil only). Each team worked in areas that were familiar to its members, 124 

enabling us to cover most of the range in a short period and thus minimize the possibility of 125 

double-counting between sites. Of the total 98 sites, 33 were sampled only in 2016, 30 only in 126 

2017, and 35 in both years (Supplemental Material Table S1). We visited sites once per year, 127 

counting parrots at the beginning or at the end of the day. Counts started at dawn (30 minutes 128 

before sunrise) or dusk (90 minutes before sunset) and lasted until we could not detect parrot 129 

movement into or out of the roost for 20 minutes—which always happened within two hours of 130 

the beginning of the count. The number of counting posts at each site varied between one and 131 

five, located at strategic points for observing movement of flying parrots in and out of the site 132 

area. Each count was performed by a team of one to ten observers who registered the number of 133 

parrots arriving or leaving the area, the flight direction, and the time. Whenever there was more 134 

than one post in a count, observers from different posts met at the end of the count to compare 135 

notes and agree on the minimum number of individual parrots seen.  136 

2.2. Regional-scale sampling.  137 
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The regional-scale study area is the western part of the Brazilian state of Santa Catarina (WSC; 138 

IBGE, 2015; Figure 2), with approximately 100 by 300 km extending West-East between the 139 

Uruguay river (to the South) and the ridgeline that separates the Uruguay and Iguaçú watersheds 140 

(to the North). Although mostly deforested, the area adjoins two large patches of forest habitat: 141 

the Atlantic Forest of Misiones, to the west, and the Araucaria forests of Eastern Santa Catarina, 142 

to the east (Figure 2). WSC is remarkable for having a high frequency of VBP sightings by 143 

citizen scientists (Wikiaves, 2018) in an area that is almost entirely (88%) outside the IUCN 144 

extant range of the species (Fig. 1). WSC falls within the Araucaria forest and the Interior forest 145 

biogeographic sub-regions of the Atlantic Forest, which have lost, respectively, 87 and 93% of 146 

their forest cover since the onset of European colonization (Ribeiro et al., 2009). Nowadays, the 147 

remaining forest patches in WSC (Fig. 2) are surrounded by agro-industrial development, 148 

consisting mostly of soybean (Glycine max), eucalyptus (Eucalyptus sp.), and pine (Pinus sp.) 149 

plantations (Baptista and Rudel, 2006; Fearnside, 2001). The ten WSC sampling sites are a 150 

subset of the whole-range sites. They comprise all known VBP roosts in WSC and they all 151 

coincide with Araucaria forest patches >10 m tall. Four of the ten regional sites (Guatambu, 152 

Campo Erê, Abelardo Luz and Água Doce) have very open to non-existent vegetation under the 153 

Araucaria canopy (Fig. 2).  154 

Fieldwork at the regional-scale was carried out by a single team coordinated by name1 155 

and name2. Here, we performed monthly visits to each site, across two consecutive non-breeding 156 

seasons: from December 2015 to July 2016, and from February to June 2017. By employing the 157 

same team for all roost counts of the same month in WSC, we could control and coordinate field 158 

technique much more tightly at the regional than at the whole-range scale. To avoid counting the 159 

same parrots twice in different roosts during the same month, each visit was performed in the 160 
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shortest period possible—between four and ten days, depending on the number of roosts 161 

sampled. Each roost was sampled at dusk and at dawn of the next day, allowing us to visit two 162 

nearby roosts in the same twelve hour period. The shortest distance between roosts was 19 km 163 

and the longest single-day displacement recorded for radio-tagged VBPs is 17 km (Prestes et al., 164 

2014). We moved between roosts at the average speed of 45 km per day; therefore, we find the 165 

possibility of double counting between roosts to be sufficiently small. In all, we completed 13 166 

visits to WSC, eight during 2015–2016 and five during 2017. To minimize uncertainty about 167 

VBP distribution and roost density over the regional-scale, we spent one day per month 168 

searching for roosts and interviewing WSC residents that we met in the field. As we discovered 169 

new roosts, the number of roosts counted increased from four in December 2015 to five in 170 

February 2016, eight in May 2016, and ten in May 2017 (Figure 2; Supplemental Material Table 171 

S2). The Lebon Régis and Entre Rios sites, also located in WSC, were only visited during the 172 

whole-range count of both years. In total, we completed 182 roost counts at the regional scale. 173 

Regional-scale counts started at dusk (77) or dawn (105 counts), and lasted until we could 174 

no longer detect parrot movements, following the same times and criteria as described for the 175 

whole-range counts. We visited every roost before the first count to establish observation posts 176 

in locations suitable for observing the arrival and departure of parrots. Each count was performed 177 

by a team of three observers (one per observation post), each equipped with a roost area map, a 178 

compass, an audio recorder, and a radio to communicate with team members about parrots going 179 

their way. Every time an observer saw one or more VBPs, she recorded the number of 180 

individuals, the time, and the direction of flight, as well as any other comments that could help 181 

understand the movement of the birds. At the end of each count, the team of three observers met 182 

to reconcile their notes and agree on one ‘most reasonable’ (MR) and one ‘highly conservative’ 183 
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(HC) count result. The difference between MR and HC counts lies in how observers treat the 184 

possibility of double counting. Suppose, for example, that an observer sees five parrots arriving 185 

at a roost and a few minutes later sees another arrival of three individuals. Based on this 186 

information, the MR count is eight individuals. Suppose further, however, that one of the 187 

observers in the trio determined that there were unseen, but heard, parrots leaving the roost 188 

during the time between the two observations above. In this case, the team might judge that there 189 

was some, however small, possibility that the second group of three was a subset of the first 190 

group of five, which had exited the roost, undetected, and returned within sight. If that were the 191 

case, the HC count should be five and not eight, because five is the absolute minimum number of 192 

birds that the team is sure to have seen arriving at the roost.  193 

The consideration of MR and HC counts addresses one source of uncertainty about VBP 194 

abundance estimates: the possibility that some animals may be counted more than once within 195 

one count. A second source of uncertainty is imperfect detection, i.e. the possibility that some 196 

animals are missed. To address imperfect detection, we replicated counts by working 197 

simultaneously with two teams of three observers, at the same roost and time, in ten of the 198 

thirteen sampling months. Simultaneous replication employed two observers (one from each 199 

team of three) per post, keeping sufficient distance between observers to preclude overhearing 200 

radio communications. Observers from different teams did not exchange any information about 201 

their observations until each team had separately agreed on its count results. We thus treat every 202 

team-specific count of a given roost and month, whether at dusk or dawn, as an independent 203 

sample of that roost for that month. When working with two teams counting at dusk and dawn 204 

we obtained the maximum of four replicate counts for one roost and month. Sometimes it rained 205 

and other times we didn’t have a second team, but we had more than one count in 90% of the 206 
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roost*month combinations. The crucial difference between sampling designs at the regional- and 207 

whole-range scales was replication. At the regional-scale, we could afford and strove to replicate 208 

counts of the same roost and month as much as possible.  209 

2.3. Data analysis 210 

We modeled both regional and whole-range data using an N-mixture model approach (Royle, 211 

2004). N-mixture models account for imperfect detection and estimate the number of individuals 212 

per site, given replicated count data. For each spatial scale, we summarized counts in an array C 213 

with dimensions S by R by M, where S is the number of roost sites, R is the maximum number of 214 

replicate counts per roost in any month, and M is the number of sampling months. Elements 𝐶!"# 215 

of this array give the number of parrots counted in the jth count of the ith roost in the kth month, 216 

with 𝑖 = 1,… , 𝑆, 𝑗 = 1,… , 𝑅, and 𝑘 = 1,… ,𝑀. The N-mixture model represents the true number 217 

𝑁!# of individuals in roost i and month k as drawn from a Poisson distribution with parameter 𝜆#. 218 

That is, the number of individuals per roost varies according to a Poisson distribution with mean 219 

𝜆#, which itself varies through time. We account for imperfect detection by modeling the counts 220 

𝐶!"# as the result of a binomial sample with 𝑁!# independent trials and probability of success 𝑝#. 221 

In short, our models combine the biological variation of abundance among roosts with the 222 

sampling process of parrot detection:  223 

𝑁!# 	~	Poisson	(𝜆#) 224 

𝐶!"# 	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙	(𝑁!# , 𝑝#). 225 

When a roost i is not sampled in month k, we impute an estimate of 𝑁!# based on the estimate of 226 

𝜆# for that month. Such imputation accounts for the temporal variation in effort and implies that 227 

differences between abundance estimates from different months are not a result of variation in 228 
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the number of roosts counted. In the way we set up the analysis, this imputation is a by-product 229 

of our Bayesian model fitting using MCMC methods (see below).  230 

To analyze regional-scale data, we used two arrays C, of HC and MR counts, with 231 

dimensions S = 10 sites, R = 4 counts, and M = 13 months. The first eight months correspond to 232 

December 2015 through July 2016, while the last five correspond to February-June 2017. 233 

Because our counts in WSC were often replicated at different times of the day, we modeled a 234 

binary effect of time of day (dawn vs. dusk) on logit(𝑝), to account for possible differences in 235 

visibility or parrot behavior or visibility between dawn and dusk counts. Models were fit in a 236 

Bayesian framework using gamma-distributed vague priors for 𝜆 and 𝑝 parameters. We 237 

implemented models in the BUGS language (Lunn et al., 2000) running on JAGS (Plummer, 238 

2003) with code adapted from Kéry and Royle (2016, chap. 6; Supplemental Material Appendix 239 

A). Regional-scale inference is based on draws from the posterior probability distribution of 240 

model parameters using an MCMC algorithm with three chains, 25,000 iterations and a burn-in 241 

stage of 5,000 iterations.  242 

Analysis of the whole-range data was based on the same model used for the regional 243 

scale, with some adjustments to model and data structure. We organized data into an array C 244 

with dimensions S = 98 sites, R = 4 counts, and M = 2 ‘months’. The first ‘month’ of whole-245 

range counts spans the period of late March to early May 2016, the second is May 2017. The 246 

main limitation of the whole-range data is lack of replicated counts within the same site and 247 

month outside WSC and one of the Misiones sites, i.e. in 87 out of 98 sites. While applying an 248 

N-mixture model to such data, we rely on information from only a few sites to infer detection 249 

probability everywhere else. This is not ideal but is the best we could do at present with the 250 

available data. To avoid demanding too much from limited information on detection we took two 251 
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precautions. First, we simplified the detection model by estimating 𝑝 as a constant value through 252 

time, across ‘months’. Second, we included environmental information—area of remaining 253 

Araucaria forest—as a covariate of 𝜆. We measured Araucaria forest as standardized cover in a 254 

circular buffer with 17 km radius around each roost, which amounts to an area of 907 km2. We 255 

also tried buffer radiuses of 5 and 50 km in exploratory analyses, but elected to use a 17-km 256 

buffer because it corresponds to the longest single-day displacement recorded for radio-tagged 257 

VBPs (Prestes et al., 2014), and indeed resulted in the highest (positive) slope for the relationship 258 

between Araucaria cover and 𝜆. Araucaria forest cover data resulted from the intersection of two 259 

maps: a map of the potential range of South American Araucaria Forest drawn by Hueck (1966) 260 

and georeferenced by Hasenack et al. (2017), and Ribeiro et al.’s (in prep.) map of existing 261 

Atlantic Forest remnants that are larger than 30-by-30 meters in area. To explore the 262 

consequences of the environmental covariate on our assessment of global population size, we 263 

built two alternative models, one without (Model 1) and the other with (Model 2) a year-264 

dependent effect of Araucaria Forest cover on 𝜆 , the average roost population size. All regional-265 

scale counts used in the whole range analysis were MR counts. As at the regional scale, we fit 266 

models in a Bayesian framework using vague priors. Whole-range scale inference was based on 267 

an MCMC algorithm with three chains, 50,000 iterations and a burn-in of 1,000 iterations. At 268 

both regional and whole-range scales, we ran the MCMC until obtaining a value of the 269 

convergence criterion R-hat lower than 1.1 for all parameters. 270 

To assess the Goodness of Fit (GoF) of our models, we applied leave-one-out cross-271 

validation (Conn et al. 2018) and a Bayesian p-value approach (Gelman et al. 1996) on a chi-272 

squared discrepancy statistic T. For both the regional and the whole-range analysis, the former 273 

indicated that our models predicted the observed counts about right on average, but the latter 274 
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indicated severe overdispersion. The Bayesian p-value, reflecting the frequency with which 275 

discrepancy is higher for replicated data (Trep) than for observed data (Tobs), was zero for both 276 

analyses. This was not unexpected, since parrots often travel in pairs, thus violating the 277 

independenc assumption of the model. To accommodate this, we had experimented with the 278 

beta-binomial variant of the model developed by Martin et al. (2011) and Dorazio et al. (2013) 279 

for group-living animals, which yielded acceptable GoF results, but completely unrealistic (too 280 

high) abundance estimates. This 'good fit/bad prediction dilemma' (Kéry & Royle 2016) is 281 

observed not rarely with N-mixture models and so far no formal remedy has been developed. 282 

Thus, we had to decide between choosing an analysis that ignored detection error (e.g., 283 

some GLMM; Barker et al. 2018) and a simple N-mixture model that accommodates that key 284 

consideration when estimating abundance, but resulting in lack of fit, or overdispersion. We 285 

conducted a simple simulation (see Appendix 1), where we simulated replicated counts that 286 

resembled our data in the regional analysis. Our simulation randomly varied the degree of 287 

overdispersion at the site-level in both 𝜆 and p, and of site-by-occasion level in p. We then 288 

analysed the data set using an intercepts-only N-mixture model that ignored the resulting lack of 289 

fit and estimated the total population size. As an alternative, p-ignorant method we simply added 290 

up the maximum count across sites. We simulated 1000 data sets and found that the root mean 291 

squared error (RMSE) of the overdispersion-naive N-mixture model was 25% reduced compared 292 

to the p-ignorant method of adding maximum counts. This led us to choose the formal estimation 293 

method of the N-mixture model.  294 

To accommodate the additional uncertainty stemming from the lack of fit or 295 

overdispersion detected in the GoF test, we chose an ad hoc way of increasing the uncertainty in 296 

our estimates by 'stretching' the posterior distributions around their mean. This was motivated by 297 
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the frequent adoption of variance inflation by some overdispersion factor c-hat in frequentist 298 

analyses of count data, see e.g., Chapter 5 in Cooch and White (2020) for Cormack-Jolly-Seber 299 

models. We estimated the degree of overdispersion c-hat by the ratio Tobs / Trep, from above, at 300 

5.6 for the regional and 5.8 for the whole-range scale. To make the posterior distributions more 301 

dispersed, we first subtracted from all posterior samples of a parameter its mean, multiplied the 302 

result by our estimate of c-hat and then added back the original mean. All uncertainty 303 

assessments such as posterior SDs or credible intervals were then based on this 'stretched' sample 304 

of the posterior of a parameter. In our simulation, the coverage of this approach for total 305 

abundance summed across roosts was on average only 0.67 and thus considerably lower than the 306 

nominal level of 0.95, but much better than the coverage of 'unstretched' CRIs would have been. 307 

Therefore, to be conservative, we chose the stretching procedure despite its lack of theoretical 308 

underpinning. 309 

 310 

3. Results 311 

Comparison of most reasonable (MR) and highly conservative (HC) results from the regional-312 

scale data suggest a small but consistent difference between counts. Whereas MR counts were 313 

always greater than or equal to HC counts of the same roost and month, they were also less 314 

variable between replicates within the same roost and month (Supplemental Material Table S2). 315 

Accordingly, estimates of detection probability (p) tended to be higher for MR than for HC 316 

results; this was true in nine out of thirteen months for the whole WSC region (Table 1). 317 

Likewise, MR-based estimates of abundance tended to be more precise than their HC 318 

counterparts: roost and month-specific estimates based on MR counts were as precise or more 319 

precise than those based on HC counts in 95 of 130 cases (Supplemental Material Table S2). 320 
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Spatial and temporal variation is qualitatively similar between types of counts, with MR and HC 321 

counts resulting in the same maximum-abundance month (March 2017) and the same maximum-322 

abundance roost (Lebon Régis). We also found a small but measurable effect of the time of day 323 

on detection probability, with dusk counts having detection probability on average 0.03 above 324 

dawn counts. The 95% credible interval of the negative ‘dawn’ coefficient excludes zero for both 325 

MR and HC data. For simplicity, we focus on MR results for any WSC-related content in the 326 

remainder of the paper. 327 

Temporal variation in estimated abundance for WSC (summed across roosts) shows the 328 

lowest number of individuals in the two extremes of the non-reproductive period (Table 1): in 329 

December 2015, with an estimated 714 ± 92 individuals (posterior mean ± standard deviation), 330 

and in July 2016 with 655 ± 96 individuals. The highest aggregate WSC count (1,627 331 

individuals) and N estimate (1,896 ± 105 individuals) were obtained in May 2017. Spatial 332 

variation among WSC roosts shows five of ten roosts – Guatambu, Ipuaçu, Abelardo Luz, Água 333 

Doce and Lebon Régis – reaching N estimates in excess of 200 at some point during the sampling 334 

period. All roosts showed substantial variation in N between months in both years, but there was 335 

no obvious synchrony in the temporal variation of the number of individuals at different roosts. 336 

As with the highest estimates of N, the lowest were obtained in different months depending on 337 

roost. For example, while Água Doce peaked in March 2016 and May 2017, Guatambu did so in 338 

April 2016 and February 2017. Abelardo Luz was the only roost that peaked both years in the 339 

same month, in June.  340 

The posterior mean global abundance of VBPs varied slightly between models and years, 341 

but was always smaller than 10,000 individuals. Model 1 estimated 7,789±655 individuals (95% 342 

Bayesian credible interval 6,586–9,184) for 2016, and 8,483±693 (7,181–9,977) for 2017. Model 343 



 
 

 16 

2 estimated 8,012±714 individuals (6,779–9,507) for 2016, and 9,039±779 (7,641–10,677) for 344 

2017. Estimates from Model 2, which includes a relationship between 𝜆 and Araucaria forest 345 

cover, were slightly higher than those from Model 1, but the 95% credible intervals from 346 

different models in the same year clearly overlap. Both counts and abundance estimates 347 

increased from 2016 to 2017, but there was overlap between 95% credible intervals of estimates 348 

from the same model in different years. The average probability of detecting a parrot that is 349 

present at a visited roost was 0.70±0.05 under Model 1 and 0.67±0.05 under Model 2. There was 350 

a smaller difference between models within year than between years within model, but little 351 

statistical support for temporal change in global abundance. The positive effect (a logit-scale 352 

slope parameter) of Araucaria forest cover on 𝜆, estimated by Model 2, differed between years 353 

and was higher in 2016 (0.43 ± 0.04) than in 2017 (0.16 ± 0.04). Such effects amount to a 354 

tripling of abundance as Araucaria cover increases from 20% to 80% of the buffer in 2016, but 355 

only to a 1.3-factor increase accompanying the same cover change in 2017. 356 

The spatial distribution of Model 1 abundance estimates across regions of the whole 357 

range (Table 2) reveals that Brazil accounted for more than 90% of the estimated population size 358 

in both years. The Brazilian state of Santa Catarina had the highest number of roosts (41), as well 359 

as the highest estimated population size of all Brazilian regions, accounting for 50% of the total 360 

population in both years. Paraná had the second highest estimates among regions, accounting for 361 

approximately 25% of the total population. Looking at the spatial variation of abundance 362 

estimates per roost, Santa Catarina came out on top again, with an average of 94 to 102 363 

individuals per roost. The highest number of individuals estimated at one site was 380 in 2016 364 

and 390 in 2017. The two estimates came from sites approximately 180 km apart, both in Santa 365 

Catarina and both in May, toward the end of the non-breeding season. The spatial distribution of 366 
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Model 2 estimates was qualitatively similar to that of Model 1. We focus on Model 1 for 367 

simplicity and because it provides the most conservative abundance estimates. 368 

 369 

4. Discussion 370 

We developed a counting technique and associated statistical analysis to estimate VBP 371 

abundance at two spatial scales: regional and whole-range. Our approach sought to address five 372 

sources of uncertainty about parrot abundance related to range limits, roost density, movement 373 

between roosts, false positive—these addressed by our count technique, and false negative 374 

observations—addressed by our statistical analysis. Based on estimates of abundance for 2016 375 

and 2017, we provide evidence that the global VBP population consists of a few thousand, but 376 

definitely not more than ten thousand individuals. Comparison between global abundance 377 

estimates from the two years reveals that even though average estimates were greater in 2017 378 

than in 2016 under both models, there is no statistical evidence that such increase resulted from 379 

population growth.  380 

Global population estimates are approximately twice the maximum number of individuals 381 

counted in whole-range counts (Table 2). Since never more than 70% of the total known roosts 382 

were counted, these latter are bound to result in underestimates of the global population size. 383 

Nonetheless, we strongly emphasize that these estimates do not warrant proposing a category 384 

change for the species. The IUCN assigns threat levels based on a combination of five criteria 385 

(Mace et al., 2008). In order to qualify for one level, a species must meet conditions from any of 386 

the five criteria for that level. Thus, non-fulfillment of one criterion does not warrant category 387 

change. More specifically, non-fulfillment of the conditions under criterion C (Small population 388 

size and decline) would require examination of range and population dynamic conditions under 389 
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the other criteria, which are beyond the scope and possibilities of our two-year analysis of roost 390 

counts. We suggest that the species should remain in the ‘Endangered’ IUCN threat category 391 

pending demographic studies and analysis of the conditions under criteria A, B, D and E. Ideally, 392 

given appropriate coverage of the species range and understanding of population dynamics, one 393 

should be able to assess an extinction risk for the species, which is demanded by criterion E.  394 

The assessment of extinction risk can only be as good as the underlying estimates of 395 

population size. Our regional and global estimates point out some of the ways in which 396 

researchers can address sources of uncertainty when monitoring VBP and other parrots. At the 397 

broadest level, there is uncertainty about species’ ranges. We tried to reduce uncertainty about 398 

the VBP range by searching for new roosts 8 days/year in WSC, which returned a 150% increase 399 

in the number of sampling sites over the 2 years of the study. We covered the northern half of 400 

WSC in more detail than the southern half, which has only one known roost (Guatambu; Figure 401 

2), because it has more Araucaria forest and a higher density of large (≥ 5 km2) forest patches; 402 

yet, judging from verbal reports and the distribution of sightings in WikiAves (Wikiaves, 2018) 403 

we believe there are more roosts to be found in the southern part of WSC. Only one-quarter of 404 

the counting sites in the whole-range counts were inside the IUCN range, showing that range 405 

uncertainty extends well beyond the limits of WSC (Figure 1). The small areas suggestive of 406 

isolated populations in the IUCN Extant range (e.g., Figure 1) may be part of larger areas of 407 

continuous use and may be useful starting points for improving knowledge about the species’ 408 

distributions.  409 

From the abundance estimates and the spatial distribution of roosts, it appears that the 410 

number of both roosts and individuals per unit area increases towards the interior of the 411 

distribution range (Figure 1). Roosts with more than one hundred individuals counted are located 412 
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in the three southernmost states of Brazil, in agreement with the pattern of higher densities 413 

towards the center of species’ ranges reported by Brown et al. (1995) and Gaston (2009). The 414 

non-homogenous density of individuals also appears related to the distribution of Araucaria 415 

forest cover, which is centered in southern Brazil (Figure 1) and offers VBPs an important food 416 

source during the autumn and winter months (Collar et al., 2017; Prestes et al., 2014; Tella et al., 417 

2016). Model 2 results suggest that the relationship between Araucaria forest cover and parrot 418 

abundance may change substantialy through time, as it decreased by more than 50% from 2016 419 

to 2017. Such change is likely due to variability in the amount, spatial distribution and temporal 420 

distribution of Araucaria angustifolia seed production (Mantovani et al., 2004). When Araucaria 421 

seed production coincides with winter-scarcity of alternative resources, Araucaria could become 422 

a more important food source and a stronger driver of VBP distribution.  423 

Spatiotemporal variability in environment and demography necessarily lead to temporal 424 

variation in VBP distribution. Such dynamism is evident in WSC from the disappearance of 425 

VBPs from roost sites during the breeding season, and from the variation in roost estimates 426 

throughout the study (Supplemental Material Table S2). We estimated the lowest numbers of 427 

VBPs during December 2015 and July 2016 (Table 1)—the first and last months of the sampling 428 

period of 2016. Nonetheless, temporal variation of abundance was far from synchronous across 429 

roosts (Supplemental Material Table S2). Indeed, estimates for São Domingos and Abelardo Luz 430 

were lowest in January and March of 2016, respectively, neither month being the first or last of 431 

the sampling period. If individuals were breeding in surrounding areas and aggregating at 432 

centrally-located roosts for the non-breeding season, we would expect a gradual accumulation of 433 

individuals at all roosts with a peak in the middle of the non-breeding season. Instead, we 434 

observed irregular temporal variation in roost size, suggesting that VBPs move well beyond the 435 
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immediate surroundings of one roost as they track resources during the non-breeding season (see 436 

also Forshaw, 2010; Prestes et al., 2014). As a result, individuals counted at one roost in a given 437 

month may very well be present at a different roost in another month. This is why we based our 438 

WSC estimate on the month with the highest estimate of each year (February 2016 and May 439 

2017) and not on a sum of each roost’s highest monthly estimate. Uncertainty about movement is 440 

also the reason behind concentrating monthly counts in as short a period as possible. We cannot 441 

be certain that VBPs don’t move further than the reported maximum daily displacement of 17 442 

km (Prestes et al. 2014); nonetheless, our own displacement between roosts was 2.6 times faster. 443 

Only two of the ten roosts (Ipuaçu and São Domingos) have two neighboring roosts within 30 444 

km of distance, and these were always sampled on consecutive days minimizing the possibility 445 

of parrot movement between counts. Ideally, one would have different observers counting all the 446 

roosts at the same time, but barring that possibility we believe that our design is one acceptable 447 

compromise.  448 

Two further sources of uncertainty originate within counts. These are double counting 449 

(false positive) and imperfect detection (false negative). They are more methodological in nature, 450 

but should also guide decisions of study design and data analysis for estimating population sizes. 451 

In parrot roost counts, double counting happens when observers overestimate the number of 452 

parrots in a flock, and when parrots move out of sight and are mistakenly counted as different 453 

individuals when they reappear. Our comparison of MR and HC results was an attempt to 454 

evaluate the consequences of being less or more conservative about the possibility of double 455 

counting. The consequences were negligible: 95% credible intervals of the MR and HC-based 456 

estimates for WSC overlapped in all but one month (May 2017). In this month, the difference 457 

was 197 individuals. The tendency for higher precision in MR than HC estimates stems from a 458 
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greater agreement among MR, than among HC results for the same roost and month. All else 459 

being equal, greater similarity of counts fed into an N-mixture model result in higher estimates of 460 

detection probability and therefore greater precision of the abundance estimate. This is no proof 461 

that MR counts are indeed closer to the true value, but it does support our reliance on the MR 462 

estimates. We suggest that by including MR and HC estimates in monitoring efforts for other 463 

parrots, researchers can assess the potential effects of double-counting on population estimates.  464 

Despite all our efforts to surround the roosts, work with three-observer teams, and 465 

connect each team’s observers by radio, the WSC counts taken by different teams at the same 466 

place and time still differed. This problem of imperfect detection cannot be completely 467 

eradicated, but it should be accounted for. Detection probability (p) was always estimated to be 468 

greater than 0.6 on MR estimates, which is reassuring; however, its variation through time makes 469 

it clear that p can’t be estimated once and subsequently used to correct all counts from then on. 470 

Researchers can address imperfect detection by replicating counts and estimating p during every 471 

time period for which they want to estimate N. Furthermore, the temporal variation in estimated 472 

p suggests that it is more than a simple function of observer experience. Part of the field team 473 

gained experience with the species, the sites, and the logistics over the course of the study in 474 

WSC, but p did not increase monotonically from the beginning to the end of the sampling period. 475 

Instead, p varied from month to month without any apparent trend, reaching its maximum in 476 

March 2016 and its minimum in April 2016 (Table 1). Detection at dawn was slightly (though 477 

measurably) lower than at dusk, likely due to mist forming more frequenly during the morning 478 

than in the afternoon, but such intra-day variation was an order of magnitude lower than the 479 

variation between months. We conclude that failure to detect parrots at roost counts is largely a 480 
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matter of chance, weather, and unpredictable parrot movements—not a matter of observer 481 

experience. 482 

The difference between the number of parrots estimated and counted over the whole 483 

range is not just due to the failure to detect some parrots at roosts that were visited. Only 69% of 484 

known roosts were visited in 2016 and 66% in 2017. The Bayesian MCMC-based 485 

implementation of our model accounts for this incomplete coverage by imputing values of N for 486 

each roost that was not visited, in agreement with the value of 𝜆 estimated across roosts for the 487 

corresponding year. Multiplying the coverage of 0.66–0.69 by the average detection probability 488 

of 0.67–0.70 estimated by models 1 and 2, one obtains products of 0.45–0.47, which 489 

approximate the ratios of counted to estimated individuals in Table 2. We thus conclude that the 490 

improvement of data quality for whole-range estimates should benefit more from increasing the 491 

number of sites surveyed than from attempting to increase detection at each roost, which may be 492 

beyond our control. 493 

Habitat loss and nest poaching have caused alarming but poorly documented declines of 494 

many Neotropical parrot populations, including VBPs (Berkunsky et al., 2017; Ribeiro et al., 495 

2009; Wright et al., 2001). Any efforts to protect these species will benefit from improved 496 

knowledge of population size and structure. We hope that our approach to estimating population 497 

size of VBPs in WSC and beyond will motivate others to obtain replicated counts of parrot roosts 498 

for this and other species and improve on both our survey design and analyses. In an attempt to 499 

coordinate observers and gather count information for VBPs, we set up an online count-reporting 500 

tool where users can access existing data and contribute their own. The current version is 501 

available in Portuguese at: http://name1.azurewebsites.net. The uncertainty surrounding regional- 502 

and whole-range population estimates, however, is still high enough to justify employing a wide 503 
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variety of observation techniques in monitoring Vinaceous-breasted, and other Neotropical 504 

parrots. On one front, citizen science networks such as WikiAves, Xeno-Canto, and eBird can 505 

offer valuable information for mapping species ranges and reproductive areas. On the other, 506 

molecular analysis of parrots across their range would help understand seasonal movements and 507 

the spatial structure of populations. Progress will require formal integration of different types of 508 

data into one statistical model of species distribution and abundance. Molecular data collection 509 

will require effective and safe techniques for obtaining parrot DNA without endangering the 510 

sampled individuals. Our study illustrates key sources of uncertainty about parrot abundance 511 

estimates, and how they can be addressed through monitoring protocols and statistical analysis. 512 

Critically, by addressing and estimating uncertainty, parrot monitoring efforts can move beyond 513 

minimum or average roost counts to a broader understanding of what we do and do not know 514 

about parrot numbers. On that basis, one can produce reliable assessments of population trends 515 

over time.  516 
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Figure 1. Estimated number of Vinaceous-breasted Parrots per roost (circles), hypothetical 665 

IUCN range areas (dashed polygons), and potential extent of Araucaria angustifolia forests (gray 666 

polygon). Concentric circles show estimates from 2016 (gray) and 2017 (empty), with sizes 667 

corresponding to the abundance classes shown in the legend. When the estimates from both years 668 

fall in the same class, the superimposed circles appear as a single gray circle. The set of short-669 

dash polygons represent the IUCN ‘Extant’ range, while the single, larger, long-dash polygon 670 

representes the IUCN ‘Possibly Extant’ range. Gray, upper-case labels indicate Paraguay (PY), 671 

the Argentinian province of Missiones (AR), and the six Brazilian states mentioned in the text: 672 

Espírito Santo (ES), Minas Gerais (MG), São Paulo (SP), Paraná (PR), Santa Catarina (SC), and 673 

Rio Grande do Sul (RS). 674 

Figure 2. Regional-scale study area of Western Santa Catarina (light gray). Dark gray indicates 675 

every patch of forest (excluding tree plantations) > 5 km2 in area, according to the Brazilian 676 

Ministry of the Environment’s Mapa de Cobertura Vegetal dos Biomas Brasileiros (MMA, 677 

2007). Circles show the location of all presently known WSC roosts with their name 678 

abbreviations: PS (Palma Sola), CE (Campo Erê), GT (Guatambu), QU (Quilombo), SD (São 679 

Domingos), IP (Ipuaçu), AL (Abelardo Luz), ER (Entre Rios), AG (Água Doce) and LR (Lebon 680 

Régis).  681 
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Table 1. Western Santa Catarina estimates of the number of Vinaceous-breasted Parrots (N) in 682 

all known roosts and the average probability (pdawn) of detecting one parrot present at those 683 

roosts that were visited, at dawn, by month. Values preceded by the ‘±’ sign are standard 684 

deviations of the posterior distribution of the parameter in question. Numbers in parentheses 685 

show the sum of the highest counts from each roost sampled in the corresponding month. MR 686 

and HC indicate estimates based on, respectively, ‘most reasonable’ and ‘highly conservative’ 687 

count results. Boldface numbers identify the highest N estimate of each year. 688 

Month 

 2015 – 2016  2017 

 N pdawn  N pdawn 

       
December (MR) 
                  (HC) 

 714±92 (265) 
686±106 (244) 

0.87±0.06 
0.78±0.08 

   

January     (MR) 
                  (HC) 

 1,091±190 (335) 
956±183 (297) 

0.69±0.10 
0.68±0.12 

   

February   (MR) 
                  (HC) 

 1,826±236 (696) 
1,825±270 (670) 

0.67±0.08 
0.63±0.09 

 893±90 (426) 
754±87 (374) 

0.68±0.06 
0.70±0.07 

March       (MR) 
                  (HC) 

 1,364±100 (639)  
1,229±99 (588) 

0.87±0.03 
0.91±0.03 

 1,151±121 (587)  
1,175±176 (529) 

0.78±0.08 
0.62±0.10 

April         (MR) 
                  (HC) 

 1,482±173 (562)  
1,546±218 (538) 

0.61±0.06 
0.53±0.07 

 940±98 (493)  
859±131 (418) 

0.79±0.08 
0.70±0.11 

May          (MR) 
                  (HC) 

 1,522±166 (997)  
1,755±336 (965) 

0.72±0.10 
0.55±0.13 

 1,896±105 (1,627) 
1,693±74 (1,517) 

0.76±0.06 
0.82±0.05 

June          (MR) 
                  (HC) 

 1,397±89 (761)  
1,329±91 (724) 

0.80±0.04 
0.78±0.04 

 1,1092±121 (639)  
1,100±161 (588) 

0.64±0.07 
0.53±0.09 

July           (MR) 
                  (HC) 

 655±96 (321)  
580±90 (286) 

0.73±0.09 
0.74±0.10 

 
  

         689 
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Table 2. Roosts visited, total number counted and Model 1 estimates of the number of 690 

Vinaceous-breasted Parrots in Argentina, Brazil, and Paraguay during the whole-range counts of 691 

2016 and 2017. Estimates are given as mean ± standard deviation of the posterior distribution. 692 

Dashes denote absence of counts in the corresponding location and year.  693 

 694 

Country Region 
 2016  2017 

 Roosts visited Count 
M1 

estimate  
Roosts 
visited Count 

M1 
estimate 

          
Argentina Misiones  7 252 426±56  0 – 605±78 

Brazil Espírito Santo  0 – 80±23  1 2 28±14 

 Minas Gerais  5 58 336±60  3 135 558±70 

 Paraná  16 803 2,112±198  17 805 2,050±205 

 Rio Grande do Sul  6 335 717±75  9 409 642±71 

 Santa Catarina  28 2,324 3,860±285  31 2,606 4,197±296 

 São Paulo  3 93 164±27  2 109 247±35 

Paraguay Alto Paraná  3 23 94±27  2 18 156±36 
          
TOTAL   68 3,888 7,789±655  65 4,084 8,483±693 

 695 

  696 
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 697 

 698 

 699 

 700 

 701 

Figure 1  702 
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 703 

 704 

  705 

Figure 2 706 



Supplemental Material Table S1. Whole-range count sites by country and region, with contact 
observer, and the year sampled. Contacts given with initials are co-authors of this paper. 

Country and 
Region Site Contact 

 Year Sampled 

 2016 2017 
      
ARGENTINA      

Misiones 1. San Pedro – Centro N3* and Bianca Bonaparte  X  

 2. San Pedro – Siete Estellas N3 and Bianca Bonaparte  X  

 3.  Cruce Caballero N3 and Bianca Bonaparte  X  

 4. Alegría  N3 and Bianca Bonaparte  X  

 5. Tobuna  N3 and Bianca Bonaparte  X  

 6. Santa Rosa N3 and Bianca Bonaparte  X  

 7. Irigoyen  N3 and Bianca Bonaparte  X  
      
BRAZIL      

Espírito Santo 8. Dores do Rio Preto Tatiane Pongiluppi   X 

Minas Gerais 9. Minas Gerais Sérgio Carvalho  X  

 10. Carrancas e Minduri Kassius Santos  X X 

 11. Baipendi Emanuell Ladroz  X  

 12. Santo Antônio do Grama Leonardo Miranda  X  

 13. Luminárias Kassius Santos  X  

 14. Serra do Cipó Lucas Carrara   X 

 15. Crisólita Marina Somenzari   X 

Paraná 16. General Carneiro A N4†, N5§ and N7¶  X X 

 17. General Carneiro B N4, N5 and N7  X  

 18. General Carneiro C N4, N5 and N7   X 

 19. General Carneiro D N4, N5 and N7   X 

 20. General Carneiro E N4, N5 and N7   X 

 21. Bituruna N4, N5 and N7   X 

 22. Curitiba A Roberto Boçon  X  

 23. Curitiba B Romulo da Silva  X  

 24. Curitiba C Rafael Sezerban  X  

 25. Curitiba D Roberto Boçon   X 

 26. Curitiba E Roberto Boçon   X 

 27. Curitiba F Rafael Sezerban   X 
      
 

 



 
 

 2 

 

Supplemental Material Table S1: (cont.) 

Country and 
Region Site Contact 

 Year Sampled 

 2016 2017 
      

 28. Bocaiúva do Sul A Elenise Sipinski  X X 

 29. Bocaíuva do Sul B Romulo da Silva  X  

 30. Tunas do Paraná Roberta Boss  X  

 31. Bocaiúva do Sul/Tunas do PR Pedro Scherer-Neto   X 

 32. Bocaiúva do Sul C Patricia Serafini  X  

 33. Castro/Pirai do Sul/Jaguariaíva Tony Teixeira   X 

 34. Jaguariaíva Tony A. Bichinky  X  

 35. Tibagi A Romulo da Silva  X  

 36. Tibagi B Romulo da Silva  X  

 37. Coronel Domingos Soares N4, N5 and N7   X 

 38. Inácio Martins N4, N5 and N7  X X 

 39. Palmas N4, N5 and N7  X X 

 40. Pinhão N4, N5 and N7  X X 

 41. Telêmaco Borba Roberto Boçon  X X 

 42. União da Vitória N4, N5 and N7   X 
Rio Grande 
do Sul 43. Barracão N4, N5 and N7  X X 

 44 Sarandi N4, N5 and N7  X X 

 45. Coqueiros do Sul N4, N5 and N7   X 

 46. Canela N4, N5 and N7  X X 

 47. Bom Jesus N4, N5 and N7  X X 

 48. Bom Jesus B N4, N5 and N7  X X 

 49. São José dos Ausentes N4, N5 and N7  X X 

 50. Miraguaí N4, N5 and N7   X 

 51. Dois Irmãos da Missão N4, N5 and N7   X 

Santa Catarina 52. Cerro Negro N4, N5 and N7  X X 

 53. Abdon Batista N4, N5 and N7   X 

 54. Abelardo Luz N1** and N2††  X X 

 55. Passos Maia Vanessa Kanaan   X 

 56. Ponte Serrada Vanessa Kanaan   X 
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Supplemental Material Table S1: (cont.) 

Country and 
Region Site Contact 

 Year Sampled 

 2016 2017 
      
 57. Água Doce N1 and N2  X X 

 58. Anitápolis N4, N5 and N7  X  

 59. Anitápolis B N4, N5 and N7  X  

 60. Bom Retiro N4, N5 and N7  X  

 61. Campo Belo do Sul N4, N5 and N7  X X 

 62. Campo Erê N1 and N2  X X 

 63. Ipuaçu N1 and N2   X 

 64 Entre Rios N1 and N2  X X 

 65. Guatambu N1 and N2  X X 

 66. Irineópolis N4, N5 and N7  X X 

 67. Itaiópolis N4, N5 and N7  X  

 68. Lebon Régis N4, N5 and N7  X X 

 69. Lebon Régis B N4, N5 and N7  X X 

 70. Lebon Régis C N4, N5 and N7  X  

 71. Lebon Régis D N4, N5 and N7  X  

 72. Lebon Régis E N4, N5 and N7  X  

 73. Lebon Régis F N4, N5 and N7   X 

 74. Lebon Régis G N4, N5 and N7   X 

 75. Lebon Régis H N4, N5 and N7   X 

 76. Lebon Régis I N4, N5 and N7   X 

 77. Lorentino Miguel Angelo Biz  X  

 78. Palma Sola Paulo A. Neto, N1 e N2  X X 

 79. Urupema N4, N5 and N7  X X 

 80. Urupema N4, N5 and N7  X X 

 81. Painel N4, N5 and N7  X X 

 82. São Joaquim N4, N5 and N7  X X 

 83. São Joaquim N4, N5 and N7  X X 

 84. Painel N4, N5 and N7  X X 

 85. Quilombo N1 and N2   X 

 86. Santa Cecília A N4, N5 and N7   X 
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Supplemental Material Table S1: (cont.) 

Country and 
Region Site Contact 

 Year Sampled 

 2016 2017 
      
 87 Santa Cecília B N4, N5 and N7   X 

 88. Santa Cecília C N4, N5 and N7   X 

 89. São Domingos N1 and N2  X X 

 90. Urubici N4, N5 and N7  X  

 91. Porto União N4, N5 and N7   X 

 92. Urubici N4, N5 and N7  X  

São Paulo 93. Timburi Fernando Zurdo  X  

 94. São Paulo Fernando Zurdo  X X 

 95. Campos do Jordão Luís Fábio Silveira  X X 

      

PARAGUAY      

Canindeyú 96. Refúgio Biológico Carapá N8§§  X X 

 97. Reserva Privada Itabó Rivas N8  X  

Alto Paraná 98. Reserva Biológica de Limoy N8  X X 
       
* N3 = name3 
† N4 = name4 
§ N5 = name5 
¶ N7 = name7 
** N1 = name1 
†† N2 = name2 
§§ N8 = name8 
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Supplemental Material Table S2. Monthly counts and estimates ± standard deviation of 
the local abundance for each WSC (regional-scale) roost throughout the study period, based 
on ‘highly conservative’ (HC) and ‘most reasonable’ (MR) count results. Numbers in 
parentheses show the highest count for the corresponding roost and month. Roosts with NA 
in parentheses do not have counts in the corresponding month; their estimates for those 
months are derived from Model 1. Roost order in the table is longitudinal from West to 
East. 
 
 

Year Month\Roost Palma Sola Campo Erê Guatambu Quilombo São Domingos 

       
2016 December (MR)                   (HC) 

12±4 (10) 
13±6 (8) 

71±24 (NA) 
69±24 (NA) 

165±10 (155) 
157±13 (143) 

71±23 (NA) 
69±24 (NA) 

83±8 (75) 
81±10 (71) 

 January     (MR) 
                  (HC) 

86±18 (65) 
72±17 (53) 

110±14 (NA) 
96±31 (NA) 

221±26 (175) 
192±25 (158) 

109±32 (NA) 
96±31 (NA) 

27±13 (10) 
25±14 (10) 

 February   (MR) 
                  (HC) 

129±19 (101) 
126±21 (94) 

182±41 (NA) 
182±46 (NA) 

191±26 (141) 
192±30 (137) 

183±41 (NA) 
182±45 (NA) 

100±17 (77) 
102±19 (75) 

 March       (MR) 
                  (HC) 

76±7 (68)  
67±5 (63) 

136±31 (NA) 
123±30 (NA) 

61±7 (51) 
51±5 (47) 

136±31 (NA) 
123±31 (NA) 

32±6 (25)  
27±5 (24) 

 April         (MR) 
                  (HC) 

32±15 (5)  
43±21 (5) 

148±35 (NA) 
154±39 (NA) 

246±22 (197) 
255±29 (191) 

148±35 (NA) 
155±39 (NA) 

59±11 (39)  
65±14 (35) 

 May          (MR) 
                  (HC) 

48±16 (25)  
72±34 (21) 

47±16 (25)  
74±35 (24) 

63±15 (40)  
81±30 (36) 

152±35 (NA) 
175±48 (NA) 

83±18 (58)  
96±36 (45) 

 June          (MR) 
                  (HC) 

6±6 (0) 
6±6 (0) 

4±4 (0) 
4±4 (0) 

40±7 (29)  
37±8 (26) 

139±31 (NA) 
132±31 (NA) 

35±8 (24)  
33±8 (22) 

 July           (MR) 
                  (HC) 

38±8 (31)  
35±7 (30) 

55±9 (46)  
44±8 (37) 

18±7 (12)  
13±6 (8) 

65±23 (NA)  
58±22 (NA) 

58±10 (45)  
54±11 (42) 

       
2017 February   (MR)                   (HC) 

173±15 (131) 
151±14 (124) 

23±5 (17) 
21±4 (17) 

200±12 (184) 
164±12 (150) 

89±25 (NA) 
75±25 (NA) 

51±10 (32) 
38±8 (25) 

 March       (MR) 
                  (HC) 

202±17 (177) 
193±22 (162) 

27±8 (18)  
36±15 (18) 

152±15 (125) 
163±23 (118) 

115±29 (NA) 
118±33 (NA) 

67±11 (54)  
63±17 (41) 

 April         (MR) 
                  (HC) 

154±13 (135)  
145±16 (126) 

29±5 (23)  
31±8 (22) 

178±15 (157) 
137±19 (113) 

94±26 (NA) 
86±27 (NA) 

44±9 (35)  
40±13 (23) 

 May          (MR) 
                  (HC) 

49±11 (34)  
42±8 (34) 

34±10 (20)  
27±8 (20) 

183±17 (147) 
153±12 (135) 

38±10 (25)  
26±7 (19) 

42±11 (27)  
30±8 (22) 

 June          (MR) 
                  (HC) 

121±17 (84) 
110±19 (81) 

40±18 (5) 
49±23 (5) 

117±16 (84) 
122±22 (77) 

33±12 (12)  
35±17 (8) 

76±15 (45)  
82±20 (41) 
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Supplemental Material Table S2. (cont.) 
 

Year Month\Roost Ipuaçu Entre Rios Abelardo Luz Água Doce Lebon Régis 

       
2016 December (MR)                   (HC) 

72±23 (NA) 
69±24 (NA) 

71±23 (NA) 
68±24 (NA) 

71±22 (NA) 
68±24 (NA) 

26±2 (25) 
25±4 (22) 

71±23 (NA) 
68±24 (NA) 

 January     (MR) 
                  (HC) 

109±32 (NA) 
95±32 (NA) 

109±32 (NA) 
96±32 (NA) 

110±33 (NA) 
96±31 (NA) 

103±17 (85) 
94±17 (76) 

109±32 (NA) 
96±32 (NA) 

 February   (MR) 
                  (HC) 

183±41 (NA) 
183±44 (NA) 

182±41 (NA) 
182±44 (NA) 

129±27 (77) 
134±31 (77) 

366±34 (300) 
360±38 (287) 

182±41 (NA) 
182±44 (NA) 

 March       (MR) 
                  (HC) 

136±30 (NA) 
123±31 (NA) 

136±30 (NA) 
123±32 (NA) 

19±5 (14)  
17±4 (14) 

495±12 (481) 
453±11 (440) 

136±30 (NA) 
123±31 (NA) 

 April         (MR) 
                  (HC) 

148±35 (NA) 
155±39 (NA) 

148±35 (NA) 
154±39 (NA) 

82±17 (48)  
86±23 (42) 

323±25 (273) 
325±30 (265) 

148±35 (NA) 
154±40 (NA) 

 May          (MR) 
                  (HC) 

152±35 (NA) 
175±47 (NA) 

44±22 (8)  
75±39 (8) 

140±19 (114) 
164±38 (110) 

215±24 (184) 
233±44 (178) 

579±22 (543) 
610±40 (543) 

 June          (MR) 
                  (HC) 

139±31 (NA) 
133±32 (NA) 

140±31 (NA) 
133±31 (NA) 

450±12 (433) 
430±13 (409) 

304±12 (275) 
287±12 (267) 

140±30 (NA) 
133±31 (NA) 

 July           (MR) 
                  (HC) 

66±22 (NA)  
58±22 (NA) 

65±23 (NA) 
58±22 (NA) 

166±16 (143) 
155±16 (131) 

58±11 (44)  
49±10 (38) 

65±23 (NA) 
58±22 (NA) 

      189±18 (NA) 
107±9 (75) 2017 February   (MR)                   (HC) 

89±25 (NA) 
75±25 (NA) 

89±25 (NA) 
76±24 (NA) 

62±9 (42) 
57±9 (42) 

28±6 (20) 
22±5 (16) 

89±25 (NA) 
75±24 (NA) 

 March       (MR) 
                  (HC) 

115±30 (NA) 
117±33 (NA) 

115±29 (NA) 
117±34 (NA) 

202±17 (174) 
198±24 (155) 

46±8 (39)  
53±15 (35) 

115±29 (NA) 
118±34 (NA) 

 April         (MR) 
                  (HC) 

94±26 (NA) 
86±28 (NA) 

94±25 (NA) 
86±27 (NA) 

133±11 (122) 
134±16 (115) 

27±7 (21)  
29±11 (19) 

94±26 (NA) 
86±28 (NA) 

 May          (MR) 
                  (HC) 

328±19 (289) 
304±15 (280) 

44±19 (6)  
30±15 (6) 

264±15 (242) 
207±12 (193) 

169±17 (132) 
146±13 (122) 

744±19 (705) 
729±15 (705) 

 June          (MR) 
                  (HC) 

15±11 (2)  
21±16 (0) 

109±29 (NA)  
110±32 (NA) 

349±18 (320) 
336±24 (295) 

122±18 (87) 
125±23 (81) 

109±29 (NA) 
110±32 (NA) 
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Supplemental Material Appendix A: BUGS language specification of the models used in 
estimating Vinaceous-breasted Parrot abundance. Model A is the model used for the 
regional scale analysis of Western Santa Catarina data. Models B and C correspond to 
Model 1 and Model 2, respectively, in the text; they were used for analyzing data at the 
whole-range scale. All models were based on Royle (2004) and Kéry and Royle (2016). 

 
#Model A: Regional analysis with WSC data 
 
#Data object 
str(bdata <- list(counts = counts, month = month, site = site, n = 
nrow(counts), visit = ncol(counts), nmonth = max(month), morning = COV2-
1)) 
 
# Specify model in BUGS language 
cat(file = "modelA.txt"," 
model { 
 
# Priors 
# for abundance 
for(s in 1:nmonth){ 
   lambda[s] ~ dgamma(0.01, 0.01) 
   beta0[s] ~ dunif(-10,10) 
} 
# for detection 
beta1 ~ dunif(-10,10) 
     
# Biological model for true abundance 
   for(i in 1:n){ # loop over sites 
      N[i] ~ dpois(lambda[month[i]]) 
      # Observed data at replicated counts 
      for(j in 1:visit){                #loop over visits in each site 
         counts[i,j] ~ dbin(p[i,j], N[i]) 
         logit(p[i,j]) <- beta0[month[i]] + beta1*morning[i,j] 
          
         ## Commands for computing Bayesian p-value 
         eval[i,j] <- p[i,j]*N[i] 
         E[i,j] <- pow((counts[i,j] - eval[i,j]),2) / (eval[i,j] + 0.5) 
         # Generate replicate data and compute fit stats 
         C.new[i,j] ~ dbin(p[i,j], N[i]) 
         E.new[i,j] <- pow((C.new[i,j] - eval[i,j]),2)/(eval[i,j]+0.5) 
      } #counts 
   } #sites 
     
   fit <- sum(E) 
   fit.new <- sum(E.new) 
   c.hat <- fit / fit.new 
   # Total abundance across all sites 
   Ntotal[1] <- sum(N[1:10]) 
   Ntotal[2] <- sum(N[11:20]) 
   Ntotal[3] <- sum(N[21:30]) 
   Ntotal[4] <- sum(N[31:40]) 
   Ntotal[5] <- sum(N[41:50]) 
   Ntotal[6] <- sum(N[51:60]) 
   Ntotal[7] <- sum(N[61:70]) 
   Ntotal[8] <- sum(N[71:80]) 
   Ntotal[9] <- sum(N[81:90]) 



 
 

 8 

   Ntotal[10] <- sum(N[91:100]) 
   Ntotal[11] <- sum(N[101:110]) 
   Ntotal[12] <- sum(N[111:120]) 
   Ntotal[13] <- sum(N[121:130]) 
} 
") 
 
# Initial Values 
Nst <- apply(counts, 1, max, na.rm=TRUE) + 1 
Nst[Nst == '-Inf'] <- 1 
inits <- function(){list(N=Nst)} 
 
##Paramets monitored 
params <- c('lambda', 'p', 'N', "beta0", "beta1", "fit", "fit.new", 
"c.hat", "Ntotal") 
 
# MCMC settings 
na <- 1000;  nc <- 3;   nb <- 10000;   ni <- 25000;   nt <- 20 
 
# Call JAGS 
fmA <- jags(bdata, inits, params, "modelA.txt", n.adapt = na, n.chains = 
nc, n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 
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#Model B: Whole-range analysis without covariates (Model 1 in manuscript) 
 
#Data object 
str(bdata <- list(counts = countsWR, month = monthWR, site = siteWR, n = 
nrow(countsWR), visit = ncol(countsWR), nmonth = max(monthWR))) 
 
#Specify model in BUGS language 
cat(file = "modelB.txt"," 
model { 
    
   # Priors 
   # for abundance 
   for(s in 1:nmonth){ 
      lambda[s] ~ dgamma(0.01, 0.01) 
   } 
   # for detection 
   p ~ dunif(0,1) #fixed for all sites and months 
     
   # Biological model for true abundance 
   for(i in 1:n){ # loop over sites 
      N[i] ~ dpois(lambda[month[i]]) 
      # Observed data at replicated counts 
      for(j in 1:visit){                #loop over visits in each site 
         counts[i,j] ~ dbin(p, N[i]) 
         ## Commands for computing Bayesian p-value 
         eval[i,j] <- p*N[i] 
         E[i,j] <- pow((counts[i,j]-eval[i,j]),2) / (eval[i,j] + 0.5) 
         # Generate replicate data and compute fit stats 
         C.new[i,j] ~ dbin(p, N[i]) 
         E.new[i,j] <- pow((C.new[i,j] - eval[i,j]),2)/(eval[i,j]+0.5) 
      } # reps 
   } # sites 
     
   fit <- sum(E) 
   fit.new <- sum(E.new) 
   c.hat <- fit / fit.new 
   # Total abundance across all sites 
   Ntotal[1] <- sum(N[1:98]) 
   Ntotal[2] <- sum(N[99:196]) 
 
} 
") 
 
# Initial Values 
Nst <- apply(countsWR, 1, max, na.rm=TRUE) + 1 
Nst[Nst == '-Inf'] <- 1 
inits <- function(){list(N=Nst)} 
 
# Parameters monitored 
params <- c('lambda', 'p', 'N', 'fit', 'fit.new', 'c.hat', 'Ntotal') 
 
# MCMC settings 
na <- 1000;   nc <- 3;   nb <- 10000;   ni <- 25000;   nt <- 20 
 
# Call JAGS 
fmB <- jags(bdata, inits, params, "modelB.txt", n.adapt = na, n.chains = 
nc, n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 
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#Model C: Whole-range analysis with covariate on abundance(Model 2 in ms) 
 
#Data object 
str(bdata <- list(counts = countsWR, month = monthWR, site = siteWR, n = 
nrow(countsWR), visit = ncol(countsWR), nmonth = max(monthWR), arauc = 
rep(siteCovsWR[,5],2))) 
 
# Specify model in BUGS language 
cat(file = "modelC.txt"," 
model { 
   # Priors 
   # for abundance 
   for(s in 1:nmonth){ 
      beta0[s] ~ dunif(-10,10) 
      beta1[s] ~ dunif(-10,10) 
   } 
   p ~ dunif(0,1)  #fixed p between sites and visits of the same month 
    
   # Biological model for true abundance 
   for(i in 1:n){ #loop over sites 
      N[i] ~ dpois(lambda[i]) 
      log(lambda[i]) <- beta0[month[i]] + beta1[month[i]]*arauc[i]  
      #Observed data at replicated counts 
      for(j in 1:visit){ #loop over visits in each site 
         counts[i,j] ~ dbin(p, N[i]) 
         eval[i,j] <- p*N[i] 
         E[i,j] <- pow((counts[i,j]-eval[i,j]),2) / (eval[i,j] + 0.5) 
         # Generate replicate data and compute fit stats 
         C.new[i,j] ~ dbin(p,N[i]) 
         E.new[i,j] <- pow((C.new[i,j] - eval[i,j]),2)/(eval[i,j]+0.5) 
      } #reps 
    
   } #sites 
    
   fit <- sum(E) 
   fit.new <- sum(E.new) 
   c.hat <- fit / fit.new 
   # Total abundance across all sites 
   Ntotal[1] <- sum(N[1:98]) 
   Ntotal[2] <- sum(N[99:196]) 
} 
") 
 
#Initial Values 
Nst <- apply(countsWR, 1, max, na.rm=TRUE) + 1 
Nst[Nst == '-Inf'] <- 1 
inits <- function(){list(N=Nst)} 
 
#Parameters monitored 
params <- c('lambda', 'p', 'N', 'beta0', 'beta1', 'fit', 'fit.new', 
'c.hat', 'Ntotal') 
 
#MCMC settings 
na <- 1000;   nc <- 3;   nb <- 10000;   ni <- 25000;   nt <- 20 
 
#Call JAGS 
fmD <- jags(bdata, inits, params, "modelC.txt", n.adapt = na, n.chains = 
nc, n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 
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Supplemental Material Appendix B: Simulation assessment of (1) the coverage of the 
posterior-stretching procedure, and (2) the choice of an overdispersion-naïve binomial N-
mixture model over a p-ignorant approach 
 
We conducted a simple simulation with two goals: 
 
(1) To assess the coverage of credible intervals that are computed from a 'stretched' 
posterior distribution as described in the main text of the article. By ‘coverage’ we 
mean the extent to which estimation credible intervals cover the true values of 
parameters fed to the simulation. 

(2) To assess the estimation error associated with our use of an overdispersion-naïve 
binomial N-mixture model and compare it with a p-ignorant method that simply 
adds maximum counts across sites. 

 
For this, we simulated 1000 data sets that contained heavy overdispersion in both 
abundance and detection. Sample sizes were 130 sites and 2 replicate counts, with average 
abundance of 120 and average detection 0.7; these resembled the constraints and estimates 
of our whole-range analysis. Then, we analyzed each simulated data set with a simple 
binomial N-mixture model that had only an intercept for abundance and another one for 
detection. Thus, this model was overdispersion-naive in the sense that it did not take 
overdispersion into account by trying to estimate it. At the same time, for each data set, we 
took the maximum count simulated at each site and added this up across sites for a p-
ignorant estimate of Ntotal, the total abundance across all 130 sites.  
 
We simulated the overdispersed replicated count data sets using function simNmix in the 
AHMbook R package (Kéry, Royle & Meredith 2020). In this function, overdispersion can 
be simulated by adding Gaussian noise at the site level into the linear predictor for the log-
linear model of abundance, or at the site, occasion, or site-by-occasion (= 'survey') level 
into the linear predictor for the logit-linear model of detection. The magnitude of each 
component of overdispersion is governed by the value of the standard deviation of a zero-
mean Normal distribution from which the respective contributions are drawn as random 
numbers. 
 
In both our regional and whole-range counts, we hypothesize that overdispersion may be 
present at the site-level in abundance and at the site-level as well as the survey- (i.e, site-by-
occasion) level in detection. So, for each data set we first randomly picked a value for the 
standard deviation of each level of overdispersion from a Uniform distribution on (0, 1), 
where 0 denotes the absence of that component of overdispersion and 1 means a lot of 
overdispersion. Thus, we intend our simulation to represent a broad assessment of the two 
methods for assessing the regional total (Ntotal) under the p-ignorant and the 
overdispersion-naive approaches against a very broad range of conditions in terms of the 
type of process that creates counts (i.e., coming from the abundance part of the data-
generating processes or from the detection part or from both) and of the magnitude of the 
associated noise that is introduced into the counts. 
 
This appendix contains the R and JAGS code to execute the full simulation and also, at the 
end, presents some brief results. 
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library(AHMbook) 
?simNmix                     # Check how sim function works 
 
# Create R objects to save results 
# -------------------------------- 
simrep <- 1000         # Number of simulation reps 
 
# True values etc 
sigma.vals <- array(NA, dim = c(simrep, 3)) 
colnames(sigma.vals) <- c('sigma.lam', 'sigma.p.site', 
'sigma.p.survey') 
true.Nsite <- array(NA, dim = c(data$nsite, simrep)) 
true.Ntotal <- numeric(simrep) 
 
# p-ignorant estimators for Nsite and Ntotal 
maxCount <- array(NA, dim = c(data$nsite, simrep)) 
sumMaxCount <- numeric(simrep) 
 
# posterior summaries of everything  
# NOTE: this requires one to have fit the model below once before 
# You have to manually pick some of the code below first to create  
# a data set and analyse it 
posterior.summaries <- array(NA, dim = c(dim(fm$summary), simrep)) 
dimnames(posterior.summaries) <- list(rownames(fm$summary), 
colnames(fm$summary), NULL) 
STRETCH.CRI <- array(NA, dim = c(2, simrep)) 
dimnames(STRETCH.CRI) <- list(c(c('Stretch Lower', 'Stretch 
Upper')), NULL) 
 
 
# Launch simulation 
for(i in 1:simrep){ 
 
cat(paste('\n\n*** Simrep Number', i, '***\n\n\n')) 
 
# Simulate a data set with OD 
# --------------------------- 
# pick a random value for the three types of OD that make sense 
for the parrots 
( sigma.lam <- runif(1, 0, 1) ) 
( sigma.p.site <- runif(1, 0, 1) ) 
( sigma.p.survey <- runif(1, 0, 1) ) 
 
# Simulate a data set using these values 
data <-  simNmix(nsites = 130, nvisits = 2, mean.lam = 120, mean.p 
= 0.7, 
       sigma.lam = sigma.lam, sigma.p.site = sigma.p.site,  
       sigma.p.survey = sigma.p.survey, show.plot = FALSE) 
summary(c(data$C))    # summary of observed counts 
summary(exp(data$log.lam)) # summary of lambda 
 
# Now we fit the model to this data set,  
# ignoring the extra-sources of dispersion 
# ---------------------------------------- 
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# Data object 
str(bdata <- list(counts = data$C, nsites = nrow(data$C),  
nsurveys = ncol(data$C))) 
 
# Specify model in BUGS language 
cat(file = "model.txt"," 
model { 
   #Priors 
   lambda ~ dgamma(0.001, 0.001) 
   p ~ dunif(0,1)  
     
   # Biological model for true abundance 
   for(i in 1:nsites){ 
      N[i] ~ dpois(lambda) 
      for(j in 1:nsurveys){     
         #Observed data at replicated counts 
         counts[i,j] ~ dbin(p, N[i])  #counts follow binomial 
distribution 
         ## Commands for computing Bayesian p-value 
         eval[i,j] <- p * N[i] 
         E[i,j] <- pow((counts[i,j] - eval[i,j]), 2) / (eval[i,j] 
+ 0.001) 
         # Pearson GoF statistic 
         # Generate replicate data and compute fit stats 
         C.new[i,j] ~ dbin(p, N[i]) 
         E.new[i,j] <- pow((C.new[i,j] - eval[i,j]),2) /                                       
(eval[i,j] + 0.001) # Pearson GoF statistic 
      } 
   } #sites 
     
   # Fit assessments 
   fit <- sum(E) 
   fit.new <- sum(E.new) 
   c.hat <- fit / fit.new 
 
   # Total abundance across all sites 
   Ntotal <- sum(N[]) 
 } 
") 
 
# Initial Values 
Nst <- apply(data$C, 1, max, na.rm=TRUE) + 1 
inits <- function(){list(N=Nst)} 
 
# Parameters monitored 
params <- c("N", "Ntotal", "lambda", "p", "fit", "fit.new", 
"c.hat") 
 
# MCMC settings 
na <- 1000;   nc <- 3;   nb <- 3000;   ni <- 10000;   nt <- 7 
 
# Call JAGS 
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fm <- jags(bdata, inits, params, "model.txt", n.adapt = na, 
n.chains = nc,  
            n.thin = nt, n.iter = ni, n.burnin = nb, parallel = 
TRUE) 
 
# Now stretch the posterior for Ntotal by sqrt(c.hat) 
# And then check the coverage of the stretched CRIs 
 
# Step 1: subtract the mean of the posterior draws 
draws <- fm$sims.list$Ntotal    # make a copy 
cent.draws <- draws - fm$mean$Ntotal 
 
# Step 2: stretch 
cent.stretched.draws <- cent.draws * sqrt(fm$mean$c.hat) 
 
# Step 3: put back the mean and compute stretched CRIs 
stretch.draws <- cent.stretched.draws + fm$mean$Ntotal 
stretch.CRI.Ntotal <- quantile(stretch.draws, prob = c(0.025, 
0.975))   
 
# Save all that we need 
sigma.vals[i, ] <- c(sigma.lam, sigma.p.site, sigma.p.survey) 
true.Ntotal[i] <- data$Ntotal 
 
# p-ignorant estimators for Nsite and Ntotal 
maxCount[,i] <- apply(data$C, 1, max)  
sumMaxCount[i] <- data$summax 
 
# posterior summaries of everything 
posterior.summaries[,,i] <- fm$summary 
STRETCH.CRI[,i] <- stretch.CRI.Ntotal 
 
} # simrep 
 
 
## Present the results 
# -------------------- 
# Quick and dirty check whether things have generally converged 
hist(posterior.summaries[,8,])  # ... OK 
 
 
# (1) Results for coverage of the stretched CRI ad-hoc procedure 
# -------------------------------------------------------------- 
inside <- numeric(simrep) 
for(i in 1:simrep){ 
   inside[i] <- (true.Ntotal[i] > STRETCH.CRI[1,i]) * 
(true.Ntotal[i] < STRETCH.CRI[2,i]) 
} 
 
mean(inside) 
 [1] 0.633 
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Hence, the mean coverage of the stretched CRIs for Ntotal is only 0.633, which is a long 
way from 0.95, but it is without a doubt much better than what we would obtain without 
stretching the CRIs. 
 
 
# (2) Results for estimation error of p-ignorant vs. OD-naive 
Nmix: 
#    Would we do better by simply taking the max counts ? 
# ----------------------------------------------------------------
- 
 
# For the total N across all sites: Ntotal 
# ---------------------------------------- 
# Compare Mean total error for both approaches 
(RMSE.total.counts <- sqrt(mean(sumMaxCount - true.Ntotal)^2) ) 
(RMSE.total.Nmix <- sqrt(mean(posterior.summaries[131,1,] - 
true.Ntotal)^2) ) 
 
# [1] 4929.368          # max counts 
# [1] 3720.835          # OD naive Nmix 
 
round((3720.835 - 4929.368) / 4929.368, 4)     # minus 25% in 
error when using Nmix over counts 
 
Hence, averaged over all the overdispersion scenarios represented by the 1000 realizations 
from our data-simulation process, we expect to have 25% less total estimation error (in the 
root mean squared error sense) when using an overdispersion-naive binomial N-mixture 
model than when using a p-ignorant approach where we simply add up the maximum 
counts across sites. 
 
This result was decisive for our choice to use an N-mixture model for inference about 
parrot total population size even when that model did not pass our Goodness of fit tests. 
 
We do, however, not recommend such an approach in general and emphasize once more the 
ad hoc nature of our procedure. We believe this is the right approach for our data set and 
objectives, but that may not be true for other studies! 
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