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The web interface is becoming the programmatic interface of new-generation applications. 
This interface can unite the edge, the fog and the cloud seamlessly, permitting applications 
to be developed, deployed and operated as an orchestration of independent parts that reside 
and operate wherever they best meet the user requirements.

The continuum 
of computing:  
enabling technologies
By TULLIO VARDANEGA

User-oriented and business computing is becoming ubiquitous, and spans from the cloud to 
the edge via fog nodes in between. The spectrum across such platforms is becoming the natural 
host environment for an increasing number of value-added applications that can be deployed at 
various points along it, without necessarily having a single fixed position. Most such applications 
are independent of one another, often very specialized, sometimes equivalent in function. 
Transforming their delivery mode into an as-a-service style favours their “servitization”, which, by 
not requiring local installation, alleviates the burden on the end-user platform, thereby increasing 
their economic value. That transformation is comparatively easy to achieve since the web has 
become the programmatic interface of new-generation applications. This in turn allows us to regard 
the spectrum across the cloud and the edge via the fog as the “continuum of computing”. That 
continuum is the perfect habitat for meta-applications that orchestrate selected sets of independent 
applications into user-defined workflows that single out the service providers via the schema-based 
interface contracts that they publish; decide on deployment; and obey the execution preferences 
that are most opportune to meet user requirements. Such preferences also extend quality of service 
to include privacy, confidentiality, energy, social and ethical concerns.

Key insights

•	New-generation browsers, with a thor-
oughly streamlined protocol stack, will 
be the operating systems of the future. 
The web is going to be their API.

•	New-generation browsers will allow 
industrial and consumer applications 
to run on resource-scarce edge nodes, 
in addition to more resourceful cloud 
and fog nodes. This will cause the “con-
tinuum of computing” to emerge as a 
seamless execution platform.

•	Value-added meta-services will be real-
ized as user-defined orchestrations of 
independent, specialized applications 
running on the continuum. 

•	Application orchestrators will be pro-
grammed with natural interfaces such 
as use voice command, textual natural-
language specifications, and learning-
by-example. Orchestration engines will 
serve the user’s best interests in privacy, 
confidentiality, energy, social and ethical 
preferences.

Key recommendations

•	Support the development of browsers 
that guarantee efficiency and fitness 
for direct execution on edge devices, 
and can sandbox portable value-added 
applications.

•	Support the development of trusted 
orchestrators, loyal to their users, which 
can run on any mobile device and appli-
ance.

•	Support the development of “natural 
interfaces” for users to command the 
orchestrators running on their edge 
devices.
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Introduction
The notion of “continuum of comput-

ing” reflects the observation that edge, 
fog and cloud computing platforms are 
being pulled close together into what will 
likely become a seamless execution envi-
ronment (depicted in the bottom part of 
Figure 1). This happens under the push 
exerted by a massively increasing number 
of value‐added applications targeting 
mobile, handheld, wearable and unat-
tended devices, which can all run over 
one and the same base programmable 
interface: the internet. Those applications 
serve either human users or industrial 
apparatuses, as in the IoT, with a wealth of 

functionalities (depicted in the top‐center 
part of Figure 1). This trend is made even 
more prolific – and the value-added higher 
– by the fact that most such applications 
need not be deeply embedded in the target 
device. This trait accelerates their lifecycle 
many times over that of traditional device-
specific deeply embedded applications. 

Whereas this vision may be more 
immediately associated with the consumer 
market, it applies equally well to industrial 
scenarios. Such a notion reflects the oppor-
tunity to extend monitoring control of IoT 
applications to mobile users and the desire 
to seek low-latency use of mission- or busi-

ness-critical services (e.g., deep learning) 
by deploying them at the edge.

There are two very contrasting possible 
versions of the continuum. One is captive 
and vendor‐specific, and defers to the big 
giants of the internet, the only actors in 
that context that have the technical and 
financial resources required to cover the 
whole span of the continuum, horizontally 
(toward the user and the application devel-
oper) and vertically (toward the on-target 
runtime). The other is open and vendor‐
neutral; in line with the intended nature 
of the internet, it allows interoperation 
across all parties. It is this latter version on 
which we focus.

The intrinsic resource limitations of the 
near-user hosting devices (battery, storage, 
bandwidth, processing) require the appli-
cations delivering such functionalities to be 
designed so that, while becoming available 
on the target device, they should be able to 
offload the heavy‐duty work to “collaborat-
ing” computing nodes. These nodes can be 
located opportunistically anywhere appro-
priate, from a fog node near the user to the 
deep centre of the cloud, as long as the user 
requirements continue to be met. Such a 
scenario has interesting, interwoven rami-
fications.

Figure 1: A pictorial view of the “continuum of computing”

Figure 2: A view of the continuum applied to the IoT  
(Source: DOI:10.1109/MNET.2018.1700202)
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•	The parts of the application nearer to 
the user, on the target device, will have 
an as‐a‐service delivery mode. The host 
environment of such a delivery mode 
can be very different from a normal 
commodity computer: it requires virtu-
ally nothing in the way of the traditional, 
file‐system‐based local installation; like-
wise, it does not need a large proportion 
of the operating system infrastructure. 
File systems have no practical value for 
resource‐constrained devices, which can 
have other ways to arrange isolated stor-
age for executing processes. Similarly, 
general-purpose operating systems, with 
their massive overhead and evolutionary 
clutter, are not very fit for purpose in this 
scenario.

•	The collaboration between local and 
remote parts of the application, for delo-
calized data as well as distributed compu-
tation, will occur at the highest possible 
level of abstraction, which means at the 
highest levels of the internet protocol 
stack (HTTP/3 [1]). That choice reaps 
the largest benefits in terms of language-
neutral expressive power (with architec-
tural approaches that can be resource-
centric with REST [2], data-centric with 
GraphQL [3], collaboration-centric with 
gRPC [4], real-time streaming with 
WebRTC [5], etc.), combined with port-
ability and interoperability (stemming 
from relying on HTTP derivatives, the 
most standard and ubiquitous of APIs, 
outside of the boundaries of any given 
programming language). Moreover, as the 
endpoints of all such protocols are defined 
as schema documents, they can be the 
basis of contract-based assertions and 
specifications, set on the service interface 
exposed by the individual app parts. This 
prospect enables the construction of very 
advanced component aggregations, in 
which the application provider declares 
what the app can offer (aka “guarantees” 
in functional and non-functional terms) 
and under what conditions (aka “assump-
tions”). The app user can decide which 
app to choose from those that provide the 
same functional API.

The as-a-service delivery mode and the 
mobility of the computation across the 
edge-fog-cloud continuum extends the 
opportunity for deploying new services. The 

former requires app composition and inte-
gration to adopt open and efficient means 
for service discovery and service registry. 
The latter requires lightweight containeri-
zation, and advanced hosting and deploy-
ment engines. Interestingly, base solutions 
to most such needs are already in place, 
for example in Kubernetes’ ecosystem, 
originally born in the cloud but now being 
“miniaturized” to operate within smaller 
compute confines. Those solutions need 
to be evolved towards increased openness, 
agility and capabilities.

Application hosting
The scenario described comes with 

distinct implications for the execution plat-
form that hosts end-user applications. A 
most natural internet-enabled candidate for 
host for the on‐target part of the applica-
tion is a web browser, as opposed to a more 
classic general‐purpose operating system, 
whose excess of evolutionary clutter makes 
it fatally unfit for purpose [6]. The prime 
reason for that candidacy is that modern 
browsers, most notably Chromium and its 
derivative Chromium OS [7], have learned 
very well how to:
•	Efficiently separate their various activi-

ties, of which visual rendering is just 
one (extraordinarily sophisticated, but 
progressively less central as natural-inter-
action comes to the foreground – depicted 
in the top‐right part of Figure 1). For 
obvious reasons of efficiency, all of this 
concurrent operation – where not flat-
out parallelism – requires self-served 
scheduling, which does not have to be 
deferred to the untenably costly services 
of an underlying kernel-space operating 
system;

•	Sandbox the web‐hosted apps and plugins 
that the user may wish to use; realizing 
such sandboxing requires the host to 
expose standard APIs (which in turn 
facilitates the much-desired mobility of 
hosted apps, and amplifies their economic 
value) and to self-provide the most effi-
cient form of application-level contain-
erization that does not need running 
directly on a hypervisor;

•	Natively communicate with internet 
protocols over and above HTTP, so that 
service invocation and service composi-
tion can all be uniformly expressed in 
terms of HTTP-based requests, independ-
ent of programming languages (hence 
maximally portable), attached to contract-
based interfaces that augment their 
schema-based endpoint specifications.

Modern web browsers of this kind are 
the operating systems of the future, espe-
cially in the segment of the continuum 
exposed to the user, because they do every-
thing that really matters to respond to the 
user application needs, viz., safe compo-
nentization (aka sandboxing), scheduling, 
high‐level inter‐process communication, 
and life‐cycle management (including 
installation, update, removal, all without 
the need for local file systems, but merely 
using simple storage management).

Interesting advancements toward the 
secure and efficient deployment of sand-
boxed mobile code within such browsers 
are being made [8]: their base technol-
ogy needs to be trialled more extensively, 
hopefully with moonshot projects, to 
determine how to bring them to maturity.

Figure 3: The change of landscape in the software computing stack.

TECHNICAL DIMENSION



59

Deployment engine
The observations above posit a radically 

different landscape in terms of software 
computing stack from the application to 
the deployment and execution engine at 
run time, as Figure 3 attempts to portray. 
The new landscape (on the right) deter-
mined by the previously described scenario 
will not push out and entirely replace the 
old, traditional one (seen on the left), but 
rather will coexist with it. The former will 
be fitter for the near-to-user part of the 
continuum, where there is more room for 
disruptive innovation; the latter will consti-
tute the legacy, closer to the periphery of 
the cloud, where the ecosystem is more 
stable and tradition is a helpful conveni-
ence. The cloud itself uses a different 
structure, which employs virtualized or 
native containerization to modularize the 
application space, and strives to separate 
infrastructure management, application 
management and service delivery.
•	The traditional structure on the left has 

a large base – the operating system, with 
its own vulnerabilities, and the applica-
tions with theirs – requiring protection 
and needing to be assessed for trust when 
used in critical settings. This verification 
is very difficult and costly to achieve, 
because of the highly-coupled composi-
tion of the software stack (e.g. general‐
purpose operating system with tradi-
tional process‐based isolation, resident 
applications that scarcely separate data 
from code, ad‐hoc inter‐process commu-
nication).

•	The wholly novel structure on the right is 
the opposite: it has a much smaller, leaner, 
sleeker base that has to be made trusted, 

which we call here Trusted Computing 
Base (TCB) and liken to the core of a 
modern web browser. It also has a large 
base of less critical functions (sandboxed 
applications – depicted in Figure 1 as the 
cage that encapsulates the apps, above 
the interface to the continuum platform), 
which can be very user‐need‐specific, 
short‐lived, and free to fail, incurring 
local service disruption, but without 
causing ripple effects.

On its inside, the TCB may be regarded 
as a message-based micro (but not mini-
mal) kernel that is oriented to supporting 
web services and apps. All software execu-
tion within it obtains sandbox isolation 
in four ways as described below, without 
using costly privilege levels: 
•	The kernel being written in memory-safe 

programming languages (e.g., Rust [9], 
Ada SPARK [10]), whose strict memory 
model uses ownership tags to control the 
lifecycle of and the access to program 
data, without requiring garbage collec-
tion;

•	The extensive use of static verification 
tools that accompany such languages 
(rendered unprecedentedly easier to 
produce by the safeness traits of the 
language itself); 

•	The execution by interpretation or just-
in-time compilation using languages such 
as Web Assembly or WASM8. WASM is 
attractive in this particular context for 
various reasons. Firstly, it warrants rigid 
memory separation between executing 
modules and strict separation between 
code and data to prevent execution 
breaches via corrupted data, and it solely 

allows structured-control-flow instruc-
tions, to prevent uncontrolled jumps. 
Secondly, it defines a Web Assembly 
System Interface (WASI) to support calls 
across heterogeneous platforms. Thirdly, 
it uses a capability-based mechanism 
to control execution access to external 
resources;

•	The sandboxing of WASM applications 
within the WASM interpreter, and its 
hosting in a kernel-level process that 
acts as resource broker to it. The execu-
tion of the hosted (aka target) process 
follows the principle of least privilege, to 
reduce the surface of attack to the maxi-
mum possible extent, and uses message-
based communication, in keeping with 
the share-nothing principle, prerequisite 
to robustness, scalability and parallelism 
at various levels of software system infra-
structures.

Two notable conceptual precursors 
to the TCB described here are especially 
pertinent. Singularity [11] was established 
as a proof of concept at Microsoft Research 
in 2003, built with proprietary technology, 
and experimentally released between 2007 
and 2013, to explore brand-new innovation 
in the architecture, build and execution of 
operating systems, and fits the vision we 
describe in this article. Fuchsia [12] is an 
open-source project launched by Google, 
which has not yet reached an official release 
date but has resonated well with the public 
given its inspiring principles, which are 
very much in line with the four points in 
the list above. Neither of these technolo-
gies constitutes, per se, a self-sufficient 
stepping stone; they should be seen as 

Figure 4: Sandboxing (right) made easy, contrasted with normal hosting (left).  
(Source: https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/.)
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evidence that the required direction can 
be pursued. Development from scratch 
of a demonstrator TCB, no larger than 
a compact and streamlined mini-kernel, 
would be a useful tool on the path towards 
the continuum. 

Value-added end-user applications: 
service orchestration

With the large amount of value‐added, 
prevalently independent, individual appli-
cations that are candidate for running on 
the TCB in the novel scenario, the oppor-
tunity arises to promote and sustain “non‐
anticipative evolution” [13] at the runtime 
platform level. This concept suggests that 
the complexity of the modern world (in 
terms of needs, expectations and potential) 
is better served by allowing adaptive open-
ness that follows second‐order user require-
ments (those that reflect actual user experi-
ence as opposed to prescriptive anticipation 
of it) than by platforms that anticipate them 
placing arbitrary constraints on the user 
(be it human or application). One illustra-
tion of how non‐anticipative value added 
can be obtained, elegantly and agilely, from 
the software stack on the right in Figure 3 

is the provision of an orchestration engine. 
This engine would allow individual users 
(humans or applications) to specify and 
launch a flow (presumably captured as 
a directed acyclic graph) that executes 
selected apps in some defined order and 
determines how the corresponding output 
of one should become the input of another.

Such an orchestration engine would 
have two complementary parts:

One, at the user side, should 
support “natural interfaces” (e.g. voice‐
commanded specification – depicted in the 
top‐right part of Figure 1) for the simple 
yet compelling reason that producing (as 
opposed to using) such orchestration flows 
should be within the reach of every indi-
vidual and not only of trained program-
mers. This is currently not the case, which 
is hardly justifiable, either technically or 
conceptually. An excellent example of this 
striking deficit is the current radical sepa-
ration of coding and use of the so‐called 
“skills” of Amazon Alexa (now renamed 
Echo Dot). With this device, no matter how 
attractive and satisfactory the deployment 
of such skills would be to the user, their 

programming is still a specialized human 
job, rendered so by an awkward low-level 
programming interface (to produce very 
trivial programming directives, in fact). 
The reason for this is not technical; it is 
more likely related to market economics 
(presumably, creating the technology that 
enabled voice‐commanded specification of 
skills would have delayed the launch of the 
product. What was – and is – important 
in the consumer market for a producer is 
to be first wherever innovation is, which 
frequently causes corners to be cut in the 
race) and should be overcome thanks to 
the maturation of speech-to-code technol-
ogy [14] or spec-to-code or by-example-
code and all possible instances of “natu-
ral interfacing” between humans and 
computers. These things favour freedom 
from the obligation of writing arbitrarily 
idiomatic program text. Such a component 
of the envisioned orchestration engine 
should help the user manage the lifecycle 
of “flows”, enabling them to be created both 
offline (without requiring immediate execu-
tion) and online (with immediate execu-
tion, perhaps even in place of or in addition 
to other executions), as well as to be inter-
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rupted, modified, resumed or stored. All 
of that should be equally doable with new-
generation natural interfaces (primary) and 
with more traditional programmatic solu-
tions (secondary, back-office style). Seen 
at a wider angle, the envisioned form of 
application coding, which can be dubbed 
“software-writing-software”, is becom-
ing increasingly attractive and rendered 
possible – at boosted capacity – by deep 
learning compute infrastructures. Such 
infrastructures can be trained to under-
stand an enormous base of example code, 
and directed to generate code artefacts 
that have the required traits, functional 
and non-functional, regardless of the 
target programming language of choice 
or necessity.

The second part, on the execution 
platform side, is a trusted orchestrator, a 
prominent element of the envisioned TCB, 
situated on its upper interface (depicted 
in Figure 1 as the picture box showing an 
orchestra director, positioned at the centre 
of the TCB interface exposed to the user 
side), which executes service calls directed 
to independent service apps, aggregated 
according a user‐specified flow. The term 
“orchestrator” is used here to evoke the 
conductor of an orchestra that obtains the 
desired musical effects from commanding 
into action individual instruments that 
act independently according to their own 
music sheet. The particular orchestrator 
that we envision executes such workflows in 
a manner that is loyal to the user, for choice 
of applications (where multiple alternatives 
can provide the same service), preserva-
tion of data privacy (by controlling what 
data is extracted, directly and indirectly, 
from the execution and where they are 
stored), and social or ethical preferences 
(e.g. open-source versus proprietary; closer 
versus anywhere; run on green computing 
versus carbon-based). Workflow execu-
tion engines are commonplace in business 
process management [15]; this vision state-
ment takes them to the next level in two 
ways: one is making them the prominent 
way of deploying applications at the outer-
most level of the software computing stack, 
recognizing that digitalization is funda-
mentally about the composition of third-
party functionalities across the network; the 
other is adding “loyal intelligence” to their 
operation, which is one essential ingredi-

ent of the “ethical computing” that must 
accompany the digitalizing-of-everything 
in order for it to be human-centred. We 
are seeing the arrival of programming 
languages that operate at the level of 
abstraction as described above (i.e. over 
the internet, which effectively takes over 
the role previously played by the middle-
ware), and which are at a stage of their 
development that allows them still to be 
augmented with the missing features. Such 
languages are often called cloud-native, to 
signify that their technology contemplates 
all of the steps entailed in going from tradi-
tional compilation and local execution to 
enabling containerization, deployment in 
a container orchestration framework, and 
distributed non-local execution. The most 
distinctive features of such languages are 
that they (1) are designed to be integration 
languages as opposed to system ones; (2) 
allow for multiple implementations accord-
ing to the runtime platform that is to host 
them; (3) support network-friendly types 
for data, commands and style of interac-
tions; (4) contemplate security abstractions; 
(5) favour static verification; and (6) enable 
powerful error treatment at run time. 
Example languages that go in this direc-
tion include Ballerina [16] and Jolie [17]. 

Conclusion
The “continuum of computing” is emerg-

ing as the confluence of several concurrent 
phenomena. The most prominent of them 
is that supporting the web (meaning its 
internet protocols) as the programmatic 
interface of modern applications means 
that it can be so thoroughly streamlined 
as to become fit even for resource-scarce 
edge nodes alongside the more resourceful 
cloud and fog nodes. In that sense, there-
fore, the continuum of computing emerges 
as a seamless platform where a multitude 
of user- and business-oriented web-based 
applications can be deployed and executed 
at will. The as-a-service delivery mode 
of most such applications favours their 
composition into user-defined orchestra-
tions that operate as value-added meta-
services. Such orchestrators may be very 
attractive vehicles of innovation in at least 
two respects. Their user side should allow 
the production of preference-based work-
flows of service calls with the lowest possi-
ble cognitive load for the user, with a shift 

from a programmatic to a natural-inter-
face model that can use voice command, 
textual natural-language specifications, and 
learning-by-example support. Their execu-
tion engine should instead animate user-
defined workflows singling out service 
providers via their schema-based interface 
contracts, deciding on their deployments, 
and obeying specified preferences that 
augment quality of service and take into 
account privacy, confidentiality, energy, 
social and ethical concerns. All of this is 
very much within reach from a technology 
perspective, and holds potential for signifi-
cant innovation and advancement.
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