
56

The web interface is becoming the programmatic interface of new-generation applications.
This interface can unite the edge, the fog and the cloud seamlessly, permitting applications
to be developed, deployed and operated as an orchestration of independent parts that reside
and operate wherever they best meet the user requirements.

The continuum
of computing:
enabling technologies
By TULLIO VARDANEGA

User-oriented and business computing is becoming ubiquitous, and spans from the cloud to
the edge via fog nodes in between. The spectrum across such platforms is becoming the natural
host environment for an increasing number of value-added applications that can be deployed at
various points along it, without necessarily having a single fixed position. Most such applications
are independent of one another, often very specialized, sometimes equivalent in function.
Transforming their delivery mode into an as-a-service style favours their “servitization”, which, by
not requiring local installation, alleviates the burden on the end-user platform, thereby increasing
their economic value. That transformation is comparatively easy to achieve since the web has
become the programmatic interface of new-generation applications. This in turn allows us to regard
the spectrum across the cloud and the edge via the fog as the “continuum of computing”. That
continuum is the perfect habitat for meta-applications that orchestrate selected sets of independent
applications into user-defined workflows that single out the service providers via the schema-based
interface contracts that they publish; decide on deployment; and obey the execution preferences
that are most opportune to meet user requirements. Such preferences also extend quality of service
to include privacy, confidentiality, energy, social and ethical concerns.

Key insights

•	New-generation browsers, with a thor-
oughly streamlined protocol stack, will
be the operating systems of the future.
The web is going to be their API.

•	New-generation browsers will allow
industrial and consumer applications
to run on resource-scarce edge nodes,
in addition to more resourceful cloud
and fog nodes. This will cause the “con-
tinuum of computing” to emerge as a
seamless execution platform.

•	Value-added meta-services will be real-
ized as user-defined orchestrations of
independent, specialized applications
running on the continuum.

•	Application orchestrators will be pro-
grammed with natural interfaces such
as use voice command, textual natural-
language specifications, and learning-
by-example. Orchestration engines will
serve the user’s best interests in privacy,
confidentiality, energy, social and ethical
preferences.

Key recommendations

•	Support the development of browsers
that guarantee efficiency and fitness
for direct execution on edge devices,
and can sandbox portable value-added
applications.

•	Support the development of trusted
orchestrators, loyal to their users, which
can run on any mobile device and appli-
ance.

•	Support the development of “natural
interfaces” for users to command the
orchestrators running on their edge
devices.

TECHNICAL DIMENSION

57

Introduction
The notion of “continuum of comput-

ing” reflects the observation that edge,
fog and cloud computing platforms are
being pulled close together into what will
likely become a seamless execution envi-
ronment (depicted in the bottom part of
Figure 1). This happens under the push
exerted by a massively increasing number
of value‐added applications targeting
mobile, handheld, wearable and unat-
tended devices, which can all run over
one and the same base programmable
interface: the internet. Those applications
serve either human users or industrial
apparatuses, as in the IoT, with a wealth of

functionalities (depicted in the top‐center
part of Figure 1). This trend is made even
more prolific – and the value-added higher
– by the fact that most such applications
need not be deeply embedded in the target
device. This trait accelerates their lifecycle
many times over that of traditional device-
specific deeply embedded applications.

Whereas this vision may be more
immediately associated with the consumer
market, it applies equally well to industrial
scenarios. Such a notion reflects the oppor-
tunity to extend monitoring control of IoT
applications to mobile users and the desire
to seek low-latency use of mission- or busi-

ness-critical services (e.g., deep learning)
by deploying them at the edge.

There are two very contrasting possible
versions of the continuum. One is captive
and vendor‐specific, and defers to the big
giants of the internet, the only actors in
that context that have the technical and
financial resources required to cover the
whole span of the continuum, horizontally
(toward the user and the application devel-
oper) and vertically (toward the on-target
runtime). The other is open and vendor‐
neutral; in line with the intended nature
of the internet, it allows interoperation
across all parties. It is this latter version on
which we focus.

The intrinsic resource limitations of the
near-user hosting devices (battery, storage,
bandwidth, processing) require the appli-
cations delivering such functionalities to be
designed so that, while becoming available
on the target device, they should be able to
offload the heavy‐duty work to “collaborat-
ing” computing nodes. These nodes can be
located opportunistically anywhere appro-
priate, from a fog node near the user to the
deep centre of the cloud, as long as the user
requirements continue to be met. Such a
scenario has interesting, interwoven rami-
fications.

Figure 1: A pictorial view of the “continuum of computing”

Figure 2: A view of the continuum applied to the IoT
(Source: DOI:10.1109/MNET.2018.1700202)

THE CONTINUUM OF COMPUTING: ENABLING TECHNOLOGIES

58

•	The parts of the application nearer to
the user, on the target device, will have
an as‐a‐service delivery mode. The host
environment of such a delivery mode
can be very different from a normal
commodity computer: it requires virtu-
ally nothing in the way of the traditional,
file‐system‐based local installation; like-
wise, it does not need a large proportion
of the operating system infrastructure.
File systems have no practical value for
resource‐constrained devices, which can
have other ways to arrange isolated stor-
age for executing processes. Similarly,
general-purpose operating systems, with
their massive overhead and evolutionary
clutter, are not very fit for purpose in this
scenario.

•	The collaboration between local and
remote parts of the application, for delo-
calized data as well as distributed compu-
tation, will occur at the highest possible
level of abstraction, which means at the
highest levels of the internet protocol
stack (HTTP/3 [1]). That choice reaps
the largest benefits in terms of language-
neutral expressive power (with architec-
tural approaches that can be resource-
centric with REST [2], data-centric with
GraphQL [3], collaboration-centric with
gRPC [4], real-time streaming with
WebRTC [5], etc.), combined with port-
ability and interoperability (stemming
from relying on HTTP derivatives, the
most standard and ubiquitous of APIs,
outside of the boundaries of any given
programming language). Moreover, as the
endpoints of all such protocols are defined
as schema documents, they can be the
basis of contract-based assertions and
specifications, set on the service interface
exposed by the individual app parts. This
prospect enables the construction of very
advanced component aggregations, in
which the application provider declares
what the app can offer (aka “guarantees”
in functional and non-functional terms)
and under what conditions (aka “assump-
tions”). The app user can decide which
app to choose from those that provide the
same functional API.

The as-a-service delivery mode and the
mobility of the computation across the
edge-fog-cloud continuum extends the
opportunity for deploying new services. The

former requires app composition and inte-
gration to adopt open and efficient means
for service discovery and service registry.
The latter requires lightweight containeri-
zation, and advanced hosting and deploy-
ment engines. Interestingly, base solutions
to most such needs are already in place,
for example in Kubernetes’ ecosystem,
originally born in the cloud but now being
“miniaturized” to operate within smaller
compute confines. Those solutions need
to be evolved towards increased openness,
agility and capabilities.

Application hosting
The scenario described comes with

distinct implications for the execution plat-
form that hosts end-user applications. A
most natural internet-enabled candidate for
host for the on‐target part of the applica-
tion is a web browser, as opposed to a more
classic general‐purpose operating system,
whose excess of evolutionary clutter makes
it fatally unfit for purpose [6]. The prime
reason for that candidacy is that modern
browsers, most notably Chromium and its
derivative Chromium OS [7], have learned
very well how to:
•	Efficiently separate their various activi-

ties, of which visual rendering is just
one (extraordinarily sophisticated, but
progressively less central as natural-inter-
action comes to the foreground – depicted
in the top‐right part of Figure 1). For
obvious reasons of efficiency, all of this
concurrent operation – where not flat-
out parallelism – requires self-served
scheduling, which does not have to be
deferred to the untenably costly services
of an underlying kernel-space operating
system;

•	Sandbox the web‐hosted apps and plugins
that the user may wish to use; realizing
such sandboxing requires the host to
expose standard APIs (which in turn
facilitates the much-desired mobility of
hosted apps, and amplifies their economic
value) and to self-provide the most effi-
cient form of application-level contain-
erization that does not need running
directly on a hypervisor;

•	Natively communicate with internet
protocols over and above HTTP, so that
service invocation and service composi-
tion can all be uniformly expressed in
terms of HTTP-based requests, independ-
ent of programming languages (hence
maximally portable), attached to contract-
based interfaces that augment their
schema-based endpoint specifications.

Modern web browsers of this kind are
the operating systems of the future, espe-
cially in the segment of the continuum
exposed to the user, because they do every-
thing that really matters to respond to the
user application needs, viz., safe compo-
nentization (aka sandboxing), scheduling,
high‐level inter‐process communication,
and life‐cycle management (including
installation, update, removal, all without
the need for local file systems, but merely
using simple storage management).

Interesting advancements toward the
secure and efficient deployment of sand-
boxed mobile code within such browsers
are being made [8]: their base technol-
ogy needs to be trialled more extensively,
hopefully with moonshot projects, to
determine how to bring them to maturity.

Figure 3: The change of landscape in the software computing stack.

TECHNICAL DIMENSION

59

Deployment engine
The observations above posit a radically

different landscape in terms of software
computing stack from the application to
the deployment and execution engine at
run time, as Figure 3 attempts to portray.
The new landscape (on the right) deter-
mined by the previously described scenario
will not push out and entirely replace the
old, traditional one (seen on the left), but
rather will coexist with it. The former will
be fitter for the near-to-user part of the
continuum, where there is more room for
disruptive innovation; the latter will consti-
tute the legacy, closer to the periphery of
the cloud, where the ecosystem is more
stable and tradition is a helpful conveni-
ence. The cloud itself uses a different
structure, which employs virtualized or
native containerization to modularize the
application space, and strives to separate
infrastructure management, application
management and service delivery.
•	The traditional structure on the left has

a large base – the operating system, with
its own vulnerabilities, and the applica-
tions with theirs – requiring protection
and needing to be assessed for trust when
used in critical settings. This verification
is very difficult and costly to achieve,
because of the highly-coupled composi-
tion of the software stack (e.g. general‐
purpose operating system with tradi-
tional process‐based isolation, resident
applications that scarcely separate data
from code, ad‐hoc inter‐process commu-
nication).

•	The wholly novel structure on the right is
the opposite: it has a much smaller, leaner,
sleeker base that has to be made trusted,

which we call here Trusted Computing
Base (TCB) and liken to the core of a
modern web browser. It also has a large
base of less critical functions (sandboxed
applications – depicted in Figure 1 as the
cage that encapsulates the apps, above
the interface to the continuum platform),
which can be very user‐need‐specific,
short‐lived, and free to fail, incurring
local service disruption, but without
causing ripple effects.

On its inside, the TCB may be regarded
as a message-based micro (but not mini-
mal) kernel that is oriented to supporting
web services and apps. All software execu-
tion within it obtains sandbox isolation
in four ways as described below, without
using costly privilege levels:
•	The kernel being written in memory-safe

programming languages (e.g., Rust [9],
Ada SPARK [10]), whose strict memory
model uses ownership tags to control the
lifecycle of and the access to program
data, without requiring garbage collec-
tion;

•	The extensive use of static verification
tools that accompany such languages
(rendered unprecedentedly easier to
produce by the safeness traits of the
language itself);

•	The execution by interpretation or just-
in-time compilation using languages such
as Web Assembly or WASM8. WASM is
attractive in this particular context for
various reasons. Firstly, it warrants rigid
memory separation between executing
modules and strict separation between
code and data to prevent execution
breaches via corrupted data, and it solely

allows structured-control-flow instruc-
tions, to prevent uncontrolled jumps.
Secondly, it defines a Web Assembly
System Interface (WASI) to support calls
across heterogeneous platforms. Thirdly,
it uses a capability-based mechanism
to control execution access to external
resources;

•	The sandboxing of WASM applications
within the WASM interpreter, and its
hosting in a kernel-level process that
acts as resource broker to it. The execu-
tion of the hosted (aka target) process
follows the principle of least privilege, to
reduce the surface of attack to the maxi-
mum possible extent, and uses message-
based communication, in keeping with
the share-nothing principle, prerequisite
to robustness, scalability and parallelism
at various levels of software system infra-
structures.

Two notable conceptual precursors
to the TCB described here are especially
pertinent. Singularity [11] was established
as a proof of concept at Microsoft Research
in 2003, built with proprietary technology,
and experimentally released between 2007
and 2013, to explore brand-new innovation
in the architecture, build and execution of
operating systems, and fits the vision we
describe in this article. Fuchsia [12] is an
open-source project launched by Google,
which has not yet reached an official release
date but has resonated well with the public
given its inspiring principles, which are
very much in line with the four points in
the list above. Neither of these technolo-
gies constitutes, per se, a self-sufficient
stepping stone; they should be seen as

Figure 4: Sandboxing (right) made easy, contrasted with normal hosting (left).
(Source: https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/.)

THE CONTINUUM OF COMPUTING: ENABLING TECHNOLOGIES

60

evidence that the required direction can
be pursued. Development from scratch
of a demonstrator TCB, no larger than
a compact and streamlined mini-kernel,
would be a useful tool on the path towards
the continuum.

Value-added end-user applications:
service orchestration

With the large amount of value‐added,
prevalently independent, individual appli-
cations that are candidate for running on
the TCB in the novel scenario, the oppor-
tunity arises to promote and sustain “non‐
anticipative evolution” [13] at the runtime
platform level. This concept suggests that
the complexity of the modern world (in
terms of needs, expectations and potential)
is better served by allowing adaptive open-
ness that follows second‐order user require-
ments (those that reflect actual user experi-
ence as opposed to prescriptive anticipation
of it) than by platforms that anticipate them
placing arbitrary constraints on the user
(be it human or application). One illustra-
tion of how non‐anticipative value added
can be obtained, elegantly and agilely, from
the software stack on the right in Figure 3

is the provision of an orchestration engine.
This engine would allow individual users
(humans or applications) to specify and
launch a flow (presumably captured as
a directed acyclic graph) that executes
selected apps in some defined order and
determines how the corresponding output
of one should become the input of another.

Such an orchestration engine would
have two complementary parts:

One, at the user side, should
support “natural interfaces” (e.g. voice‐
commanded specification – depicted in the
top‐right part of Figure 1) for the simple
yet compelling reason that producing (as
opposed to using) such orchestration flows
should be within the reach of every indi-
vidual and not only of trained program-
mers. This is currently not the case, which
is hardly justifiable, either technically or
conceptually. An excellent example of this
striking deficit is the current radical sepa-
ration of coding and use of the so‐called
“skills” of Amazon Alexa (now renamed
Echo Dot). With this device, no matter how
attractive and satisfactory the deployment
of such skills would be to the user, their

programming is still a specialized human
job, rendered so by an awkward low-level
programming interface (to produce very
trivial programming directives, in fact).
The reason for this is not technical; it is
more likely related to market economics
(presumably, creating the technology that
enabled voice‐commanded specification of
skills would have delayed the launch of the
product. What was – and is – important
in the consumer market for a producer is
to be first wherever innovation is, which
frequently causes corners to be cut in the
race) and should be overcome thanks to
the maturation of speech-to-code technol-
ogy [14] or spec-to-code or by-example-
code and all possible instances of “natu-
ral interfacing” between humans and
computers. These things favour freedom
from the obligation of writing arbitrarily
idiomatic program text. Such a component
of the envisioned orchestration engine
should help the user manage the lifecycle
of “flows”, enabling them to be created both
offline (without requiring immediate execu-
tion) and online (with immediate execu-
tion, perhaps even in place of or in addition
to other executions), as well as to be inter-

TECHNICAL DIMENSION

61

rupted, modified, resumed or stored. All
of that should be equally doable with new-
generation natural interfaces (primary) and
with more traditional programmatic solu-
tions (secondary, back-office style). Seen
at a wider angle, the envisioned form of
application coding, which can be dubbed
“software-writing-software”, is becom-
ing increasingly attractive and rendered
possible – at boosted capacity – by deep
learning compute infrastructures. Such
infrastructures can be trained to under-
stand an enormous base of example code,
and directed to generate code artefacts
that have the required traits, functional
and non-functional, regardless of the
target programming language of choice
or necessity.

The second part, on the execution
platform side, is a trusted orchestrator, a
prominent element of the envisioned TCB,
situated on its upper interface (depicted
in Figure 1 as the picture box showing an
orchestra director, positioned at the centre
of the TCB interface exposed to the user
side), which executes service calls directed
to independent service apps, aggregated
according a user‐specified flow. The term
“orchestrator” is used here to evoke the
conductor of an orchestra that obtains the
desired musical effects from commanding
into action individual instruments that
act independently according to their own
music sheet. The particular orchestrator
that we envision executes such workflows in
a manner that is loyal to the user, for choice
of applications (where multiple alternatives
can provide the same service), preserva-
tion of data privacy (by controlling what
data is extracted, directly and indirectly,
from the execution and where they are
stored), and social or ethical preferences
(e.g. open-source versus proprietary; closer
versus anywhere; run on green computing
versus carbon-based). Workflow execu-
tion engines are commonplace in business
process management [15]; this vision state-
ment takes them to the next level in two
ways: one is making them the prominent
way of deploying applications at the outer-
most level of the software computing stack,
recognizing that digitalization is funda-
mentally about the composition of third-
party functionalities across the network; the
other is adding “loyal intelligence” to their
operation, which is one essential ingredi-

ent of the “ethical computing” that must
accompany the digitalizing-of-everything
in order for it to be human-centred. We
are seeing the arrival of programming
languages that operate at the level of
abstraction as described above (i.e. over
the internet, which effectively takes over
the role previously played by the middle-
ware), and which are at a stage of their
development that allows them still to be
augmented with the missing features. Such
languages are often called cloud-native, to
signify that their technology contemplates
all of the steps entailed in going from tradi-
tional compilation and local execution to
enabling containerization, deployment in
a container orchestration framework, and
distributed non-local execution. The most
distinctive features of such languages are
that they (1) are designed to be integration
languages as opposed to system ones; (2)
allow for multiple implementations accord-
ing to the runtime platform that is to host
them; (3) support network-friendly types
for data, commands and style of interac-
tions; (4) contemplate security abstractions;
(5) favour static verification; and (6) enable
powerful error treatment at run time.
Example languages that go in this direc-
tion include Ballerina [16] and Jolie [17].

Conclusion
The “continuum of computing” is emerg-

ing as the confluence of several concurrent
phenomena. The most prominent of them
is that supporting the web (meaning its
internet protocols) as the programmatic
interface of modern applications means
that it can be so thoroughly streamlined
as to become fit even for resource-scarce
edge nodes alongside the more resourceful
cloud and fog nodes. In that sense, there-
fore, the continuum of computing emerges
as a seamless platform where a multitude
of user- and business-oriented web-based
applications can be deployed and executed
at will. The as-a-service delivery mode
of most such applications favours their
composition into user-defined orchestra-
tions that operate as value-added meta-
services. Such orchestrators may be very
attractive vehicles of innovation in at least
two respects. Their user side should allow
the production of preference-based work-
flows of service calls with the lowest possi-
ble cognitive load for the user, with a shift

from a programmatic to a natural-inter-
face model that can use voice command,
textual natural-language specifications, and
learning-by-example support. Their execu-
tion engine should instead animate user-
defined workflows singling out service
providers via their schema-based interface
contracts, deciding on their deployments,
and obeying specified preferences that
augment quality of service and take into
account privacy, confidentiality, energy,
social and ethical concerns. All of this is
very much within reach from a technology
perspective, and holds potential for signifi-
cant innovation and advancement.

References
[1]	 Catalin Cimpanu, “Cloudflare, Google Chrome, and

Firefox add HTTP/3 support”, https://www.zdnet.com/
article/cloudflare-google-chrome-and-firefox-add-
http3-support/

[2]	 REpresentational State Transfer, https://restfulapi.net/
[3]	 GraphQL, https://graphql.org/
[4]	 gRPC, https://grpc.io/
[5]	 WebRTC, https://webrtc.org/
[6]	 “What is Google Chrome OS?”, https://www.youtube.

com/watch?v=0QRO3gKj3qw
[7]	 Chromiom, https://www.chromium.org
[8]	 WebAssembly, https://webassembly.org/
[9]	 Rust Programming Language, https://www.rust-lang.

org/learn
[10]	SPARK, https://www.adacore.com/about-spark
[11]	Microsoft, ‘Singularity’, https://www.microsoft.com/

en-us/research/project/singularity/
[12]	Fuchsia, https://fuchsia.dev/fuchsia-src/concepts
[13]	David Weinberger, “Everyday Chaos’, https://www.

everydaychaosbook.com/”
[14]	VoiceCode, https://voicecode.io/
[15]	Aleksei Kornev, “Why there are Cloud Functions and

Service Mesh & whats next”, https://itnext.io/the-
concept-of-workflow-engines-c14e8088283

[16]	Ballerina, https://ballerina.io/
[17]	Jolie, https://www.jolie-lang.org/

Tullio Vardanega is associate professor
in the Department of Mathematics of the
University of Padua, Italy.

THE CONTINUUM OF COMPUTING: ENABLING TECHNOLOGIES

This document is part of the HiPEAC Vision
available at hipeac.net/vision.

This is release v.1, January 2021.

Cite as: T. Vardanega. The continuum of
computing: enabling technologies. In M.
Duranton et al., editors, HiPEAC Vision 2021,
pages 56-61, Jan 2021.

DOI: 10.5281/zenodo.4719380
The HiPEAC project has received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreement number 871174.

© HiPEAC 2021

