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Abstract

As part of the Cambrian explosion of omics data, metagenomics brings to the table a specific, defining trait: its
social essence. The meta prefix exerts its influence, with multitudes manifesting themselves everywhere; from
samples to data analysis, from actors involved to (present and future) applications. Of these dimensions, data
analysis is where needs lay further from what current tools provide. Key features are, among others, scalability,
reproducibility, data provenance and distribution, process identity and versioning. These are the goals guiding our
work in MG7, a 16S metagenomics data analysis system. The basic principle is a new approach to data analysis,
where configuration, processes, or data locations are static, type-checked and subject to the standard evolution
of a well-maintained software project. Cloud computing, in its Amazon Web Services incarnation, when coupled
with these ideas, produces a robust, safely configurable, scalable tool. Processes, data, machine behaviors and
their dependencies are expressed using a set of libraries which bring as much as possible checking and validation
to the type level, without sacrificing expressiveness. Together they form a toolkit for defining scalable cloud-based
workflows composed of stateless computations, with a static reproducible specification of dependencies, behavior
and wiring of all steps. The modeling of taxonomy data is done using Bio4j, where the new paradigm of graph
databases allows for both a simple expression of taxonomic assignment tasks and the calculation of taxa abundance
values considering the hierarchic structure of the taxonomy tree. MG7 includes a new 16S reference database,
16S-DB7, built with a flexible and sustainable update system, and the possibility of project-driven personalization.

 The first and second authors contributed equally to this work.
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Introduction

During the past decade, metagenomics data analysis is growing exponentially. Some of the reasons behind this are
the increasing throughput of massively parallel sequencing technologies (with the derived decrease in sequencing
costs), and the wide impact of metagenomics studies [1], especially in human health (diagnostics, treatments, drug
response or prevention) [2]. We should also mention what could be called the microbiome explosion: all kind
of microbiomes (gut, mouth, skin, urinary tract, airway, milk, bladder) are now routinely sequenced in different
conditions of health and disease, or after different treatments. The impact of Metagenomics is also being felt
in environmental sciences [3], crop sciences, the agrifood sector [4] and biotechnology in general [5] [6]. These
new possibilities for exploring the diversity of micro-organisms in the most varied environments are opening new
research areas, and drastically changing the existing ones.

As a consequence, the challenge is thus moving (as in other fields) from data acquisition to data analysis: the
amount of data is expected to be overwhelming in a very short time [7].

Genome researchers have raised the alarm over big data in the past [8], but even a more serious challenge might
be faced with the metagenomics boom. If we compare metagenomics data with other genomics data used in clin-
ical genotyping we find a differential feature: the key role of time. Thus, for example, in some longitudinal studies,
serial sampling from the same patient [9] along several weeks (or years) is being used for the follow up of some in-
testinal pathologies, for studying the evolution of the gut microbiome after antibiotic treatment, or for colon cancer
early detection [10] [11]. This need of sampling across time adds more complexity to metagenomics data storage
and demands adapted algorithms to detect state variations across time as well as idiosyncratic commonalities of
the microbiome of each individual [12]. In addition to the intra-individual sampling-time dependence, metage-
nomic clinical test results vary depending on the specific region of extraction of the clinical specimen. This local
variability adds complexity to the analysis since different localizations (different tissues, different anatomical re-
gions, healthy or tumor tissues) are required to have a sufficiently complete landscape of the human microbiome.
Moreover, re-analysis of old samples using new tools and better reference databases might be also demanded
from time to time.

Other disciplines such as astronomy or particle physics have faced the big data challenge before. Akey difference is
the existence of standards for data processing [7]; in metagenomics global standards for converting raw sequence
data into processed data are not yet well defined, and there are shortcomings derived from the fact that most
bioinformatics methodologies used for metagenomics data analysis were designed for scenarios very different
from the current one. These are some of the aspects that have suffered crucial changes and advances with a
direct impact in metagenomics data analysis:

1. Sequence data: the reads are larger, the sequencing depth and the number of samples of each project
are considerably bigger. The first metagenomics studies were very local projects, while nowadays the most
fruitful studies are done at a global level (international, continental, national). This kind of global studies has
yielded the discovery of clinical biomarkers for diseases of the importance of cancer, obesity or inflammatory
bowel diseases and has allowed exploring the biodiversity of varied earth environments.

2. The genomics explosion: its effect being felt in this case in the reference sequences. The immense amount
of sequences available in public repositories demands new strategies for curation, update and storage
of metagenomics reference databases: current models will (already) have problems to face the future
avalanche of metagenomic sequence data.

3. Cloud computing: the appearance of new models for massive computation and storage such as the cloud-
based platforms, or the widespread adoption of programming methodologies like functional programming,
or, more speculatively, dependently typed programming. The new possibilities that these advances offer
must have a direct impact in metagenomics data analysis.

4. Open science: the new social manner to do science, particularly so in genomics, brings its own set of require-
ments. Metagenomics evolves in a social and global scenario following a science democratization trend in
which many small research groups from distant countries share a common big metagenomics project; this
global cooperation demands systems allowing for reproducible data analysis, data interoperability, and tools
and practices for asynchronous collaboration between different groups.
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Results

Overview

Considering the current new metagenomics scenario and to tackle the challenges posed by metagenomics big
data analysis outlined in the Introduction we have designed a new open source methodology for analyzing metage-
nomics data. It exploits the new possibilities that cloud computing offers to get a system robust, programmatically
configurable, modular, distributed, flexible, scalable and traceable in which the biological databases of reference
sequences can be easily updated and/or frequently substituted by new ones or by databases specifically designed
for focused projects.

These are some of the more innovative MG7 features:

Static reproducible specification of dependencies and behavior of the different components using Statika
and Datasets

Parallelization and distributed analysis based on AWS, with on-demand infrastructure as the basic paradigm
Definition of complex workflows using Loquat, a composable system for scaling/parallelizing stateless com-
putations especially designed for AWS

A new approach to data analysis specification, management and specification based on working with it in
exactly the same way as for a software project, together with the extensive use of compile-time structures
and checks

Modeling of the taxonomy tree using the new paradigm of graph databases (Bio4j). It facilitates the taxo-
nomic assignment tasks and the calculation of the taxa abundance values considering the hierarchic struc-
ture of taxonomy tree (cumulative values)

Exhaustive per-read taxonomic assignment using two complementary assignment algorithms Lowest Com-
mon Ancestor and Best BLAST Hit

Using a new 16S database of reference sequences (16S-DB7) with a flexible and sustainable system of up-
dating and project-driven customization

Libraries and resources

In this section we describe the resources and libraries developed by the authors on top of which MG7 is built. All
MG7 code is written in Scala, a hybrid object-functional programming language. Scala was chosen based on the
possibility of using certain advanced programming styles, and Java interoperability, which let us build on the vast
number of existing Java libraries; we take advantage of this when using Bio4j as an API for the NCBI taxonomy.
It has support for type-level programming, type-dependent types (through type members) and singleton types,
which permits a restricted form of dependent types where types can depend essentially on values determined
at compile time (through their corresponding singleton types). Conversely, through implicits one can retrieve the
value corresponding to a singleton type.

Statika: machine configuration and behavior

Statika is a Scala library developed by the first and last authors which serves as a way of defining and composing
machine behaviors statically. The main component are bundles. Each bundle declares a sequence of compu-
tations (its behavior) which will be executed in an environment. A bundle can depend on other bundles, and
when being executed by an environment, its DAG (Directed Acyclic Graph) of dependencies is linearized and run
in sequence. In our use, bundles correspond to what an EC2 instance should do and an environment to an AMI
(Amazon Machine Image) which prepares the basic configuration, downloads the Scala code and runs it.

ohnosequences! eray bioinformatics R&D group
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Datasets: a mini-language for data

Datasets is a Scala library developed by the first and last authors with the goal of being a Scala-embedded mini-
language for datasets and their locations. Data is represented as type-indexed fields: keys are modeled as sin-
gleton types, and values correspond to what could be called a denotation of the key: a value of type Location
tagged with the key type. Then a Dataset is essentially a collection of data, which are guaranteed statically to be
different through type-level predicates, making use of the value-type correspondence which can be established
through singleton types and implicits. A dataset location is then just a list of locations formed by locations of each
dataset key. All this is based on what could be described as an embedding in Scala of an extensible record system
with concatenation on disjoint labels, in the spirit of [13] [14]. For that Datasets uses ohnosequences/cosas library.

Data keys can further have a reference to a data type, which, as the name hints at, can help in providing infor-
mation about the type of data we are working with. For example, when declaring lllumina reads as a data, a data
type containing information about the read length, insert size or end type (single or paired) is used.

A location can be, for example, an S3 object or a local file; by leaving the location type used to denote particular
data free we can work with different “physical” representations, while keeping track of to which logical data they
are a representation of. Thus, a process can generate locally a . fastq file representing the merged reads, while
another can put it in S3 with the fact that they all correspond to the “same” merged reads is always present, as
the data that those “physical” representations denote.

Loquat: Parallel data processing with AWS

Loquat is a library developed by the first, second and last authors designed for the execution of embarrassingly
parallel tasks using S3, SQS and EC2 Amazon services.

A loquat executes a process with explicit input and output datasets (declared using the Datasets library described
above). Workers (EC2 instances) read from an SQS queue the S3 locations for both input and output data; then
they download the input to local files, and pass these file locations to the process to be executed. The output is
then put in the corresponding S3 locations.

A manager instance is used to monitor workers, provide initial data to be put in the SQS queue and optionally
release resources depending on a set of configurable conditions.

Both worker and manager instances are Statika bundles. The worker can declare any dependencies needed to
perform its task: other tools, libraries, or data.

All configuration such as the number of workers or the instance types is declared statically, the specification of a
loquat being ultimately a Scala object. Deploy and resource management methods make easy to use an existing
loquat either as a library or from (for example) a Scala REPL.

The input and output (and their locations) being defined statically has several critical advantages. First, composing
different loquats is easy and safe; just use the output types and locations of the first one as input for the second
one. Second, data and their types help in not mixing different resources when implementing a process, while
serving as a safe and convenient mechanism for writing generic processing tasks. For example, merging paired-
end lllumina reads generically is easy as the data type includes the relevant information (insert size, read length,
etc) to pass to a tool such as FLASh.

Type-safe eDSLs for BLAST and FLASh
We developed our own Scala-based type-safe eDSLs (embedded Domain Specific Languages) for FLASh [15] and
BLAST [16] expressions and their execution.

In the case of BLAST we use a model where we can guarantee for each BLAST command expression at compile
time that

+ all required arguments are provided
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+ only valid options are provided
+ correct types for each option value
+ valid output record specification

Generic type-safe parsers returning a heterogeneous record of BLAST output fields are also available, together
with output data defined using Datasets which have a reference to the exact BLAST command options which yielded
that output. This lets us provide generic parsers for BLAST output which are guaranteed to be correct.

In the same spirit as for BLAST, we implemented a type-safe eDSL for FLASh expressions and their execution,
supporting features equivalent to those outlined for the BLAST eDSL.

Bio4j and Graph Databases

Bio4j [17] is a data platform integrating data from different resources such as UniProt or GO in a graph data
paradigm. In the assignment phase we use a subgraph containing the NCBI Taxonomy, wrapping in Scala its Java
APl in a tree algebraic data type.

16S-DB7 Reference Database Construction

Our 16S-DB7 Reference Database is a curated subset of sequences from the NCBI nucleotide database nt. The
sequences included were selected by similarity with the bacterial and archaeal reference sequences downloaded
from the RDP database [18]. RDP unaligned sequences were used to capture new 16S RNA sequences from
nt using BLAST similarity search strategies and then, performing additional curation steps to remove sequences
with poor taxonomic assignments to taxonomic nodes close to the root of the taxonomy tree. All the nucleotide
sequences included in nt database has a taxonomic assignment provided by the Genbank sequence submitter.
NCBI provides a table (available at ftp://ftp.ncbi.nim.nih.gov/pub/taxonomy/) to do the mapping of any Genbank
Identifier (Gl) to its Taxonomy Identifier (TaxID). Thus, we are based on a crowdsourced submitter-maintained tax-
onomic annotation system for reference sequences. It supposes a sustainable system able to face the expected
number of reference sequences that will populate the public global nucleotide databases in the near future. An-
other advantageous point is that we are based on NCBI taxonomy, the de-facto standard taxonomic classification
for biomolecular data [19]. NCBI taxonomy is, undoubtedly, the most used taxonomy all over the world and the
most similar to the official taxonomies of each specific field. This is a crucial point because all the type-culture and
tissue databanks follow this official taxonomical classification and, in addition, all the knowledge accumulated dur-
ing last decades is referred to this taxonomy. In addition NCBI provides a direct connection between taxonomical
formal names and the physical specimens that serve as exemplars for the species [20].

Certainly, if metagenomics results are easily integrated with the theoretical and experimental knowledge of each
specific area, the impact of metagenomics will be higher than if it progresses as a disconnected research branch.
Considering that metagenomics data interoperability, which is especially critical in clinical environments, requires
a stable taxonomy to be used as reference, we decided to rely on the most widely used taxonomy: the NCBI
taxonomy. In addition, the biggest global sequence database GenBank follows this taxonomy to register the origin
of all their submitted sequences. Our 16S database building strategy allows the substitution of the 16S database
by any other subset of nt, even by the complete nt database if it would be needed, for example, for analyzing
shotgun metagenomics data. This possibility of changing the reference database provides flexibility to the system
enabling it for easy updating and project-driven personalization.

Workflow Description

The MG7 analysis workflow is summarized in Figure 1. The input files for MG7 are the FASTQ files resulting from
a paired-end NGS sequencing experiment.

ohnosequences! eray bioinformatics R&D group
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PAIRED END READS

JOINED PAIRS
BLAST of each READ 165-
against 165-DB7 DB7
= . . o
Fwonomy 1AX0ONOMIC assignment Bio4j
]
LCA: Lowest BBH:
Common Ancestor Best BLAST Hit
Assignment Assignment
LCA BBH
- Direct counts - Direct counts
- Acumulated counts - Acumulated counts
- Direct % - Direct %
- Acumulated % - Acumulated %

Figure 1: MG7 analysis workflow. The paired reads in fastq format are merged resulting in only one sequence per
read pair. The next step is a parallelized BLASTN of every merged sequence against the 16S reference
database 16S-DB7. Then, the mapping of the detected similar sequences in the database to the taxonomy
node to which they belong is carried out. This is done using Bio4j that includes a module with all the
NCBI taxonomy in a graph connected with the Gene Ontology, Uniprot, and RefSeq graphs. Then the
taxonomic assignment is done for each sequence following two different approaches: LCA and BBH, and
finally the abundances corresponding to direct and cumulative assignments for each node in percentage
and absolute counts are provided for each assignment mode.
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Joining reads of each pair using FLASh

In the first step the paired-end reads, designed with an insert size that yields pairs of reads with an overlapping
region between them, are assembled using FLASh [15]. FLASh is designed to merge pairs of reads when the original
DNA fragments are shorter than twice the length of reads. Thus, the sequence obtained after joining the 2 reads
of each pair is larger and has better quality since the sequence at the ends of the reads is refined merging both
ends in the assembly. To have a larger and improved sequence is crucial to do more precise the inference of the
bacterial origin based on similarity with reference sequences.

Parallelized BLASTN of each read against the 16S-DB7

The second step is to search for similar 16S sequences in our 16S-DB7 database. The taxonomic assignment
for each read is based on BLASTN of each read against the 16S database.Assignment based on direct similar-
ity of each read one by one compared against a sufficiently wide database is considered in different reviews of
metagenomics analysis methodologies [21] [22] as a very exhaustive method for assignment. Some methods of
assignment compare the sequences only against the 16S genes from available complete bacterial genomes or
avoid computational cost clustering or binning the sequences first, and then doing the assignments only for the
representative sequence of each cluster. MG7 carries out an exhaustive comparison of all the reads under anal-
ysis and it does not applies any binning strategy. Every read is specifically compared with all the sequences of
the 16S database. We select the best BLAST hits (10 hits by default) obtained for each read to do the taxonomic
assignment.

Taxonomic Assignment Algorithms

All the reads are assigned under two different algorithms of assignment: i. Lowest Common Ancestor based taxo-
nomic assignment (LCA) and ii. Best BLAST Hit based taxonomic assignment (BBH). Figure 2 displays schematically
the LCA algorithm applied sensu stricto (left panel) and the called ‘in line’ exception (right panel) designed in order
to gain specificity in the assignments in the cases in which the topology of the taxonomical nodes corresponding
to the BLAST hits support sufficiently the assignment to the most specific taxon.

LCA

assignment Q o

©
o LA

Lowest Common Ancestor LCA in line exception

Figure 2: Lowest Common Ancestor algorithm for taxonomic assignment. The Left panel displays an example
of the application of LCA algorithm in a sensu stricto mode. A, B, C and D represent taxonomy tree nodes
with assigned reads. Right panel displays the in line mode of assignment which is an exception for the
sensu stricto mode of application of LCA algorithm. The in line mode is used when all the nodes are located
in a line without bifurcations. In that case the taxon assigned is the most specific (the most distant from
the root).
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Lowest Common Ancestor based Taxonomic Assignment For each read, first, we select the BEST BLAST HITs
(by default 10 Hits) over a threshold of similarity. To evaluate similarity for this first filtering of hits we use the
Expect value (by default evalue < ¢7'°) that describes the number of hits one can “expect” to see by chance when
searching a database of a particular size. In a second filtering step we filtering those hits that are not sufficiently
good comparing them with the best one. We select the best HSP (High Similarity Pair) per reference sequence and
then choose the best HSP (that with lowest E-value) between all the selected ones. The bitscore of this best HSP
(called S) is used as reference to filter the rest of HSPs. All the HSPs with bitscore below the product pS are filtered.
p is a coefficient fixed by the user to define the bitscore required, e.g. if p = 0.9 and S = 700 the required bitscore
threshold would be 630. Once we have the definitive HSPs selected, we obtain their corresponding taxonomic
nodes using the taxonomic assignments that NCBI provides for all the nt database sequences. Now we have to
analyze the topological distribution of these nodes in the taxonomy tree: i. If all the nodes forms a line in the
taxonomy tree (are located in a not branched lineage to the tree root) we should choose the most specific taxID as
the final assignment for that read. We call to this kind of assignment the ‘in line’ exception (see Figure 2 right panel).
ii. If not, we should search for the sensu stricto Lowest Common Ancestor (LCA) of all the selected taxonomic nodes
(See Figure 2 left panel). In this approach we decided to use the bitscore for evaluating the similarity because it
is a value that increases when similarity is higher and depends a lot on the length of the HSP. Some reads could
not find sequences with enough similarity in the database and then they would be classified as reads with no
hits. Advanced metagenomics analysis approaches [23] have adopted LCA-based assignment algorithms because
it provides fine and trusted taxonomical assignment.

Best BLAST hit taxonomic assignment We decided to maintain the simpler method of Best BLAST Hit (BBH) for
taxonomic assignment because, in some cases, it can provide information about the sequences that adds infor-
mation to that obtained using the LCA algorithm. With the LCA algorithm, when some reference sequences with
BLAST alignments over the required thresholds map to a not sufficiently specific taxID, the read can be assigned
to an unspecific taxon near to the root of the taxonomy tree. If the BBH reference sequence maps to more specific
taxa, this method, in that case, gives us useful information.

Output for LCA and BBH assignments

MG7 provides independent results for the 2 different approaches, LCA and BBH. The output files include, for each
taxonomy node (with some read assigned), abundance values for direct assignment and cumulative assignment.
The abundances are provided in counts (absolute values) and in percentage normalized to the number of reads
of each sample. Direct assignments are calculated counting reads specifically assigned to a taxonomic node,
not including the reads assigned to the descendant nodes in the taxonomy tree. Cumulative assignments are
calculated including the direct assighments and also the assignments of the descendant nodes. For each sample
MG7 provides 8 kinds of abundance values: LCA direct counts, LCA cumu. counts, LCA direct %, LCA cumu. %,
BBH direct counts, BBH cumu. counts, BBH direct % and BBH cumu. %.

Data analysis as a software project

The MG7 16S data analysis workflow is indeed a set of tasks, all of them based in Loguat. For each task, a set of
inputs and outputs as well as configuration parameters must be statically defined. The user is also free to leave
the reasonable defaults for configuration, needing only to define the input and output of the whole workflow. The
definition of this configuration is Scala code and the way of starting an MG7 analysis is compiling the project code
and launching it from the Scala interactive console.

Code compilation prior to launching any analysis assures that no AWS resources are launched if the analysis is
not well-defined, avoiding expenses not leading to any analysis. Besides compile-time checks, runtime checks are
made before launch to ensure existence of input data and availability of resources.

An MG7 analysis is then a Scala project where the user only needs to set certain variables at the code level (input,
output and parameters), compile the code and run it. To facilitate the process of setting up the Scala project, a
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template with sensible defaults is provided.

In order to be able to exploit AWS infrastructure for the MG7 analysis, the user needs to set up an AWS account
with certain IAM (Identity and Access Management) permission policies that will grant access to the resources used
in the workflow.

Availability

MG7 is open source, available at https://github.com/ohnosequences/mg7 under an AGPLV3 license.

Discussion

We could summarize the most innovative ideas and developments in MG7:

1.

Treating data analysis as a software project. This makes for radical improvements in reproducibility, reuse,
versioning, safety, automation and expressiveness

. Checking at compile-time: input and output data, their locations and type are expressible and checked at

compile-time using Datasets

. Management of dependencies and machine configurations using Statika
. Automation of AWS cloud resources and processes, including distribution and parallelization through the

use of Loquat

. Taxonomic data and related operations are treated natively as what they are: graphs, through the use of

Bio4j

. MG?7 provides a sustainable model for taxonomic assignment, appropriate to face the challenging amount

of data that high throughput sequencing technologies generate

We will expand on each item in the following sections.

A new approach to data analysis: data analysis as a software project and checking at
compile-time

MG7 proposes to define and work with a particular data analysis task as a software project, using Scala. The idea
is that everything: data description, their location, configuration parameters and the infrastructure used should
be expressed as Scala code, and treated in the same way as any (well-managed) software project. This includes,
among other things, using version control systems ( git in our case), writing tests, making stable releases follow-
ing semantic versioning or publishing artifacts to a repository.

What we see as key advantages of this approach (when coupled with compile-time specification and checking), are

Reproducibility the same analysis can be run again with exactly the same configuration in a trivial way.
Versioning as in any software project, there can be different versions, stable releases, etc.

Reuse we can build standard configurations on top of this and reuse them for subsequent data analysis. A
particular data analysis task can be used as a library in further analysis.

Decoupling We can start working on the analysis specification, without any need for available data in a much
easier way.

Documentation We can take advantage of all the effort put into software documentation tools and prac-
tices, such as in our case Scaladoc or literate programming. As documentation, analysis processes and data
specification live together in the files, it is much easier to keep coherence between them.

Expresiveness and safety For example in our case we can choose only from valid illumina read types, and
then build a default FLASh command based on that. The output locations, being declared statically, are also
available for use in further analysis.

ohnosequences! eray bioinformatics R&D group
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Input and output data declaration

An important aspect of the MG7 workflow is the way it deals with data resources. All the data that is going to
be used in the analysis or produced as an output is described as Scala code using rich types from the Datasets
language. This allows the user to specify information about types of data, information that can then be utilized by
tools analyzing this data. For example, we can specify that, for the first part of the MG7 workflow, running FLASh
in parallel requires illumina paired end reads and produces joined reads.

On one hand, specification of the input data allows us to restrict its type and force users to be conscious about
what they pass as an input. On the other hand, specification of the output data helps to build a workflow as a
composition of several parts: we can ensure on the Scala code type level that the output of one component fits
as an input for the next component. This is crucial as, obviously, the way a data analysis task works depends a
lot on the particular structure of the data. For instance, in the MG7 workflow, using BLAST eDSL, we can precisely
describe which format will have the output of the BLAST step, which information it will include, and then in the
next step we can reuse this description to parse BLAST output and retrieve the part of the information needed
for the taxonomy assignment analysis. Having the data structure described statically as Scala code allows us to
be sure that we will not have parsing problems or other issues with incompatible data passed between workflow
components.

All this does not compromise flexibility in how the user works with data in MG7: having static data declarations as
a part of the configuration allows the user to reuse analysis components, or modify them according to particular
needs. Besides that, an important advantage of the type-level control is the added protection from the execution
(and deployment) of a wrongly configured analysis task, which may lead to significant costs in both time and
money.

Tools, data, dependencies and automated deployment

Bioinformatics software often has a complicated installation process and requires various dependencies with un-
clear versions. This makes the deployment of the bioinformatics tools an involved task and resolving it manually
is not a solution in the context of cloud computations. To face this problem, one needs an automated system of
managing tools and resources, which will allow an expressive way for describing dependencies between parts of
a pipeline and provide a reproducible procedure of its deployment. We have developed Statika for this purpose
and successfully used it in MG7.

Every external tool involved in the workflow is represented as a Statika bundle, which is essentially a Scala project
describing the installation process of this tool and declaring dependencies on other bundles which will be installed
prior to the considered tool itself. Describing relationships between bundles on the code level allows us to track
the directed acyclic graph of their dependencies and linearize them to automatically install them sequentially in
the right order. Meanwhile, describing the installation process on the code level allows the user to utilize the wide
range of available Scala and Java APIs and tools, making installation a well-defined sequence of steps rather than
an unreliable script, dependent on a certain environment. Statika offers an easy path towards making deployment
an automated, reproducible process.

Besides bioinformatics tools like BLAST and FLASh, Statika bundles are used for wrapping data dependencies and
all inner components of the system that require cloud deployment. In particular, all components of Loquat are
bundles; the user can then define which components are needed for the parallel processing on each computation
unit in an expressive way, declaring them as bundle dependencies of the loquat “worker” bundle. This modular-
ization is also important for the matter of making components of the system reusable for different projects and
liberating the user from most of the tasks related to their deployment.

Parallel computations in the cloud

The MG7 workflow consists of certain steps, each of which performs some work in parallel, using the cloud infras-
tructure managed by Loquat. It is important to notice the horizontal scalability of this approach. Irrespectively of
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how much data needs to be processed, MG7 will handle it, by splitting data into chunks and performing the anal-
ysis on multiple computation units. The Amazon Elastic Compute Cloud (EC2) service provides a transparent way
of managing computation infrastructure, called autoscaling groups. The User can set MG7 configuration param-
eters, adjusting for each task the amount and hardware characteristics of the EC2 instances they want to use for
it. But it is important to note that, as each workflow step is not very resource demanding, it is not needed to hire
EC2 instances with some advanced hardware. Instead, an average type will work and you can reduce execution
time by simply scaling out the number of instances.

Taxonomy and Bio4j

The hierarchic structure of the taxonomy of the living organisms is a tree, and, hence, is also a graph in which each
node, with the exception of the root node, has a unique parent node. It led us to model the taxonomy tree as a
graph using the graph database paradigm. Previously we developed Bio4j [17], a platform for the integration of
semantically rich biological data using typed graph models. It integrates most publicly available data linked with
sequences into a set of interdependent graphs to be used for biocinformatics analysis and especially for biological
data. MG7 works based on the Bio4j taxonomy module. It opens the possibility to connect the taxonomic profiling
data obtained with MG7 to all the biological knowledge associated to each taxon. Using the information available
in Bio4j for all the proteins assigned to each taxon we are connected to all the functional data available in Uniprot
related with it.

Future developments
Shotgun metagenomics

It is certainly possible to adapt MG7 to work with shotgun metagenomics data. Simply changing the reference
database to include whole genome sequence data could yield interesting results. This could also be refined by
restricting reference sequences according to all sort of criteria, like biological function or taxonomy. Bio4jwould be
an invaluable tool here, thanks to its ability to express complex predicates on sequences using all the information
linked with them (GO annotations, UniProt data, NCBI taxonomy, etc).

Comparing groups of samples

The comparison of the taxonomic profiles between different groups of samples is a need for many metagenomics
studies. Tasks related with this group-based analysis, such as the extraction of the minimal tree with all the taxa
with some direct or accumulated assignment, will be part of a new MG7 module, already in development.

Interactive visualizations based on Biographika

New visualization tools for metagenomics results are undoubtedly needed. Interactivity is a especially interesting
feature for metagenomics data visualization, since the expert needs to explore the results in a knowledge-driven
way. The majority of the available metagenomics data visualizations are static. We are working in the Biographika
project [24], to provide interactive rich visualizations on the web for Bio4j data. The development of visualizations
specific for MG7 is one of Biographika current goals. Biographikais based on D3.js, the de-facto standard JavaScript
data visualization library, and is open source.

ohnosequences! eray bioinformatics R&D group



MG7: Configurable and scalable 16S metagenomics data analysis 13

Materials and Methods

Amazon Web Services

MG?7 uses the following Amazon Web Services:

+ EC2 (Elastic Compute Cloud) autoscaling groups for launching and managing computation units
+ S3(Simple Storage Service) for storing input and output data

+ SQS (Simple Queue Service) for communication between different components of the system

+ SNS (Simple Notification Service) for e-mail notifications

These services are used through a Scala wrapper of the official AWS Java SDK v1.9.25: ohnosequences/aws-scala-
tools v0.13.2.

Scala

MG?7 itself and all the libraries used are written in Scala v2.11.

Statika

MG7 uses ohnosequences/statika v2.0.0 for specifying the configuration and behavior of EC2 instances.

Datasets

MG7 uses ohnosequences/datasets v0.2.0 for specifying input and output data, their type and their location.

Loquat

MG7 uses ohnosequences/loquat v2.0.0 for the specification of data processing tasks and their execution using
AWS resources.

BLAST eDSL

MG7 uses ohnosequences/blast v0.2.0. The BLAST version used is v2.2.31+.

FLASh eDSL
MG7 uses ohnosequences/flash v0.1.0. The FLASh version used is v1.2.11.
Bio4j

MG7 uses bio4j/bio4j v0.12.0-RC3 and bio4j/bio4j-titan v0.4.0-RC2 as an API for the NCBI taxonomy.
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