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ABSTRACT2

As part of the Cambrian explosion of omics data, metagenomics brings to the table a specific,3
defining trait: its social essence. The meta prefix exerts its influence, with multitudes manifesting4
themselves everywhere; from samples to data analysis, from actors involved to (present and5
future) applications. Of these dimensions, data analysis is where needs lay further from what6
current tools provide. Key features are, among others, scalability, reproducibility, data provenance7
and distribution, process identity and versioning. These are the goals guiding our work in8
MG7, a 16S metagenomics data analysis system. The basic principle is a new approach to9
data analysis, where configuration, processes, or data locations are static, type-checked and10
subject to the standard evolution of a well-maintained software project. Cloud computing, in its11
Amazon Web Services incarnation, when coupled with these ideas, produces a robust, safely12
configurable, scalable tool. Processes, data, machine behaviors and their dependencies are13
expressed using a set of libraries which bring as much as possible checking and validation14
to the type level, without sacrificing expressiveness. Together they form a toolkit for defining15
scalable cloud-based workflows composed of stateless computations, with a static reproducible16
specification of dependencies, behavior and wiring of all steps. The modeling of taxonomy data is17
done using Bio4j, where the new paradigm of graph databases allows for both a simple expression18
of taxonomic assignment tasks and the calculation of taxa abundance values considering the19
hierarchic structure of the taxonomy tree. MG7 includes a new 16S reference database, 16S-20
DB7, built with a flexible and sustainable update system, and the possibility of project-driven21
personalization.22
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1 INTRODUCTION

During the past decade, metagenomics data analysis is growing exponentially. Some of the reasons behind26
this are the increasing throughput of massively parallel sequencing technologies (with the derived decrease27
in sequencing costs), and the wide impact of metagenomics studies (Oulas et al., 2015), especially in28
human health (diagnostics, treatments, drug response or prevention) (Bikel et al., 2015). We should also29
mention what could be called the microbiome explosion: all kind of microbiomes (gut, mouth, skin, urinary30
tract, airway, milk, bladder) are now routinely sequenced in different conditions of health and disease,31
or after different treatments. The impact of Metagenomics is also being felt in environmental sciences32
(Ufarté et al., 2015), crop sciences, the agrifood sector (Coughlan et al., 2015) and biotechnology in general33
(Cowan et al., 2015, Kodzius and Gojobori (2015)). These new possibilities for exploring the diversity of34
micro-organisms in the most varied environments are opening new research areas, and drastically changing35
the existing ones.36

As a consequence, the challenge is thus moving (as in other fields) from data acquisition to data analysis:37
the amount of data is expected to be overwhelming in a very short time (Stephens et al., 2015).38

Genome researchers have raised the alarm over big data in the past (Hayden, 2015), but even a more39
serious challenge might be faced with the metagenomics boom. If we compare metagenomics data with40
other genomics data used in clinical genotyping we find a differential feature: the key role of time. Thus,41
for example, in some longitudinal studies, serial sampling from the same patient (Faust et al., 2015) along42
several weeks (or years) is being used for the follow up of some intestinal pathologies, for studying the43
evolution of the gut microbiome after antibiotic treatment, or for colon cancer early detection (Zeller et al.,44
2014, Garrett (2015)). This need of sampling across time adds more complexity to metagenomics data45
storage and demands adapted algorithms to detect state variations across time as well as idiosyncratic46
commonalities of the microbiome of each individual (Franzosa et al., 2015). In addition to the intra-47
individual sampling-time dependence, metagenomic clinical test results vary depending on the specific48
region of extraction of the clinical specimen. This local variability adds complexity to the analysis since49
different localizations (different tissues, different anatomical regions, healthy or tumor tissues) are required50
to have a sufficiently complete landscape of the human microbiome. Moreover, re-analysis of old samples51
using new tools and better reference databases might be also demanded from time to time.52

Other disciplines such as astronomy or particle physics have faced the big data challenge before. A key53
difference is the existence of standards for data processing (Stephens et al., 2015); in metagenomics global54
standards for converting raw sequence data into processed data are not yet well defined, and there are55
shortcomings derived from the fact that most bioinformatics methodologies used for metagenomics data56
analysis were designed for scenarios very different from the current one. These are some of the aspects that57
have suffered crucial changes and advances with a direct impact in metagenomics data analysis:58

1. Sequence data: the reads are larger, the sequencing depth and the number of samples of each project59
are considerably bigger. The first metagenomics studies were very local projects, while nowadays60
the most fruitful studies are done at a global level (international, continental, national). This kind of61
global studies has yielded the discovery of clinical biomarkers for diseases of the importance of cancer,62
obesity or inflammatory bowel diseases and has allowed exploring the biodiversity of varied earth63
environments.64

2. The genomics explosion: its effect being felt in this case in the reference sequences. The immense65
amount of sequences available in public repositories demands new strategies for curation, update and66
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storage of metagenomics reference databases: current models will (already) have problems to face the67
future avalanche of metagenomic sequence data.68

3. Cloud computing: the appearance of new models for massive computation and storage such as the69
cloud-based platforms, or the widespread adoption of programming methodologies like functional70
programming, or, more speculatively, dependently typed programming. The new possibilities that71
these advances offer must have a direct impact in metagenomics data analysis.72

4. Open science: the new social manner to do science, particularly so in genomics, brings its own73
set of requirements. Metagenomics evolves in a social and global scenario following a science74
democratization trend in which many small research groups from distant countries share a common75
big metagenomics project; this global cooperation demands systems allowing for reproducible data76
analysis, data interoperability, and tools and practices for asynchronous collaboration between different77
groups.78

2 RESULTS

2.1 Overview79

Considering the current new metagenomics scenario and to tackle the challenges posed by metagenomics80
big data analysis outlined in the Introduction we have designed a new open source methodology for81
analyzing metagenomics data. It exploits the new possibilities that cloud computing offers to get a system82
robust, programmatically configurable, modular, distributed, flexible, scalable and traceable in which the83
biological databases of reference sequences can be easily updated and/or frequently substituted by new84
ones or by databases specifically designed for focused projects.85

These are some of the more innovative MG7 features:86

• Static reproducible specification of dependencies and behavior of the different components using87
Statika and Datasets88

• Parallelization and distributed analysis based on AWS, with on-demand infrastructure as the basic89
paradigm90

• Definition of complex workflows using Loquat, a composable system for scaling/parallelizing stateless91
computations especially designed for AWS92

• A new approach to data analysis specification, management and specification based on working with93
it in exactly the same way as for a software project, together with the extensive use of compile-time94
structures and checks95

• Modeling of the taxonomy tree using the new paradigm of graph databases (Bio4j). It facilitates the96
taxonomic assignment tasks and the calculation of the taxa abundance values considering the hierarchic97
structure of taxonomy tree (cumulative values)98

• Exhaustive per-read taxonomic assignment using two complementary assignment algorithms Lowest99
Common Ancestor and Best BLAST Hit100

• Using a new 16S database of reference sequences (16S-DB7) with a flexible and sustainable system of101
updating and project-driven customization102

2.2 Libraries and resources103

In this section we describe the resources and libraries developed by the authors on top of which MG7104
is built. All MG7 code is written in Scala, a hybrid object-functional programming language. Scala was105
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chosen based on the possibility of using certain advanced programming styles, and Java interoperability,106
which let us build on the vast number of existing Java libraries; we take advantage of this when using107
Bio4j as an API for the NCBI taxonomy. It has support for type-level programming, type-dependent types108
(through type members) and singleton types, which permits a restricted form of dependent types where109
types can depend essentially on values determined at compile time (through their corresponding singleton110
types). Conversely, through implicits one can retrieve the value corresponding to a singleton type.111

2.2.1 Statika: machine configuration and behavior112

Statika is a Scala library developed by the first and last authors which serves as a way of defining113
and composing machine behaviors statically. The main component are bundles. Each bundle declares a114
sequence of computations (its behavior) which will be executed in an environment. A bundle can depend115
on other bundles, and when being executed by an environment, its DAG (Directed Acyclic Graph) of116
dependencies is linearized and run in sequence. In our use, bundles correspond to what an EC2 instance117
should do and an environment to an AMI (Amazon Machine Image) which prepares the basic configuration,118
downloads the Scala code and runs it.119

2.2.2 Datasets: a mini-language for data120

Datasets is a Scala library developed by the first and last authors with the goal of being a Scala-embedded121
mini-language for datasets and their locations. Data is represented as type-indexed fields: keys are modeled122
as singleton types, and values correspond to what could be called a denotation of the key: a value of123
type Location tagged with the key type. Then a Dataset is essentially a collection of data, which124
are guaranteed statically to be different through type-level predicates, making use of the value–type125
correspondence which can be established through singleton types and implicits. A dataset location is then126
just a list of locations formed by locations of each dataset key. All this is based on what could be described127
as an embedding in Scala of an extensible record system with concatenation on disjoint labels, in the128
spirit of (Harper and Pierce, 1990, Harper and Pierce (1991)). For that Datasets uses ohnosequences/cosas129
library.130

Data keys can further have a reference to a data type, which, as the name hints at, can help in providing131
information about the type of data we are working with. For example, when declaring Illumina reads as a132
data, a data type containing information about the read length, insert size or end type (single or paired) is133
used.134

A location can be, for example, an S3 object or a local file; by leaving the location type used to denote135
particular data free we can work with different “physical” representations, while keeping track of to which136
logical data they are a representation of. Thus, a process can generate locally a .fastq file representing137
the merged reads, while another can put it in S3 with the fact that they all correspond to the “same” merged138
reads is always present, as the data that those “physical” representations denote.139

2.2.3 Loquat : Parallel data processing with AWS140

Loquat is a library developed by the first, second and last authors designed for the execution of141
embarrassingly parallel tasks using S3, SQS and EC2 Amazon services.142

A loquat executes a process with explicit input and output datasets (declared using the Datasets library143
described above). Workers (EC2 instances) read from an SQS queue the S3 locations for both input and144
output data; then they download the input to local files, and pass these file locations to the process to be145
executed. The output is then put in the corresponding S3 locations.146
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A manager instance is used to monitor workers, provide initial data to be put in the SQS queue and147
optionally release resources depending on a set of configurable conditions.148

Both worker and manager instances are Statika bundles. The worker can declare any dependencies needed149
to perform its task: other tools, libraries, or data.150

All configuration such as the number of workers or the instance types is declared statically, the151
specification of a loquat being ultimately a Scala object. Deploy and resource management methods152
make easy to use an existing loquat either as a library or from (for example) a Scala REPL.153

The input and output (and their locations) being defined statically has several critical advantages. First,154
composing different loquats is easy and safe; just use the output types and locations of the first one as input155
for the second one. Second, data and their types help in not mixing different resources when implementing156
a process, while serving as a safe and convenient mechanism for writing generic processing tasks. For157
example, merging paired-end Illumina reads generically is easy as the data type includes the relevant158
information (insert size, read length, etc) to pass to a tool such as FLASh.159

2.2.4 Type-safe eDSLs for BLAST and FLASh160

We developed our own Scala-based type-safe eDSLs (embedded Domain Specific Languages) for FLASh161
(Magoč and Salzberg, 2011) and BLAST (Camacho et al., 2009) expressions and their execution.162

In the case of BLAST we use a model where we can guarantee for each BLAST command expression at163
compile time that164

• all required arguments are provided165
• only valid options are provided166
• correct types for each option value167
• valid output record specification168

Generic type-safe parsers returning a heterogeneous record of BLAST output fields are also available,169
together with output data defined using Datasets which have a reference to the exact BLAST command170
options which yielded that output. This lets us provide generic parsers for BLAST output which are171
guaranteed to be correct.172

In the same spirit as for BLAST, we implemented a type-safe eDSL for FLASh expressions and their173
execution, supporting features equivalent to those outlined for the BLAST eDSL.174

2.2.5 Bio4j and Graph Databases175

(Bio4j Pareja-Tobes et al., 2015) is a data platform integrating data from different resources such as176
UniProt or GO in a graph data paradigm. In the assignment phase we use a subgraph containing the NCBI177
Taxonomy, wrapping in Scala its Java API in a tree algebraic data type.178

2.2.6 16S-DB7 Reference Database Construction179

Our 16S-DB7 Reference Database is a curated subset of sequences from the NCBI nucleotide database180
nt. The sequences included were selected by similarity with the bacterial and archaeal reference sequences181
downloaded from the RDP database (Cole et al., 2013). RDP unaligned sequences were used to capture182
new 16S RNA sequences from nt using BLAST similarity search strategies and then, performing183
additional curation steps to remove sequences with poor taxonomic assignments to taxonomic nodes184
close to the root of the taxonomy tree. All the nucleotide sequences included in nt database has a185
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taxonomic assignment provided by the Genbank sequence submitter. NCBI provides a table (available186
at ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/) to do the mapping of any Genbank Identifier (GI) to its187
Taxonomy Identifier (TaxID). Thus, we are based on a crowdsourced submitter-maintained taxonomic188
annotation system for reference sequences. It supposes a sustainable system able to face the expected189
number of reference sequences that will populate the public global nucleotide databases in the near future.190
Another advantageous point is that we are based on NCBI taxonomy, the de-facto standard taxonomic191
classification for biomolecular data (Cochrane and Galperin, 2010). NCBI taxonomy is, undoubtedly, the192
most used taxonomy all over the world and the most similar to the official taxonomies of each specific field.193
This is a crucial point because all the type-culture and tissue databanks follow this official taxonomical194
classification and, in addition, all the knowledge accumulated during last decades is referred to this195
taxonomy. In addition NCBI provides a direct connection between taxonomical formal names and the196
physical specimens that serve as exemplars for the species (Federhen, 2014).197

Certainly, if metagenomics results are easily integrated with the theoretical and experimental knowledge198
of each specific area, the impact of metagenomics will be higher than if it progresses as a disconnected199
research branch. Considering that metagenomics data interoperability, which is especially critical in clinical200
environments, requires a stable taxonomy to be used as reference, we decided to rely on the most widely201
used taxonomy: the NCBI taxonomy. In addition, the biggest global sequence database GenBank follows202
this taxonomy to register the origin of all their submitted sequences. Our 16S database building strategy203
allows the substitution of the 16S database by any other subset of nt, even by the complete nt database if it204
would be needed, for example, for analyzing shotgun metagenomics data. This possibility of changing205
the reference database provides flexibility to the system enabling it for easy updating and project-driven206
personalization.207

2.3 Workflow Description208

The MG7 analysis workflow is summarized in Figure 1. The input files for MG7 are the FASTQ files209
resulting from a paired-end NGS sequencing experiment.210

2.3.1 Joining reads of each pair using FLASh211

In the first step the paired-end reads, designed with an insert size that yields pairs of reads with an212
overlapping region between them, are assembled using FLASh (Magoč and Salzberg, 2011). FLASh is213
designed to merge pairs of reads when the original DNA fragments are shorter than twice the length of214
reads. Thus, the sequence obtained after joining the 2 reads of each pair is larger and has better quality215
since the sequence at the ends of the reads is refined merging both ends in the assembly. To have a larger216
and improved sequence is crucial to do more precise the inference of the bacterial origin based on similarity217
with reference sequences.218

2.3.2 Parallelized BLASTN of each read against the 16S-DB7219

The second step is to search for similar 16S sequences in our 16S-DB7 database. The taxonomic220
assignment for each read is based on BLASTN of each read against the 16S database.Assignment based on221
direct similarity of each read one by one compared against a sufficiently wide database is considered in222
different reviews of metagenomics analysis methodologies (Segata et al., 2013, Morgan and Huttenhower223
(2012)) as a very exhaustive method for assignment. Some methods of assignment compare the sequences224
only against the 16S genes from available complete bacterial genomes or avoid computational cost clustering225
or binning the sequences first, and then doing the assignments only for the representative sequence of each226
cluster. MG7 carries out an exhaustive comparison of all the reads under analysis and it does not applies227
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any binning strategy. Every read is specifically compared with all the sequences of the 16S database. We228
select the best BLAST hits (10 hits by default) obtained for each read to do the taxonomic assignment.229

2.3.3 Taxonomic Assignment Algorithms230

All the reads are assigned under two different algorithms of assignment: i. Lowest Common Ancestor231
based taxonomic assignment (LCA) and ii. Best BLAST Hit based taxonomic assignment (BBH). Figure 2232
displays schematically the LCA algorithm applied sensu stricto (left panel) and the called ‘in line’ exception233
(right panel) designed in order to gain specificity in the assignments in the cases in which the topology of234
the taxonomical nodes corresponding to the BLAST hits support sufficiently the assignment to the most235
specific taxon.236

2.3.3.1 Lowest Common Ancestor based Taxonomic Assignment237

For each read, first, we select the BEST BLAST HITs (by default 10 Hits) over a threshold of similarity.238
To evaluate similarity for this first filtering of hits we use the Expect value (by default evalue ≤ e−15) that239
describes the number of hits one can “expect” to see by chance when searching a database of a particular240
size. In a second filtering step we filtering those hits that are not sufficiently good comparing them with the241
best one. We select the best HSP (High Similarity Pair) per reference sequence and then choose the best242
HSP (that with lowest E-value) between all the selected ones. The bitscore of this best HSP (called S) is243
used as reference to filter the rest of HSPs. All the HSPs with bitscore below the product pS are filtered. p244
is a coefficient fixed by the user to define the bitscore required, e.g. if p = 0.9 and S = 700 the required245
bitscore threshold would be 630. Once we have the definitive HSPs selected, we obtain their corresponding246
taxonomic nodes using the taxonomic assignments that NCBI provides for all the nt database sequences.247
Now we have to analyze the topological distribution of these nodes in the taxonomy tree: i. If all the nodes248
forms a line in the taxonomy tree (are located in a not branched lineage to the tree root) we should choose249
the most specific taxID as the final assignment for that read. We call to this kind of assignment the ‘in line’250
exception (see Figure 2 right panel). ii. If not, we should search for the sensu stricto Lowest Common251
Ancestor (LCA) of all the selected taxonomic nodes (See Figure 2 left panel). In this approach we decided252
to use the bitscore for evaluating the similarity because it is a value that increases when similarity is higher253
and depends a lot on the length of the HSP. Some reads could not find sequences with enough similarity in254
the database and then they would be classified as reads with no hits. Advanced metagenomics analysis255
approaches (Huson and Weber, 2012) have adopted LCA assignment algorithms because it provides fine256
and trusted taxonomical assignment.257

2.3.3.2 Best BLAST hit taxonomic assignment258

We decided to maintain the simpler method of Best BLAST Hit (BBH) for taxonomic assignment because,259
in some cases, it can provide information about the sequences that adds information to that obtained using260
LCA algorithm. Using LCA algorithm, when some reference sequences with BLAST alignments over261
the required thresholds map to a not sufficiently specific taxID, the read can be assigned to an unspecific262
taxon near to the root of the taxonomy tree. If the BBH reference sequence maps to more specific taxa, this263
method, in that case, gives us useful information.264

2.3.4 Output for LCA and BBH assignments265

MG7 provides independent results for the 2 different approaches, LCA and BBH. The output files include,266
for each taxonomy node (with some read assigned), abundance values for direct assignment and cumulative267
assignment. The abundances are provided in counts (absolute values) and in percentage normalized to the268
number of reads of each sample. Direct assignments are calculated counting reads specifically assigned to a269
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taxonomic node, not including the reads assigned to the descendant nodes in the taxonomy tree. Cumulative270
assignments are calculated including the direct assignments and also the assignments of the descendant271
nodes. For each sample MG7 provides 8 kinds of abundance values: LCA direct counts, LCA cumu. counts,272
LCA direct %, LCA cumu. %, BBH direct counts, BBH cumu. counts, BBH direct % and BBH cumu. %.273

2.4 Data analysis as a software project274

The MG7 16S data analysis workflow is indeed a set of tasks, all of them based in Loquat. For each task,275
a set of inputs and outputs as well as configuration parameters must be statically defined. The user is also276
free to leave the reasonable defaults for configuration, needing only to define the input and output of the277
whole workflow. The definition of this configuration is Scala code and the way of starting an MG7 analysis278
is compiling the project code and launching it from the Scala interactive console.279

Code compilation prior to launching any analysis assures that no AWS resources are launched if the280
analysis is not well-defined, avoiding expenses not leading to any analysis. Besides compile-time checks,281
runtime checks are made before launch to ensure existence of input data and availability of resources.282

An MG7 analysis is then a Scala project where the user only needs to set certain variables at the code283
level (input, output and parameters), compile the code and run it. To facilitate the process of setting up the284
Scala project, a template with sensible defaults is provided.285

In order to be able to exploit AWS infrastructure for the MG7 analysis, the user needs to set up an AWS286
account with certain IAM (Identity and Access Management) permission policies that will grant access to287
the resources used in the workflow.288

2.5 Availability289

MG7 is open source, available at https://github.com/ohnosequences/mg7 under an AGPLv3 license.290

3 DISCUSSION

We could summarize the most innovative ideas and developments in MG7:291

1. Treating data analysis as a software project. This makes for radical improvements in reproducibility,292
reuse, versioning, safety, automation and expressiveness293

2. Checking at compile-time: input and output data, their locations and type are expressible and checked294
at compile-time using Datasets295

3. Management of dependencies and machine configurations using Statika296
4. Automation of AWS cloud resources and processes, including distribution and parallelization through297

the use of Loquat298
5. Taxonomic data and related operations are treated natively as what they are: graphs, through the use of299

Bio4j300
6. MG7 provides a sustainable model for taxonomic assignment, appropriate to face the challenging301

amount of data that high throughput sequencing technologies generate302

We will expand on each item in the following sections.303
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3.1 A new approach to data analysis: data analysis as a software project and checking304
at compile-time305

MG7 proposes to define and work with a particular data analysis task as a software project, using Scala.306
The idea is that everything: data description, their location, configuration parameters and the infrastructure307
used should be expressed as Scala code, and treated in the same way as any (well-managed) software308
project. This includes, among other things, using version control systems (git in our case), writing tests,309
making stable releases following semantic versioning or publishing artifacts to a repository.310

What we see as key advantages of this approach (when coupled with compile-time specification and311
checking), are312

• Reproducibility the same analysis can be run again with exactly the same configuration in a trivial313
way.314

• Versioning as in any software project, there can be different versions, stable releases, etc.315
• Reuse we can build standard configurations on top of this and reuse them for subsequent data analysis.316

A particular data analysis task can be used as a library in further analysis.317
• Decoupling We can start working on the analysis specification, without any need for available data in318

a much easier way.319
• Documentation We can take advantage of all the effort put into software documentation tools and320

practices, such as in our case Scaladoc or literate programming. As documentation, analysis processes321
and data specification live together in the files, it is much easier to keep coherence between them.322

• Expresiveness and safety For example in our case we can choose only from valid illumina read types,323
and then build a default FLASh command based on that. The output locations, being declared statically,324
are also available for use in further analysis.325

3.2 Input and output data declaration326

An important aspect of the MG7 workflow is the way it deals with data resources. All the data that is327
going to be used in the analysis or produced as an output is described as Scala code using rich types from328
the Datasets language. This allows the user to specify information about types of data, information that can329
then be utilized by tools analyzing this data. For example, we can specify that, for the first part of the MG7330
workflow, running FLASh in parallel requires illumina paired end reads and produces joined reads.331

On one hand, specification of the input data allows us to restrict its type and force users to be conscious332
about what they pass as an input. On the other hand, specification of the output data helps to build a333
workflow as a composition of several parts: we can ensure on the Scala code type level that the output334
of one component fits as an input for the next component. This is crucial as, obviously, the way a data335
analysis task works depends a lot on the particular structure of the data. For instance, in the MG7 workflow,336
using BLAST eDSL, we can precisely describe which format will have the output of the BLAST step,337
which information it will include, and then in the next step we can reuse this description to parse BLAST338
output and retrieve the part of the information needed for the taxonomy assignment analysis. Having the339
data structure described statically as Scala code allows us to be sure that we will not have parsing problems340
or other issues with incompatible data passed between workflow components.341

All this does not compromise flexibility in how the user works with data in MG7: having static data342
declarations as a part of the configuration allows the user to reuse analysis components, or modify them343
according to particular needs. Besides that, an important advantage of the type-level control is the added344
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protection from the execution (and deployment) of a wrongly configured analysis task, which may lead to345
significant costs in both time and money.346

3.3 Tools, data, dependencies and automated deployment347

Bioinformatics software often has a complicated installation process and requires various dependencies348
with unclear versions. This makes the deployment of the bioinformatics tools an involved task and resolving349
it manually is not a solution in the context of cloud computations. To face this problem, one needs an350
automated system of managing tools and resources, which will allow an expressive way for describing351
dependencies between parts of a pipeline and provide a reproducible procedure of its deployment. We have352
developed Statika for this purpose and successfully used it in MG7.353

Every external tool involved in the workflow is represented as a Statika bundle, which is essentially a354
Scala project describing the installation process of this tool and declaring dependencies on other bundles355
which will be installed prior to the considered tool itself. Describing relationships between bundles on356
the code level allows us to track the directed acyclic graph of their dependencies and linearize them to357
automatically install them sequentially in the right order. Meanwhile, describing the installation process358
on the code level allows the user to utilize the wide range of available Scala and Java APIs and tools,359
making installation a well-defined sequence of steps rather than an unreliable script, dependent on a certain360
environment. Statika offers an easy path towards making deployment an automated, reproducible process.361

Besides bioinformatics tools like BLAST and FLASh, Statika bundles are used for wrapping data362
dependencies and all inner components of the system that require cloud deployment. In particular, all363
components of Loquat are bundles; the user can then define which components are needed for the parallel364
processing on each computation unit in an expressive way, declaring them as bundle dependencies of the365
loquat “worker” bundle. This modularization is also important for the matter of making components of366
the system reusable for different projects and liberating the user from most of the tasks related to their367
deployment.368

3.4 Parallel computations in the cloud369

The MG7 workflow consists of certain steps, each of which performs some work in parallel, using370
the cloud infrastructure managed by Loquat. It is important to notice the horizontal scalability of this371
approach. Irrespectively of how much data needs to be processed, MG7 will handle it, by splitting data372
into chunks and performing the analysis on multiple computation units. The Amazon Elastic Compute373
Cloud (EC2) service provides a transparent way of managing computation infrastructure, called autoscaling374
groups. The User can set MG7 configuration parameters, adjusting for each task the amount and hardware375
characteristics of the EC2 instances they want to use for it. But it is important to note that, as each workflow376
step is not very resource demanding, it is not needed to hire EC2 instances with some advanced hardware.377
Instead, an average type will work and you can reduce execution time by simply scaling out the number of378
instances.379

3.5 Taxonomy and Bio4j380

The hierarchic structure of the taxonomy of the living organisms is a tree, and, hence, is also a graph381
in which each node, with the exception of the root node, has a unique parent node. It led us to model the382
taxonomy tree as a graph using the graph database paradigm. Previously we developed Bio4j [Pareja-383
Tobes-2015], a platform for the integration of semantically rich biological data using typed graph models.384
It integrates most publicly available data linked with sequences into a set of interdependent graphs to385
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be used for bioinformatics analysis and especially for biological data. MG7 works based on the Bio4j386
taxonomy module. It opens the possibility to connect the taxonomic profiling data obtained with MG7 to387
all the biological knowledge associated to each taxon. Using the information available in Bio4j for all the388
proteins assigned to each taxon we are connected to all the functional data available in Uniprot related with389
it.390

3.6 Future developments391

3.6.1 Shotgun metagenomics392

It is certainly possible to adapt MG7 to work with shotgun metagenomics data. Simply changing the393
reference database to include whole genome sequence data could yield interesting results. This could also394
be refined by restricting reference sequences according to all sort of criteria, like biological function or395
taxonomy. Bio4j would be an invaluable tool here, thanks to its ability to express complex predicates on396
sequences using all the information linked with them (GO annotations, UniProt data, NCBI taxonomy, etc).397

3.6.2 Comparing groups of samples398

The comparison of the taxonomic profiles between different groups of samples is a need for many399
metagenomics studies. Tasks related with this group-based analysis, such as the extraction of the minimal400
tree with all the taxa with some direct or accumulated assignment, will be part of a new MG7 module,401
already in development.402

3.6.3 Interactive visualizations based on Biographika403

New visualization tools for metagenomics results are undoubtedly needed. Interactivity is a especially404
interesting feature for metagenomics data visualization, since the expert needs to explore the results in a405
knowledge-driven way. The majority of the available metagenomics data visualizations are static. We are406
working in the Biographika project (Tobes et al., 2015), to provide interactive rich visualizations on the407
web for Bio4j data. The development of visualizations specific for MG7 is one of Biographika current408
goals. Biographika is based on D3.js, the de-facto standard JavaScript data visualization library, and is409
open source.410

4 MATERIALS AND METHODS

4.1 Amazon Web Services411

MG7 uses the following Amazon Web Services:412

• EC2 (Elastic Compute Cloud) autoscaling groups for launching and managing computation units413
• S3 (Simple Storage Service) for storing input and output data414
• SQS (Simple Queue Service) for communication between different components of the system415
• SNS (Simple Notification Service) for e-mail notifications416

These services are used through a Scala wrapper of the official AWS Java SDK v1.9.25:417
ohnosequences/aws-scala-tools v0.13.2.418

4.2 Scala419

MG7 itself and all the libraries used are written in Scala v2.11.420
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4.3 Statika421

MG7 uses ohnosequences/statika v2.0.0 for specifying the configuration and behavior of EC2 instances.422

4.4 Datasets423

MG7 uses ohnosequences/datasets v0.2.0 for specifying input and output data, their type and their424
location.425

4.5 Loquat426

MG7 uses ohnosequences/loquat v2.0.0 for the specification of data processing tasks and their execution427
using AWS resources.428

4.6 BLAST eDSL429

MG7 uses ohnosequences/blast v0.2.0. The BLAST version used is v2.2.31+.430

4.7 FLASh eDSL431

MG7 uses ohnosequences/flash v0.1.0. The FLASh version used is v1.2.11.432

4.8 Bio4j433

MG7 uses bio4j/bio4j v0.12.0-RC3 and bio4j/bio4j-titan v0.4.0-RC2 as an API for the NCBI taxonomy.434
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8 FIGURE 1: MG7 ANALYSIS WORKFLOW.

The paired reads in fastq format are merged resulting in only one sequence per read pair. The next step449
is a parallelized BLASTN of every merged sequence against the 16S reference database 16S-DB7. Then,450
the mapping of the detected similar sequences in the database to the taxonomy node to which they belong451
is carried out. This is done using Bio4j that includes a module with all the NCBI taxonomy in a graph452
connected with the Gene Ontology, Uniprot, and RefSeq graphs. Then the taxonomic assignment is453
done for each sequence following two different approaches: LCA and BBH, and finally the abundances454
corresponding to direct and cumulative assignments for each node in percentage and absolute counts are455
provided for each assignment mode.456

9 FIGURE 2: LOWEST COMMON ANCESTOR ALGORITHM FOR TAXONOMIC
ASSIGNMENT.

The Left panel displays an example of the application of LCA algorithm in a sensu stricto mode. A, B,457
C and D represent taxonomy tree nodes with assigned reads. Right panel displays the in line mode of458
assignment which is an exception for the sensu stricto mode of application of LCA algorithm. The in line459
mode is used when all the nodes are located in a line without bifurcations. In that case the taxon assigned460
is the most specific (the most distant from the root).461

REFERENCES

Bikel, S., Valdez-Lara, A., Cornejo-Granados, F., Rico, K., Canizales-Quinteros, S., Soberón, X., et al.462
(2015). Combining metagenomics, metatranscriptomics and viromics to explore novel microbial463
interactions: towards a systems-level understanding of human microbiome. Computational and structural464
biotechnology journal 13, 390–401465

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). Blast+:466
architecture and applications. BMC bioinformatics 10, 421467

Cochrane, G. R. and Galperin, M. Y. (2010). The 2010 nucleic acids research database issue and online468
database collection: a community of data resources. Nucleic acids research 38, D1–D4469

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., et al. (2013). Ribosomal database470
project: data and tools for high throughput rrna analysis. Nucleic acids research , gkt1244471

Coughlan, L. M., Cotter, P. D., Hill, C., and Alvarez-Ordóñez, A. (2015). Biotechnological applications of472
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