A replicated object system

Hayley Patton
hayley@applied-langua.ge

ABSTRACT

We describe Netfarm, a replicated object system, in which various
kinds of objects can be stored across a network. These objects are
instances of schemas (themselves also objects), which describe the
representation of objects, and their behaviour, using a portable
bytecode. Objects affect each other by running scripts using the
bytecode, which in turn produce effects on multi-sets of computed
values. Arbitrary access to effects is restricted by an object capability
system on the object scale, and by capability lists on a larger scale,
allowing untrusted objects to communicate, and for many untrusted
applications to run on nodes and client programs. Objects may exist
on multiple nodes of the network to make the system fault-tolerant,
as their behaviour is explicated to the system and thus reproducible.
Replication of the actions generated by scripts cause Netfarm to
exhibit strong eventual consistency. This programming model allows
for supporting many programs on one object system, which can
use efficient replicated algorithms and data structures.

CCS CONCEPTS

« Computing methodologies — Distributed programming lan-
guages; « Computer systems organization — Redundancy; «
Information systems — Distributed storage.

ACM Reference Format:

Hayley Patton. 2021. A replicated object system. In Proceedings of the 14th
European Lisp Symposium (ELS’21). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.5281/zenodo.4712699

1 INTRODUCTION

There is a growing trend of using decentralised networks and sys-
tems for online communication and information storage. Such sys-
tems have many servers or nodes, operated and hosted by different
parties, and thus do not have central points of failure. Many of
these systems exist today, with vastly different applications and
network models. These systems can become stifling with their focus
on individual applications; while some persistent users may work
out how to re-use the infrastructure of a system for another use
case, they are invariably going to find difficulties, as they are unable
to replace features of the system with their own. Some systems
also cannot detect errors and invalid transactions on the system
sufficiently, often putting too much trust on a server or node to not
misbehave on behalf of the users of that server. For example, some
systems may be unable to detect spoofed messages, which were not

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’21, May 3—4 2021, Online

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-XxXX-X/YY/MM.

https://doi.org/10.5281/zenodo0.4712699

actually sent by their authors, but were sent by someone else with
access to the server.

Our initial intentions were to create some sort of fault-tolerant
and “accountable” decentralised communication application, and
avoid failures caused by server failure and bad operators and users
on the network. The system would be accountable in the sense
that any computation made could be reproduced, so that a server
publishing incorrect results of some computation (perhaps due to a
hardware fault, or a malicious operator) could be detected. These
intentions are well served by a distributed and replicated network.

After implementing a basic system with these properties, we
found it would be convenient for the system to verify invariants on
behalf of an application, and for the system to be capable of storing
information for many applications. These goals culminated into a
replicated object system, in which objects can validate their current
states, refusing to be instantiated if they are invalid, and objects
can communicate to add “after the fact” references to each other.

1.1 Distribution

We will discuss properties of existing networks in Previous Work,
but an abstract understanding of how these networks are formed
will be useful.

Many programs and protocols on a network have many clients
and one server. Larger systems may use many servers, but usually
maintain the illusion that there is only one server somehow. Ei-
ther form of system is a centralised system, as all information is
centralised on infrastructure owned by one party. Managing the
infrastructure and data is also entirely the duty of that party, which
may be unacceptable for some users.

A decentralised system partitions such duties to multiple parties.
There are two general techniques for decentralisation: federation
and distribution. A federated system has users pick a server to use
as part of a kind of identity for information stored on the network.
(This server is sometimes called a homeserver or instance.) An iden-
tity provides an unambiguous reference format for any other user
of the protocol to retrieve the information. Such an identity usually
is made from some pseudo-random string and the name of the
server. For example, the Netfarm room on the Matrix messaging
protocol has the identity of ! YUbZBUZUXCNNDAlxsZ:matrix.org.
The dependence on a server is an immediate drawback of a feder-
ated system; that server is the only source of some information,
and failure of a server can make the protocol unusable for users of
that server.

A distributed system avoids this failure mode, as the identity
of information is independent of a server on which it is stored.
Typically, an identity is instead formed using a cryptographic hash
of the information; and it can be efficiently searched for using a
distributed hash table, which provides an algorithm for searching
for a node which stores some information. Using a hash to create an
identity precludes mutable objects per se, as modifying the state of
an object would change its hash. Mutable data must be implemented

https://doi.org/10.5281/zenodo.4712699
https://doi.org/10.5281/zenodo.4712699

ELS’21, May 3-4 2021, Online

using a different mechanism, and Netfarm provides computed values
to simulate mutable data, by computing side effects from the rest
of the state of the network.

1.2 Replication

Data on a networked system is either replicated or not replicated.
In this paper, we will be specific and define a replicated system as
one where data may be retrieved from multiple sources, and any
source is as valid as another. This definition excludes some systems
where one server is the primary source of some data, and other
servers cache that data, where only the former server would be
able to accept updates to the data. Any data can be retrieved and
updated from any server in a replicated system which has a copy
of the data.

To our knowledge, replicated systems must be distributed. A
centralised system would not be able to replicate, and the server
component of object identity in a federated replicated system would
have to be useless in order for any server to be able to serve requests
for any object. We have not found any non-replicated distributed
systems, but replication is a useful property in itself, and sometimes
less confusing to discuss (we discuss “distributed” object systems
in Previous Work).

Much like decentralised and centralised systems, a replicated
system exhibits better fault tolerance than a non-replicated system;
if n servers can be used to service a request with a p probability
of failing on one server, and failures are independent events, then
there is a p™ probability that all servers fail, and a request can-
not be serviced. It is thus preferable to have a replicated system,
as to minimise the occurrence of faults which render the system
inoperable.

However, replicated systems require careful synchronisation
and consistency measures, which are further complicated by hav-
ing to handle node failures, and intentional attempts to manipu-
late the state of a system. Such measures often lead to difficult-
to-understand programs, and programmer experiences not unlike
debugging low-level concurrent programs. Netfarm allows a pro-
grammer to write replicated systems using a small set of features;
but said features can capture the behaviour of many systems, and an
object model and message passing can make the resulting program
easier to comprehend and more adaptable.

2 PREVIOUS WORK
2.1 Distributed ledgers

2.1.1 Bitcoin. A blockchain creates consensus over the ordering
of a transaction log, while allowing for substantial fault tolerance.
Typically, blockchains are used to handle digital currencies, or
cryptocurrencies, but we are more interested in the consensus mech-
anism and programming techniques they provide. (Although such
mechanisms often assume, in part, that there is some currency to
compensate honest users with.)

Bitcoin has a simple scripting system for transactions. Scripts
are written in a bytecode, which executes on a stack machine. A
script is usually used to verify that the user attempting to spend
some currency is allowed to spend it. The bytecode includes in-
structions for basic arithmetic, hashing and verifying signatures;
but the bytecode is not Turing-complete, nor particuarly expressive.

Hayley Patton

Some non-essential instructions were removed as part of a (fairly
lousy) fix for an incorrect implementation of bit-shifting, which
would cause nodes to crash sometimes.! The bytecode has never
supported any looping; it would not be suitable for programming
many other uses of the Bitcoin network.

2.1.2 Ethereum. The Ethereum network has extended the script
system, to allow for clients to program smart contracts, which allow
for implementations of many complex systems on a blockchain
using a Turing-complete language, such as additional currencies,
decentralised exchanges, voting systems and some games. The pro-
gram in a smart contract is executed when it receives a transaction,
and the program is described using a bytecode, which has access
to a stack, temporary memory in the form of an octet vector, and
a permanent map from 256-bit unsigned integers to 256-bit un-
signed integers (as described in Chapter 9 of [19]). Contracts can
communicate by calling methods of other contracts.

2.1.3 Holochain. The Holochain project can be seen as a modifica-
tion of the blockchain paradigm. Instead of providing consensus on
one global transaction log, a user of a Holochain network maintains
their own transaction log, and transactions provide cross-references
between logs. Verifying a transaction between two parties consists
of verifying the logs belonging to either party [5]. By using many
separate logs, such a network can scale using the partitioning pro-
vided by a distributed hash table. (The Ethereum developers intend
to improve scaling by sharding transactions over 64 smaller chains
[8], but nodes in a distributed hash table can scale their contribution
to the network at a more fine-grained level.) Scripts for Holochain
are written in the WebAssembly portable assembler.

2.1.4 Proof of work. Many blockchains use a proof of work tech-
nique, which makes falsifying the transaction log very computa-
tionally expensive [15]. This process requires creating blocks of
transactions, which will only be accepted by the network if hashes
of blocks have sufficiently small values. Such blocks have to be
generated by brute force, and the act of generating blocks is called
mining. It is assumed that only an honest majority of users would
have the majority of computing power, so an honest network would
be able to produce blocks faster than a user attempting to tamper
with the order of transactions.

Many parties are interested in dedicating huge computer farms
to mining, as they are paid with cryptocurrency when they are
first to produce an acceptable block. Unfortunately, a system based
on perpetually brute-forcing values, especially at this scale, has
the drawback of requiring significant amounts of electrical energy.
At the time of writing, [6] estimates the electrical consumption
of Bitcoin to be somewhat greater than that of the country of Fin-
land. There are other methods of implementing verification for
blockchains, but they all require the well-behaving users of a net-
work to have a majority of some scarce resource, such as other
currency or storage.

We do not believe we require the strict consistency measures
blockchains provide, so we did not use a blockchain to implement
Netfarm. However, the ability for clients to program a distributed
system can be very useful, so we have taken some inspiration

!This is better documented in CVE-2010-5137 and https://en.bitcoin.it/wiki/Common_
Vulnerabilities_and_Exposures#CVE-2010-5137.

https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2010-5137
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures#CVE-2010-5137

A replicated object system

from how blockchains are programmed when implementing our
programming system.

2.2 Federated networks

As mentioned before, federated applications delegate data storage
and maintaining identity to many servers, although a user will be
dependent on one server. In general, cross-server communications
only authenticate servers and not users, so servers could falsify
messages and state without detection; and while federated systems
provide collections of events that are general enough to support
multiple forms of presentation, they are still inextensible and cannot
support the implementation of new programs.

It can be observed on both systems that large numbers of users
are on very few homeservers, allowing much of those networks to
be unusable should only those few servers become unavailable.?
There are many factors influencing the population distribution
(which we attempt to examine in the introduction to [2]) but the
decentralisation and fault tolerance of federated systems appears
to be very questionable.

2.2.1 Matrix. Matrix is a federated chat protocol, which offers a
convenient web client, end-to-end encryption, integration with
some other protocols (such as IRC and Discord), and integration
with some other tools frequently used by its users, such as receiving
GitLab and Grafana notifications in a room.

It uses a room as an aggregation of messages, which is a conve-
nient abstraction for a messaging application, but it is awkward
for many other applications. This situation is not unlike, say, im-
plementing the Common Lisp tagbody special operator using the
condition system. It is certainly possible, but it is strange, and likely
inefficient and difficult. Some new applications have been created,
such as a script which renders a blog out of the messages in a
room;> but they do not modify the semantics or structure of Matrix
significantly, merely changing the presentation of a room. Instead,
we provide a lower-level abstraction, a computed value system, but
it is capable of implementing rooms (and we will describe how to
implement it in An example use).

Furthermore, when a user is not using end-to-end encryption, it
is possible for a server operator to spoof messages; claiming that a
user sent a message which they had not actually sent. Even a simple
authorisation mechanism, such as optionally digitally signing mes-
sages, would be preferable for sending sensitive announcements,
where the message cannot be falsified, but it must still be published
publicly.

2.2.2 ActivityPub. ActivityPub is a federated micro-blogging pro-
tocol, which is used to post short text messages, with optional
visual and audio attachments. Well known implementations of
ActivityPub include Mastodon and Pleroma; although it has had
many implementations which change the mode of communication
somewhat, such as focusing on image or video sharing, or present-
ing messages in an online forum layout. These deviations from

Zhttps://social.coop/@Stoori/100542845444542605 shows the usage of ActivityPub
servers on a log-log graph. https://the-federation.info/ estimates the total users of the
Fediverse to be around 4 million, and the top 12 servers on https://instances.social/
list/advanced have around 1.75 million users.

3This project is named the “Matrix blog” and is described on https://matrix.org/docs/
projects/client/matrix-blog.

ELS’21, May 3-4 2021, Online

the usual micro-blogging style, however, remain mostly cosmetic,
where messages and aggregations of messages are presented to
the user in different ways, and different (arbitrary) restrictions are
placed on the forms of messages which a server will publish for a
user.

2.3 Distributed object systems and Actors

E and Spritely are examples of distributed object systems. Object
identity is based off server identity in these systems, so it could
be argued that distributed object systems of this type are really
federated by our definitions, but users of these systems call them
distributed anyway. It follows that they do not replicate objects.
There are also separate instructions for sending messages to local
objects, which cannot fail, and sending messages to foreign objects,
which can fail, as network-related faults can happen.

Erlang may or may not be a distributed object system, depending
on who? you ask. It is less contentious to call Erlang an Actor system.
Actors (processes in Erlang parlance) also have node addresses in
their identity, but there is only one asynchronous message send-
ing construct [3, p. 66], which can always potentially fail. Again,
processes are not replicated in Erlang, but failure detection and re-
placement is still a design goal of Erlang; which is instead achieved
by respawning processes which crash. This sort of fault tolerance
is orthogonal to replication, as it generally is used to work around
a program generating an invalid state, and not to work around the
disappearance of a node.

3 OUR TECHNIQUE

Objects are stored across a distributed hash table, in which it is
possible to store objects, retrieve objects by hash, and subscribe to
observe side effects induced on objects. We provide a class-based
object system, where objects are instances of schemas, which in turn
are objects themselves. These schemas contain lists of slots, com-
puted slots, and scripts which describe the behaviour of instances of a
schema. A schema is an instance of the schema schema, which is an
instance of itself (c.f. the Common Lisp metaclass standard-class,
which is an instance of itself).

All information which a node presents has been verified and/or
produced by itself, so nodes do not have to trust each other to
make progress when synchronising objects. The faultable nature
of the network is hidden from Netfarm objects, as nodes perform
all of the computation on behalf of an object. If an object attempts
to retrieve another object that the node does not currently store,
the computation is paused until that object has been retrieved. We
believe this may introduce some storage overhead, as objects that
the node is not expected to store will be verified to satisfy requests
on behalf of scripts, but this overhead has not been measured.

We use a Kademlia-based distributed hash table [13] to search
and retrieve objects, but the design of Netfarm is not dependent on
any object storage mechanism. The only requirements of Netfarm
on the object storage mechanism are that it must be able to retrieve
objects which it would not otherwise retrieve, enabling scripts to

4...and also when you ask. Joe Armstrong was initially critical of object-oriented
programming, leading to an infamous quote starting with “you wanted a banana”; but
then his thesis supervisor had convinced him that Erlang was the only really object-
oriented language, as it exhibits strong isolation and polymorphism using message
passing and independent “object” processes.

https://social.coop/@Stoori/100542845444542605
https://the-federation.info/
https://instances.social/list/advanced
https://instances.social/list/advanced
https://matrix.org/docs/projects/client/matrix-blog
https://matrix.org/docs/projects/client/matrix-blog

ELS’21, May 3-4 2021, Online

instance related

|¥ schema scripts script

BT T T

inbuilt@script

inbuilt@schema

Figure 1: An object is an instance of a schema, which is in
turn an instance of the schema schema. We draw objects
with box-and-arrow diagrams, using dashed arrows for com-
puted values, and labelling arrows with the names of the
slots they represent.

retrieve any referenced object on the network, and to provide some
metadata about objects for synchronisation.

Objects can be verified using digital signatures, associating them
with the users that signed them. Such signatures can be used as an
authentication mechanism, which allows some actions on objects
to be performed only by specific users. (Users are just objects; they
do not have any special status in the Netfarm system, except that
Netfarm is able to retrieve public keys from user objects.) A key
exchange mechanism is also provided, using elliptic-curve Diffie
Hellman (a variant of [7]) keys associated with users of Netfarm,
which could be used to encrypt private objects, but it is not used
by Netfarm itself.

Objects can contain references to other objects in their slots,
which are usually named by hashes of the referenced objects, to
create references to other objects (excluding inbuilt objects, which
are named with symbolic names starting with inbuilt@). This
would prohibit mutating non-inbuilt objects, as changing the slot
values of an object would change its hash, and thus break identity,
and it would prohibit creating circular references, as there would
be infinite recursion when attempting to compute the hash of any
object in the cycle. Side effects are instead caused by running scripts
which produce side effects, adding and removing computed values
from computed slots in objects, which contain multi-sets of values.
These computed values allow for “after the fact” references, which
do not affect the hash, and thus identity, of an object; so a client
will observe the computed slots of the object change.

3.1 Side effects

When designing a system where changes must be replicated over
many copies of an object, it is possible that users will observe
changes in different orders; so the order in which changes are
applied should not affect the result, i.e. the changes are commutative,
and the data type which is affected by said changes is a commutative
replicated data type (or CRDT). It is also possible to use a conflict
resolution mechanism to resolve the ordering of effects, freeing
effects of having to be commutative, but we have chosen to use a
conflict-free replicated data type, as conflict resolution mechanisms
are frequently very specialised, and sometimes hard to get right.

Hayley Patton

The actions on a computed value system are the addition or
removal of a value to a computed slot (herein called a computed
value). A computed slot is a variation of a multiset, which also
allows for negative counts of a value, in order for actions to always
be commutative. If we disallowed negative counts, for example,
removing a value that was not present in a computed value set, then
and then adding it would create a different count to adding a value
then removing it, and so side effects would not be commutative.
The computed value set is a CRDT, which makes Netfarm exhibit
strong eventual consistency. [17] provides a proof that using CRDTs
will provide eventual consistency, so we only need to show how
side effects on computed values are commutative, to show that
computed values can be used in a system with strong eventual
consistency.

THEOREM 3.1. Actions on computed values are commutative.

Proor. Recall that an action on a computed value system is ei-
ther the addition of a value to a computed slot of an object, or the
removal of such a computed value. We could model the state of a
computed value system as a mapping of tuples (object, slot, value)
to an integer count of values, each tuple initialized to 0. Adding
a computed value causes the count associated with the value to
be incremented, and removing a computed value causes the re-
spective count to be decremented. Incrementing and decrementing
are special cases of addition (Ax.1 + x and Ax.—1 + x respectively),
and addition on integers is known to be commutative. Thus our
computed value system has commutative actions. O

3.2 Scripts

For side effects to be replicated, we must explicate the behaviour
of objects to a Netfarm network. Scripts are run using a virtual
machine based on the SECD machine [12] and the Smalltalk inter-
preter [9]. This virtual machine provides first-class functions and
immutable data, and message-passing based polymorphism. The
behaviour of objects is aggregated into scripts,”> and schemas have
lists of scripts, which are searched to find applicable methods. The
behaviour of the virtual machine is entirely deterministic, and thus
the complete object system is deterministic.
We decided to use our own virtual machine for a few reasons:

e it is not difficult to write a compiler for a mostly-functional
language targeting the SECD machine,

e a virtual machine which exposes some sort of in-memory
representation of data, such as WebAssembly, reduces the
number of possible techniques that could be used to optimise
an implementation of the virtual machine, such as hash con-
sing intermediate data (apparently first performed in [10]),
and passing host objects into the virtual machine without
copying, and

e the virtual machine can enforce various invariants which
make cross-object communication significantly less difficult,
such as checking function signatures, and ensuring method
dispatch works as expected.

5The provider of behaviour of an actor in the Actor model is sometimes cutely named
a program script. We did not know of this usage before choosing to call our programs
scripts.

A replicated object system

A message-passing system appeared to be the simplest system
which would enforce encapsulation: only the methods of an object
can affect the object, a requisite for running multiple programs on
one network, without malicious programs being able to clobber
the state of other programs. Objects send messages, consisting of a
method name and argument list, to other objects, and a receiving
object dispatches on the method name. The receiver searches for
all methods with the method name defined by scripts, and calls the
first applicable method. If a method cannot be found, the process is
repeated for a special does-not-understand method (much like
in Smalltalk), and the method is called with the method name and
arguments. Messages can be authenticated, as the receiving object
can retrieve the sender of a message. If it is necessary to obfuscate
the sender of a message, it is not difficult to create a proxy object,
which re-sends all messages sent to it to another object.

When a node retrieves a new object, either by replicating it
from another node, or by receiving it from a client, it sends an
initialize message to the object, before it allows other nodes to
read its copy of the object. The initialize method can thus be
used to prevent invalid objects from being created.

Scripts can also induce a partial ordering on the creation of
objects in the network. Recall that, if a script attempts to access
an object that the node does not yet store, execution of the script
is paused. Thus the creation of a referred object always happens
before the creation of a referring object.

Using a scripting system with a Turing-complete language and a
suitable CRDT could make a replicated system into a sort of “univer-
sal simulator” for replicated systems; it is possible to re-implement
the core algorithms and data structures of some decentralised sys-
tems, including Matrix and Holochain, in Netfarm. However, execut-
ing arbitrary untrusted code without any safety measures is a very
large security and safety problem; we must provide some bound-
aries on what programs may do in order to guarantee determinism
and safety.

3.2.1 Limiting script misuse. It may be useful to run scripts to
present objects and content for clients, and allow clients to interact
with objects in a more convenient manner for each object. Conven-
tional “wisdom” surrounding the state of Web browsers, which have
run applets written in Java, Flash, and now run larger programs
written in JavaScript, suggests that this is only a convenient man-
ner to exploit a client’s computer, steal their information, or use
their computers to perform computing for another party without
consent; but we can make these forms of misuse impossible, with
little effort.

The behaviour of scripts is restricted by a capability list, which
prohibits using some runtime features when they are inappropri-
ate; for example, a script run by initializing an object cannot read
computed values, as that would allow creating behaviour which is
dependent on script execution order, and thus not commutative; but
it may write them, and a script run by a client can read computed
values, but cannot write computed values. No instructions are ever
provided to affect the outside world, and we have implemented the
interpreter in safe Common Lisp code, so it should not be possible
for a script to escape its environment.

Scripts follow an object capability model, where they cannot
construct arbitrary references, and can only be given references

ELS’21, May 3-4 2021, Online

by other scripts and objects. (This is not the case for users of the
Netfarm protocol themselves; replication requires being able to
locate all objects, to our knowledge.) Limiting the execution time
given to scripts also reduces the computing wastage a malicious
script can perform; object initialization must terminate in 300,000
instructions (which can currently be executed in about 5 millisec-
onds on a relatively new desktop processor), and an interactive
client should require significantly fewer than even a million in-
structions per second to process information for the user; excluding
graphical rendering and user input, which are better done in the
host environment. There is no situation in which it is possible to
perform any significant computation, and then have it transmit-
ted off a client; nor is there a situation where a program could
somehow steal confidential information, and then transmit it, nor
is there a situation where a network can be misused to perform any
significant computation.

4 AN EXAMPLE USE

We have been designing some programs to test the usability of
Netfarm. One of these programs is a chat program named Catfood,®
which requires storing messages in a way that allows relatively fast
sequential access.

We use an event stream data structure, which provides a partial
ordering of events added to the event stream. Such a stream consists
of the stream object, and many event objects which are added to
the stream.

tail

head

Figure 2: A queue may be constructed using head and tail
references into a linked list.

The event stream resembles how a queue data structure may
be constructed from a linked list. (However, we do not remove
events from an event stream; we only define adding new events
and iterating over all events.) Such a queue would hold references
to the first and last conses of the linked list. Similarly, an event
stream contains a slot for the first event, and a wavefront computed
slot. This wavefront provides a fast method to retrieve the latest
messages; when an event is created, it is added to the wavefront,
and all events observed in the wavefront are removed. Each event
contains a slot with the previously observed wavefront, forming a
directed acyclic graph of events.

With zero latency and no partitioning, this graph will be a linked
list, and the wavefront always contains exactly one event. In the
presence of latency or a partition, the entire wavefront may not
®This program might be used to “eat our own dogfood”, should we test it and entrust it
with real discussions, but we aren’t really dog people. After the bunny, which we used

as a logo for Netfarm, the next most loved animal in the early Netfarm community
was the cat.

ELS’21, May 3-4 2021, Online

be observed, and only part of the wavefront will be removed by a
new event. The true wavefront thus can contain multiple events.
Creating another event will return the wavefront to containing only
one event. It is not necessary for the wavefront to be consolidated
as such, but it will minimise the number of events that a user must
sort when iterating over the events of the stream in order.

last-wavefront

E wavefront

Figure 3: Two writers raced to add events to an event stream.
The wavefront contained two events while they were racing;
though either writer observed only their last event in the
wavefront due to network latency. After they finish racing,
another event is added, which stores the previous wavefront,
and now the current wavefront contains exactly one event.

Netfarm schemas can be created using a special metaclass. The
event class and schema could be defined with:
(defclass event ()

((last-wavefront :initarg :last-wavefront

:reader last-wavefront)

(stream :initarg :stream :reader stream)

(successors :computed t :reader successors))

(:scripts (program-from-local-file "Stream/event.scm"))

(:metaclass netfarm:netfarm-class))

(Note that program-from-local-file is defined to compile the
source code of a script to a script object, as described later.)

4.1 Searching for a timestamp

Some operations we may require are displaying some of the most
recent messages, and displaying messages sent around a given time.
These sorts of operations can be performed by traversing the graph,
and using a data structure like a priority queue to sort events we
have not traversed yet, popping them off in order.

One illustrative example is searching for an event at a times-
tamp; we can work our way back from the wavefront, traversing
previous wavefronts, and eventually reach that event. We could
choose whether most of the code for this system should be written

Hayley Patton

in Common Lisp (or another host language), or be written to run on
the Netfarm script machine. There are advantages to using either
language; using Netfarm scripts allow for other users to provide
objects subject to some extensions to a protocol, without having to
modify a client, but the facilities provided by Common Lisp, includ-
ing the standard library and compilers’” may make programming
in the host language more favourable.
A function to find an event at a particular timestamp may be
defined as:
(defun find-timestamp (stream timestamp)
(labels ((older? (e) (< (timestamp e) timestamp))
(newer (events) (remove-if #'older? events)))
(loop with g = (make-queue (newer (wavefront stream)))
until (empty? q)
do (let ((e (pop-oldest q)))
(when (= timestamp (timestamp e))
(return-from find-timestamp e))
(insert-all (newer (last-wavefront e)) q)))
(event-not-found)))

The performance of searching could be improved by storing the
older wavefronts of previous events, forming a skip list of predeces-
sors, allowing faster access to older events to search. The algorithm
would otherwise remain the same.

4.2 Programming Netfarm

While a client can be programmed in any mixture of the host lan-
guage and Netfarm scripts, to replicate side effects and verification
of objects, we must write some scripts. These scripts, fortunately,
can be compiled from a language which is not as tedious as SECD
assembly. We could use the Slacker compiler®, which generates code
for our virtual machine from a language which looks superficially
like Scheme. The script for an event could be written like:

(define (curry f x)
(lambda (y)
f x)N
(define (map f xs)
(if (null? xs)
'O
(cons (f (car xs))
(map f (cdr xs)))))

(define (remove-event! s e)
(call-method s 'remove-from-wavefront e)
(call-method e 'add-successor (self)))
(define-method (initialize)
(let ([stream (object-value (self) 'stream)])
(map (curry remove-event! stream)
(object-value (self) 'last-wavefront))
(call-method stream 'add-to-wavefront (self))))
(define-method (add-successor event)
(add-computed-value 'successors event))

"We are considering writing a dynamic compiler for Netfarm scripts which would
generate Common Lisp code, which would then be compiled to a faster representation
using compile.

8https://gitlab.com/Theemacsshibe/slacker-compiler

https://gitlab.com/Theemacsshibe/slacker-compiler

A replicated object system

Some helper functions (which probably should exist in a standard
library) have had to be defined, but they demonstrate that the
Netfarm script machine is capable of computing with higher order
functions, and returning closures.

The Netfarm implementation represents Netfarm objects as Com-
mon Lisp instances, and schemas are translated® to Common Lisp
classes. It is thus possible to dispatch on the schema of an object
from Common Lisp code; the implementation uses this feature to
allow for clients to provide methods to duplicate Netfarm slots with
specialised representations of Netfarm values, and it has proven use-
ful while testing Netfarm code. During manual testing, we wrote a
short method to present an event graph visually using the Common
Lisp Interface Manager [14], (using format-graph-from-root) to
quickly verify if the graph was being modified as expected.

4.3 Other decentralised log implementations

Our design is mostly based on the state resolution graph used in
Matrix, described in [1]. Matrix maintains a similar directed acyclic
graph of some events, where any event references the power level
events which allow it to occur. (Power level events change the
power levels of users, which are used to grant permissions to them,
such as the ability to invite or kick other users.) The events are
then topologically sorted to determine all power levels, and then
other events can be verified based on the computed levels. The
operation of the wavefront (which is also called the set of forward
extremities in Matrix) is programmed as part of a Matrix server
implementation, whereas the event graph in Netfarm is an ordinary
application, for which node implementations do not have to have
any special implementation code to support.

[11] offers a proof that the Matrix event graph is a CRDT, as well
as analysis of how the data structure handles network latency and
partitions. However, the implementation in Netfarm is a sort of
proof by reduction, as it is possible to rewrite event graph actions
into actions on a computed value system, which we have already
proven is a CRDT. This proof may be considerably simpler than the
aforementioned proof; but it only proves that actions are commuta-
tive, not that the data structure works as intended, or is particularly
efficient.

[16] is a similar event log, which is implemented atop IPFS, based
on a grow-only set. This log does not maintain a wavefront or previ-
ous wavefronts. Instead, events contain Lamport timestamps, where
an event contains a timestamp greater than the timestamps of all
observed previous events. To access the log sequentially, a list of
events and their timestamps is retrieved; which may cause signif-
icant space overhead if only retrieving a small subset of events.
However, the runtime of sufficiently large accesses will be domi-
nated by the latency of resolving references. A balance between
being bottlenecked on network latency, or bottlenecked on network
throughput can be made, by allowing the observed wavefront to
grow to a relatively large number of events, and only clearing the
wavefront when it grows further than that. The previous wave-
fronts of events would then contain many events, which can be
retrieved in parallel.

9Schemas themselves are not classes. If that were the case, the class of the schema
schema/class would have to be itself, which is not possible to construct in CLOS.

ELS’21, May 3-4 2021, Online

5 CONCLUSIONS AND FURTHER WORK

We have described how we have designed the Netfarm replicated
object system, which is notable for providing a programming sys-
tem, allowing many distributed programs to be implemented on
one Netfarm network. We then demonstrated programming with
Netfarm by designing a simple event log, demonstrating that it is
possible to replicate the behaviour of other decentralised systems
on Netfarm easily.

A replicated object system, which has demonstrated itself capable
of implementing other decentralised systems, has several benefits.
The infrastructure used to implement multiple decentralised sys-
tems and networks can be simplfied. It would only be necessary
to implement each decentralised system using the object system,
and then one network and one node process could be used to host
all the systems. An easily accessible network would lower the cost
of entry to developing and deploying a new replicated program,
as already existing networks and node implementations could be
reused. A replicated system designed around objects communicat-
ing with protocols of messages allows for more extension than in
systems with protocols consisting of bare data. Still, some additional
features and changes would facilitate using more applications on
Netfarm, and would make the programming model provided more
understandable.

5.1 Protocols

A sufficiently large distributed system will contain multiple im-
plementations of some concept. These implementations may be
abstracted over by programming against protocols. However, it is
very likely these implementations are going to use different proto-
cols. [18] bluntly states this problem as “names don’t scale well [...].
So, [...] we are looking for ways to get things to happen without
[...] having to tell any object to ‘just go do this’”. Names are the
least of our problems though; we are more likely to find protocols
which have methods with completely different meanings, than the
same meanings attached to different names. Some kind of inference
strategy may be useful to figure out how to express one protocol in
terms of another.

Netfarm does not have an inheritance mechanism, because the
techniques used for inheritance can vary wildly. A subtle variation is
how a class precedence list is computed - Common Lisp uses a simple
topological sort for instances of standard-class, and Dylan and
Python (among other languages) use C3 linearization. A much
larger variation is how slots and methods interact; in Common Lisp
and Smalltalk (among others), slots and methods are orthogonal and
methods cannot override slots, but in Self and Newspeak, methods
can override slots. The absence of an inheritance mechanism leaves
how to implement inheritance to the user, for better or worse.

5.2 Object identity

Using hashes to form the identity of objects is typical for distributed
hash tables, but it can create some strange situations with mutabil-
ity of any form. It suffices to say that two objects with the same
initial state are considered to be the same object, as hashing either
object will result in the same hash. This notion of identity can of-
ten confuse a programmer, whom is used to creating objects that
have the same slot values, but are certainly different; modifying

ELS’21, May 3-4 2021, Online

computed values of one object should not make visible changes to
another object.

It may be possible to implement a naming system, like the system
described in [4], where each node names each object with a random
but unique identifier specific to each node, and additionally main-
tains tables of what other nodes have named each object stored.
The usual searching used in distributed hash tables could still be
employed, by having references contain the usual content hash, as
well as the name one node provided. The content hash would be
used to locate nodes which likely store the object required, then
the name could be translated to retrieve the correct object.

REFERENCES

[1] Neil Alexander. State resolution v2 for the hopelessly unmathematical, 2020.

URL https://matrix.org/docs/guides/implementing- stateres.

Applied Language. The Netfarm book, 2020. URL https://cal-coop.gitlab.io/

netfarm/documentation/.

[3] Joe Armstrong. Making reliable distributed systems in the presence of software
errors. PhD thesis, KTH Royal Institute of Technology, 2003. URL http://erlang.
org/download/armstrong_thesis_2003.pdf.

[4] Ganesha Beedubail and Udo Pooch. Naming consistencies in object oriented
replicated systems, 1996. URL https://citeseerx.ist.psu.edu/viewdoc/download?
do0i=10.1.1.19.8209&rep=rep1&type=pdf.

[5] Arthur Brock and Eric Harris-Braun. Holo: Cryptocurrency infrastructure for
global scale and stable value, 2017. URL https://files.holo.host/2017/11/Holo-
Currency-White-Paper_2017-11-28.pdf.

[2

Hayley Patton

Cambridge Centre for Alternative Finance. Cambridge Bitcoin electricity con-
sumption index, 2020. URL https://cbeci.org/cbeci/comparisons.

Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Trans. Inf. Theor., 22(6):644-654, September 1976. ISSN 0018-9448. doi: 10.1109/
TIT.1976.1055638.

Ethereum developers. Shard chains, 2021. URL https://ethereum.org/en/eth2/
shard-chains/.

Adele Goldberg and David Robson. Smalltalk-80: The language and its imple-
mentation, 1983.

Eiichi Goto. Monocopy and associative algorithms in extended Lisp. University
of Tokyo Technical Report TR-74-03, 1974.

F. Jacob, C. Beer, N. Henze, and H. Hartenstein. Analysis of the Matrix event
graph replicated data type. IEEE Access, 9:28317-28333, 2021. doi: 10.1109/
ACCESS.2021.3058576.

P.J. Landin. The Mechanical Evaluation of Expressions. The Computer Journal, 6
(4):308-320, 01 1964. ISSN 0010-4620. doi: 10.1093/comjnl/6.4.308. URL https:
//doi.org/10.1093/comijnl/6.4.308.

Petar Maymounkov and David Maziéres. Kademlia: A peer-to-peer information
system based on the XOR metric, 2002. URL https://pdos.csail. mit.edu/~petar/
papers/maymounkov-kademlia-Incs.pdf.

Scott McKay. CLIM: The Common Lisp interface manager. Commun. ACM, 34(9):
58-59, September 1991. ISSN 0001-0782. doi: 10.1145/114669.114675.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2007.
OrbitDB. Append-only log CRDT on IPFS, 2016. URL https://github.com/orbitdb/
ipfs-log.

Marc Shapiro and Nuno M. Preguica. Designing a commutative replicated data
type. CoRR, abs/0710.1784, 2007. URL http://arxiv.org/abs/0710.1784.
Viewpoints Research Institute. STEPS towards the reinvention of programming,
2007. URL http://www.vpri.org/pdf/tr2007008_steps.pdf.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger,
2020. URL https://ethereum.github.io/yellowpaper/paper.pdf.

https://matrix.org/docs/guides/implementing-stateres
https://cal-coop.gitlab.io/netfarm/documentation/
https://cal-coop.gitlab.io/netfarm/documentation/
http://erlang.org/download/armstrong_thesis_2003.pdf
http://erlang.org/download/armstrong_thesis_2003.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.8209&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.8209&rep=rep1&type=pdf
https://files.holo.host/2017/11/Holo-Currency-White-Paper_2017-11-28.pdf
https://files.holo.host/2017/11/Holo-Currency-White-Paper_2017-11-28.pdf
https://cbeci.org/cbeci/comparisons
https://ethereum.org/en/eth2/shard-chains/
https://ethereum.org/en/eth2/shard-chains/
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1093/comjnl/6.4.308
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://github.com/orbitdb/ipfs-log
https://github.com/orbitdb/ipfs-log
http://arxiv.org/abs/0710.1784
http://www.vpri.org/pdf/tr2007008_steps.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Abstract
	1 Introduction
	1.1 Distribution
	1.2 Replication

	2 Previous work
	2.1 Distributed ledgers
	2.2 Federated networks
	2.3 Distributed object systems and Actors

	3 Our technique
	3.1 Side effects
	3.2 Scripts

	4 An example use
	4.1 Searching for a timestamp
	4.2 Programming Netfarm
	4.3 Other decentralised log implementations

	5 Conclusions and further work
	5.1 Protocols
	5.2 Object identity

	References

