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Abstract. This research article presents a new concept, ”Neutrosophic N -topological ordered space”. Also we

define some of the separation axioms, weakly neutrosophic N ς-T2-ordered space and Neutrosophic N ς-regularly

ordered space in Neutrosophic N -topological ordered space. Besides giving some of the innovative properties

of these spaces.
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—————————————————————————————————————————-

1. Introduction

L.A. Zadeh introduced the concept of fuzzy sets [14]. The theory of fuzzy topological

spaces was developed by Chang [3] . The study of intutionistic fuzzy set was established by

Atanassov [1] in 1983. In [4], the another notion called intutionistic fuzzy topological space was

found by Coker. F. Smarandache originated the concepts of neutrosophy and neutrosophic set

( [12], [13]). The concept of neutrosophic crisp set and neutrosophic crisp topological space were

introduced by A.A. Salama and S.A. Alblowi [11]. Leopoldo Nachbin [9] initiated the study of

topological ordered spaces in 1965. Lellis Thivagar et al. [6] have proposed the concept of N-

topological space. Recently we found the new concept called N -topological ordered spaces [5].

In this paper, we investigate the concept called Neutrosophic N -topological Ordered Space.

And also, we establish some of the Separation Axioms and its characterizations.
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2. Preliminaries

Definition 2.1. [8] Let X be a non-empty set, τ1, τ2, ....., τN be N-arbitrary topologies defined

on X and let the collection Nτ be defined by

Nτ =
{

S ⊆ X : S = (∪Ni=1Ai)
⋃

(∩Ni=1Bi), Ai, Bi ∈ τi
}

satisfying the following axioms:

(i) X, ∅ ∈ Nτ .

(ii)
⋃

∞

i=1 Si ∈ Nτ for all Si ∈ Nτ .

(iii)
⋂n

i=1 Si ∈ Nτ for all Si ∈ Nτ .

Then the pair (X,Nτ) is called a N -topological space on X and the elements of the collection

Nτ are known as Nτ -open sets on X. A subset A of X is called Nτ -closed on X if the

complement of A is Nτ -open on X. The set of all Nτ -open sets on X and the set of all

Nτ -closed sets on X are respectively, denoted by NτO(X) and NτC(X).

Definition 2.2. [5] An N -topological Space (X,N τ) equipped with a partial order relation

≤ (that is, Reflexive, Transitive and Antisymmetric) is called an N -topological Ordered

Space (X,N τ,≤).

Definition 2.3. [12] Let X be a non-empty fixed set. A neutrosophic set A is an object

having the form A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X} where µA(x), σA(x), γA(x) which

represents the degree of membership function, the degree of indeterminacy and the degree

of non-membership function respectively of each element x ∈ X to the set A. Also −0 ≤

µA(x) + σA(x) + γA(x) ≤ 3+ for all x ∈ X.

Remark 2.4. [12, 13] (1) A neutrosophic set A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X} can be

identified to an ordered triple set 〈µA, σA, γA〉 in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = 〈µA, σA, γA〉 for the neutrosophic

set A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X}

Definition 2.5. [10] Let {Ai, i ∈ J} be an arbitrary family of neutrosophic sets in X. Then

(a) ∩Ai = {〈x,∧µAi
(x),∧σAi

(x),∨γAi
(x)〉 : x ∈ X};

(b) ∪Ai = {〈x,∨µAi
(x),∨σAi

(x),∧γAi
(x)〉 : x ∈ X}

Definition 2.6. [10]

0N = {〈x, 0, 0, 1〉 : x ∈ X} and 1N = {〈x, 1, 1, 0〉 : x ∈ X}

Definition 2.7. [6] A neutrosophic N-topology on a non-empty set X is a family Nnτ of

neutrosophic sets in X satisfying the following axioms:

(i) 0N , 1N ∈ Nnτ

(ii) ∪∞i=1Ai ∈ Nnτ for all Ai ∈ Nnτ
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(iii) ∩ni=1Ai ∈ Nnτ for all Ai ∈ Nnτ .

Then the pair (X,Nnτ) is called neutrosophic N-topological space and each neutrosophic set

in Nnτ is called neutrosophic Nnτ -open set. The complement of neutrosophic Nnτ -open set

is called neutrosophic Nnτ -closed set.

Definition 2.8. [6] Let (X,Nnτ) be a neutrosophic N-topological space on X and A be a

neutrosophic set on X, then Nnint(A) and Nncl(A) are respectively defined as

(i) Nnint(A) = ∪{G : G ⊆ A and G is a Nnτ − opensetinX}

(ii) Nncl(A) = ∩{F : A ⊆ F and F is a Nnτ − closedsetinX}

Definition 2.9. [10] A neutrosophic set A = 〈x, µA, σA, γA〉 in a neutrosophic topological

space (X,T) is said to be a neutrosophic neighbourhood of a neutrosophic point xr,t,s ∈ X, if

there exists a neutrosophic open set B = 〈x, µB, σB, γB〉 with xr,t,s ⊆ B ⊆ A.

Notation 1. [10] We denote neutrosophic neighbourhood A of a in X by neutrosophic neigh-

bourhood A of a neutrosophic point ar,t,s for a ∈ X

Definition 2.10. [10] A neutrosophic set A = 〈x, µA, σA, γA〉 in a partially ordered set (X,≤)

is said to be

(i) an increasing neutrosophic set if x ≤ y implies A(x) ⊆ A(y). That is, µA(x) ≤

µA(y), σA(x) ≤ σA(y) and γA(x) ≥ γA(y).

(ii) a decreasing neutrosophic set if x ≤ y implies A(x) ⊇ A(y). That is, µA(x) ≥

µA(y), σA(x) ≥ σA(y) and γA(x) ≤ γA(y).

Definition 2.11. A neutrosophic set A is called neutrosophic N ς-clopen set if it is both

neutrosophic N ς-open set and neutrosophic N ς-closed set.

3. Neutrosophic N -topological Ordered Space

In this paper, we define the notation of Neutrosophic N -Topological Space as Neutrosophic

N -TS, partial order relation as por and also Neutrosophic N -topological Ordered Space as

Neutrosophic N -TOS. We found some results of Neutrosophic N -topological Ordered Spaces

like Neutrosophic N ς-T1-ordered space, Neutrosophic N ς-T2-ordered space, weakly Neutro-

sophic N ς-T2-ordered space, almost Neutrosophic N ς-T2-ordered space and Neutrosophic N ς-

T3-ordered space.

Definition 3.1. A neutrosophic N -TS (X,Nnς) equipped with a por ≤ is called Neutrosophic

N -TOS (X,Nnς,≤).

Definition 3.2. For every u, v ∈ X such that u � v (i.e., u is not related to v) in X, if

there exists a decreasing neutrosophic N ς-open set G containing v such that u /∈ G , then

neutrosophic N -TOS (X,Nnς,≤) is called upper neutrosophic N ς-T1-ordered space.
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Definition 3.3. For every u, v ∈ X such that u � v (i.e., u is not related to v) in X, if

there exists an increasing neutrosophic N ς-open set H containing u such that v /∈ H , then

neutrosophic N -TOS (X,Nnς,≤) is called lower neutrosophic N ς-T1-ordered space.

Definition 3.4. (X,Nnς,≤) is said to be neutrosophic N ς-T1-ordered space if it is both lower

and upper neutrosophic N ς-T1-ordered space.

Example 3.5. Let X = {a, b, c} with a por ≤. For N = 2, let the neutrosophic

sets be U = {x, (0.2, 0.2, 0.4), (0.3, 0.3, 0.1), (0.6, 0.6, 0.2)} and V = {x, (0.4, 0.4, 0.4),

(0.4, 0.4, 0.3), (0.4, 0.4, 0.3)}. Then U ∪ V = {(x, (0.4, 0.4, 0.4) , (0.4, 0.4, 0.3) , (0.4, 0.4, 0.3))}

and U ∩ V = {(x, (0.2, 0.2, 0.4) , (0.3, 0.3, 0.1) , (0.6, 0.6, 0.2))}. Considering ς1 = {0N , 1N , U}

and ς2 = {0N , 1N , V }, then 2ςO(X) = {0N , 1N , U, V, U ∩ V, U ∪ V } which is a neu-

trosophic bitopology on X. Then (X, 2nς,≤) is a neutrosophic bi-topological ordered

space. Let a(0.15,0.2,0.4) and b(0.15,0.15,0.25) be any two neutrosophic points on X. For

a(0.15,0.2,0.4) � b(0.15,0.15,0.25), there exists an increasing neutrosophic 2ς-neighbourhood

U of a(0.15,0.2,0.4) such that U is not a neutrosophic 2ς-neighbourhood of b(0.15,0.15,0.25).

Therefore, (X, 2nς,≤) is a lower neutrosophic 2ς-T1-ordered space. Similarly, we can

do for upper neutrosophic 2ς-T1-ordered space. For N = 3, define the neutro-

sophic sets U = {x, (0.3, 0.3, 0.5) , (0.5, 0.5, 0.3) , (0.7, 0.7, 0.2)}, V = {x, (0.6, 0.6, 0.5) ,

(0.6, 0.6, 0.5) , (0.6, 0.6, 0.5)}. Then U ∪ V = {(x, (0.6, 0.6, 0.5) , (0.6, 0.6, 0.5) , (0.6, 0.6, 0.5))}

and U ∩ V = {(x, (0.3, 0.3, 0.5) , (0.5, 0.5, 0.3) , (0.7, 0.7, 0.2))}. Considering ς1 = {0N , 1N , U},

ς2 = {0N , 1N , V } and ς3 = {0N , 1N}, then 3ςO(X) = {0N , 1N , U, V, U ∩ V, U ∪ V } which

is a neutrosophic tritopology on X. Then (X, 3nς,≤) is neutrosophic tri-topological ordered

space. Let a(0.25,0.3,0.5),b(0.25,0.25,0.35) ∈ X such that a(0.25,0.3,0.5) � b(0.25,0.25,0.35). Then there

exists an increasing neutrosophic 3ς-neighbourhood U of a(0.25,0.3,0.5) such that U is not a neu-

trosophic 3ς-neighbourhood of b(0.25,0.25,0.35). Therefore, (X, 3nς,≤) is a lower neutrosophic

3ς-T1-ordered space. Similarly, we can do for upper neutrosophic 3ς-T1-ordered space.

Theorem 3.6. For a neutrosophic N -TOS (X,Nnς,≤), the following are equivalent:

(i) X is a lower(respectively upper) neutrosophic N ς-T1-ordered space.

(ii) For each u, v ∈ X such that u � v, there exists an increasing(respectively decreas-

ing) neutrosophic N ς-open set G = 〈x, µG, σG, γG〉 containing u(respectively v) such that

r � v(respectively u � r) for all r ∈ G.

Proof. Now we prove the theorem only for lower neutrosophic N ς-T1-ordered space.

(i) ⇒ (ii): Let u � v. By hypothesis, there exists an increasing neutrosophic N ς-open set

G containing u such that v /∈ G. If r ∈ G and r ≤ v, then v ∈ G, a contradiction. Therefore,

r � v for all r ∈ G.
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(ii) ⇒ (i): Let u, v ∈ X such that u � v. Therefore there exists an increasing neutrosophic

N ς-open set G containing u such that r � v for all r ∈ G. Then i(G) is an increasing

neutrosophic N ς-open set of u such that v /∈ i(G). This implies that X is a lower neutrosophic

N ς-T1-ordered space. Similar proof holds for upper neutrosophic N ς-T1-ordered space.

Theorem 3.7. If (X,Nnς,≤) is a lower(respectively upper) neutrosophic N ς-T1-ordered space

and Nnς ⊆ Nnς
∗, then (X,Nnς

∗,≤) is a lower(respectively upper) neutrosophic N ς-T1-ordered

space.

Proof. Let (X,Nnς,≤) be a lower neutrosophic N ς-T1-ordered space. Then if u, v ∈ X such

that u � v, there exists an increasing neutrosophic N ς-open set U = 〈x, µU , σU , γU 〉 of u such

that U is not a neutropsophic N ς-open set of v. Since Nnς ⊆ Nnς
∗, therefore if u, v ∈ X such

that u � v, there exists an increasing neutrosophic N ς∗-open set U∗ of u such that U∗ is not

a neutrosophic N ς∗-open set of v. Thus (X,Nnς
∗,≤) is a lower neutrosophic N ς-T1-ordered

space. Similarly, we can prove for upper neutrosophic N ς-T1-ordered space.

Definition 3.8. For each pair of elements u � v in X, there exists neutrosophic N ς-open

sets G = 〈x, µG, σG, γG〉 and H = 〈x, µH , σH , γH〉 such that G is an increasing neutrosophic

N ς-neighbourhood of u, H is a decreasing neutrosophic N ς-neighbourhood of v and G∩H =

0N , then (X,Nnς,≤) is defined to be neutrosophic N ς-T2-ordered space.

Theorem 3.9. For a neutrosophic N -TOS (X,Nnς,≤), the following are equivalent:

(i) X is a neutrosophic N ς-T2-ordered space.

(ii) For each pair u, v ∈ X such that u � v, there exists neutrosophic N ς-open sets G =

〈x, µG, σG, γG〉 and H = 〈x, µH , σH , γH〉 such that u ∈ G, v ∈ H and s ∈ G, t ∈ H together

imply that s � t.

(iii) The graph of the partial order of X is a neutrosophic N ς∗-closed where N ς∗ is the

product topology for X ×X.

Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (i): Let u, v ∈ X with u � v, there exists neutrosophic N ς-open sets G and H

satisfying the properties in (ii). Since i(G) is an increasing neutrosophic N ς-open set and

d(H) is a decreasing neutrosophic N ς-open set, we have i(G) ∩ d(H) = 0N . Suppose if

w ∈ i(G) ∩ d(H), there exists s ∈ G such that s ≤ w and there exists t ∈ H such that

w ≤ t. Then s ≤ t, a contradiction. Therefore i(G) ∩ d(H) = 0N . Hence X is neutrosophic

N ς-T2-ordered space.

(i) ⇒ (iii): Let G be the graph of the partial order of X and (s, t) ∈ Nnς
∗-cl(G) and

(s, t) /∈ G. Then s � t and therefore there exists an increasing neutrosophic N ς-open set A of
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s and a decreasing neutrosophic N ς-open set B of t such that A ∩ B = 0N . A × B being a

neutrosophic N ς∗-open set of (s, t), (A × B) ∩ G = 0N . Thus (s, t) ∈ A × B. It follows that

(s, s) ∈ A which implies s ≤ t. Since A is an increasing neutrosophic N ς-open set, t ∈ A.

Then A ∩ B 6= 0N , a contradiction. Therefore, (s, t) /∈ Nnς
∗-cl(G) and consequently, G is

neutrosophic N ς∗-closed.

(iii) ⇒ (i): Suppose s � t. Then (s, s) /∈ G where G is the graph of the partial order of

X. Since G is neutrosophic N ς∗-closed, there exists neutrosophic N ς∗-open sets S and T such

that (s, t) ∈ S × T and (S × T ) ∩ G = 0N . Let S∗ = i(S) and T ∗ = d(T ). Then S∗ is an

increasing neutrosophic N ς-open set of s, T
∗

is a decreasing neutrosophic N ς-open set of t.

Also S∗ ∩ T ∗ = 0N , because suppose if r ∈ S∗ ∩ T ∗, then there exists p ∈ S, q ∈ T such that

p ≤ r ≤ q which implies p ≤ q. So (p, q) ∈ (S × T ) ∩ G, a contradiction. Therefore, S∗ ∩ T ∗

must be empty. Hence X is neutrosophic N ς-T2-ordered space.

Theorem 3.10. A neutrosophic N -TOS (X,Nnς,≤) is a neutrosophic N ς-T2-ordered space

if and only if for each r ∈ X, there exists an increasing(respectively decreasing) neutrosophic

N ς-clopen subset of X containing r.

Proof. If X is neutrosophic N ς-T2-ordered space and let H ⊆ X, then H is the required

increasing (respectively decreasing) neutrosophic N ς-clopen subset of X for all r ∈ X. Con-

versely, let us assume r � s in X. By hypothesis, there exists an increasing(respectively

decreasing) neutrosophic N ς-clopen subset H in X containing r. If s ∈ H, then there is

nothing to prove. If s /∈ H, then X \H is a decreasing neutrosophic N ς-clopen subset of X

containing s. Also H ∩X \H = ∅. Hence (X,Nnς,≤) is a neutrosophic N ς-T2-ordered space.

4. Weakly Neutrosophic N ς-T2-Ordered and Almost Neutrosophic N ς-T2-Ordered

Space

Definition 4.1. A neutrosophic N -TOS is said to be weakly neutrosophic N ς-T2-ordered

space if for given v < u(that is v ≤ u and v 6= u), there exists neutrosophic N ς-open sets G =

〈x, µG, σG, γG〉 and H = 〈x, µH , σH , γH〉 containing u and v respectively such that r ∈ G and

s ∈ H together imply that s < r.

Definition 4.2. A neutrosophic N -TOS is said to be an almost neutrosophic N ς-T2-ordered

space if for given u ‖ v, there exists neutrosophic N ς-open sets G = 〈x, µG, σG, γG〉 and H =

〈x, µH , σH , γH〉 containing u and v respectively such that r ∈ G and s ∈ H together imply

that r ‖ s.
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Theorem 4.3. A neutrosophic N -TOS (X,Nnς,≤) is a neutrosophic N ς-T2-ordered space if

and only if it is weakly neutrosophic N ς-T2-ordered and almost neutrosophic N ς-T2-ordered

space.

Proof. Let (X,Nnς,≤) be a neutrosophic N ς-T2-ordered space. Then it is weakly neutrosophic

N ς-T2-ordered space. Let u ‖ v. Then u � v and v � u. Since X is neutrosophic N ς-T2-

ordered and u � v, then there exists neutrosophic N ς-open sets G and H containing u and

v respectively such that r ∈ G and s ∈ H together imply that r � s. Since v � u, there

exists neutrosophic N ς-open sets H∗ of vand G∗ of u such that s ∈ H∗ and r ∈ G∗ together

imply that s � r. Thus G ∩G∗ is a neutrosophic N ς-open set containing u and H ∩H∗ is a

neutrosophic N ς-open set containing v such that r ∈ G∩G∗, s ∈ H ∩H∗ together imply that

r ‖ s. Hence X is almost neutrosophic N ς-T2-ordered space.

Conversely, if u � v, then either v < u or v � u. If v < u and since X is weakly neutrosophic

N ς-T2-ordered space, then there exists neutrosophic N ς-open sets G and H containing u and

v respectively such that r ∈ G, s ∈ H implies that s < r, that is r � s. If v � u, then obviously

u ‖ v. And since X is almost neutrosophic N ς-T2-ordered space, for given u ‖ v, there exists

neutrosophic N ς-open sets G∗ and H∗ containing u and v respectively such that r ∈ G∗ and

s ∈ H∗ together imply that r ‖ s. Therefore (X,Nnς,≤) is a neutrosophic N ς-T2-ordered

space.

5. Neutrosophic N ς-Regularly Ordered Space

Definition 5.1. Let (X,Nnς,≤) be a neutrosophic N -TOS. If for each decreasing(respectively

increasing) neutrosophic N ς-closed subset W in X and for each s /∈W , there exists a neutro-

sophic N ς-neighbourhood G of s and a neutrosophic N ς-neighbourhood H of W such that G is

increasing(respectively decreasing), H is decreasing(respectively increasing) and G∩H = 0N ,

then (X,Nnς,≤) is said to be lower(respectively upper) neutrosophic N ς-regularly ordered

space.

Definition 5.2. (X,Nnς,≤) is said to be neutrosophic N ς-regularly ordered space if it is both

lower and upper neutrosophic N ς-regularly ordered space.

Definition 5.3. A neutrosophic N ς-T1-ordered neutrosophic N ς-regularly ordered space is

called N ς-T3-ordered space.

Theorem 5.4. Every neutrosophic N ς-T1-ordered space, lower or upper neutrosophic N ς-

regularly ordered space is neutrosophic N ς-T2-ordered space.
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Proof. Let X be a neutrosophic N ς-T1-ordered space, lower neutrosophic N ς-regularly ordered

space and let u � v. Since X is neutrosophic N ς-T1-ordered space, [←, v] is neutrosophic N ς-

closed. Also [←, v] is a decreasing neutrosophic set. Since u /∈ [←, v], there exists an increasing

neutrosophic N ς-neighbourhood G of u and a decreasing neutrosophic N ς-neighbourhood H

of [←, v] such that G ∩ H = 0N . Since v ∈ [←, v] ⊆ H, X is a neutrosophic N ς-T2-ordered

space.

6. Conclusions

In this paper, we defined a new concept ”Neutrosophic N -Topological Ordered Spaces”.

some characterisitics of separation axioms N ς-Ti-ordered space (i = 0, 1, 2, 3) dealing with

neutrosophic were studied here. In our future work, we deal with neutrosophic N ς-Ti-ordered

space (i=4,5) and its characteristics in Neutrosophic N -Topological Ordered Spaces.
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