

University of New Mexico

Neutrosophic \mathcal{N} -Topological Ordered Space

S. Firthous Fatima¹ and A. Durgaselvi^{2,*}

¹Assistant Professor of Mathematics, Sadakathullah Appa College, Tirunelveli-627 011, Tamil Nadu, India; kitherali@yahoo.co.in

²Research Scholar, Reg. No: 18211192092007, Department of Mathematics, Sadakathullah Appa College, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India.; durgamuthu9526@gmail.com

*Correspondence: durgamuthu9526@gmail.com

Abstract. This research article presents a new concept, "Neutrosophic \mathcal{N} -topological ordered space". Also we define some of the separation axioms, weakly neutrosophic \mathcal{N}_{ς} -T₂-ordered space and Neutrosophic \mathcal{N}_{ς} -regularly ordered space in Neutrosophic \mathcal{N} -topological ordered space. Besides giving some of the innovative properties of these spaces.

Keywords: Neutrosophic \mathcal{N}_{ς} - T_1 -ordered space, Neutrosophic \mathcal{N}_{ς} - T_2 -ordered space, Weakly neutrosophic \mathcal{N}_{ς} - T_2 -ordered space, Almost Neutrosophic \mathcal{N}_{ς} - T_2 -ordered space and Neutrosophic \mathcal{N}_{ς} -regularly ordered space.

1. Introduction

L.A. Zadeh introduced the concept of fuzzy sets [14]. The theory of fuzzy topological spaces was developed by Chang [3]. The study of intutionistic fuzzy set was established by Atanassov [1] in 1983. In [4], the another notion called intutionistic fuzzy topological space was found by Coker. F. Smarandache originated the concepts of neutrosophy and neutrosophic set ([12], [13]). The concept of neutrosophic crisp set and neutrosophic crisp topological space were introduced by A.A. Salama and S.A. Alblowi [11]. Leopoldo Nachbin [9] initiated the study of topological ordered spaces in 1965. Lellis Thivagar et al. [6] have proposed the concept of N-topological space. Recently we found the new concept called \mathcal{N} -topological ordered spaces [5]. In this paper, we investigate the concept called Neutrosophic \mathcal{N} -topological Ordered Space. And also, we establish some of the Separation Axioms and its characterizations.

S. Firthous Fatima, A. Durgaselvi, Neutrosophic $\mathcal{N}\text{-}\mathrm{Topological}$ Ordered Space

2. Preliminaries

Definition 2.1. [8] Let X be a non-empty set, $\tau_1, \tau_2, \ldots, \tau_N$ be N-arbitrary topologies defined on X and let the collection $N\tau$ be defined by

 $N\tau = \left\{ S \subseteq X : S = \left(\bigcup_{i=1}^{N} A_i\right) \bigcup \left(\bigcap_{i=1}^{N} B_i\right), A_i, B_i \in \tau_i \right\}$

satisfying the following axioms:

(i)
$$X, \emptyset \in N\tau$$

- (ii) $\bigcup_{i=1}^{\infty} S_i \in N\tau$ for all $S_i \in N\tau$.
- (iii) $\bigcap_{i=1}^{n} S_i \in N\tau$ for all $S_i \in N\tau$.

Then the pair $(X, N\tau)$ is called a *N*-topological space on X and the elements of the collection $N\tau$ are known as $N\tau$ -open sets on X. A subset A of X is called $N\tau$ -closed on X if the complement of A is $N\tau$ -open on X. The set of all $N\tau$ -open sets on X and the set of all $N\tau$ -closed sets on X are respectively, denoted by $N\tau O(X)$ and $N\tau C(X)$.

Definition 2.2. [5] An \mathcal{N} -topological Space $(X, \mathcal{N}\tau)$ equipped with a partial order relation \leq (that is, *Reflexive*, *Transitive* and *Antisymmetric*) is called an \mathcal{N} -topological Ordered Space $(X, \mathcal{N}\tau, \leq)$.

Definition 2.3. [12] Let X be a non-empty fixed set. A neutrosophic set A is an object having the form $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X\}$ where $\mu_A(x), \sigma_A(x), \gamma_A(x)$ which represents the degree of membership function, the degree of indeterminacy and the degree of non-membership function respectively of each element $x \in X$ to the set A. Also $-0 \leq \mu_A(x) + \sigma_A(x) + \gamma_A(x) \leq 3^+$ for all $x \in X$.

Remark 2.4. [12,13] (1) A neutrosophic set $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X\}$ can be identified to an ordered triple set $\langle \mu_A, \sigma_A, \gamma_A \rangle$ in $]0^-, 1^+[$ on X.

(2) For the sake of simplicity, we shall use the symbol $A = \langle \mu_A, \sigma_A, \gamma_A \rangle$ for the neutrosophic set $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X \}$

Definition 2.5. [10] Let $\{A_i, i \in J\}$ be an arbitrary family of neutrosophic sets in X. Then (a) $\cap A_i = \{\langle x, \wedge \mu_{A_i}(x), \wedge \sigma_{A_i}(x), \vee \gamma_{A_i}(x) \rangle : x \in X\};$ (b) $\cup A_i = \{\langle x, \vee \mu_{A_i}(x), \vee \sigma_{A_i}(x), \wedge \gamma_{A_i}(x) \rangle : x \in X\}$

Definition 2.6. [10]

 $0_N = \{ \langle x, 0, 0, 1 \rangle : x \in X \}$ and $1_N = \{ \langle x, 1, 1, 0 \rangle : x \in X \}$

Definition 2.7. [6] A neutrosophic N-topology on a non-empty set X is a family $N_n \tau$ of neutrosophic sets in X satisfying the following axioms:

- (i) $0_N, 1_N \in N_n \tau$
- (ii) $\cup_{i=1}^{\infty} A_i \in N_n \tau$ for all $A_i \in N_n \tau$

S. Firthous Fatima, A. Durgaselvi, Neutrosophic \mathcal{N} -Topological Ordered Space

(iii) $\cap_{i=1}^{n} A_i \in N_n \tau$ for all $A_i \in N_n \tau$.

Then the pair $(X, N_n \tau)$ is called neutrosophic N-topological space and each neutrosophic set in $N_n \tau$ is called neutrosophic $N_n \tau$ -open set. The complement of neutrosophic $N_n \tau$ -open set is called neutrosophic $N_n \tau$ -closed set.

Definition 2.8. [6] Let $(X, N_n \tau)$ be a neutrosophic N-topological space on X and A be a neutrosophic set on X, then $N_n int(A)$ and $N_n cl(A)$ are respectively defined as

- (i) $N_n int(A) = \bigcup \{ G \colon G \subseteq A \text{ and } G \text{ is a } N_n \tau opensetinX \}$
- (ii) $N_n cl(A) = \cap \{F \colon A \subseteq F \text{ and } F \text{ is a } N_n \tau closed set in X\}$

Definition 2.9. [10] A neutrosophic set $A = \langle x, \mu_A, \sigma_A, \gamma_A \rangle$ in a neutrosophic topological space (X,T) is said to be a neutrosophic neighbourhood of a neutrosophic point $x_{r,t,s} \in X$, if there exists a neutrosophic open set $B = \langle x, \mu_B, \sigma_B, \gamma_B \rangle$ with $x_{r,t,s} \subseteq B \subseteq A$.

Notation 1. [10] We denote neutrosophic neighbourhood A of a in X by neutrosophic neighbourhood A of a neutrosophic point $a_{r,t,s}$ for $a \in X$

Definition 2.10. [10] A neutrosophic set $A = \langle x, \mu_A, \sigma_A, \gamma_A \rangle$ in a partially ordered set (X, \leq) is said to be

(i) an increasing neutrosophic set if $x \leq y$ implies $A(x) \subseteq A(y)$. That is, $\mu_A(x) \leq \mu_A(y), \sigma_A(x) \leq \sigma_A(y)$ and $\gamma_A(x) \geq \gamma_A(y)$.

(ii) a decreasing neutrosophic set if $x \leq y$ implies $A(x) \supseteq A(y)$. That is, $\mu_A(x) \geq \mu_A(y), \sigma_A(x) \geq \sigma_A(y)$ and $\gamma_A(x) \leq \gamma_A(y)$.

Definition 2.11. A neutrosophic set A is called neutrosophic \mathcal{N}_{ς} -clopen set if it is both neutrosophic \mathcal{N}_{ς} -open set and neutrosophic \mathcal{N}_{ς} -closed set.

3. Neutrosophic *N*-topological Ordered Space

In this paper, we define the notation of Neutrosophic \mathcal{N} -Topological Space as Neutrosophic \mathcal{N} -TS, partial order relation as por and also Neutrosophic \mathcal{N} -topological Ordered Space as Neutrosophic \mathcal{N} -TOS. We found some results of Neutrosophic \mathcal{N} -topological Ordered Spaces like Neutrosophic \mathcal{N}_{ς} - T_1 -ordered space, Neutrosophic \mathcal{N}_{ς} - T_2 -ordered space, weakly Neutrosophic \mathcal{N}_{ς} - T_2 -ordered space, almost Neutrosophic \mathcal{N}_{ς} - T_2 -ordered space and Neutrosophic \mathcal{N}_{ς} - T_3 -ordered space.

Definition 3.1. A neutrosophic \mathcal{N} -TS $(X, \mathcal{N}_n\varsigma)$ equipped with a por \leq is called Neutrosophic \mathcal{N} -TOS $(X, \mathcal{N}_n\varsigma, \leq)$.

Definition 3.2. For every $u, v \in X$ such that $u \nleq v$ (i.e., u is not related to v) in X, if there exists a decreasing neutrosophic \mathcal{N}_{ς} -open set G containing v such that $u \notin G$, then neutrosophic \mathcal{N} -TOS $(X, \mathcal{N}_n\varsigma, \leq)$ is called *upper* neutrosophic \mathcal{N}_{ς} - T_1 -ordered space.

S. Firthous Fatima, A. Durgaselvi, Neutrosophic \mathcal{N} -Topological Ordered Space

Definition 3.3. For every $u, v \in X$ such that $u \nleq v$ (i.e., u is not related to v) in X, if there exists an increasing neutrosophic \mathcal{N}_{ς} -open set H containing u such that $v \notin H$, then neutrosophic \mathcal{N} -TOS $(X, \mathcal{N}_n\varsigma, \leq)$ is called *lower* neutrosophic \mathcal{N}_{ς} - T_1 -ordered space.

Definition 3.4. $(X, \mathcal{N}_n\varsigma, \leq)$ is said to be neutrosophic $\mathcal{N}\varsigma$ - T_1 -ordered space if it is both lower and upper neutrosophic $\mathcal{N}\varsigma$ - T_1 -ordered space.

Example 3.5. Let $X = \{a, b, c\}$ with a por \leq . For $\mathcal{N} = 2$, let the neutrosophic sets be $U = \{x, (0.2, 0.2, 0.4), (0.3, 0.3, 0.1), (0.6, 0.6, 0.2)\}$ and $V = \{x, (0.4, 0.4, 0.4), (0$ (0.4, 0.4, 0.3), (0.4, 0.4, 0.3). Then $U \cup V = \{(x, (0.4, 0.4, 0.4), (0.4, 0.4, 0.3), (0.4, 0.4, 0.3))\}$ and $U \cap V = \{(x, (0.2, 0.2, 0.4), (0.3, 0.3, 0.1), (0.6, 0.6, 0.2))\}$. Considering $\varsigma_1 = \{0_N, 1_N, U\}$ and $\varsigma_2 = \{0_N, 1_N, V\}$, then $2\varsigma O(X) = \{0_N, 1_N, U, V, U \cap V, U \cup V\}$ which is a neutrosophic bitopology on X. Then $(X, 2_n \varsigma, \leq)$ is a neutrosophic bi-topological ordered space. Let $a_{(0.15,0.2,0.4)}$ and $b_{(0.15,0.15,0.25)}$ be any two neutrosophic points on X. For $a_{(0.15,0.2,0.4)} \nleq b_{(0.15,0.15,0.25)}$, there exists an increasing neutrosophic 2 ς -neighbourhood U of $a_{(0.15,0.2,0.4)}$ such that U is not a neutrosophic 2ς -neighbourhood of $b_{(0.15,0.15,0.25)}$. Therefore, $(X, 2_n\varsigma, \leq)$ is a lower neutrosophic $2\varsigma T_1$ -ordered space. Similarly, we can do for upper neutrosophic $2\varsigma T_1$ -ordered space. For $\mathcal{N} = 3$, define the neutrosophic sets $U = \{x, (0.3, 0.3, 0.5), (0.5, 0.5, 0.3), (0.7, 0.7, 0.2)\}, V = \{x, (0.6, 0.6, 0.5), (0.5, 0.5, 0.3), (0.7, 0.7, 0.2)\}$ (0.6, 0.6, 0.5), (0.6, 0.6, 0.5). Then $U \cup V = \{(x, (0.6, 0.6, 0.5), (0.6, 0.6, 0.5), (0.6, 0.6, 0.5))\}$ and $U \cap V = \{(x, (0.3, 0.3, 0.5), (0.5, 0.5, 0.3), (0.7, 0.7, 0.2))\}$. Considering $\varsigma_1 = \{0_N, 1_N, U\}$, $\varsigma_2 = \{0_N, 1_N, V\}$ and $\varsigma_3 = \{0_N, 1_N\}$, then $3\varsigma O(X) = \{0_N, 1_N, U, V, U \cap V, U \cup V\}$ which is a neutrosophic tritopology on X. Then $(X, 3_n\varsigma, \leq)$ is neutrosophic tri-topological ordered space. Let $a_{(0.25,0.3,0.5)}, b_{(0.25,0.25,0.35)} \in X$ such that $a_{(0.25,0.3,0.5)} \nleq b_{(0.25,0.25,0.35)}$. Then there exists an increasing neutrosophic 3ς -neighbourhood U of $a_{(0.25,0.3,0.5)}$ such that U is not a neutrosophic 3ς -neighbourhood of $b_{(0,25,0,25,0,35)}$. Therefore, $(X, 3_n\varsigma, \leq)$ is a lower neutrosophic 3ς - T_1 -ordered space. Similarly, we can do for upper neutrosophic 3ς - T_1 -ordered space.

Theorem 3.6. For a neutrosophic \mathcal{N} -TOS $(X, \mathcal{N}_n\varsigma, \leq)$, the following are equivalent:

(i) X is a lower(respectively upper) neutrosophic $\mathcal{N}\varsigma$ -T₁-ordered space.

(ii) For each $u, v \in X$ such that $u \nleq v$, there exists an increasing(respectively decreasing) neutrosophic \mathcal{N}_{ς} -open set $G = \langle x, \mu_G, \sigma_G, \gamma_G \rangle$ containing u(respectively v) such that $r \nleq v$ (respectively $u \nleq r$) for all $r \in G$.

Proof. Now we prove the theorem only for lower neutrosophic \mathcal{N}_{ς} - T_1 -ordered space.

(i) \Rightarrow (ii): Let $u \nleq v$. By hypothesis, there exists an increasing neutrosophic $\mathcal{N}\varsigma$ -open set G containing u such that $v \notin G$. If $r \in G$ and $r \leq v$, then $v \in G$, a contradiction. Therefore, $r \nleq v$ for all $r \in G$.

S. Firthous Fatima, A. Durgaselvi, Neutrosophic \mathcal{N} -Topological Ordered Space

(ii) \Rightarrow (i): Let $u, v \in X$ such that $u \nleq v$. Therefore there exists an increasing neutrosophic \mathcal{N}_{ς} -open set G containing u such that $r \nleq v$ for all $r \in G$. Then i(G) is an increasing neutrosophic \mathcal{N}_{ς} -open set of u such that $v \notin i(G)$. This implies that X is a lower neutrosophic \mathcal{N}_{ς} - T_1 -ordered space. Similar proof holds for upper neutrosophic \mathcal{N}_{ς} - T_1 -ordered space. \Box

Theorem 3.7. If $(X, \mathcal{N}_n\varsigma, \leq)$ is a lower(respectively upper) neutrosophic $\mathcal{N}\varsigma$ - T_1 -ordered space and $\mathcal{N}_n\varsigma \subseteq \mathcal{N}_n\varsigma^*$, then $(X, \mathcal{N}_n\varsigma^*, \leq)$ is a lower(respectively upper) neutrosophic $\mathcal{N}\varsigma$ - T_1 -ordered space.

Proof. Let $(X, \mathcal{N}_n\varsigma, \leq)$ be a lower neutrosophic $\mathcal{N}\varsigma$ - T_1 -ordered space. Then if $u, v \in X$ such that $u \nleq v$, there exists an increasing neutrosophic $\mathcal{N}\varsigma$ -open set $U = \langle x, \mu_U, \sigma_U, \gamma_U \rangle$ of u such that U is not a neutropophic $\mathcal{N}\varsigma$ -open set of v. Since $\mathcal{N}_n\varsigma \subseteq \mathcal{N}_n\varsigma^*$, therefore if $u, v \in X$ such that $u \nleq v$, there exists an increasing neutrosophic $\mathcal{N}\varsigma^*$ -open set U^* of u such that U^* is not a neutrosophic $\mathcal{N}\varsigma^*$ -open set of v. Thus $(X, \mathcal{N}_n\varsigma^*, \leq)$ is a lower neutrosophic $\mathcal{N}\varsigma$ - T_1 -ordered space. Similarly, we can prove for upper neutrosophic $\mathcal{N}\varsigma$ - T_1 -ordered space. \Box

Definition 3.8. For each pair of elements $u \not\leq v$ in X, there exists neutrosophic \mathcal{N}_{ς} -open sets $G = \langle x, \mu_G, \sigma_G, \gamma_G \rangle$ and $H = \langle x, \mu_H, \sigma_H, \gamma_H \rangle$ such that G is an increasing neutrosophic \mathcal{N}_{ς} -neighbourhood of u, H is a decreasing neutrosophic \mathcal{N}_{ς} -neighbourhood of v and $G \cap H =$ 0_N , then $(X, \mathcal{N}_n\varsigma, \leq)$ is defined to be neutrosophic \mathcal{N}_{ς} -T₂-ordered space.

Theorem 3.9. For a neutrosophic \mathcal{N} -TOS $(X, \mathcal{N}_n\varsigma, \leq)$, the following are equivalent:

(i) X is a neutrosophic $\mathcal{N}\varsigma$ -T₂-ordered space.

(ii) For each pair $u, v \in X$ such that $u \nleq v$, there exists neutrosophic $\mathcal{N}\varsigma$ -open sets $G = \langle x, \mu_G, \sigma_G, \gamma_G \rangle$ and $H = \langle x, \mu_H, \sigma_H, \gamma_H \rangle$ such that $u \in G, v \in H$ and $s \in G, t \in H$ together imply that $s \nleq t$.

(iii) The graph of the partial order of X is a neutrosophic $\mathcal{N}\varsigma^*$ -closed where $\mathcal{N}\varsigma^*$ is the product topology for $X \times X$.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (i): Let $u, v \in X$ with $u \nleq v$, there exists neutrosophic $\mathcal{N}\varsigma$ -open sets G and Hsatisfying the properties in (ii). Since i(G) is an increasing neutrosophic $\mathcal{N}\varsigma$ -open set and d(H) is a decreasing neutrosophic $\mathcal{N}\varsigma$ -open set, we have $i(G) \cap d(H) = 0_N$. Suppose if $w \in i(G) \cap d(H)$, there exists $s \in G$ such that $s \leq w$ and there exists $t \in H$ such that $w \leq t$. Then $s \leq t$, a contradiction. Therefore $i(G) \cap d(H) = 0_N$. Hence X is neutrosophic $\mathcal{N}\varsigma$ - T_2 -ordered space.

(i) \Rightarrow (iii): Let G be the graph of the partial order of X and $(s,t) \in \mathcal{N}_n\varsigma^*$ -cl(G) and $(s,t) \notin G$. Then $s \nleq t$ and therefore there exists an increasing neutrosophic $\mathcal{N}\varsigma$ -open set A of S. Firthous Fatima, A. Durgaselvi, Neutrosophic \mathcal{N} -Topological Ordered Space

s and a decreasing neutrosophic \mathcal{N}_{ς} -open set B of t such that $A \cap B = 0_N$. $A \times B$ being a neutrosophic $\mathcal{N}_{\varsigma}^*$ -open set of (s,t), $(A \times B) \cap G = 0_N$. Thus $(s,t) \in A \times B$. It follows that $(s,s) \in A$ which implies $s \leq t$. Since A is an increasing neutrosophic \mathcal{N}_{ς} -open set, $t \in A$. Then $A \cap B \neq 0_N$, a contradiction. Therefore, $(s,t) \notin \mathcal{N}_n\varsigma^*$ -cl(G) and consequently, G is neutrosophic $\mathcal{N}_{\varsigma}^*$ -closed.

(iii) \Rightarrow (i): Suppose $s \notin t$. Then $(s, s) \notin G$ where G is the graph of the partial order of X. Since G is neutrosophic $\mathcal{N}\varsigma^*$ -closed, there exists neutrosophic $\mathcal{N}\varsigma^*$ -open sets S and T such that $(s,t) \in S \times T$ and $(S \times T) \cap G = 0_N$. Let $S^* = i(S)$ and $T^* = d(T)$. Then S^* is an increasing neutrosophic $\mathcal{N}\varsigma$ -open set of s, T^* is a decreasing neutrosophic $\mathcal{N}\varsigma$ -open set of t. Also $S^* \cap T^* = 0_N$, because suppose if $r \in S^* \cap T^*$, then there exists $p \in S, q \in T$ such that $p \leq r \leq q$ which implies $p \leq q$. So $(p,q) \in (S \times T) \cap G$, a contradiction. Therefore, $S^* \cap T^*$ must be empty. Hence X is neutrosophic $\mathcal{N}\varsigma$ -T₂-ordered space. \Box

Theorem 3.10. A neutrosophic \mathcal{N} -TOS $(X, \mathcal{N}_n\varsigma, \leq)$ is a neutrosophic $\mathcal{N}\varsigma$ -T₂-ordered space if and only if for each $r \in X$, there exists an increasing(respectively decreasing) neutrosophic $\mathcal{N}\varsigma$ -clopen subset of X containing r.

Proof. If X is neutrosophic $\mathcal{N}\varsigma$ - T_2 -ordered space and let $H \subseteq X$, then H is the required increasing (respectively decreasing) neutrosophic $\mathcal{N}\varsigma$ -clopen subset of X for all $r \in X$. Conversely, let us assume $r \nleq s$ in X. By hypothesis, there exists an increasing(respectively decreasing) neutrosophic $\mathcal{N}\varsigma$ -clopen subset H in X containing r. If $s \in H$, then there is nothing to prove. If $s \notin H$, then $X \setminus H$ is a decreasing neutrosophic $\mathcal{N}\varsigma$ -clopen subset of X containing s. Also $H \cap X \setminus H = \emptyset$. Hence $(X, \mathcal{N}_n\varsigma, \leq)$ is a neutrosophic $\mathcal{N}\varsigma$ - T_2 -ordered space.

4. Weakly Neutrosophic N_{ς} - T_2 -Ordered and Almost Neutrosophic N_{ς} - T_2 -Ordered Space

Definition 4.1. A neutrosophic \mathcal{N} -TOS is said to be weakly neutrosophic \mathcal{N}_{ς} - T_2 -ordered space if for given v < u(that is $v \leq u$ and $v \neq u$), there exists neutrosophic \mathcal{N}_{ς} -open sets $G = \langle x, \mu_G, \sigma_G, \gamma_G \rangle$ and $H = \langle x, \mu_H, \sigma_H, \gamma_H \rangle$ containing u and v respectively such that $r \in G$ and $s \in H$ together imply that s < r.

Definition 4.2. A neutrosophic \mathcal{N} -TOS is said to be an almost neutrosophic \mathcal{N}_{ς} - T_2 -ordered space if for given $u \parallel v$, there exists neutrosophic \mathcal{N}_{ς} -open sets $G = \langle x, \mu_G, \sigma_G, \gamma_G \rangle$ and $H = \langle x, \mu_H, \sigma_H, \gamma_H \rangle$ containing u and v respectively such that $r \in G$ and $s \in H$ together imply that $r \parallel s$.

S. Firthous Fatima, A. Durgaselvi, Neutrosophic \mathcal{N} -Topological Ordered Space

Theorem 4.3. A neutrosophic \mathcal{N} -TOS $(X, \mathcal{N}_n\varsigma, \leq)$ is a neutrosophic \mathcal{N}_{ς} - T_2 -ordered space if and only if it is weakly neutrosophic \mathcal{N}_{ς} - T_2 -ordered and almost neutrosophic \mathcal{N}_{ς} - T_2 -ordered space.

Proof. Let $(X, \mathcal{N}_n\varsigma, \leq)$ be a neutrosophic $\mathcal{N}\varsigma$ - T_2 -ordered space. Then it is weakly neutrosophic $\mathcal{N}\varsigma$ - T_2 -ordered space. Let $u \parallel v$. Then $u \nleq v$ and $v \nleq u$. Since X is neutrosophic $\mathcal{N}\varsigma$ - T_2 -ordered and $u \nleq v$, then there exists neutrosophic $\mathcal{N}\varsigma$ -open sets G and H containing u and v respectively such that $r \in G$ and $s \in H$ together imply that $r \nleq s$. Since $v \nleq u$, there exists neutrosophic $\mathcal{N}\varsigma$ -open sets H^* of v and G^* of u such that $s \in H^*$ and $r \in G^*$ together imply that $s \nleq r$. Thus $G \cap G^*$ is a neutrosophic $\mathcal{N}\varsigma$ -open set containing u and $H \cap H^*$ is a neutrosophic $\mathcal{N}\varsigma$ -open set containing v such that $r \in G \cap G^*$, $s \in H \cap H^*$ together imply that $r \parallel s$. Hence X is almost neutrosophic $\mathcal{N}\varsigma$ - T_2 -ordered space.

Conversely, if $u \nleq v$, then either $v \lt u$ or $v \nleq u$. If $v \lt u$ and since X is weakly neutrosophic \mathcal{N}_{ς} - T_2 -ordered space, then there exists neutrosophic \mathcal{N}_{ς} -open sets G and H containing u and v respectively such that $r \in G$, $s \in H$ implies that $s \lt r$, that is $r \nleq s$. If $v \nleq u$, then obviously $u \parallel v$. And since X is almost neutrosophic \mathcal{N}_{ς} - T_2 -ordered space, for given $u \parallel v$, there exists neutrosophic \mathcal{N}_{ς} -open sets G^* and H^* containing u and v respectively such that $r \in G^*$ and $s \in H^*$ together imply that $r \parallel s$. Therefore $(X, \mathcal{N}_n\varsigma, \leq)$ is a neutrosophic \mathcal{N}_{ς} - T_2 -ordered space. \Box

5. Neutrosophic $N\varsigma$ -Regularly Ordered Space

Definition 5.1. Let $(X, \mathcal{N}_n\varsigma, \leq)$ be a neutrosophic \mathcal{N} -TOS. If for each decreasing(respectively increasing) neutrosophic $\mathcal{N}\varsigma$ -closed subset W in X and for each $s \notin W$, there exists a neutrosophic $\mathcal{N}\varsigma$ -neighbourhood G of s and a neutrosophic $\mathcal{N}\varsigma$ -neighbourhood H of W such that G is increasing(respectively decreasing), H is decreasing(respectively increasing) and $G \cap H = 0_N$, then $(X, \mathcal{N}_n\varsigma, \leq)$ is said to be lower(respectively upper) neutrosophic $\mathcal{N}\varsigma$ -regularly ordered space.

Definition 5.2. $(X, \mathcal{N}_n\varsigma, \leq)$ is said to be neutrosophic $\mathcal{N}\varsigma$ -regularly ordered space if it is both lower and upper neutrosophic $\mathcal{N}\varsigma$ -regularly ordered space.

Definition 5.3. A neutrosophic \mathcal{N}_{ς} - T_1 -ordered neutrosophic \mathcal{N}_{ς} -regularly ordered space is called \mathcal{N}_{ς} - T_3 -ordered space.

Theorem 5.4. Every neutrosophic N_{ς} - T_1 -ordered space, lower or upper neutrosophic N_{ς} -regularly ordered space is neutrosophic N_{ς} - T_2 -ordered space.

S. Firthous Fatima, A. Durgaselvi, Neutrosophic \mathcal{N} -Topological Ordered Space

Proof. Let X be a neutrosophic \mathcal{N}_{ς} - T_1 -ordered space, lower neutrosophic \mathcal{N}_{ς} -regularly ordered space and let $u \notin v$. Since X is neutrosophic \mathcal{N}_{ς} - T_1 -ordered space, $[\leftarrow, v]$ is neutrosophic \mathcal{N}_{ς} closed. Also $[\leftarrow, v]$ is a decreasing neutrosophic set. Since $u \notin [\leftarrow, v]$, there exists an increasing neutrosophic \mathcal{N}_{ς} -neighbourhood G of u and a decreasing neutrosophic \mathcal{N}_{ς} -neighbourhood H of $[\leftarrow, v]$ such that $G \cap H = 0_N$. Since $v \in [\leftarrow, v] \subseteq H$, X is a neutrosophic \mathcal{N}_{ς} - T_2 -ordered space. \Box

6. Conclusions

In this paper, we defined a new concept "Neutrosophic \mathcal{N} -Topological Ordered Spaces". some characterisitics of separation axioms \mathcal{N}_{ς} - T_i -ordered space (i = 0, 1, 2, 3) dealing with neutrosophic were studied here. In our future work, we deal with neutrosophic \mathcal{N}_{ς} - T_i -ordered space (i=4,5) and its characteristics in Neutrosophic \mathcal{N} -Topological Ordered Spaces.

References

- 1. Atnassov K.T., Intutionistic fuzzy sets, Fuzzy Sets and Systems 1986, 20, 87-96.
- Balaji G., Ganesh G., Rajesh N.; Separation Axioms in Bitopological Ordered Spaces, International Journal of Pure and Applied Mathematics 2017, Vol.114(2), 221-229.
- 3. Chang C.L., Fuzzy topological spaces, Journal of Mathematical Analysis and Applications 1968, 24, 182-190.
- 4. Coker D., An introduction to intutionistic fuzzy topological spaces, Fuzzy Sets and Systems 1997, 88, 81-89.
- Firthous Fatima S. and Durgaselvi A., N-Topological Ordered Spaces, AIP Conference Proceedings 2020, 2261, 030022(1-5).
- Lellis Thivagar M., Jafari S., Antonysamy V. and Sutha Devi V., The ingenuity of Neutrosophic Topology via N-Topology, Neutrosophic Sets and Systems 2019, 19, 1.
- Lellis Thivagar M., Ramesh V., Arockia Dasan M.; Computation of Separation Axioms in N-topology, Journal of Ultra Scientist of Physical Sciences 2017, Vol.29(2), 77-82.
- Lellis Thivagar M., Ramesh V., Arockia Dasan M.; On new structure of N-topology, Cogent Mathematics (Taylor and Francise) 2016, Vol.3, 1204104.
- 9. Leopoldo Nachbin, Topology and order, D.Van Nostrand Inc., Princeton, New Jersey, 1965.
- Narmada Devi R., Dhavaseelan R., Jafari S., On Separation axioms in an Ordered Neutrosophic Bitopological Space, Neutrosophic Sets and Systems 2017, 18, 1.
- Salama A.A. and Alblowi S.A., Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics 2012, Vol.3, Issue 4, 31-35.
- Smarandache F., Neutrosophy and neutrosophic logic. In: F. Smarandache (Ed.), Neutrosophy, neutrosophic logic, set, probability and statistics. Proceedings of the International Conference, University of New Mexico, Gallup, NM 87301,USA (2002).
- Smarandache F., A unifying field in logics: Neutrosophy and neutrosophic logic. Neutrosophy, neutrosophic set, probability. American Research Press, Rehoboth, NM, 1999.
- 14. Zadeh L.A., Fuzzy Sets, Information and Control 1965, 8(3), 338-353.

Received: Jan. 13, 2021. Accepted: April 1, 2021.