
Journal Pre-proof

MicroTom Metabolic Network: Rewiring Tomato Metabolic Regulatory Network
throughout the Growth Cycle

Yan Li, Yang Chen, Lu Zhou, Shengjie You, Heng Deng, Ya Chen, Saleh Alseekh,
Yong Yuan, Rao Fu, Zixin Zhang, Dan Su, Alisdair R. Fernie, Mondher Bouzayen,
Tao Ma, Mingchun Liu, Yang Zhang

PII: S1674-2052(20)30183-0
DOI: https://doi.org/10.1016/j.molp.2020.06.005
Reference: MOLP 946

To appear in: MOLECULAR PLANT
Accepted Date: 10 June 2020

Please cite this article as: Li Y., Chen Y., Zhou L., You S., Deng H., Chen Y., Alseekh S., Yuan Y.,
Fu R., Zhang Z., Su D., Fernie A.R., Bouzayen M., Ma T., Liu M., and Zhang Y. (2020). MicroTom
Metabolic Network: Rewiring Tomato Metabolic Regulatory Network throughout the Growth Cycle. Mol.
Plant. doi: https://doi.org/10.1016/j.molp.2020.06.005.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

All studies published in MOLECULAR PLANT are embargoed until 3PM ET of the day they are
published as corrected proofs on-line. Studies cannot be publicized as accepted manuscripts or
uncorrected proofs.

© 2020 The Author

https://doi.org/10.1016/j.molp.2020.06.005
https://doi.org/10.1016/j.molp.2020.06.005


1 
 

MicroTom Metabolic Network: Rewiring Tomato Metabol ic 

Regulatory Network throughout the Growth Cycle 

Yan Li1,4, Yang Chen1,4, Lu Zhou1,4, Shengjie You1,4, Heng Deng1, Ya Chen1, Saleh 

Alseekh2, Yong Yuan1, Rao Fu1, Zixin Zhang1, Dan Su1, Alisdair R. Fernie2, Mondher 

Bouzayen1,3, Tao Ma1, Mingchun Liu1* & Yang Zhang1*  

1Key Laboratory of Bio�resource and Eco�environment of Ministry of Education, 

College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People’s 

Republic of China. 

2Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 

Potsdam-Golm, Germany and Center of Plant Systems Biology and Plant 

Biotechnology, 4000 Plovdiv, Bulgaria. 

3GBF, University of Toulouse, INRA, Castanet-Tolosan, France. 

4These authors contributed equally: Yan Li, Yang Chen, Lu Zhou, Shengjie You. 

Correspondence and requests for materials should be addressed to Yang Zhang 

(email:yang.zhang@scu.edu.cn) and Mingchun Liu (email:mcliu@scu.edu.cn)  

 

Running Title:  Metabolic Network Throughout MicroTom Tomato Growth Cycle 

Short summary: High-resolution spatio-temporal metabolome and transcriptome 

data were generated to cover 20 major stages and tissues of MicroTom tomato. This 

MicroTom Metabolic Network dataset presents the global figure of tomato metabolic 

regulatory network during its life cycle and helps to verify new regulators controlling 

important metabolic pathways. 
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Abstract 

Tomato (Solanum lycopersicum) is a major horticultural crop worldwide and has 

emerged as a preeminent model for metabolic research. Although many research 

efforts have focused on analyzing metabolite variants between varieties and species, 

the dynamics of metabolic changes during the tomato growth cycle and the regulatory 

networks underlying these changes are poorly understood. In this study, we integrated 

high-resolution spatio-temporal metabolome and transcriptome data to systematically 

explore the metabolic landscape across 20 major tomato growth tissues and stages. In 

the resulting MicroTom Metabolic Network (MMN), the 540 detected metabolites and 

their co-expressed genes could be divided into ten distinct clusters that were based on 

their biological functions. Using this dataset, we constructed a global map of the 

major metabolic changes that occur throughout the tomato growth cycle and dissected 

the underlying regulatory network. In addition to verifying previously 

well-established regulatory networks for important metabolites, we identified novel 

transcription factors that regulate the biosynthesis of important secondary metabolites, 

such as steroidal glycoalkaloids and flavonoids. Our findings provide insight into 

spatio-temporal changes in tomato metabolism and generate a valuable resource for 

studying metabolic regulatory processes in model plants. 

Keywords: tomato; metabolome; transcriptome; transcription factor; co-expression; 

flavonoids; steroidal glycoalkaloids;  
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Introduction  

Because of its unique flavor and high nutritional value, tomato (Solanum 

lycopersicum) has become one of the world’s favorite fruits and is an important 

source of micronutrients in the human diet (USDA, 2017). Its short life cycle (90–120 

days) and self-compatibility make it an important cash crop for both small- and 

large-scale growers (Carqueijeiro et al., 2018). During the past 50 years, molecular 

biology studies of tomato have been driven by demands for increased yield and 

improved nutritional value (fiber, carbohydrates, and phytonutrient compounds) and 

by consumer preferences (fruit size, color, flavor, and aroma), making tomato a major 

research focus for fruit biology (Azzi et al., 2015; Klee and Giovannoni, 2011; 

Tieman et al., 2017). Many genetic resources such as natural varieties (Tieman et al., 

2017; Zhao et al., 2019; Zhu et al., 2018), introgression lines (Eshed Y, 1995; Schauer 

et al., 2006), bioinformatic research tools (Shinozaki et al., 2018; Zouine et al., 2017), 

mutants generated by gene editing (Shimatani et al., 2017; Uluisik et al., 2016; Zhang 

et al., 2006), and multi-omics tools (Sonawane et al., 2016) are available to 

systematically understand metabolic regulatory networks in tomato. 

Nowadays, tomato is considered as a model to study plant secondary metabolism. 

Major classes of plant metabolites, such as flavonoids, carotenoids, terpenoids, and 

alkaloids, are all present in tomato and are strongly associated with its growth habits 

and fruit characteristics (Butelli et al., 2008; Lewinsohn et al., 2001; Liu et al., 2015; 

Xu et al., 2018; Zhang et al., 2015a; Zhu et al., 2018). Flavonoids belong to a group of 

compounds rich in fruit and are associated with health benefits (Adato et al., 2009). 

These secondary metabolites are ubiquitous in plants yet have tremendous chemical 

diversity as well as diverse roles (Grotewold, 2016; Jin et al., 2000; Sheehan et al., 

2015; Tohge et al., 2016). In addition, flavonoids are reported to benefit health by 

having anti-cancerous, antioxidant, and anti-osteoporotic activities (Echeverry et al., 

2015; Kaakoush and Morris, 2017). Besides health benefit compounds such as 

flavonoids, in recent decades, many studies have been done to the regulation of plant 
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defensive compounds such as steroidal glycoalkaloids (SGAs). SGAs are 

cholesterol-derived molecules and mainly produced by Solanaceous species 

(Cárdenas et al., 2019; Cárdenas et al., 2016). Although SGAs contribute to plant 

resistance to a wide range of pathogens and predators, including bacteria, fungi, 

oomycetes, viruses, insects, and other animals, some of them are considered as 

antinutritional factors for humans due to their disruption of membranes and inhibition 

of acetylcholine esterase activity (Itkin et al., 2013).  

To date, systematic studies of tomato growth and quality have focused on fruit, 

because of the commercial importance of fruit traits. Before the tomato genome 

sequence was released, complementary DNA (cDNA) microarrays were used to study 

gene expression dynamics during tomato fruit development (Alba et al., 2005). As the 

genome sequence became available and second generation sequencing techniques 

were developed, transcriptome and epigenome profiling were used to provide global, 

quantitative measurements of gene expression during fruit development (Hua et al., 

2009; Zhong et al., 2013). More recently, improved sampling techniques, such as 

laser-capture microdissection, and high-throughput RNA sequencing methods have 

been used to analyze gene expression at high spatial resolution (Espina et al., 2006; 

Shinozaki et al., 2018).  

During the past 15 years, the integration of metabolic profiling with transcriptome 

data has proven to be highly effective for identifying gene functions and elucidating 

metabolic pathways in plants (Luo, 2015). For example, pioneering work by Carrari et 

al. combined gas chromatography-mass spectrometry (GC-MS) with parallel 

transcriptome analysis to dissect metabolic changes during tomato fruit development 

(Carrari et al., 2006). This approach was expanded to compare the peel and flesh 

tissues of different tomato introgression lines during fruit development (Mintz-Oron 

et al., 2008). Later, a more detailed metabolic quantitative trait loci (mQTL) analysis 

was carried out using the well-characterized Solanum pennellii introgression lines 

(Alseekh et al., 2015; Schauer et al., 2006). To evaluate how breeding has changed 
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the tomato fruit metabolome, different research groups have recently generated and 

analyzed large datasets encompassing genomes, transcriptomes, and metabolomes 

from hundreds of tomato genotypes (Tieman et al., 2017; Zhao et al., 2019; Zhu et al., 

2018). Through metabolite genome-wide association studies (mGWAS), researchers 

have identified a large number of genetic loci that affect the concentrations of 

important metabolites in tomato fruit (Tieman et al., 2017; Zhao et al., 2019). 

Furthermore, GC- and LC-MS based metabolomics and publically available RNA 

sequencing data were carried out to investigate polyphenolic metabolism in the 

lycopersicum complex across eight different species of tomato (Tohge et al., 2020).  

Although some multi-omic studies of tomato have examined vegetative tissues 

(Balcke et al., 2017; Jennifer, 2013; Zouine et al., 2017), most have focused on the 

effect of genetic variation among varieties and species on fruit quality (Alseekh et al., 

2015; Alseekh et al., 2017; Dan et al., 2019; Garbowicz et al., 2018; Tieman et al., 

2017; Zhang et al., 2016; Zhao et al., 2019; Zhu et al., 2018). Therefore, the changes 

that occur to metabolic and regulatory networks throughout the tomato growth cycle 

have remained largely unknown. 

To establish how the metabolism is rewired during the tomato growth cycle and the 

underlying transcriptional regulation, we developed the MicroTom Metabolic 

Network (MMN), a high-temporal-resolution metabolome and transcriptome dataset 

of different tissues for MicroTom tomato at different development stages. We detected 

540 annotated metabolites and 31,256 expressed genes in 20 different tissues and 

stages. Co-expression analysis integrating metabolome and transcriptome data 

provides comprehensive knowledge of the dynamics of major metabolites during 

tomato development and the transcriptome profiles underlying them. Using this 

dataset, we not only verified the previously known regulatory networks for major 

metabolites, but also identified novel transcription factors associated with important 

compounds, such as flavonoids and steroidal glycoalkaloids. Our MMN dataset and 

experimental strategy can be a useful resource for identifying key regulators of 
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important metabolites in other crops.  

Results 

Generation of the MMN dataset  

To create a comprehensive and accurate record of changes to metabolic regulatory 

networks during the life cycle of MicroTom tomato, we generated the MMN dataset 

(Figure 1). This dataset consists of parallel metabolic profiling and transcriptome 

analysis for samples collected from all major growth stages and tissues of MicroTom 

tomato. We collected 20 tissues: roots, stems, leaves from the bud stage (when the 

first flower bud emerges, 30 days post-germination [DPG]), flowering stage (when 

50% of flowers reach anthesis, 45 DPG), breaker stage (when the first fruit reaches 

the breaker stage, 85 DPG). Bud and flower samples were collected from bud stage 

seedlings and flowering stage seedlings, respectively. In addition, pericarps at nine 

stages of fruit development stages (10 days post-anthesis [DPA], 20 DPA, immature 

green [IMG], mature green [MG], breaker [Br], breaker plus 3 days [Br3], Br7, Br10, 

and Br15) (Figure 1). Three biological replicates, each of which was a pooled sample 

from 10 plants, were analyzed for all 20 time points/tissues.  

For metabolome analysis, samples were analyzed by a broadly targeted liquid 

chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolic profiling 

method (Zhu et al., 2018) (see Methods). A total of 540 distinct annotated metabolites 

were identified in at least one tissue, including 70 flavonoids, 76 amino acids and 

derivatives, 54 lipids, 52 organic acids, 50 nucleotides and derivatives, 14 

phenolamides, 32 alkaloids, 43 hydroxycinnamoyls and derivatives, 9 polyphenols, 13 

carbohydrates, 12 vitamins, 10 benzoic acids and derivatives, 18 polyamines, and 87 

additional compounds which did not fit into these 13 main classes (Figure 2A and 

Supplemental Data 1). Analyses of the 540 metabolites among the different tissues 

showed that the metabolites can be divided into three big groups: metabolites present 

in vegetative tissues (root, stem, leaf), flower tissues (bud and flower) and fruit tissues 
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(pericarp throughout fruit development) (Figure 2A). This result indicates that 

vegetative tissues at different development stages have similar metabolic patterns, 

which are significantly different from those of the fruit tissues. For example, 

metabolites such as lipids, alkaloids, hydroxycinnamoyl derivatives, and 

phenolamides accumulate preferentially during vegetative phases, whereas the fruit 

tissues have substantially higher levels of amino acids and their derivatives, 

flavonoids, nucleotides and their derivatives, organic acids, polyphenols, and vitamins 

(Figure 2A). These specific metabolites likely reflect the spatial differentiation of 

tomato metabolism between the two major phases: vegetative growth and fruit 

development. In addition, we performed principal component analysis (PCA) and 

established that the 540 metabolites can be further divided into five groups, each 

associated with a specific tissue (root, stem, leaf, flower, and fruit) (Figure 2C). In 

line with the PCA, the cluster dendrogram can also be divided into five independent 

subgroups (Figure 2E). All these data indicate that the accumulation of metabolites is 

tissue specific during tomato development. 

To investigate transcriptional regulation over the course of the MicroTom tomato 

growth cycle, we built a spatio-temporal dynamic transcriptome landscape for all 

tissues. Approximately 453 Gb of raw data were generated and the statistics of the 

sequencing libraries are summarized in Supplemental Data 2. Unique mapped reads 

were used to calculate the expression level of transcripts per million (TPM) (Bo et al., 

2010; Wagner et al., 2012). To reduce the influence of transcriptional noise, we 

defined a gene as expressed if its average TPM value was > 0. In total, 31,256 genes 

were found to be expressed in at least one sample (Supplemental Data 3). To form a 

global picture of gene expression across the 20 tissues, we made a Z-score normalized 

expression heatmap clustered by genes. A correlation matrix of the transcriptome 

indicates that the global gene expression pattern is tissue-specific, regardless of the 

development stage (Figure 2B and Supplemental Data 3). As we established for the 

metabolome, further PCA and the cluster dendrogram of the transcriptome also 

showed clustering of samples from the same tissue among the different stages (Figure 
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2D and 2F). All these results suggest that gene expression and metabolite 

accumulation show significant tissue specificity during tomato development. 

The tomato metabolome and transcriptome are co-regulated in ten clusters 

corresponding to different tissues and developmental stages 

To gain further insights into metabolic changes during the MicroTom growth cycle, 

we divided all 540 annotated metabolites into ten clusters based on their accumulation 

patterns using the k-means clustering algorithm (Howe et al., 2010) (Supplemental 

figure 1A, Table 1, Supplemental Data 4). By analyzing the ten clusters, we can 

identify metabolites enriched in specific tissues such as root (Cluster I), stem (Cluster 

III), leaf (Cluster IV), and flower (Cluster V) (Figure 3 and Supplemental figure 1A). 

We also identified compounds that decrease during the period between the flowering 

and ripe fruit stages (Cluster VI) and compounds that increase during the green fruit 

stages (Cluster VII) and during the fruit ripening stages (Cluster X). In addition, there 

were compounds that were enriched in more than two tissues or stages (Clusters II, 

VIII, and IX) (Figure 3 and Supplemental figure 1A).  

To further correlate the gene expression pattern with metabolite accumulation, we 

applied co-expression analysis to our metabolome and transcriptome data 

(Giovannoni, 2018; Serin et al., 2016). A rigorous multiple test correction (r ≥ 0.8) 

was used to filter the genes that significantly correlated with each metabolite. A total 

of 17,003 genes that are co-regulated with at least one metabolite were identified 

(Supplemental figure 1B, Supplemental Data 4 and 5).  

Next, the 540 metabolites and 17,003 genes were divided into ten co-expression 

clusters based on Pearson Correlation Coefficient and the fact that they had a 

consistent and clear expression pattern during tomato development (Figure 3). 

Interestingly, after removing the genes not highly correlated with any of the 540 

metabolites, PCA (Supplemental figure 2A) and clustering analysis (Supplemental 

figure 2B) of the remaining 17,003 highly co-expressed genes still showed clustering 
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patterns similar to the global gene expression clusters (Supplemental figure 1B). This 

indicates that during the normal growth cycle, the pattern of tomato gene expression is 

largely paralleled by the dynamics of major metabolic pathways.  

Spatio-temporal insights into the regulation of key metabolic pathways 

To examine whether MMN can provide spatio-temporal insights into the metabolic 

regulatory network in tomato, we first tested it with previously known regulatory 

networks. Flavonoid biosynthesis branches from the phenylpropanoid pathway, which 

provides precursors in the form of phenylalanine. Following the reactions catalyzed 

by the gateway enzymes phenylalanine ammonia lyase (PAL) and chalcone synthase 

(CHS), the flavonoid pathway consists of a series of enzymes that catalyze diverse 

downstream reactions leading to the biosynthesis of aglycone backbones (Figure 4D). 

Flavonoid biosynthesis has been a growing area of research in the past two decades 

and much progress has been made in the identification of both the biosynthetic genes 

and their regulators (Vogt, 2010). Multiple MYB family transcription factors have 

been identified as regulatory factors in flavonoid biosynthesis (Ballester et al., 2010; 

Borevitz et al., 2000; Mehrtens et al., 2005). It has been suggested that the expression 

of Flavonoid-3',5'-hydroxylase (SlF3’5’H), a flavonoid modification gene, is 

correlated with SlMYB75 in vegetative tissues, an anthocyanin biosynthetic 

transcription factor, rather than SlMYB12, the predominant regulator of flavonoid 

biosynthesis (Ana-Rosa Ballester, 2010; Jian et al., 2019). SlF3’5’H expression is also 

crucial for activation of anthocyanin synthesis in tomato fruit because tomato 

dihydroflavonol 4-reductase (DFR) prefers dihydromyricetin (3 -OHs on the B ring) 

over dihydrokaempferol (1 -OH on the B ring) (Silvia et al., 2009).  

In line with the previous results, our RNA-seq data for flavonoid biosynthetic genes 

and associated transcription factors revealed that SlF3’5’H is strongly co-expressed 

with SlMYB75 but not with SlMYB12 (Figure 4A and 4B). A quantitative real-time 

polymerase chain reaction (RT-qPCR) analysis of these genes produced results that 
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were highly consistent with the RNA-seq data (Supplemental figure 3, Supplemental 

Data 6). A dual luciferase reporter assay revealed that SlMYB75 can interact with the 

promoter region of SlF3’5’H to induce much higher expression than that induced by 

SlMYB12 (Figure 4C). In summary, our spatiotemporal data shows good correlation 

between metabolite production and transcriptome changes, suggesting that MMN can 

be utilized to study the regulation of important metabolic pathways in tomato.  

SGA biosynthesis begins with glycolysis, followed by the mevalonate and 

cycloartenol pathways. The cholesterol pathway provides cholesterol, a precursor of 

the SGA pathway, and the phytosterol pathway overlaps with the cholesterol pathway 

(Sonawane et al., 2016) (Supplemental figure 4A, Supplemental figure 5). From 

cholesterol, there are a series of enzymes that catalyze diverse downstream reactions 

in the pathway leading to the biosynthesis of SGAs (Supplemental figure 4A). 

Previous co-expression analyses identified clustered GLYCOALKALOID 

METABOLISM (GAME) genes that form the biosynthetic pathway from cholesterol to 

α-tomatine (Itkin et al., 2013). In addition, SlGAME9, an AP2/ERF transcription 

factor, was found to positively regulate SGA biosynthesis (Cárdenas et al., 2016). 

Among the 540 metabolites, we detected 29 SGAs which are mainly present in 

clusters III, V, VI, and X (Supplemental Data 7). Interestingly, we identified three 

SGAs (dehydrofilotomatine, dehydrotomatine, and dehydrotomatine isomer (25R)) 

and 15 SGA-related genes in cluster V (Supplemental figure 6A, Supplemental figure 

4). Among these, the SGA biosynthetic genes (SlGAME1, SlGAME4, SlGAME6, 

SlGAME11, SlGAME17, and SlGAME25) co-express well with the regulatory gene 

SlGAME9 (Supplemental figure 6B). This result is in perfect concordance with 

previous co-expression analysis of the GAME gene cluster (Cárdenas et al., 2016; 

Itkin et al., 2013). We also performed RT-qPCR analysis of these genes and 

established that they were mainly increased in vegetative tissue and decreased during 

fruit development (Supplemental figure 7). To sum up, using MMN we can perfectly 

verify previously known metabolic regulatory networks throughout the tomato growth 

cycle. 
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Identification of a novel transcription factor regulating steroidal glycoalkaloids 

metabolism 

We next attempted to use MMN to identify new regulators controlling the SGA 

biosynthetic pathway, given that these defensive compounds are also important for 

tomato growth and fruit quality (Itkin et al., 2013; Zhu et al., 2018). Our clustering 

data indicated that 15 SGA-related genes (SlGAME9 and 14 biosynthetic genes) are 

co-expressed with three SGAs in cluster V. We searched this cluster and found that a 

gene (Solyc01g096370) encoding a bHLH transcription factor is also strongly 

co-expressed with these SGAs and metabolic genes (Figure 5A). Further investigation 

indicated that Solyc01g096370 shares a large number of co-regulated metabolites and 

genes with the known regulator SlGAME9 (Cárdenas et al., 2016) (Supplemental 

figure 8A). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the 

common genes and metabolites revealed that the molecular functions are mainly 

enriched in steroid and alkaloid biosynthesis, which suggests that Solyc01g096370 

can potentially modulate the SGA pathway (Supplemental figure 8B). Intriguingly, the 

level of correlation between Solyc01g096370 and the SGA pathway is as good as that 

of SlGAME9 (Figure 5A).  

Phylogenetic analysis revealed that the bHLH family protein encoded by 

Solyc01g096370 belongs to the MYC family (Supplemental figure 9A-B), which is 

mainly involved in jasmonate signaling (Chen et al., 2016; Deng et al., 2015; Du et al., 

2017; Du et al., 2018). Further analysis indicated Solyc01g096370 is SlbHLH114, 

which belongs to bHLH subfamily 15 (Supplemental figure 9C) (Hua et al., 2015) and 

is related to jasmonate signaling and development of type VI glandular trichomes in 

Solanum lycopersicum (Kemparaju, 2018). Moreover, SlbHLH114 was clustered with 

subfamily 8 from Arabidopsis thaliana (Supplemental figure 9D), which functions in 

jasmonate signal transduction pathways and affects formation of root hairs and 

trichomes (Tominaga-Wada et al., 2011). These data suggest that SlbHLH114 might 

be involved in SGA metabolism and JA signaling.  
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We next analyzed the expression levels of SlbHLH114 at different developmental 

stages and in different tissues. Our transcriptome analysis indicated that expression of 

SlbHLH114, like that of known SGA biosynthetic genes and metabolites, is high in 

vegetative tissue and gradually decreases during fruit development to a very low level 

at fruit ripening stages (Supplemental figure 4B, 9E). RT-qPCR analysis confirmed 

this expression pattern (Supplemental figure 9F). Subcellular localization showed that 

SlbHLH114 is exclusively located in the nucleus (Supplemental figure 10).  

To investigate the potential function of SlbHLH114, we generated transgenic tomato 

plants overexpressing SlbHLH114 driven by the fruit specific E8 promoter. We 

obtained seventeen T0 plants in which the expression levels of SlbHLH114 in ripening 

stage fruit were significantly higher than that in MicroTom (Supplemental figure 11). 

Two of these lines (Line C and Line I) were chosen for further characterization of T1 

(Figure 5B and 5D). We performed RNA-seq analysis of Br3 stage pericarp samples 

from WT and T1 generation E8:bHLH114 Line C and Line I plants (Figure 5B). A 

large proportion of the induced genes were shared by E8:bHLH114 Line C and Line I, 

including many genes and metabolites in the SGA biosynthetic pathway (Figure 5C). 

Compared to MicroTom tomato fruit at the same stage, there were 2,851 genes that 

were upregulated and 2,153 genes that were downregulated in both overexpressing 

lines (FC≥1.5) (Supplemental figure 12A, Supplemental data 8 and 9).  

KEGG enrichment analysis indicated that the upregulated genes are involved in signal 

transduction, plant-pathogen interaction, and biosynthesis of secondary metabolites 

that are related to SGAs (Supplemental figure 12B, Supplemental Data 10). RT-qPCR 

analysis confirmed this observation; in general, genes involved in glycolysis and the 

mevalonate, cycloartenol, cholesterol, phytosterol, and SGA pathways were all 

upregulated in both E8:SlbHLH114 lines (Supplemental figure 13). As a result, 

metabolic profiling of pericarp samples at the Br10 stage showed that both transgenic 

lines accumulated significantly higher amounts of SGAs (predominantly tomatidine, 

hydroxytomatidenol, hydrotomatidine, γ-tomatine, β2-tomatine, and α-tomatine) 
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(Figure 5C). Taken together, these results indicate that overexpression of SlbHLH114 

in tomato fruit enhances SGA accumulation. 

To further investigate whether SlbHLH114 directly induces the expression of SGA 

biosynthetic genes, we performed dual luciferase reporter assays using Arabidopsis 

protoplast. We cloned the promoters of three SlbHLH114-induced biosynthetic genes 

involved in the cholesterol precursor pathway (SlSSR2 and Sl7-DR2) and the SGA 

biosynthetic pathway (SlGAME4). Using SlGAME9 as a positive control, the results 

showed that the activities of these promoters were all significantly higher when 

SlbHLH114 is expressed than in the control (Figure 5E and 5F), indicating that 

SlbHLH114 is a positive regulator of the SGA biosynthetic pathway.  

Previously, SlMYC2 (Solyc08g076930) was reported as a key regulator of SGA 

biosynthesis (Cárdenas et al., 2016). We conducted co-expression analysis of SlMYC2 

and SGA-related genes and found SlMYC2 cannot co-expressed well with known 

SGA genes. Instead, it has strong correlations with JA-signaling genes, which is 

consistent with its important role in regulating JA signaling (Supplemental figure 14) 

(Du et al., 2017; Liu et al., 2019). We further did co-expression analysis of SlMYC2 

and SlbHLH114 using our MMN dataset, as well as previously published SGN-TEA 

(http://tea.solgenomics.net/overview) (Shinozaki et al., 2018) and TomExpress 

datasets (http://tomexpress.toulouse.inra.fr/) (Zouine et al., 2017). In all three datasets, 

there is no significant co-expression pattern between SlMYC2 and SlbHLH114 

(Supplemental figure 15).  

As both SlMYC2 and SlbHLH114 belong to the bHLH subfamily 15 (Supplemental 

figure 16) (Hua et al., 2015), to investigate the possible interaction between SlMYC2 

and SlbHLH114, we conducted dual luciferase reporter assays in Arabidopsis 

protoplast and found probHLH114 can be activated by SlMYC2 (Supplemental figure 

17A), indicating that SlbHLH114 is a target of SlMYC2. On the other hand, we 

checked previously published SlMYC2 related work and found in SlMYC2-RNAi 
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plants, the expression of SlbHLH114 is significantly lower than WT plants (Du et al., 

2017), which confirmed the potential regulation of SlMYC2 on SlbHLH114 

(Supplemental figure 17B). By contrast, no significant induction of proSlMYC2 by 

SlbHLH114 was observed in the dual luciferase reporter assays using Arabidopsis 

protoplast (Supplemental figure 17C). In addition, in our RNA-seq data of 

E8:bHLH114 and WT fruit, there is no significant differences of SlMYC2 expression 

levels (Supplemental figure 17D). All these data indicate SlbHLH114 cannot directly 

regulate the expression of SlMYC2.  

Prediction of a novel transcription factor regulating flavonoid metabolism 

Using the same strategy described above, we used MMN to expand our search for 

transcription factors regulating flavonoid metabolism. Interestingly, when we 

conducted a co-expression analysis of flavonoid compounds and biosynthetic genes, 

we found, in addition to the known gene SlMYB12, a gene (Solyc02g077790) 

encoding an APETALA2/Ethylene Response Factor (AP2/ERF) transcription factor 

that is better co-expressed with the flavonoid metabolic pathway (Figure 6A). Further 

investigation showed that Solyc02g077790 shares large amount of co-expressed genes 

and metabolites with SlMYB12. KEGG analysis of the common genes and metabolites 

revealed that the molecular functions are mainly enriched in flavonoid and 

phenylpropanoid biosynthesis, which suggests that Solyc02g077790 could potentially 

modulate the flavonoid pathway (Supplemental figure 18).  

Phylogenetic analysis of the AP2/ERF family in Solanum lycopersicum indicated that 

the Solyc02g077790 protein belongs to Ethylene Response Factor (ERF) subgroup G 

and can be designated as SlERF.G3-like (Supplemental figure 19A) (Liu et al., 2016). 

RNA-seq and RT-qPCR analyses both indicated that SlERF.G3-like is specifically 

expressed in fruit tissues and reaches its highest expression at Br3 (Supplemental 

figure 19B), similar to the expression pattern of major flavonoid biosynthetic genes 

and metabolites. Subcellular localization further indicated that SlERF.G3-like is 
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located in the nucleus and the cytoplasm (Supplemental figure 10). 

To investigate the function of SlERF.G3-like, we generated transgenic MicroTom 

plants overexpressing SlERF.G3-like from the fruit-specific E8 promoter. We obtained 

14 independent E8: SlERF.G3-like overexpression lines, of which two representative 

lines (lines 12 and 36) were selected for further study (Figure 6B, 6C and 

Supplemental figure 20). We then performed RT-qPCR analysis of SlERF.G3-Like-12, 

SlERF.G3-Like-36, and WT pericarp samples at the Br3 stage and found that the 

expression of flavonoid biosynthesis genes, including SlCHS1, SlCHS2, SlCHI, 

SlF3H, SlF3’H, and SlFLS, was significantly increased in the two transgenic lines 

(Figure 6B and 6D). In line with this increased expression of biosynthetic genes, 

LC-MS analysis of Br7 stage fruits showed a significant increase in the contents of 

major flavonoid compounds and intermediates (naringenin, eriodicytol, 

kaempferol-3-O-glucoside, kaempferol-3-O-rutinoside, quecertin-3-O-glucoside and 

quecertin-3-O-rutinoside) (Figure 6D). As both E8: SlERF.G3-like line 12 and 36 

showed orange color (Figure 6B), we also checked the expression of carotenoid 

biosynthetic genes. Compared to MicroTom, there is no significant reduction of 

carotenoid biosynthesis genes in E8: SlERF.G3-like-36 fruit (Supplemental figure 21). 

This matches our previous observation on flavonoid-enriched tomato (Ying et al., 

2020; Zhang et al., 2015a). All these data indicate instead of the inhibition of 

carotenoid biosynthesis, the orange color of E8: SlERF.G3-like fruit is mainly due to 

the accumulation of flavonoid compounds. 

To directly compare the functions of SlERF.G3-like with known regulator of 

flavonoid biosynthesis, SlMYB12, we analyzed the promoters of major flavonol 

biosynthesis genes (SlCHS1, SlF3H and SlFLS) by dual luciferase reporter assays in 

Arabidopsis protoplasts. The results showed that all three promoters can be 

significantly induced by SlMYB12 and SlERF.G3-like (Supplemental figure 22). In 

addition, when both TFs were combined, the activities of tested promoters can be 

further increased (Supplemental figure 22). However, since the expression levels of 
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SlMYB12 displays no significant change in E8:SlERF.G3-like fruit compared to WT 

(Supplemental figure 23A), and the transcript abundance of SlERF.G3-like is invariant 

in AtMYB12 (Arabidopsis thaliana homologous of SlMYB12) overexpressing fruits 

(Supplemental figure 23B), All these data suggest although both TFs can upregulate 

flavonoid biosynthesis, there is no direct interaction between SlMYB12 and 

SlERF.G3-like.  

In particular, we checked the expression of SlMYB12 and SlERF.G3-like in both peel 

and flesh of WT pericarp at Br3. Compared to SlMYB12, which is mainly expressed in 

fruit peel (Adato et al., 2009), the expression of SlERF.G3-like is significantly induced 

in the flesh (Supplemental figure 23C-D). On the other hand, low expression 

correlation of the two genes was observed in MMN, SGN-TEA (Shinozaki et al., 2018) 

and TomExpress (Zouine et al., 2017) databases (Supplemental figure 24). All these 

data indicate that the two TFs may act independently to regulate the biosynthesis of 

flavonols in tomato fruit.  

Taken together, these data indicate that SlERF.G3-like is a potential transcription 

factor regulating flavonoid biosynthesis in tomato. Using the MMN dataset, we can 

uncover the metabolic regulatory networks that operate during the tomato growth 

cycle and verify novel regulators of major metabolic pathways. 

Discussion 

We present here a comprehensive analysis of the metabolome and transcriptome of 20 

samples covering the major tissues and growth stages of tomato. The MMN dataset 

generated for this study includes data for 540 metabolites and 31,256 expressed genes 

that were detected in at least one tissue or stage. Based on our analysis of the global 

patterns of metabolite and transcript abundance among the tissues and stages, we 

established that the 540 metabolites can be divided into ten clusters and that 17,003 

genes were co-expressed (r  
≥ 0.8) with at least one of the 540 metabolites, accounting 

for 54.4% of total predicted protein-encoding genes in tomato genome. In addition, 
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the expression pattern of these 17,003 genes was found to represent the global gene 

expression pattern (Figure 2D, 2F and Supplemental figure 2).  

Because of the detection limit of the broadly targeted LC-MS/MS we used in this 

study, there are still compounds, such as carotenoids and terpenoids, that have not 

been quantified in our samples. Therefore, in addition to the ten metabolite clusters 

we identified, future metabolome analysis of the same samples may reveal novel 

accumulation patterns for compounds and metabolic pathways that were not included 

in this study. Once we have this information, the number of genes co-expressed with 

metabolites is likely to increase further, providing a rich resource for thorough 

investigation of the genetic networks regulating metabolic pathways in tomato. 

Our MMN dataset is also a good addition to current tomato multi-omics resources. 

Previous studies have focused largely on comparing specific tissues among different 

individuals, which provides high-resolution correlations between genetic variation 

and metabolic changes (Alseekh et al., 2015; Tieman et al., 2017; Zhu et al., 2018). 

However, if a compound or a pathway is not expressed in the sampled tissues, it is 

difficult to analyze its regulatory network. By covering most tissues and 

developmental stages of tomato, the MMN dataset provides a high-resolution map of 

metabolic and transcriptional dynamics throughout the tomato growth cycle. The 

strategy we used to analyze the MicroTom growth cycle can be used to guide the 

design of future experiments comparing different species and accessions. Using the 

MMN dataset, we constructed a global map of metabolic changes during tomato 

growth, including the following: significant metabolic changes between the vegetative 

phase and the reproductive phase (Figure 2A); increases in nutritional compounds, 

such as flavonoids, during fruit ripening to high levels at the ripe stage (Cluster X, 

Figure 3 and Table 1); and high levels of anti-nutritional compounds, such as SGAs, 

in vegetative tissues and unripe fruit, which decline significantly during fruit ripening 

(Cluster V, Figure 3, Supplemental figure 4 and Supplemental figure 6). The 

transcriptional changes underlying these and other significant metabolic changes can 
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be captured by MMN and provide a valuable resource for comprehensive 

investigation of metabolic regulation.  

Using the MMN dataset, we were able to verify some previously known metabolic 

regulatory networks and to identify novel transcription factors that may regulate 

metabolism in tomato. Previous studies had identified SlMYB12 and SlMYB75 as 

regulators of the flavonoid pathway. Expression of maize (Zea mays L.) Leaf colour 

(LC) and Colourless1 (C1) genes, or AtMYB12 (a homolog of SlMYB12) in tomato 

fruit prevented induction of SlF3’5’H, resulting in fruit that accumulated higher levels 

of flavonols but no anthocyanins (Bovy et al., 2002; Luo et al., 2008). However, when 

SlMYB75 or AmDel/AmRos1 was expressed in tomato, SlF3’5’H expression was 

activated and anthocyanins were produced in the fruit (Butelli et al., 2008; Jian et al., 

2019). In our study, we verified that SlMYB75 is mainly present in leaves and controls 

production of 3-OH flavonoids, which are reported to contribute to UV protection and 

pathogen resistance (Zhang et al., 2015b). 

The MMN dataset also provided an unbiased resource to screen for other regulators of 

the flavonoid pathway. This led to the identification of SlERF.G3-like, a novel ERF 

transcription factor. We found overexpression of SlERF.G3-like can activate the 

expression of major flavonoid biosynthesis genes (such as SlCHS1, SlF3H and SlFLS) 

to enhance the production of flavonoids (Figure 6 and Supplemental figure 22). In 

addition, it seems like SlERF.G3-like acts independently to known flavonoid regulator 

SlMYB12 (Supplemental figure 22 and 23). All these data indicate SlERF.G3-like is a 

new regulator of flavonoid biosynthesis in tomato fruit. 

The MMN dataset has also proven to be a useful tool for investigating the regulatory 

networks for biosynthesis of defensive compounds, such as SGAs. The enzyme 

GLYCOALKALOID METABOLISM1 (GAME1) catalyzes glycosylation of steroidal 

alkaloids and regulates their toxicity (Itkin et al. 2011). Recent studies in tomato 

found that Jasmonate-Responsive ERF transcription factors (such as JRE4) or 
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SlGAME9 are involved in the regulation of SGA levels (Cárdenas et al., 2016; 

Nakayasu et al., 2018). In MMN, the accumulation of metabolites and the 

transcription factors (TFs) regulating their biosynthesis perfectly match their 

biological functions through tomato growth cycle (Figure 3, Supplemental figure 4). 

Screening of the MMN dataset allowed us to identify SlbHLH114. Similar to 

SlGAME9, SlbHLH114 can significantly induce the expression of SGA biosynthesis 

genes and overexpression of SlbHLH114 in tomato fruit can enhance the production 

of major SGAs (Figure 5). All these data indicate bHLH114 is a novel transcription 

factor involved in regulating the SGA pathway 

In summary, our MMN dataset provides a high-resolution spatio-temporal 

representation of the metabolome and transcriptome of 20 different tissues/stages of 

the tomato growth cycle. It presents a global view of the major metabolic changes 

during the tomato growth cycle and the transcriptional regulation that underlies these 

changes. Using this dataset, we will able to verify other important patterns of 

metabolic regulation and identify novel transcription factors controlling these 

pathways. Taken together, the MMN dataset provides insights into the transcriptional 

control of major tomato metabolites and gives guidance for future quality 

improvement.  
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Methods 

Plant materials and tissue preparation 

Tomato (Solanum lycopersicum cv MicroTom) seeds were obtained from 

PanAmerican SeedTM. MicroTom plants were grown in a climate-controlled growth 

room with a light/dark photoperiod of 16/8 h at 23 ℃. Four to five-week-old plants 

with five to six expanded true leaves and one bud were used for bud stage (30 DPG, 

days post germination). Six to seven-week-old plants with more than 50 % flowers 

were used for flowering stage (45 DPG). Twelve to thirteen-week-old plants with one 

breaker fruit were used for breaker stage (85 DPG). All these three stages were used 

to collect root, stem and leaf tissues (the leaf tissue is collected from the fifth true leaf 

to all healthy young leaves). Flowers at anthesis (0 DPA) were tagged and expanding 

fruit were harvested at 10DPA, 20DPA, 30DPA (Immature green). Mature and 

ripening fruits were harvested based on the tomato color chart “USDA Visual Aid 

TM-L-1”(USDA Agricultural Marketing Service, 1975) as follows: MG (Mature 

green) stage (full-size green fruit, approximately 35 DPA), Br (Breaker) stage 

(approximately 40 DPA, definite break in color from green to tannish-yellow with less 

than 10 % of the surface), and 3, 7, 10, 15 day later (Br3, Br7, Br10, and Br15, 

respectively)). All samplings were collected before the greenhouse light off (around 

7:00–9:00 p.m.). Samples from 10 individual plants were pooled together as one 

biological replicate and immediately frozen in liquid nitrogen. Three biological 

replicates were applied to later transcriptome and metabolome analysis.  

Generation of MicroTom Metabolic Network (MMN) dataset: Metabolome 

Profiling and Transcriptome Profiling  

Metabolome profiling was carried out using a widely targeted metabolome method by 

Wuhan Metware Biotechnology Co., Ltd. (Wuhan, China) (http://www.metware.cn/). 

Briefly, the tomato tissues were lyophilized and ground into fine powder using a 

mixer mill (MM 400, Retsch) with a zirconia bead for 1.5 min at 30 Hz. 100 mg tissue 
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powder was weighed and extracted overnight with 1.0 mL 70% aqueous methanol at 

4℃, followed by the centrifugation for 10 min at 10,000 g, all the supernatants were 

collected and filtered with a membrane (SCAA-104, 0.22 mm pore size; ANPEL, 

Shanghai, China, http://www.anpel.com.cn/) before LC-MS analysis. Quantification 

of metabolites was carried out using a scheduled multiple reaction monitoring method 

(Wei et al., 2013; Zhu et al., 2018). 

Transcriptome profiling was performed as described previously (Ying et al., 2020). 

Briefly, the mapped clean reads were calculated using Hiseq-X-ten sequencing 

platform, and then mapped to tomato reference genome (Version 3.0) (The Tomato 

Genome Consortium, 2012) using Hisat 2 (Daehwan et al., 2015), and then 

normalized to reads TPM by StringTie (Pertea et al., 2015). All raw data were 

deposited into the Genome Sequence Archive in Big Data Center, Beijing Institute of 

Genomics, Chinese Academy of Science, under accession number CRA001723 and 

CRA001712 that were publicly accessible at http://bigd.big.ac.cn/gsa (Members, 2018; 

Wang et al., 2017). 

Co-expression/co-regulation cluster identification and Analysis 

Co-expression/ co-regulation analysis was done for 20 different time points/tissues 

samples by the MeV (Version 4.9) with the k-means method (Gasch and Eisen, 2002). 

The normalized expression values of genes and metabolites were calculated by 

dividing their expression level at different time points/tissues. Hierarchical clustering 

(HCL) and principal component analysis (PCA) was performed using the prcomp 

function in R software (Team, 2013) with default settings to facilitate graphical 

interpretation of relatedness among 20 different time points/tissues samples. The 

transformed and normalized gene and metabolites expression values with z-scores 

were used for HCL and PCA. 

Network building for metabolome and transcriptome of metabolic pathway 
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We used the Pearson’s correlation algorithm method (Bishara and Hittner, 2012) to 

construct a transcription factor-related gene and metabolites regulatory network. 

Mutual information for calculating the expression similarity between the expression 

levels of transcription factor and gene, metabolites pairs were calculated by R 

software. All the associations among transcription factor and gene, metabolites were 

shown by Cytoscape software (Kohl et al., 2011).  

Sequence alignment and phylogenetic analyses  

Sequence alignments were performed using the MUSCLE algorithm in MEGA7 

(Edgar, 2004). Molecular phylogenetic analysis was done on the basis of the NJ 

matrix-based model. Bootstrap values were calculated using 1,000 replicates. All 

phylogenetic analyses were conducted in MEGA7. 

Sample extraction and metabolomic analysis 

Preparation of extracts and the profiling of flavonoids in tomato fruit tissues were 

performed with same methods as described previously (Ying et al., 2020). For 

measurement of steroidal glycoalkaloids, tomatoes were harvested at 10 days after 

breaker (Br10). Fruit pericarp was freeze-dried and ground into fine powder using an 

automatic sample rapid grinder (JXFSTPRP-24, Shanghai jingxin industrial 

development CO., LTD) with 3 times for 1 min at 50 Hz. Extraction was performed as 

previously described (Itkin et al., 2011). Briefly, 100 mg freeze-dried tissue was 

extracted with 1 mL 80 % methanol/water (v/v) containing 0.1 % formic acid. The 

mixture was vortexed for 30 s, sonicated for 30 min at 4 ℃, vortexed again for 30 s, 

centrifuged (20,000 g, 10 min, 4 ℃), and filtered through a 0.22-mm 

polytetrafluoroethylene membrane filter. The profiling of steroidal glycoalkaloids of 

tomato tissues was performed by LC-MS analysis using the SCIEX Triple Quad™ 

5500 LC-MS/MS System with the UPLC column connected online to a photo diode 

array detector (Shimadzu), separation of metabolites and detection of the eluted 

compound masses was performed as described (Zhu et al., 2018). All samples were 
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performed in biological triplicate.  

RNA extraction and RT-qPCR 

Both MicroTom and transgenic fruits were harvested at Br3 and fruit pericarp was 

ground into fine powder using liquid nitrogen. RNA extraction and cDNA synthesis 

were done as described previously. RT-qPCR was done by BIO-RAD CFX384 

Real-Time System, following the manufacturer’s instruction. With SlUBI as an 

internal control, the relative expression of each genes was calculated by the ΔCt 

method. The primer pairs for RT-qPCR were blasted at NCBI database to ensure 

primer specific (see Supplemental Data 6). 

Vector construction and generation of transgenic lines 

The overexpression constructs used for Agrobacterium-mediated tomato plant 

transformation were built using the Goldenbraid cloning (Sarrion-Perdigones et al., 

2013) and Gateway Cloning Technology (Curtis and Grossniklaus, 2003). For fruit 

specific expression, full length of coding sequence (CDS) was introduced into 

pBin18-E8-GW through Gateway Cloning (Ying et al., 2020). We used the 

Goldenbraid system for generating 35S promoter- transcription factor -35S terminator 

as a one transcriptional unit, kanamycin resistance gene under the control of NOS 

promoter and NOS terminator were additional genes. The plasmid with the correct 

insertion was introduced into Agrobacterium tumefaciens strain EHA105 and tomato 

transformation was done as described previously (Ying et al., 2020).  

Subcellular localization 

Tobacco (Nicotiana benthamiana) used in this study was both grown in the 

greenhouse with a light/dark photoperiod of 16/8 h at 25 ℃. Determination of the 

subcellular localization of individual transcription factors (TF) fused to the GFP 

fluorescent reporter is performed in Nicotiana benthamiana leaves protoplasts as 
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described earlier (Deng et al., 2018). Briefly, the released protoplast cells from leaves 

of 3-4 week-old tobacco were isolated and transformed via the PEG-mediated 

protoplast transfection method (Deng et al., 2018). Full-length cDNA is fused with 

GFP in the pBI101.3, the pBI101.3-SlTF and pBI101.3 were individually transient 

transformation into protoplasts of N. benthamiana leaves. After one night grown, 

DAPI was used to stain the nucleic acids of the protoplasts. Signals from GFP and 

DAPI were visualized with a laser scanning confocal microscopy (Zeiss CELL 

Observer SD). 

Transient dual luciferase reporter assay  

Promoter sequences were amplified from genomic DNA using PCR and inserted 

upstream of the Luciferase (LUC) CDS by Goldenbraid 2.0 cloning strategy to yield 

the promoter-LUC reporter vectors. For an internal control, the expression of the 

Renlia (REN) gene was driven by the CaMV35S promoter in a reporter vector. The 

CDS of SlbHLH114 was cloned into the pUPD2 vector using the Goldenbraid 2.0 

cloning strategy, to create an overexpression construct named 35S-SlbHLH114. The 

empty vector P35S-T35S was used as the negative control (CK).  

Arabidopsis thaliana (Columbia-0, Col-0) used in this study was grown in the 

greenhouse with a light/dark photoperiod of 16/8 h at 22℃. Dual luciferase reporter 

assay was performed as described previously (Deng et al., 2018). Briefly, protoplasts 

used for transfection were isolated from 4-5 week-old Arabidopsis thaliana leaves. 

Protoplast co-transfection assays were performed using the reporter plasmids and the 

internal control vectors. Results were analyzed and quantified by flow cytometry 16 h 

following protoplast transfection. Luciferase activity was detected using the 

dual-luciferase reporter assay system (Promega) with a SynergyTM H1 hybrid 

multimode microplate reader (BioTek). Expression was expressed as the ratio of LUC 

to REN activity. 

Statistics 
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For comparison of individual treatments with their relevant controls, unpaired 

two-tailed Student’s t-tests were used, and P ≤ 0.05 was considered significant. To 

compare measurements of multiple treatments with each other, we performed 

univariate ANOVA followed by the posthoc Tukey’s test of multiple pairwise 

comparisons to determine group differences using GraphPad Prism version 8 (Swift, 

1997).  

Accession numbers 

Tomato genome sequence data for this article was downloaded from the SGN 

(https://solgenomics.net/). The raw values obtained from the metabolomic data sets 

were available in Supplemental data 1 (associated figures: Figure 2A, 2C, 2E and 3, 

Supplemental figure 1A, and Table 1). RNA-seq data sets for the transcriptome 

analysis were available at the Genome Sequence Archive in Big Data Center, under 

accession number CRA001723 and CRA001712 that are publicly accessible at 

http://bigd.big.ac.cn/gsa (Wang et al., 2017) (associated figures: Figure 2B, 2D, 2F, 

4A and 4B, Supplemental figure 1B, 2, 3, 4, 5, 6 and 11). Sequence data of 

phylogenetic analysis can be found in Supplemental Table 2. If any data sets are 

unavailable through the links stated above, they can be obtained from the 

corresponding author on request. 
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Figure and Table Legends 

Figure 1. Schematic representation of the design for MicroTom Metabolic Network 
(MMN). 20 samples of 3 key development stages were collected for metabolic profiling 

and RNA-seq. Axis indicates sample harvest date (days post germination, DPG). Leaf (L), 

root (R), stem (S), bud (F30) and flower (F45) samples were harvest at bud stage (30 

DPG), flowering stage (45 DPG) and breaker stage (85 DPG), respectively. Fruit samples 

were harvested at 10 days post anthesis (10DPA), 20DPA, Immature Green (IMG), 

Mature Green (MG), Breaker (Br), Breaker plus 3 Days (Br3), Br7, Br10, Br15. 

 

Figure 2. Summary of metabolome and transcriptome data of MMN. Overview of 540 

annotated metabolites (A) and hierarchical clustering analysis of gene expression profiles 

with 31,256 genes (B) from 20 tomato samples. Principal component analysis (PCA) (C 

and D) and Cluster dendrogram (E and F) of metabolome (C and E) and transcriptome (D 

and F) in the 20 MicroTom samples. For metabolome data (A), the metabolite per row is 

Z-score standardized to -3 to 3. For transcriptome data (B), the color scale 0-1 represents 

Spearman’s correlation coefficients. Axis numbers in (A) indicate tissues: 1-R30, 2-R45, 

3-R85, 4-S30, 5-S45, 6-S85, 7-L30, 8-L45, 9-L85, 10-F30, 11-F45, 12-10DPA, 13-20DPA, 

14-IMG, 15-MG, 16-Br, 17-Br3, 18-Br7, 19-Br10, 20-Br15.   

Figure 3. Dynamic of metabolite and gene expression during MicroTom growth 
cycle. K-means clustering grouped the expression profile of the tomato metabolome (red) 

and transcriptome (blue) into 10 clusters. The x axis depicts 20 samples from 3 key 

development stages and the y axis depicts Z-score standardized per metabolite (red) and 

gene (blue). The numbers shown in each box (for example, 67 metabolites and 4,543 

genes for cluster I) were derived based on the number of metabolites and genes across all 

20 samples in each cluster. Axis numbers indicate tissues: 1-R30, 2-R45, 3-R85, 4-S30, 

5-S45, 6-S85, 7-L30, 8-L45, 9-L85, 10-F30, 11-F45, 12-10DPA, 13-20DPA, 14-IMG, 

15-MG, 16-Br, 17-Br3, 18-Br7, 19-Br10, 20-Br15. Ten clusters were identified.  

 

Figure 4. SlMYB75 is associated with the biosynthesis of flavonoids with 3 - OHs on 
the B - ring. (A) Network built on correlation among structure genes and TFs. Pearson 

correlation coefficient (PCC) values were calculated for each pair of genes, the color scale 

has been normalized to range from -1 to 1, where -1 is negative correlation and 1 

corresponds to the positive correlation. (B) Expression pattern of flavonoid biosynthetic 

genes and TFs in 20 samples. Expression data were Z-score standardized to -3 to 3 per 

gene. (C) Dual luciferase reporter assay indicated SlMYB75 can better induce the activity 

of the promoter of SlF3’5’H than SlMYB12. Error bars represent the standard deviation 

(n=3). Different letters indicate significantly different values at P < 0.05 (one-way ANOVA, 

Tukey’s posthoc test). (D) Schematic representation of flavonoids biosynthesis and 

regulation in tomato. Purple arrows indicate genes and metabolites regulated by SlMYB75 

and orange arrows indicate genes and metabolites regulated by SlMYB12. 

 

Figure 5. SlbHLH114 is a new transcription factor in steroidal alkaloids pathway.            
(A) Co-expression network of steroidal alkaloids biosynthetic pathway. Metabolites, 
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structure genes and transcription factors were marked in pink, light blue and red, 

respectively. (B) Phenotypes of transgenic and MicroTom tomato fruit at different stages. 

Br3, three days post breaker; Br10, ten days post breaker. (C) Summarized gene and 

metabolic changes in tomato fruits expressing SlbHLH114. Based on transcriptome and 

metabolome data, genes and metabolites which are significantly increased in the 

transgenic fruits (Line C and Line I) were colored. Data was represented as 

log2fold-change compared to MicroTom. (D) Expression level of SlbHLH114 in transgenic 

fruit from two independent T1 generation lines and MicroTom at Br3. Error bars represent 

the standard deviation (n=3). (*P < 0.05; ** P < 0.01; *** P < 0.001; Student’s t test). (E) 

Schematic representation of promoter activation test. The promoters were cloned into the 

dual-luciferase reporter vector to activate the expression of luciferase (LUC). The renilla 

(REN) driven by the CaMV 35S promoter served as an internal control. T35S, CaMV 35S 

terminator. CK, the empty vector. Asterisks indicate significant differences to CK. (F) 

SlbHLH114 directly interact with the promoter of pathway genes. Promoter sequences can 

be found in Supplemental Table 1. Different letters indicate significantly different values at 

P < 0.05 (one-way ANOVA, Tukey’s posthoc test). 

 

Figure 6. SlERF.G3-like is a new regulator for flavonoid biosynthesis.  (A) 

Co-expression network of key genes and metabolites in flavonoid pathway. Metabolites, 

structure genes and transcription factors were marked in light pink, blue and gray, 

respectively. Pearson correlation coefficient (PCC) values were calculated for each pair of 

genes/metabolites. (B) Phenotypes of transgenic and MicroTom tomato fruit at seven days 

post breaker. (C) RT-qPCR of transgenic plants in Br3. Error bars represent the standard 

deviation (n=3). (*P < 0.05; ** P < 0.01; *** P < 0.001; Student’s t test). (D) Up-regulated 

genes and metabolites in E8: SlERF.G3-Like overexpression lines.  

 

Table 1. Distribution of the Compounds and Genes Identified in This Study in 
Different Clusters. 
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Supplemental Information 

Supplemental figure 1. Metabolites accumulation and gene expression pattern over 
tomato growth cycle. 
 
Supplemental figure 2. Transcriptome relationships of 17,003 genes co-expressed 
with metabolites among 20 tissues/time points. 
 
Supplemental figure 3 Expression of SlMYB12 (A), SlMYB75  (B) and SlF3’5’H  (C) 
expression in RNA-seq data (left) and validation by RT-qPCR (right). 
 
Supplemental figure 4. Co-expression of major SGA compounds and pathway 
genes among different tissues and stages. 
 
Supplemental figure 5. Expression pattern of SGA pathway genes in RNA-seq data. 
 
Supplemental figure 6. GAME genes and steroidal alkaloid compounds are 
co-expressed in cluster V. 
 
Supplemental figure 7. Validation of SGA pathway genes expression through 
RT-qPCR. 
 
Supplemental figure 8. Coexpression analysis of SlbHLH114 and SlGAME9 . 

 
Supplemental figure 9. Molecular Characterization of SlbHLH114. 
 
Supplemental figure 10. Subcellular localization of SlbHLH114 and SlERF.G3-like. 
 
Supplemental figure 11. Screening of pBin19-E8:SlbHLH114  T0 tomato. 
 
Supplemental figure 12. Summarization of E8:SlbHLH114  fruit transcriptome data. 
 
Supplemental figure 13. Verification of differently expressed SGA related genes in 
SlbHLH114 overexpression lines. 
 
Supplemental figure 14. Coexpression analysis SlMYC2, SlbHLH114, SlGAME9  with 
SGAs related and JA-signaling related genes in MMN. 
 
Supplemental figure 15. Expression pattern of SlMYC2 and SlbHLH114  in (A) 
SGN-TEA, (B) Tomexpress and (C) MMN (This study). 
 
Supplemental figure 16. Phylogenetic analysis indicates both SlbHLH114 and 
SlMYC2/SlbHLH147 belong to the bHLH subfamily 15. 
 
Supplemental figure 17. SlMYC2 may activate the expression of SlbHLH114 . 
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Supplemental figure 18. Coexpression analysis of SlERF.G3-like  and SlMYB12 .  

 
Supplemental figure 19. Characterization of SlERF.G3-Like. 
 
Supplemental figure 20. Screening of E8: SlERF.G3-Like  T0 tomato. 

 

Supplemental figure 21. Expression of carotenoid pathway genes in E8: 
SlERF.G3-Like  and MicroTom fruit. 
 
Supplemental figure 22. SlERF.G3-like could directly activate the major expression 
of flavonoid biosynthetic genes. 
 
Supplemental figure 23. SlMYB12  and SlERF.G3-Like  have different expression 
pattern in fruit. 
 
Supplemental figure 24. Expression pattern of SlERF.G3-like  and SlMYB12  in (A) 
SGN-TEA, (B) Tomexpress and (C) MMN (This study). 
 
Supplemental Table 1. Gene and promoter sequence used in this study. 
 
Supplemental Table 2. Protein sequence of bHLH and ERF family used for 
phylogenetic analysis. 
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Supplemental Dataset 1. Summary of metabolome profiling for tomato tissues. 
 
Supplemental Dataset 2. Summary of transcriptome mapping for tomato tissues. 
 
Supplemental Dataset 3. Gene expression in tomato tissues. 
 
Supplemental Dataset 4. Summary of coexpression clusters. 
 
Supplemental Dataset 5. Summary of coexpression gene clusters. 
 
Supplemental Dataset 6. Summary of PCR and qRT-PCR primers used in this study. 
 
Supplemental Dataset 7. Summary of metabolome profiling for steroidal 
glycoalkaloids. 
 
Supplemental Dataset 8. Up-regulated genes in SlbHLH114-Ox  lines. 
 
Supplemental Dataset 9. Differentially expressed genes in the SlbHLH114-Ox  
pericarp tissues. 
 
Supplemental Dataset 10. Kyoto Encyclopedia of Genes and Genomes enrichment 
in co-expression clusters. 
 

 
















