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Abstract

Tomato Solanum lycopersicumis a major horticultural crop worldwide and has
emerged as a preeminent model for metabolic rdse#@ithough many research
efforts have focused on analyzing metabolite vasidoetween varieties and species,
the dynamics of metabolic changes during the torgedwth cycle and the regulatory
networks underlying these changes are poorly utmss|In this study, we integrated
high-resolution spatio-temporal metabolome andstteptome data to systematically
explore the metabolic landscape across 20 majoatmigrowth tissues and stages. In
the resulting MicroTom Metabolic Network (MMN), tfl0 detected metabolites and
their co-expressed genes could be divided intaltsimct clusters that were based on
their biological functions. Using this dataset, w@nstructed a global map of the
major metabolic changes that occur throughoutdh®ato growth cycle and dissected
the underlying regulatory network. In addition toeriying previously
well-established regulatory networks for importametabolites, we identified novel
transcription factors that regulate the biosynthesimportant secondary metabolites,
such as steroidal glycoalkaloids and flavonoidsr @udings provide insight into
spatio-temporal changes in tomato metabolism amergée a valuable resource for

studying metabolic regulatory processes in modeitsl

Keywords: tomato; metabolome; transcriptome; transcription factoregpression;

flavonoids; steroidal glycoalkaloids;



Introduction

Because of its unique flavor and high nutritionahlue, tomato $olanum
lycopersicum has become one of the world’s favorite fruits aadan important
source of micronutrients in the human diet (USD®12). Its short life cycle (90-120
days) and self-compatibility make it an importa@tsic crop for both small- and
large-scale growers (Carqueijeiro et al., 2018)rimyuthe past 50 years, molecular
biology studies of tomato have been driven by dalwsaior increased yield and
improved nutritional value (fiber, carbohydratead gohytonutrient compounds) and
by consumer preferences (fruit size, color, flaamg aroma), making tomato a major
research focus for fruit biology (Azzi et al., 2Q1&lee and Giovannoni, 2011;
Tieman et al., 2017). Many genetic resources sgamagural varieties (Tieman et al.,
2017; Zhao et al., 2019; Zhu et al., 2018), intesgion lines (Eshed Y, 1995; Schauer
et al., 2006), bioinformatic research tools (Shatozt al., 2018; Zouine et al., 2017),
mutants generated by gene editing (Shimatani €2@1.7; Uluisik et al., 2016; Zhang
et al., 2006), and multi-omics tools (Sonawane ket 2016) are available to

systematically understand metabolic regulatory netw/in tomato.

Nowadays, tomato is considered as a model to splayt secondary metabolism.
Major classes of plant metabolites, such as flaidmacarotenoids, terpenoids, and
alkaloids, are all present in tomato and are styoagsociated with its growth habits
and fruit characteristics (Butelli et al., 2008 wirsohn et al., 2001; Liu et al., 2015;
Xu et al., 2018; Zhang et al., 2015a; Zhu et &18). Flavonoids belong to a group of
compounds rich in fruit and are associated withHthdzenefits (Adato et al., 2009).
These secondary metabolites are ubiquitous in plgett have tremendous chemical
diversity as well as diverse roles (Grotewold, 201i6 et al., 2000; Sheehan et al.,
2015; Tohge et al., 2016). In addition, flavonoate reported to benefit health by
having anti-cancerous, antioxidant, and anti-osteatfc activities (Echeverry et al.,
2015; Kaakoush and Morris, 2017). Besides healthetie compounds such as

flavonoids, in recent decades, many studies haga tene to the regulation of plant
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defensive compounds such as steroidal glycoalkalo{®@GAs). SGAs are
cholesterol-derived molecules and mainly produceg ®olanaceous species
(Cardenas et al., 2019; Cardenas et al., 2016hoA¢th SGAs contribute to plant
resistance to a wide range of pathogens and pmsdataiuding bacteria, fungi,
oomycetes, viruses, insects, and other animals,esoimthem are considered as
antinutritional factors for humans due to theirdpion of membranes and inhibition

of acetylcholine esterase activity (ltkin et aD13).

To date, systematic studies of tomato growth andlityuhave focused on fruit,

because of the commercial importance of fruit staBefore the tomato genome
sequence was released, complementary DNA (cDNAjaaitays were used to study
gene expression dynamics during tomato fruit derakent (Alba et al., 2005). As the
genome sequence became available and second gemesaguencing techniques
were developed, transcriptome and epigenome prgfikereused to provide global,

guantitative measurements of gene expression ddmiriigdevelopment (Hua et al.,

2009; Zhong et al., 2013). More recently, improwsaimpling techniques, such as
laser-capture microdissection, and high-throughRMA sequencing methods have
been used to analyze gene expression at high Ispeg@ution (Espina et al., 2006;

Shinozaki et al., 2018).

During the past 15 years, the integration of mdtalmofiling with transcriptome
data has proven to be highly effective for idemtifygene functions and elucidating
metabolic pathways in plants (Luo, 2015). For exi@nponeering work by Carrari et
al. combined gas chromatography-mass spectromeB€¢-MS) with parallel
transcriptome analysis to dissect metabolic chandgesg tomato fruit development
(Carrari et al., 2006). This approach was expantdedompare the peel and flesh
tissues of different tomato introgression linesimgifruit development (Mintz-Oron
et al., 2008). Later, a more detailed metabolicngjtetive trait loci (mQTL) analysis
was carried out using the well-characteriZzgolanum pennelliintrogression lines

(Alseekh et al., 2015; Schauer et al., 2006). Talwate how breeding has changed
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the tomato fruit metabolome, different researchugsohave recently generated and
analyzed large datasets encompassing genomescrippmsies, and metabolomes
from hundreds of tomato genotypes (Tieman et @ll72Zhao et al., 2019; Zhu et al.,
2018). Through metabolite genome-wide associatiodiess (MGWAS), researchers
have identified a large number of genetic loci tl#fiect the concentrations of
important metabolites in tomato fruit (Tieman et, &#017; Zhao et al., 2019).
Furthermore, GC- and LC-MS based metabolomics ardiqally available RNA
sequencing data were carried out to investigatg/pbenolic metabolism in the

lycopersicum complex across eight different specfdemato (Tohge et al., 2020).

Although some multi-omic studies of tomato have nexeed vegetative tissues
(Balcke et al., 2017; Jennifer, 2013; Zouine et 2017), most have focused on the
effect of genetic variation among varieties andcgseon fruit quality (Alseekh et al.,
2015; Alseekh et al., 2017; Dan et al., 2019; Garbp et al., 2018; Tieman et al.,
2017; Zhang et al., 2016; Zhao et al., 2019; Zhal.e2018). Therefore, the changes
that occur to metabolic and regulatory networksulghout the tomato growth cycle

have remained largely unknown.

To establish how the metabolism is rewired durimg tomato growth cycle and the
underlying transcriptional regulation, we developdte MicroTom Metabolic
Network (MMN), a high-temporal-resolution metabol®rand transcriptome dataset
of different tissues for MicroTom tomato at diffatelevelopment stages. We detected
540 annotated metabolites and 31,256 expressed gen20 different tissues and
stages. Co-expression analysis integrating metaiwl@and transcriptome data
provides comprehensive knowledge of the dynamicsnajor metabolites during
tomato development and the transcriptome profiladedying them. Using this
dataset, we not only verified the previously knowgulatory networks for major
metabolites, but also identified novel transcriptfactors associated with important
compounds, such as flavonoids and steroidal glket@ds. Our MMN dataset and

experimental strategy can be a useful resourceidentifying key regulators of
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important metabolites in other crops.

Results

Generation of the MMN dataset

To create a comprehensive and accurate record asfgels to metabolic regulatory
networks during the life cycle of MicroTom tomatee generated the MMN dataset
(Figure 1). This dataset consists of parallel matabprofiling and transcriptome
analysis for samples collected from all major glowtages and tissues of MicroTom
tomato. We collected 20 tissues: roots, stems.ekedrom the bud stage (when the
first flower bud emerges, 30 days post-germinafidRG]), flowering stage (when
50% of flowers reach anthesis, 45 DPG), breakagestavhen the first fruit reaches
the breaker stage, 85 DPG). Bud and flower samptee collected from bud stage
seedlings and flowering stage seedlings, respégtiire addition, pericarps at nine
stages of fruit development stages (10 days pdbears [DPA], 20 DPA, immature
green [IMG], mature green [MG], breaker [Br], brealplus 3 days [Br3], Br7, Brl0,
and Br15) (Figure 1). Three biological replicateach of which was a pooled sample

from 10 plants, were analyzed for all 20 time pgftigsues.

For metabolome analysis, samples were analyzed lyoadly targeted liquid

chromatography-tandem mass spectrometry (LC-MS/b&Sed metabolic profiling

method (Zhu et al., 2018) (see Methods). A totdd4 distinct annotated metabolites
were identified in at least one tissue, includiryflavonoids, 76 amino acids and
derivatives, 54 lipids, 52 organic acids, 50 nuttes and derivatives, 14

phenolamides, 32 alkaloids, 43 hydroxycinnamoyls @erivatives, 9 polyphenols, 13
carbohydrates, 12 vitamins, 10 benzoic acids andatees, 18 polyamines, and 87
additional compounds which did not fit into thesg rhain classes (Figure 2A and
Supplemental Data 1). Analyses of the 540 metadsadimong the different tissues
showed that the metabolites can be divided inteethrig groups: metabolites present

in vegetative tissues (root, stem, leaf), flowssties (bud and flower) and fruit tissues
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(pericarp throughout fruit development) (Figure 2A)his result indicates that
vegetative tissues at different development stdge® similar metabolic patterns,
which are significantly different from those of tHeuit tissues. For example,
metabolites such as lipids, alkaloids, hydroxycmogl derivatives, and

phenolamides accumulate preferentially during \egget phases, whereas the fruit
tissues have substantially higher levels of amimidsa and their derivatives,

flavonoids, nucleotides and their derivatives, argacids, polyphenols, and vitamins
(Figure 2A). These specific metabolites likely eefl the spatial differentiation of
tomato metabolism between the two major phasesetagge growth and fruit

development. In addition, we performed principampmnent analysis (PCA) and
established that the 540 metabolites can be fudiheded into five groups, each
associated with a specific tissue (root, stem,, [dadver, and fruit) (Figure 2C). In

line with the PCA, the cluster dendrogram can &lealivided into five independent
subgroups (Figure 2E). All these data indicate thataccumulation of metabolites is

tissue specific during tomato development.

To investigate transcriptional regulation over ttwurse of the MicroTom tomato
growth cycle, we built a spatio-temporal dynamianscriptome landscape for all
tissues. Approximately 453 Gb of raw data were ggre and the statistics of the
sequencing libraries are summarized in Supplemémdh 2. Unique mapped reads
were used to calculate the expression level ostiapts per million (TPM) (Bo et al.,
2010; Wagner et al., 2012). To reduce the influeatdranscriptional noise, we
defined a gene as expressed if its average TPMewasis > 0. In total, 31,256 genes
were found to be expressed in at least one sarSplep{emental Data 3). To form a
global picture of gene expression across the 20¢s we made a Z-score normalized
expression heatmap clustered by genes. A correlatiatrix of the transcriptome
indicates that the global gene expression patteiissue-specific, regardless of the
development stage (Figure 2B and Supplemental BatAs we established for the
metabolome,further PCA and the cluster dendrogram of the trapgome also

showed clustering of samples from the same tisswang the different stages (Figure
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2D and 2F). All these results suggest that generessmpn and metabolite

accumulation show significant tissue specificityidg tomato development.

The tomato metabolome and transcriptome are co-redated in ten clusters

corresponding to different tissues and developmenitatages

To gain further insights into metabolic changesirduthe MicroTom growth cycle,

we divided all 540 annotated metabolites into testers based on their accumulation
patterns using th&means clustering algorithm (Howe et al., 2010)p{8emental

figure 1A, Table 1, Supplemental Data 4). By anialgzthe ten clusters, we can
identify metabolites enriched in specific tissuastsas root (Cluster 1), stem (Cluster
), leaf (Cluster 1V), and flower (Cluster V) (§ure 3 and Supplemental figure 1A).
We also identified compounds that decrease duhegperiod between the flowering
and ripe fruit stages (Cluster VI) and compoundg thcrease during the green fruit
stages (Cluster VII) and during the fruit ripenstgges (Cluster X). In addition, there
were compounds that were enriched in more thantissoies or stages (Clusters Il,

VIII, and IX) (Figure 3 and Supplemental figure 1A)

To further correlate the gene expression patteth wietabolite accumulation, we
applied co-expression analysis to our metabolome& dranscriptome data
(Giovannoni, 2018; Serin et al., 2016). A rigorausiltiple test correctionr(> 0.8)
was used to filter the genes that significantlyrelated with each metabolite. A total
of 17,003 genes that are co-regulated with at least metabolitavere identified

(Supplemental figure 1B, Supplemental Data 4 and 5)

Next, the 540 metabolites and 17,003 genes werigetlvinto ten co-expression
clusters based on Pearson Correlation Coefficientt #the fact that they had a
consistent and clear expression pattern during timntkevelopment (Figure 3).
Interestingly, after removing the genes not higbtyrelated with any of the 540
metabolites, PCA (Supplemental figure 2A) and dusg analysis (Supplemental

figure 2B) of the remaining 17,003 highly co-exmes genes still showed clustering
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patterns similar to the global gene expressiontetagSupplemental figure 1B). This
indicates that during the normal growth cycle, p&ern of tomato gene expression is

largely paralleled by the dynamics of major metabpathways.

Spatio-temporal insights into the regulation of keymetabolic pathways

To examine whether MMN can provide spatio-tempanalghts into the metabolic
regulatory network in tomato, we first tested itttwpreviously known regulatory
networks. Flavonoid biosynthesis branches frompthenylpropanoid pathway, which
provides precursors in the form of phenylalaningldwing the reactions catalyzed
by the gateway enzymes phenylalanine ammonia Ifg8e) and chalcone synthase
(CHS), the flavonoid pathway consists of a serieerezymes that catalyze diverse
downstream reactions leading to the biosyntheseghfcone backbones (Figure 4D).
Flavonoid biosynthesis has been a growing are@s#arch in the past two decades
and much progress has been made in the identificafi both the biosynthetic genes
and their regulators (Vogt, 2010). Multiple MYB fdyntranscription factors have
been identified as regulatory factors in flavonbidsynthesis (Ballester et al., 2010;
Borevitz et al., 2000; Mehrtens et al., 2005).ds lbeen suggested that the expression
of Flavonoid-3',5'-hydroxylase(SIF3'5’'H), a flavonoid modification gene, is
correlated with SIMYB75 in vegetative tissues, an anthocyanin biosynthetic
transcription factor, rather tha8IMYB12 the predominant regulator of flavonoid
biosynthesis (Ana-Rosa Ballester, 2010; Jian eP8l9).SIF3'5'H expression is also
crucial for activation of anthocyanin synthesis tomato fruit because tomato
dihydroflavonol 4-reductase (DFR) prefers dihydrommstin (3 -OHs on the B ring)
over dihydrokaempferol (1 -OH on the B ring) (Sahet al., 2009).

In line with the previous results, our RNA-seq dftaflavonoid biosynthetic genes
and associated transcription factors revealed $ifé8'5'H is strongly co-expressed
with SIMYB75but not withSIMYB12(Figure 4A and 4B). A quantitative real-time

polymerase chain reaction (RT-gPCR) analysis ofe¢hgenes produced results that



were highly consistent with the RNA-seq data (Sappntal figure 3, Supplemental
Data 6). A dual luciferase reporter assay revetlatiSIMYB75can interact with the
promoter region oSIF3’'5’H to induce much higher expression than that induned
SIMYB12(Figure 4C). In summary, our spatiotemporal d&aws good correlation
between metabolite production and transcriptome@bs, suggesting that MMN can

be utilized to study the regulation of importanttatmlic pathways in tomato.

SGA biosynthesis begins with glycolysis, followedy lhe mevalonate and
cycloartenol pathways. The cholesterol pathway iples/ cholesterol, a precursor of
the SGA pathway, and the phytosterol pathway opengith the cholesterol pathway
(Sonawane et al., 2016) (Supplemental figure 4App&mental figure 5). From
cholesterol, there are a series of enzymes thalyzat diverse downstream reactions
in the pathway leading to the biosynthesis of SGA&spplemental figure 4A).
Previous co-expression analyses identified cludter6&LYCOALKALOID
METABOLISM(GAME) genes that form the biosynthetic pathway fromlesterol to
a-tomatine (Itkin et al., 2013). In addition, SIGAMEan AP2/ERF transcription
factor, was found to positively regulate SGA biasysis (Cardenas et al., 2016).
Among the 540 metabolites, we detected 29 SGAs lwhi®@ mainly present in
clusters Ill, V, VI, and X (Supplemental Data 7jtdrestingly, we identified three
SGAs (dehydrofilotomatine, dehydrotomatine, andydebtomatine isomer (25R))
and 15 SGA-related genes in cluster V (Supplemédigtiate 6A, Supplemental figure
4). Among these, the SGA biosynthetic gen8{GAME1, SIGAME4, SIGAMESG,
SIGAME11, SIGAMEZL7and SIGAMEZ25 co-express well with the regulatory gene
SIGAMED9 (Supplemental figure 6B). This result is in perfaxtncordance with
previous co-expression analysis of {BAME gene cluster (Cardenas et al., 2016;
Itkin et al., 2013). We also performed RT-gPCR wsial of these genes and
established that they were mainly increased in tatige tissue and decreased during
fruit development (Supplemental figure 7). To sup using MMN we can perfectly
verify previously known metabolic regulatory netk®throughout the tomato growth

cycle.
10



Identification of a novel transcription factor regulating steroidal glycoalkaloids

metabolism

We next attempted to use MMN to identify new reguis controlling the SGA
biosynthetic pathway, given that these defensivapmunds are also important for
tomato growth and fruit quality (Itkin et al., 2013hu et al., 2018). Our clustering
data indicated that 15 SGA-related gereK6GAME9and 14 biosynthetic genes) are
co-expressed with three SGAs in cluster V. We s$eattc¢his cluster and found that a
gene BGolyc01g096370 encoding a bHLH transcription factor is also sly
co-expressed with these SGAs and metabolic gengsréSA). Further investigation
indicated thaSolyc01g0963768hares a large number of co-regulated metabolitds a
genes with the known regulat@GAME9 (Cardenas et al., 2016) (Supplemental
figure 8A). Kyoto Encyclopedia of Genes and Genor(t&GG) analysis of the
common genes and metabolites revealed that thecolatefunctions are mainly
enriched in steroid and alkaloid biosynthesis, Whstiggests thabolyc019g096370
can potentially modulate the SGA pathway (Suppldaidigure 8B). Intriguingly, the
level of correlation betweeBolyc01g09637and the SGA pathway is as good as that
of SIGAME9(Figure 5A).

Phylogenetic analysis revealed that the bHLH fampyotein encoded by
Solyc01g09637Mmelongs to the MYC family (Supplemental figure 8- which is
mainly involved in jasmonate signaling (Chen et2016; Deng et al., 2015; Du et al.,
2017; Du et al., 2018). Further analysis indicaBalyc01g096370 is SIbHLH114,
which belongs to bHLH subfamily 15 (Supplementgufie 9C) (Hua et al., 2015) and
is related to jasmonate signaling and developmétype VI glandular trichomes in
Solanum lycopersicurfiKemparaju, 2018). Moreover, SIbHLH114 was clustewith
subfamily 8 fromArabidopsis thaliangSupplemental figure 9D), which functions in
jasmonate signal transduction pathways and affeat®ation of root hairs and
trichomes (Tominaga-Wada et al., 2011). These siadg@est that SIbHLH114 might

be involved in SGA metabolism and JA signaling.
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We next analyzed the expression levelsSt#iHLH114 at different developmental
stages and in different tissues. Our transcriptanmadysis indicated that expression of
SIbHLH114 like that of known SGA biosynthetic genes andahetites, is high in
vegetative tissue and gradually decreases durnirigdevelopment to a very low level
at fruit ripening stages (Supplemental figure 4B).9RT-gPCR analysis confirmed
this expression pattern (Supplemental figure 9bhc8llular localization showed that

SIbHLH114 is exclusively located in the nucleus{flemental figure 10).

To investigate the potential function 8fboHLH114 we generated transgenic tomato
plants overexpressinGlbHLH114 driven by the fruit specificE8 promoter. We
obtained seventeen TO plants in which the expredsiels ofSIbHLH114in ripening
stage fruit were significantly higher than thatMicroTom (Supplemental figure 11).
Two of these lines (Line C and Line 1) were choganfurther characterization of T1
(Figure 5B and 5D). We performed RNA-seq analy$iBr@ stage pericarp samples
from WT and T1 generatio&8:bHLH114Line C and Line | plants (Figure 5B). A
large proportion of the induced genes were shaydeiBidoHLH114Line C and Line |,
including many genes and metabolites in the SGAywithetic pathway (Figure 5C).
Compared to MicroTom tomato fruit at the same staigere were 2,851 genes that
were upregulated and 2,153 genes that were dowlateduin both overexpressing

lines (FC=1.5) (Supplemental figure 12A, Supplemental daaa@ 9).

KEGG enrichment analysis indicated that the upgal genes are involved in signal
transduction, plant-pathogen interaction, and mtsgsis of secondary metabolites
that are related to SGAs (Supplemental figure IRyplemental Data 10). RT-gPCR
analysis confirmed this observation; in generahegeinvolved in glycolysis and the
mevalonate, cycloartenol, cholesterol, phytostessid SGA pathways were all
upregulated in botHE8:SIbHLH114 lines (Supplemental figure 13). As a result,
metabolic profiling of pericarp samples at the Bstfdge showed that both transgenic
lines accumulated significantly higher amounts GfAS (predominantly tomatidine,

hydroxytomatidenol, hydrotomatidiney-tomatine, f2-tomatine, anda-tomatine)
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(Figure 5C). Taken together, these results inditadé overexpression &lbHLH114

in tomato fruit enhances SGA accumulation.

To further investigate whether SIbHLH114 directhduces the expression of SGA
biosynthetic genes, we performed dual luciferagmnter assays usingrabidopsis
protoplast. We cloned the promoters of three SlbHL4Hinduced biosynthetic genes
involved in the cholesterol precursor pathw&)SSR2and SI7-DR2 and the SGA
biosynthetic pathwaySIGAME4. Using SIGAME9 as a positive control, the results
showed that the activities of these promoters wadtesignificantly higher when
SIbHLH114 is expressed than in the control (Figure S5E an}l S#licating that
SIbHLH114 is a positive regulator of the SGA biathetic pathway.

Previously, SIMYC2 (Solyc08g076930) was reportedaakey regulator of SGA
biosynthesis (Céardenas et al., 2016). We conduziezkpression analysis 8iMYC2
and SGA-related genes and four@IMYC2 cannot co-expressed well with known
SGA genes. Instead, it has strong correlations W@hbksignaling genes, which is
consistent with its important role in regulating signaling (Supplemental figure 14)
(Du et al., 2017; Liu et al., 2019). We further diolexpression analysis &MY C2
and SIbHLH114using our MMN dataset, as well as previously mh#d SGN-TEA

(http://tea.solgenomics.net/overview) (Shinozaki at, 2018) and TomExpress

datasets_(http://tomexpress.toulouse.inra.fr/) (@®et al., 2017). In all three datasets,

there is no significant co-expression pattern betw8IMYC2 and SIbHLH114
(Supplemental figure 15).

As both SIMYC2 and SIbHLH114 belong to the bHLH fauhily 15 (Supplemental
figure 16) (Hua et al., 2015), to investigate tlosgble interaction between SIMYC2
and SIbHLH114, we conducted dual luciferase repoessays inArabidopsis
protoplast and foundrobHLH114can be activated by SIMYC2 (Supplemental figure
17A), indicating thatSIbHLH114is a target of SIMYC2. On the other hand, we
checked previously published SIMYC2 related world daund in SIMYC2RNAI
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plants, the expression 8ibHLH114is significantly lower than WT plants (Du et al.,
2017), which confirmed the potential regulation 8tMYC2 on SIbHLH114
(Supplemental figure 17B). By contrast, no sigmifit induction ofproSIMYC2by
SIbHLH114 was observed in the dual luciferase rgpoassays usinédrabidopsis
protoplast (Supplemental figure 17C). In additionm, our RNA-seq data of
E8:bHLH114and WT fruit, there is no significant differencesSIMY C2expression
levels (Supplemental figure 17D). All these datdicate SIbHLH114 cannot directly
regulate the expression $fiMYC2

Prediction of a novel transcription factor regulating flavonoid metabolism

Using the same strategy described above, we usedl MiMexpand our search for
transcription factors regulating flavonoid metaboli Interestingly, when we
conducted a co-expression analysis of flavonoid pmmds and biosynthetic genes,
we found, in addition to the known gerf&iMYB12 a gene $%olyc02g077790
encoding an APETALA2/Ethylene Response Factor (ERE) transcription factor
that is better co-expressed with the flavonoid inelia pathway (Figure 6A). Further
investigation showed th&olyc02g077798hares large amount of co-expressed genes
and metabolites witBIMYB12 KEGG analysis of the common genes and metabolites
revealed that the molecular functions are mainlyiceked in flavonoid and
phenylpropanoid biosynthesis, which suggests Sudyc02907779@ould potentially
modulate the flavonoid pathway (Supplemental figl8®

Phylogenetic analysis of the AP2/ERF familySolanum lycopersicumdicated that
the Solyc02g077790 protein belongs to Ethylene Besp Factor (ERF) subgroup G
and can be designated as SIERF.G3-like (Suppleihfeqiee 19A) (Liu et al., 2016).
RNA-seq and RT-gPCR analyses both indicated 8IBRF.G3-likeis specifically
expressed in fruit tissues and reaches its higaegstession at Br3 (Supplemental
figure 19B), similar to the expression pattern adjon flavonoid biosynthetic genes

and metabolites. Subcellular localization furthadicated that SIERF.G3-like is
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located in the nucleus and the cytoplasm (Suppléhégure 10).

To investigate the function oBIERF.G3-like we generated transgenic MicroTom
plants overexpressinglERF.G3-likefrom the fruit-specifi&€8 promoter. We obtained
14 independenE8: SIERF.G3-likeoverexpression lines, of which two representative
lines (lines 12 and 36) were selected for furthardy (Figure 6B, 6C and
Supplemental figure 20). We then performed RT-qRGRYysis ofSIERF.G3-Like-12
SIERF.G3-Like-36and WT pericarp samples at the Br3 stage anddfdbat the
expression of flavonoid biosynthesis genes, incgdsICHS1, SICHS2, SICHI,
SIF3H, SIF3'H and SIFLS was significantly increased in the two transgdimes
(Figure 6B and 6D). In line with this increased ®gsion of biosynthetic genes,
LC-MS analysis of Br7 stage fruits showed a sigaifit increase in the contents of
major flavonoid compounds and intermediates (namimy eriodicytol,
kaempferol-30-glucoside, kaempferol-8-rutinoside, quecertin-8-glucoside and
guecertin-30-rutinoside) (Figure 6D). As botk8: SIERF.G3-likeline 12 and 36
showed orange color (Figure 6B), we also checked ekpression of carotenoid
biosynthetic genes. Compared to MicroTom, therenassignificant reduction of
carotenoid biosynthesis geness@: SIERF.G3-like36 fruit (Supplemental figure 21).
This matches our previous observation on flavormidehed tomato (Ying et al.,
2020; Zhang et al., 2015a). All these data indidatgead of the inhibition of
carotenoid biosynthesis, the orange coloE8f SIERF.G3-likeruit is mainly due to

the accumulation of flavonoid compounds.

To directly compare the functions of SIERF.G3-likgth known regulator of
flavonoid biosynthesis, SIMYB12, we analyzed thermpoters of major flavonol
biosynthesis geneSICHS] SIF3H and SIFLS by dual luciferase reporter assays in
Arabidopsis protoplasts. The results showed that all threempters can be
significantly induced by SIMYB12 and SIERF.G3-likBupplemental figure 22). In
addition, when both TFs were combined, the ac#sitof tested promoters can be

further increased (Supplemental figure 22). Howgesarce the expression levels of
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SIMYB12displays no significant change EB:SIERF.G3-likefruit compared to WT
(Supplemental figure 23A), and the transcript alaume ofSIERF.G3-likes invariant
in AtMYB12 (Arabidopsis thalianahomologous ofSIMYB12 overexpressing fruits
(Supplemental figure 23B), All these data suggéikbagh both TFs can upregulate
flavonoid biosynthesis, there is no direct inta@act between SIMYB12 and

SIERF.G3-like.

In particular, we checked the expressiorStilYB12and SIERF.G3-likein both peel

and flesh of WT pericarp at Br3. Compare®&stMYB12 which is mainly expressed in
fruit peel (Adato et al., 2009), the expressiobERF.G3-likds significantly induced

in the flesh (Supplemental figure 23C-D). On théieot hand, low expression
correlation of the two genes was observed in MMGANSTEA (Shinozaki et al., 2018)
and TomExpress (Zouine et al., 2017) databasesp(@upntal figure 24). All these
data indicate that the two TFs may act indepengéatregulate the biosynthesis of

flavonols in tomato fruit.

Taken together, these data indicate that SIERFAK&3is a potential transcription
factor regulating flavonoid biosynthesis in tomdttsing the MMN dataset, we can
uncover the metabolic regulatory networks that aggeduring the tomato growth

cycle and verify novel regulators of major metabplathways.

Discussion

We present here a comprehensive analysis of thebmleime and transcriptome of 20
samples covering the major tissues and growth staféomato. The MMN dataset
generated for this study includes data for 540 bwdiis and 31,256 expressed genes
that were detected in at least one tissue or sBaged on our analysis of the global
patterns of metabolite and transcript abundancengnbe tissues and stages, we
established that the 540 metabolites can be diviaedten clusters and that 17,003
genes were co-expressed (0.8) with at least one of the 540 metabolitespanting

for 54.4% of total predicted protein-encoding gemesomato genome. In addition,
16



the expression pattern of these 17,003 genes vl fto represent the global gene

expression pattern (Figure 2D, 2F and Supplemégtaie 2).

Because of the detection limit of the broadly ts#geLC-MS/MS we used in this

study, there are still compounds, such as caradenand terpenoids, that have not
been quantified in our samples. Therefore, in aldito the ten metabolite clusters
we identified, future metabolome analysis of theneasamples may reveal novel
accumulation patterns for compounds and metabalicvpays that were not included
in this study. Once we have this information, tluenber of genes co-expressed with
metabolites is likely to increase further, provglia rich resource for thorough

investigation of the genetic networks regulatingabelic pathways in tomato.

Our MMN dataset is also a good addition to curemiato multi-omics resources.
Previous studies have focused largely on compagpegific tissues among different
individuals, which provides high-resolution cortedas between genetic variation
and metabolic changes (Alseekh et al., 2015; Tieetaal., 2017; Zhu et al., 2018).
However, if a compound or a pathway is not exprssehe sampled tissues, it is
difficult to analyze its regulatory network. By a@mng most tissues and
developmental stages of tomato, the MMN datasetiges a high-resolution map of
metabolic and transcriptional dynamics throughdw tomato growth cycle. The
strategy we used to analyze the MicroTom growthecyan be used to guide the
design of future experiments comparing differergcséps and accessions. Using the
MMN dataset, we constructed a global map of metabchanges during tomato
growth, including the following: significant metdimchanges between the vegetative
phase and the reproductive phase (Figure 2A); ase® in nutritional compounds,
such as flavonoids, during fruit ripening to higivels at the ripe stage (Cluster X,
Figure 3 and Table 1); and high levels of anti-tioinal compounds, such as SGAs,
in vegetative tissues and unripe fruit, which deelsignificantly during fruit ripening
(Cluster V, Figure 3, Supplemental figure 4 and @emental figure 6). The

transcriptional changes underlying these and atlggificant metabolic changes can
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be captured by MMN and provide a valuable resoufoe comprehensive

investigation of metabolic regulation.

Using the MMN dataset, we were able to verify sgmneviously known metabolic
regulatory networks and to identify novel transtap factors that may regulate
metabolism in tomato. Previous studies had ideati®IMYB12and SIMYB75as
regulators of the flavonoid pathway. Expressiomaiize Zea mayd..) Leaf colour
(LC) andColourless1(C1) genes, oAtMYB12(a homolog ofSIMYB12 in tomato
fruit prevented induction ddIF3'5’H, resulting in fruit that accumulated higher levels
of flavonols but no anthocyanins (Bovy et al., 20020 et al., 2008). However, when
SIMYB75or AmDel/AmRoslwas expressed in tomat&|F3'5’'H expression was
activated and anthocyanins were produced in the(Butelli et al., 2008; Jian et al.,
2019). In our study, we verified th&tMYB75s mainly present in leaves and controls
production of 3-OH flavonoids, which are reporteccontribute to UV protection and

pathogen resistance (Zhang et al., 2015b).

The MMN dataset also provided an unbiased resdorsereen for other regulators of
the flavonoid pathway. This led to the identificatiof SIERF.G3-like a novel ERF
transcription factor. We found overexpression SIERF.G3-likecan activate the
expression of major flavonoid biosynthesis genasi{@sSICHS1 SIF3H andSIFLS

to enhance the production of flavonoids (Figuren@ &upplemental figure 22). In
addition, it seems like SIERF.G3-like acts indepanity to known flavonoid regulator
SIMYB12 (Supplemental figure 22 and 23). All thetsea indicate SIERF.G3-like is a

new regulator of flavonoid biosynthesis in tomatatf

The MMN dataset has also proven to be a usefulfaydhvestigating the regulatory
networks for biosynthesis of defensive compoundsghsas SGAs. The enzyme
GLYCOALKALOID METABOLISM1 (GAME1) catalyzes glycodgtion of steroidal

alkaloids and regulates their toxicity (Itkin et &011). Recent studies in tomato

found that Jasmonate-Responsive ERF transcriptamtofs (such as JRE4) or
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SIGAME9 are involved in the regulation of SGA leveglCardenas et al., 2016;
Nakayasu et al., 2018). In MMN, the accumulation raktabolites and the
transcription factors (TFs) regulating their biogsis perfectly match their
biological functions through tomato growth cyclegiire 3, Supplemental figure 4).
Screening of the MMN dataset allowed us to ident§lpHLH114. Similar to
SIGAMEY, SIbHLH114 can significantly induce the eagsion of SGA biosynthesis
genes and overexpressionQIbHLH114in tomato fruit can enhance the production
of major SGAs (Figure 5). All these data indicatéLbl114 is a novel transcription

factor involved in regulating the SGA pathway

In summary, our MMN dataset provides a high-resotut spatio-temporal

representation of the metabolome and transcriptof20 different tissues/stages of
the tomato growth cycle. It presents a global vi#fwhe major metabolic changes
during the tomato growth cycle and the transcrilaegulation that underlies these
changes. Using this dataset, we will able to veother important patterns of
metabolic regulation and identify novel transcopti factors controlling these
pathways. Taken together, the MMN dataset providgights into the transcriptional
control of major tomato metabolites and gives gooda for future quality

improvement.
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Methods
Plant materials and tissue preparation

Tomato Golanum lycopersicumcv MicroTom) seeds were obtained from
PanAmerican SeéY. MicroTom plants were grown in a climate-contrdllgrowth
room with a light/dark photoperiod of 16/8 h at 23 Four to five-week-old plants
with five to six expanded true leaves and one bedewsed for bud stage (30 DPG,
days post germination). Six to seven-week-old glamth more than 506 flowers
were used for flowering stage (45 DPG). Twelvehiaeen-week-old plants with one
breaker fruit were used for breaker stage (85 DB )these three stages were used
to collect root, stem and leaf tissues (the lesHue is collected from the fifth true leaf
to all healthy young leaves). Flowers at anthe®iBRA) were tagged and expanding
fruit were harvested at 10DPA, 20DPA, 30DPA (Immetgreen). Mature and
ripening fruits were harvested based on the tongator chart “USDA Visual Aid
TM-L-1"(USDA Agricultural Marketing Service, 1975as follows: MG (Mature
green) stage (full-size green fruit, approximat@y DPA), Br (Breaker) stage
(approximately 40 DPA, definite break in color frgreen to tannish-yellow with less
than 10% of the surface), and 3, 7, 10, 15 day later (86, Brl10, and Brlb5,
respectively)). All samplings were collected beftine greenhouse light off (around
7:00-9:00 p.m.). Samples from 10 individual plamtsre pooled together as one
biological replicate and immediately frozen in lidunitrogen. Three biological

replicates were applied to later transcriptome raethbolome analysis.

Generation of MicroTom Metabolic Network (MMN) dataset: Metabolome

Profiling and Transcriptome Profiling

Metabolome profiling was carried out using a widilsgeted metabolome method by
Wuhan Metware Biotechnology Co., Ltd. (Wuhan, Chiffatp://www.metware.cn/).
Briefly, the tomato tissues were lyophilized anawgrd into fine powder using a

mixer mill (MM 400, Retsch) with a zirconia bead fh5min at 30Hz. 100mgtissue
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powder was weighed and extracted overnight withmiL070% aqueous methanol at
4°C, followed by the centrifugation for 1fin at 10,000y, all the supernatants were
collected and filtered with a membrane (SCAA-10£20mm pore size; ANPEL,
Shanghai, China, http://www.anpel.com.cn/) befof@MS analysis. Quantification
of metabolites was carried out using a scheduleliptfeireaction monitoring method

(Wei et al., 2013; Zhu et al., 2018).

Transcriptome profiling was performed as descripesviously (Ying et al., 2020).
Briefly, the mapped clean reads were calculatedgudtliseq-X-ten sequencing
platform, and then mapped to tomato reference gen@rfarsion 3.0) (The Tomato
Genome Consortium, 2012) using Hisat 2 (Daehwanalet 2015), and then
normalized to reads TPM by StringTie (Pertea et 2015). All raw data were
deposited into the Genome Sequence Archive in BitaTenter, Beijing Institute of
Genomics, Chinese Academy of Science, under actessimber CRA001723 and

CRA001712 that were publicly accessible at httm#tbig.ac.cn/gsa (Members, 2018;

Wang et al., 2017).

Co-expression/co-regulation cluster identificatiorand Analysis

Co-expression/ co-regulation analysis was done2fbdifferent time points/tissues
samples by the MeV (Version 4.9) with tkeneans method (Gasch and Eisen, 2002).
The normalized expression values of genes and wlétsh were calculated by
dividing their expression level at different timeiqts/tissues. Hierarchical clustering
(HCL) and principal component analysis (PCA) wasfqgrened using the prcomp
function in R software (Team, 2013) with defaulttisgs to facilitate graphical
interpretation of relatedness among 20 differentetipoints/tissues samples. The
transformed and normalized gene and metabolitesesgion values with z-scores

were used for HCL and PCA.

Network building for metabolome and transcriptome d metabolic pathway
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We used the Pearson’s correlation algorithm meilshara and Hittner, 2012) to
construct a transcription factor-related gene anstabolites regulatory network.
Mutual information for calculating the expressiamigarity between the expression
levels of transcription factor and gene, metabslifgirs were calculated by R
software. All the associations among transcripfector and gene, metabolites were

shown by Cytoscape software (Kohl et al., 2011).

Sequence alignment and phylogenetic analyses

Sequence alignments were performed using the MUSG@Igérithm in MEGA7
(Edgar, 2004). Molecular phylogenetic analysis wlasie on the basis of the NJ
matrix-based model. Bootstrap values were caladlatging 1,000 replicates. All

phylogenetic analyses were conducted in MEGAY.

Sample extraction and metabolomic analysis

Preparation of extracts and the profiling of flas@s in tomato fruit tissues were
performed with same methods as described previo(élyg et al., 2020). For
measurement of steroidal glycoalkaloids, tomatoegsevharvested at 10 days after
breaker (Brl10). Fruit pericarp was freeze-dried gralnd into fine powder using an
automatic sample rapid grinder (JXFSTPRP-24, Shaingingxin industrial
development CO., LTD) with 3 times fomiin at 50Hz. Extraction was performed as
previously described (ltkin et al., 2011). Briefl¥)0 mg freeze-dried tissue was
extracted with ImL 80 % methanol/waterWv) containing 0.1% formic acid. The
mixture was vortexed for 3§ sonicated for 3@nin at 4], vortexed again for 3§,
centrifuged (20,000g, 10 min, 4 [J), and filtered through a 0.22-mm
polytetrafluoroethylene membrane filter. The piafil of steroidal glycoalkaloids of
tomato tissues was performed by LC-MS analysisqusiie SCIEX Triple Quad™
5500 LC-MS/MS System with the UPLC column conneatetine to a photo diode
array detector (Shimadzu), separation of metatsolgad detection of the eluted

compound masses was performed as described (Zaly 2018). All samples were
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performed in biological triplicate.

RNA extraction and RT-gPCR

Both MicroTom and transgenic fruits were harvests¢dr3 and fruit pericarp was
ground into fine powder using liquid nitrogen. RN&traction and cDNA synthesis
were done as described previously. RT-gPCR was dpné8lO-RAD CFX384
Real-Time System, following the manufacturer’s finstion. With SIUBI as an
internal control, the relative expression of eaemas was calculated by theCt
method. The primer pairs for RT-gPCR were blastedN@BIl database to ensure

primer specific (see Supplemental Data 6).

Vector construction and generation of transgenic fies

The overexpression constructs used fgrobacteriummediated tomato plant
transformation were built using the Goldenbraidnotg (Sarrion-Perdigones et al.,
2013) and Gateway Cloning Technology (Curtis ands&niklaus, 2003). For fruit
specific expression, full length of coding sequerf@DS) was introduced into
pBin18-E8-GW through Gateway Cloning (Ying et aR020). We used the
Goldenbraid system for generating 35S promotenstaption factor -35S terminator
as a one transcriptional unit, kanamycin resistager@e under the control of NOS
promoter and NOS terminator were additional gefié® plasmid with the correct
insertion was introduced intAgrobacterium tumefacierstrain EHA105 and tomato

transformation was done as described previoushkyg ¥t al., 2020).

Subcellular localization

Tobacco KNicotiana benthamianaused in this study was both grown in the
greenhouse with a light/dark photoperiod of 16/&th25 (1. Determination of the
subcellular localization of individual transcriptiofactors (TF) fused to the GFP

fluorescent reporter is performed Micotiana benthamiandeaves protoplasts as
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described earlier (Deng et al., 2018). Briefly, takeased protoplast cells from leaves
of 3-4 week-old tobacco were isolated and transéoinvia the PEG-mediated
protoplast transfection method (Deng et al., 20E8)jl-length cDNA is fused with
GFP in the pBI101.3, the pBI101.3-SITF and pBI10W&e individually transient
transformation into protoplasts &f. benthamiandeaves. After one night grown,
DAPI was used to stain the nucleic acids of thagmiasts. Signals from GFP and
DAPI were visualized with a laser scanning confooatroscopy (Zeiss CELL

Observer SD).
Transient dual luciferase reporter assay

Promoter sequences were amplified from genomic Dié#g PCR and inserted
upstream of thé.uciferase(LUC) CDS by Goldenbraid 2.0 cloning strategy to yield
the promoter-LUC reporter vectors. For an interoahtrol, the expression of the
Renlia (REN gene was driven by the CaMV35S promoter in a ntepwector. The
CDS of SIbHLH114was cloned into the pUPD2 vector using the Goldaidb2.0
cloning strategy, to create an overexpression oaettshamed35S-SIbHLH114The
empty vector P35S-T35S was used as the negativsot{(@K).

Arabidopsis thaliana(Columbia-0, Col-0) used in this study was grown the
greenhouse with a light/dark photoperiod of 16/8tt122C. Dual luciferase reporter
assay was performed as described previously (Dealj, 2018). Briefly, protoplasts
used for transfection were isolated from 4-5 welkekArabidopsis thaliandeaves.
Protoplast co-transfection assays were performet)uke reporter plasmids and the
internal control vectors. Results were analyzed guahtified by flow cytometry 16 h
following protoplast transfection. Luciferase atv was detected using the
dual-luciferase reporter assay system (Promegah &itSynerg}" H1 hybrid
multimode microplate reader (BioTek). Expressiors wapressed as the ratio of LUC

to REN activity.

Statistics
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For comparison of individual treatments with theelevant controls, unpaired
two-tailed Student’s t-tests were used, &g 0.05 was considered significant. To
compare measurements of multiple treatments witbh eather, we performed
univariate ANOVA followed by the posthoc Tukey'ssteof multiple pairwise

comparisons to determine group differences usirgplPad Prism version 8 (Swift,

1997).

Accession humbers

Tomato genome sequence data for this article wagnldaded from the SGN

(https://solgenomics.net/). The raw values obtaiftech the metabolomic data sets

were available in Supplemental data 1 (associatgndlefs: Figure 2A, 2C, 2E and 3,
Supplemental figure 1A, and Table 1). RNA-seq degts for the transcriptome
analysis were available at the Genome Sequencevéram Big Data Center, under
accession number CRA001723 and CRAO001712 that aldicly accessible at
http://bigd.big.ac.cn/gsa (Wang et al., 2017) (esded figures: Figure 2B, 2D, 2F,

4A and 4B, Supplemental figure 1B, 2, 3, 4, 5, @l dl). Sequence data of
phylogenetic analysis can be found in Supplemenadlle 2. If any data sets are
unavailable through the links stated above, they d&e obtained from the

corresponding author on request.
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Figure and Table Legends

Figure 1. Schematic representation of the design for MicroTom Metabolic Network
(MMN). 20 samples of 3 key development stages were collected for metabolic profiling
and RNA-seq. Axis indicates sample harvest date (days post germination, DPG). Leaf (L),
root (R), stem (S), bud (F30) and flower (F45) samples were harvest at bud stage (30
DPG), flowering stage (45 DPG) and breaker stage (85 DPG), respectively. Fruit samples
were harvested at 10 days post anthesis (10DPA), 20DPA, Immature Green (IMG),
Mature Green (MG), Breaker (Br), Breaker plus 3 Days (Br3), Br7, Br10, Bril5.

Figure 2. Summary of metabolome and transcriptome data of MMN. Overview of 540
annotated metabolites (A) and hierarchical clustering analysis of gene expression profiles
with 31,256 genes (B) from 20 tomato samples. Principal component analysis (PCA) (C
and D) and Cluster dendrogram (E and F) of metabolome (C and E) and transcriptome (D
and F) in the 20 MicroTom samples. For metabolome data (A), the metabolite per row is
Z-score standardized to -3 to 3. For transcriptome data (B), the color scale 0-1 represents
Spearman’s correlation coefficients. Axis numbers in (A) indicate tissues: 1-R30, 2-R45,
3-R85, 4-S30, 5-S45, 6-S85, 7-L30, 8-L45, 9-L85, 10-F30, 11-F45, 12-10DPA, 13-20DPA,
14-IMG, 15-MG, 16-Br, 17-Br3, 18-Br7, 19-Br10, 20-Br15.

Figure 3. Dynamic of metabolite and gene expression during MicroTom growth
cycle. K-means clustering grouped the expression profile of the tomato metabolome (red)
and transcriptome (blue) into 10 clusters. The x axis depicts 20 samples from 3 key
development stages and the y axis depicts Z-score standardized per metabolite (red) and
gene (blue). The numbers shown in each box (for example, 67 metabolites and 4,543
genes for cluster I) were derived based on the number of metabolites and genes across all
20 samples in each cluster. Axis numbers indicate tissues: 1-R30, 2-R45, 3-R85, 4-S30,
5-S45, 6-S85, 7-L30, 8-L45, 9-L85, 10-F30, 11-F45, 12-10DPA, 13-20DPA, 14-IMG,
15-MG, 16-Br, 17-Br3, 18-Br7, 19-Brl10, 20-Br15. Ten clusters were identified.

Figure 4. SIMYB75 is associated with the biosynthesis of flavonoids with 3 - OHs on
the B - ring. (A) Network built on correlation among structure genes and TFs. Pearson
correlation coefficient (PCC) values were calculated for each pair of genes, the color scale
has been normalized to range from -1 to 1, where -1 is negative correlation and 1
corresponds to the positive correlation. (B) Expression pattern of flavonoid biosynthetic
genes and TFs in 20 samples. Expression data were Z-score standardized to -3 to 3 per
gene. (C) Dual luciferase reporter assay indicated SIMYB75 can better induce the activity
of the promoter of SIF3'5'H than SIMYB12. Error bars represent the standard deviation
(n=3). Different letters indicate significantly different values at P < 0.05 (one-way ANOVA,
Tukey's posthoc test). (D) Schematic representation of flavonoids biosynthesis and
regulation in tomato. Purple arrows indicate genes and metabolites regulated by SIMYB75
and orange arrows indicate genes and metabolites regulated by SIMYB12.

Figure 5. SIbHLH114 is a new transcription factor in steroidal alkaloids pathway.
(A) Co-expression network of steroidal alkaloids biosynthetic pathway. Metabolites,
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structure genes and transcription factors were marked in pink, light blue and red,
respectively. (B) Phenotypes of transgenic and MicroTom tomato fruit at different stages.
Br3, three days post breaker; Br10, ten days post breaker. (C) Summarized gene and
metabolic changes in tomato fruits expressing SIbHLH114. Based on transcriptome and
metabolome data, genes and metabolites which are significantly increased in the
transgenic fruits (Line C and Line I) were colored. Data was represented as
log,fold-change compared to MicroTom. (D) Expression level of SIbHLH114 in transgenic
fruit from two independent T1 generation lines and MicroTom at Br3. Error bars represent
the standard deviation (n=3). (*P < 0.05; ** P < 0.01; *** P < 0.001; Student’s t test). (E)
Schematic representation of promoter activation test. The promoters were cloned into the
dual-luciferase reporter vector to activate the expression of luciferase (LUC). The renilla
(REN) driven by the CaMV 35S promoter served as an internal control. T35S, CaMV 35S
terminator. CK, the empty vector. Asterisks indicate significant differences to CK. (F)
SIbHLH114 directly interact with the promoter of pathway genes. Promoter sequences can
be found in Supplemental Table 1. Different letters indicate significantly different values at
P < 0.05 (one-way ANOVA, Tukey's posthoc test).

Figure 6. SIERF.G3-like is a new regulator for flavonoid biosynthesis. (A)
Co-expression network of key genes and metabolites in flavonoid pathway. Metabolites,
structure genes and transcription factors were marked in light pink, blue and gray,
respectively. Pearson correlation coefficient (PCC) values were calculated for each pair of
genes/metabolites. (B) Phenotypes of transgenic and MicroTom tomato fruit at seven days
post breaker. (C) RT-gPCR of transgenic plants in Br3. Error bars represent the standard
deviation (n=3). (*P < 0.05; ** P < 0.01; *** P < 0.001; Student’s t test). (D) Up-regulated
genes and metabolites in E8: SIERF.G3-Like overexpression lines.

Table 1. Distribution of the Compounds and Genes Identified in This Study in
Different Clusters.
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Supplemental Information

Supplemental figure 1. Metabolites accumulation and gene expression pattern over
tomato growth cycle.

Supplemental figure 2. Transcriptome relationships of 17,003 genes co-expressed
with metabolites among 20 tissues/time points.

Supplemental figure 3 Expression of SIMYB12 (A), SIMYB75 (B) and SIF3'5’H (C)
expression in RNA-seq data (left) and validation by RT-qPCR (right).

Supplemental figure 4. Co-expression of major SGA compounds and pathway
genes among different tissues and stages.

Supplemental figure 5. Expression pattern of SGA pathway genes in RNA-seq data.

Supplemental figure 6. GAME genes and steroidal alkaloid compounds are
co-expressed in cluster V.

Supplemental figure 7. Validation of SGA pathway genes expression through
RT-gPCR.

Supplemental figure 8. Coexpression analysis of SIbHLH114 and SIGAMED9.

Supplemental figure 9. Molecular Characterization of SIbHLH114.

Supplemental figure 10. Subcellular localization of SIbHLH114 and SIERF.G3-like.

Supplemental figure 11. Screening of pBin19-E8:SIbHLH114 TO tomato.

Supplemental figure 12. Summarization of E8:SIbHLH114 fruit transcriptome data.

Supplemental figure 13. Verification of differently expressed SGA related genes in
SIbHLH114 overexpression lines.

Supplemental figure 14. Coexpression analysis SIMYC2, SIbHLH114, SIGAME9 with
SGAs related and JA-signaling related genes in MMN.

Supplemental figure 15. Expression pattern of SIMYC2 and SIbHLH114 in (A)
SGN-TEA, (B) Tomexpress and (C) MMN (This study).

Supplemental figure 16. Phylogenetic analysis indicates both SIbHLH114 and
SIMYC2/SIbHLH147 belong to the bHLH subfamily 15.

Supplemental figure 17. SIMYC2 may activate the expression of SIbHLH114.
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Supplemental figure 18. Coexpression analysis of SIERF.G3-like and SIMYB12.

Supplemental figure 19. Characterization of SIERF.G3-Like.

Supplemental figure 20. Screening of E8: SIERF.G3-Like TO tomato.

Supplemental figure 21. Expression of carotenoid pathway genes in ES8:
SIERF.G3-Like and MicroTom fruit.

Supplemental figure 22. SIERF.G3-like could directly activate the major expression
of flavonoid biosynthetic genes.

Supplemental figure 23. SIMYB12 and SIERF.G3-Like have different expression
pattern in fruit.

Supplemental figure 24. Expression pattern of SIERF.G3-like and SIMYB12 in (A)
SGN-TEA, (B) Tomexpress and (C) MMN (This study).

Supplemental Table 1. Gene and promoter sequence used in this study.

Supplemental Table 2. Protein sequence of bHLH and ERF family used for
phylogenetic analysis.
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Supplemental Dataset 1. Summary of metabolome profiling for tomato tissues.

Supplemental Dataset 2. Summary of transcriptome mapping for tomato tissues.

Supplemental Dataset 3. Gene expression in tomato tissues.

Supplemental Dataset 4. Summary of coexpression clusters.

Supplemental Dataset 5. Summary of coexpression gene clusters.

Supplemental Dataset 6. Summary of PCR and qRT-PCR primers used in this study.

Supplemental Dataset 7. Summary of metabolome profiling for steroidal
glycoalkaloids.

Supplemental Dataset 8. Up-regulated genes in SIbHLH114-Ox lines.

Supplemental Dataset 9. Differentially expressed genes in the SIbHLH114-Ox
pericarp tissues.

Supplemental Dataset 10. Kyoto Encyclopedia of Genes and Genomes enrichment
in co-expression clusters.
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