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Abstract— Drone based 5G services can be particularly 
attractive in emergency scenarios, with their rapid deployment 
and good SNR capabilities.  We propose the use of multiple 
drones to conduct 3D indoor positioning in emergency 
situations in this paper. We estimate the performance metrics 
for such a system, when complying with 3GPP rel. 16 NR-
positioning specifications. We also propose new designs for the 
PRS (positioning reference signal) used in the standards, when 
there are different SCS (sub-carrier spacing) involved. We 
develop a mapping function based on neural networks to map 
the multiple SNR from the drone base stations to the 
positioning error. The key finding from this work is that the 
common OTDOA (observed time difference of arrival) based 
positioning methods alone will not be able to meet the strict 
accuracy and reliability thresholds for this emergency use case. 
Adaptation and/or combination with other 3GPP and non-
3GPP positioning methods will be required in this regard.   

Keywords— Critical communications, Drone RRH, Indoor 
positioning, Neural networks, OTDOA positioning  

I. INTRODUCTION  

5G has the potential to provide enhanced capabilities for 
critical communications in a multitude of applications. These 
can range from UHD video feeds through eMBB, highly 
responsive robotic control through URLLC and crowd 
sourced information gathering through mMTC capabilities. 
5G emergence is in the context of a concerted effort by the 
critical communications sector to move away from the 
specialized communication protocols like TETRA to 
commercial cellular standards like LTE and subsequently 
5G. Some of the early examples of this shift are the FirstNet 
in the US [1] and the developing ESN (Emergency Services 
Network) in the UK [2], which are both supported by LTE. 
An early adaptation of 5G, with its capabilities noted above, 
can help emergency services to improve their effectiveness 
and efficiencies significantly. 

One of the key issues in this migration to 5G is the 
apparent long lead time needed for this transition. The first 
5G networks are only covering the localized capacity 
hotspots, with the coverage continuity provided by the 
underlay LTE networks in the 3GPP NSA (Non-Stand-
Alone) deployment model [3]. With the economic disruption 
stemming from the COVID-19 pandemic, the large scale 
expansion of 5G networks is very likely to get further 
delayed. For an emergency service, it is critical that a certain 
5G application can be deployed anywhere within its service 
area, not just at the capacity hotspots. Hence early adaptation 
of 5G would depend largely on the ability to stretch and 
expand the 5G coverage area to align with the service area of 
an emergency service. A drone based 5G critical 

communication service was proposed in [4], where the 
limited 5G network can be stretched with drone relay 
stations, to potentially cover the entire service area. 

In this paper, we extend the system model proposed in 
[4] for a drone based 5G eMBB service, to provide 3D 
indoor localization in indoor emergency scenarios. We 
propose to use multiple drones at different heights, which 
can also provide the eMBB services discussed in [4], in 
addition to the localization services. 3D localization is 
necessary for emergencies in multi-storey buildings, where 
the vertical height estimation can guide the emergency crews 
to the correct floor of the building. The typical emergencies 
where localization will be necessary include building fires, 
medical emergencies and terrorism/kidnap incidents etc. As 
the signal quality from outdoor ground base stations cannot 
be guaranteed at all locations inside the building and the 
indoor small cells can become dysfunctional in an 
emergency, this drone based solution can provide service 
guarantees even in extreme emergency scenarios. 

The main contributions of this paper are three-fold. First 
is an assessment as to whether the 3GPP Release 16 
specified NR-positioning signals and OTDOA methods are 
sufficient to meet the technical requirements (which were 
verified with the involvement of the emergency services) of 
this emergency use case. Second is the development of a 
novel mapping function from the SNR values (from multiple 
drones to the UE) to the positioning error, based on neural 
networks. This would be useful to assess the positioning 
accuracy in multi-storey complex buildings very quickly, 
without the need to run detailed link level simulations for all 
locations. Third is the proposal for a novel PRS (positioning 
reference signal) design for a scenario where some of the 
UEs would use a different SCS (sub-carrier spacing) to that 
used by the drone transmitters. 

The layout of the remainder of the paper is as follows. In 
section II, we will develop the system configuration, with 
allowances to use different SCS. Section III details the 
required KPI (Key Performance Indicator) values this 
emergency localization service must achieve. The simulation 
set-up and the initial results in terms of these KPIs targets are 
provided in section IV. We also detail the neural network 
based mapping function from the 4 SNR values to the 
positioning error in this section. The conclusions from the 
current initial work and planned further work are stated in 
section V.  

II. SYSTEM CONFIGURATION  

This ad-hoc 5G network for the emergency scenario is 
configured with the help of communication drones, which 



act as remote radio heads (RRH) and are connected to a 
ground base station through wireless fronthaul links. As 
noted before, this is an extension to the model proposed in 
[4], for the provision of eMBB services with a single RRH 
drone. This model is extended to carry at least 4 RRH 
drones at the emergency site for the devices to derive 3D 
localization. We also propose some novel design 
configurations for the positioning reference signal (PRS) in 
this section. 

A. Deployment model 

The deployment model consists of a master RRH drone 
and 3 auxiliary drones to support the localization. The 
master drone also provides the eMBB connectivity as in [4] 
and is configured to transmit at 3dB higher power than the 
auxiliary drones. The transmissions from auxiliary drones 
and the master drone are time synchronized to help with the 
OTDOA (Observed Time Difference of Arrival) and other 
localization methods. The deployment model is illustrated 
below. 
 

 
 

Fig. 1: The deployment model for drone based localization 
 

The master RRH is assumed to transmit with the full 
available bandwidth needed to support the eMBB links and 
function with full capabilities of a 5G RRH. The auxiliary 
RRH drones, on the other hand, are configured with a 
narrow bandwidth to transmit only the broadcast 
information in the SSB (Synchronization Signal Block), the 
PRS and other reference signals needed for localization. 

This configuration assumes that the drones are stable in 
their positioning and will be able to support the emergency 
event through the entire duration. In practice however, the 
drone positions are likely to suffer from some jitter 
(especially in windy conditions) and the drone battery 
(especially in the master drone) may run low and a drone 
replacement will be needed. Such deficiencies will be 
studied and solutions developed in the second project year. 

B. The PRS design 

The PRS is one of the main reference signals which was 
improved in 5G-NR Release 16 to aid downlink 
localization. The PRS is a Zadoff-Chu sequence [5] with 
very good autocorrelation and low cross correlation 
properties. Auto-correlating the incoming PRS signal from a 
base station with a local copy can determine the time delay 

for the signal to travel from the base station to the UE. In 
OTDOA methods, the time difference of arrival for the 
signals from one base station to signals from others is 
calculated and this difference can be expressed as 
paraboloids in distance. The point at which the paraboloids 
intersect gives an estimate for the UE position. 

The resolution of the OTDOA localization method is 
governed by the sampling rate used, as the PRS signal is 
sampled and recorded at this rate. The use of wider 
bandwidths and higher sub-carrier spacing increase the 
sampling rate and will improve the localization resolution as 
a result. Increasing the bandwidth used for this drone based 
system will carry other penalties (as studied in [4]) so we 
would consider the use of higher sub-carrier spacing only as 
a means to improve the localization accuracy.     

Although the drone RRHs and the UEs/ devices 
attached to the emergency crew can use a higher SCS, the 
victims’ UEs are likely to operate at the most common SCS, 
i.e. 15 kHz. These UEs will sample the PRS signals from 
the drone RRHs at a lower rate, so the energy they will 
capture from the PRS signal will be low. As a solution to 
this issue, we propose to replicate the PRS signal in the 
subsequent slot(s) of the higher SCS transmissions, so that 
the lower SCS UEs can capture more energy from the PRS 
signal and thus improve the received signal quality. The 
repetition can be done µ times, where 2µ is the ratio from the 
higher SCS to the lower SCS. An example PRS Comb-12 
pattern, as specified in 3GPP [5], for the 15 kHz and 30 kHz 
SCS configurations is shown below in Fig. 2. 
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(a) P-RS pattern with SCS= 15 kHz

(b) P-RS pattern with SCS= 30 kHz  
Fig. 2: Proposed PRS patterns with different SCS  



As the sampling intervals in the 15 kHz SCS UE are 
twice the sampling width of the 30 kHz transmissions, such 
UEs would capture only a fraction of the energy of a PRS 
symbol in 30 kHz. By replicating the PRS pattern in the 
subsequent slot in the 30 kHz SCS transmissions, the 15 
kHz UEs get an opportunity to capture more of the PRS 
sequence and re-configure it to the correct order before 
auto-correlating with the stored sequence. The 30 kHz UE 
can also use this repeated PRS sequence to enhance the 
signal quality or discard it if this is deemed unnecessary. 

III. KPI REQUIREMENTS FOR THE EMERGENCY USE CASE 

Within the LOCUS EU project [6], this emergency use 
case is extensively studied. The first task was to derive the 
technical KPIs with inputs from the emergency services 
themselves. We have initially used the KPI values proposed 
in [7] for such a communication service for fire services. 
Subsequently we have refined them through a number of 
discussions with the regional fire and emergency services in 
the UK, who are contributing to the development of the ESN 
[2]. The final KPI values, which we are targeting to achieve 
through our drone based solution are listed in Table I below. 

TABLE I.   KPI TARGET VALUES 

KPI Target Value 

Horizontal Accuracy ±2 m 
Vertical Accuracy ±1 m 
Service Reliability 99.9% 
Service Availability 98% 
Location update interval   20 s (maximum) 
Initial set-up time 135 s 
Number of devices tracked 128 (maximum) 

 
The horizontal accuracy level is based on the ability to 

detect a victim (or an emergency service crew member) 
correctly within a room or a cubicle in the building. The 
vertical accuracy levels are tighter and this relates to 
detecting the localization targets within the correct floor of 
the building. Moving between floors through stairways in an 
emergency like a fire is often difficult and hazardous, so the 
vertical accuracy is made tighter. The service reliability is 
the percentage of occurrences when the above accuracy 
levels can be met and this is set at a very high level. The 
event commander, who will have access to these 
localization inputs, will have to make critical decisions 
based on these inputs. The update rate, however, is quite 
low as the event commander needs time to assess the 
movements of multiple targets (which can be visualized on a 
screen with a map layer of the building) and make the 
decisions. In the technical solution design, this longer gap 
allows time to fuse data from multiple localization 
technologies and improve the accuracy levels to meet the 
very strict reliability targets. The service availability 
accounts for the possibility of some downtimes for this 
service, considering the dynamic nature of the network 
configuration. While some downtime in terms of drop in 
service accuracy can be accommodated, it is critical that the 
event commander is warned beforehand. Then he could 
factor this into his decision making and rely more on other 

communication modes like MC-PTT (Mission Critical Push 
To Talk) during these downtimes. 

IV. SIMULATION SET-UP AND INITIAL RESULTS 

In this initial analyses, we develop the 3GPP release 16 
compliant simulation platform and investigate the 
performance levels provided by employing OTDOA based 
positioning using the downlink PRS. We also attempt to map 
the received SNR levels from the 4 drone RRH to the 
positioning error of OTDOA through an approach based on 
machine learning.  

A. Simultation set-up 

The physical layer for the PRS transmissions from the 4 
drone RRH to the UEs inside the building is simulated for a 
single floor of the building. The channel model from 3GPP 
is selected as the UMi LOS channel, which matches closely 
with the channel conditions from the drone to the in-
building UE. The building penetration losses for the signals 
are modelled as per the measured results reported in [8] for 
the mid-band 5G frequencies.  As noted above, the transmit 
power of the master drone RRH is set at 3 dB higher than 
the other auxiliary drones. The transmit powers are set at a 
minimum required level, in order to extend the battery lives 
and the flight times for the drones. Also, the transmissions 
are assumed to be from a single antenna, without any 
beamforming. 

The simulation parameters are listed below in Table II. 

TABLE II.  SIMULATION PARAMETERS 

System Parameters Value 

Centre frequency 4 GHz 
SCS 15 kHz 30 kHz 
Bandwidth 100 MHz 
Tx power – master RRH 27 dBm 
Tx power – auxiliary RRH 24 dBm 
Localization Signal (PRS) 3GPP TS 38.211 
Path loss + Channel model 3GPP TS 38.901 
UE (with floor) height 10 m 
Building area 50 x 50 m 
Drone area 100 x 100 m 

 

B. Initial simultation results 

In this first set of simulations, we consider only a basic 
building structure with walls and internal partitions and 
position the UE on multiple locations within a single floor. 
The 3D location estimates of a UE in terms of (x, y, z) co-
ordinates are resolved into horizontal and vertical positions 
and the positioning errors are calculated. The CDFs 
(Cumulative Distribution Functions) for the positioning 
errors, when using the 15 kHz and 30 kHz SCS are depicted 
in Fig. 3 and Fig. 4 below. For the 30 kHz SCS scenario, it 
is assumed that the specialized critical communications 
devices for the emergency crew are operating at this SCS. 
The common UEs on 15kHz SCS can also read this PRS 
signal effectively as per the solutions proposed in section 
II(B), but the positioning accuracy will fall back to the 15 
kHz SCS level. 

 



 
Fig. 3: Horizontal Positioning accuracy levels with different SCS values 

 
Fig. 4: Vertical Positioning accuracy levels with different SCS values 

The horizontal accuracy threshold of 2 m is achieved 
90% of the time and the vertical accuracy threshold of 1 m 
is achieved only 75% of the time with the SCS=30 kHz. The 
corresponding accuracy levels with SCS=15 kHz is 
significantly lower. These results show that in order to meet 
target reliability levels in Table I, the positioning accuracy 
levels must be improved at least by an order of magnitude in 
SCS=30 kHz deployments and by even higher margins in 
SCS=15 kHz deployments.  

A simple solution would be to move the operating 
frequency to the high 5G bands (eg: 28 GHz), where much 
higher SCS is applicable and also provides wider 
bandwidths. However, these high band frequencies incur 
higher path loss and higher building penetration losses, so 
the received signal levels can be lower. Also, these 
frequencies would not allow common 5G consumer UEs to 
be detected with the aid of the drones, so the solution 
applicability to common emergency scenarios become 
questionable. We will look at some other possible avenues, 
particularly to improve the vertical accuracies, in further 
work in section V. 

C. Mapping of SNR values to the positioning errors 

While obtaining the SNR values from the 4 drone base 
stations is quite straight forward, obtaining the positioning 
error through PRS estimation requires detailed link level 
simulations. If the solution needs to be evaluated for a 
complex building structure with many floors, such 

simulations can take quite a lot of time to complete and/or 
some of the important localities can be lost in coarse 
sampling. If a mapping can be developed from the 4 SNR 
values to the positioning errors, it would be straight forward 
to evaluate the localization accuracies even at a larger scale. 

Building a mathematical model to map the 4 dimensional 
SNR values to the 3D positioning error was deemed non-
linear and highly complex. Hence a machine learning 
approach is attempted with modelling the problem through a 
neural network (NN). An NN can be built with those 4 SNR 
values as inputs and the predicted positioning error as the 
output. An example of the NN is depicted in Fig. 5. 

 
Fig. 5: The Neural Network model 

In the NN, there are four layers. The input layer and the 
output layer has 4 neurons and 1 neuron, respectively. The 
two hidden layers are with 256 and 128 neurons. Mean 
squared error in the positioning estimate is chosen as the loss 
function. In the training process, stochastic gradient descent 
(SGD) [9] is used to update the weights of the NN. The NN 
is required to be trained via a large number of episodes, 
where each episode consists of 2000 measured samples from 
the link level simulation. Fig. 6 shows that the loss function 
decreases with the number of training episodes. 

 
Fig. 6: The reduction of the loss function with training episodes 

Even with a limited number of data points, these initial 
results show that the loss function does reduce towards the 
required 1x10-5 error level with successive training 
iterations. In the training data set, we have ensured that a 
one-to-one mapping between the 4 dimensional SNR data 
and the positioning error is maintained. These initial training 
results give us confidence that this NN model can be used to 
predict the positioning error in large scale simulations, given 
the inputs of 4-tuple SNR values. 



V. CONCLUSIONS AND FURTHER WORK  

The research on a drone based 3D indoor localization 
solution developed to assist the emergency services has been 
presented in this paper. The extensive work done to develop 
the appropriate technical KPIs with inputs from the UK 
emergency services and design solutions on the PRS to 
enable UEs with different SCS to operate within the 
proposed system are presented and discussed. The initial 
simulation results in terms of positioning errors in OTDOA 
based methods are covered. It is concluded that the OTDOA 
based methods on their own, even with higher SCS, are not 
sufficient to meet the stringent accuracy levels of this 
emergency use case. A neural network based modelling 
approach is suggested to map the 4-tuple SNR values (from 
the 4 drone RRHs) to the positioning error in this OTDOA 
method.  While the early evaluations were conducted with 
limited training data, the results in terms of model 
convergence is encouraging for this NN model to be applied  
in large scale evaluations. 

In the second year of this project, a number of additional 
investigations will be carried out with the insights gained 
from the presented work. The option to include 3D 
beamforming at the drone RRH will be studied, which will 
enable AoA (Angle of Arrival) based positioning to be 
combined with OTDOA. This is expected to increase the 
accuracy particularly in the vertical domain, as the vertical 
beam widths of such multi-beam transmissions is quite 
narrow. Also non-3GPP based techniques, like Wi-Fi finger 
printing from existing Wi-Fi nodes inside the buildings, will 
be studied. Some of these nodes can get dysfunctional in 
emergencies like building fires, but the use of even limited 
information from remaining nodes will be studied. The 
longer update intervals (in Table I) allow such different 
localization data to be fused and optimized through post-
processing techniques.  

In terms of system limitations, the positional jitter of the 
drones will be a main focus for investigation. We will 
source data for such jitters under varying wind conditions 
and would develop compensating algorithms in order to 
mitigate the impact on the positioning accuracy. Machine 
learning methods will be extensively used to develop such 
compensating algorithms.  

The work on developing a neural network based 
mapping from the SNR values to the positioning error will 

be extended. More focus will be given to execute this 
mapping on a final solution, which may combine different 
localization methods and can achieve the technical KPIs. 
However the insights gained from the current work will be 
hugely useful in developing these final solutions. 
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