
Library development
within TREX
Anthony Scemama

21/04/2021

Lab. Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

(France)

Presentation of TREX

The supercomputing race

Worldwide technological competition

1997 : Teraflops/s1

2008 : Petaflops/s
2020? : Exaflops/s

	1x1011

	1x1012

	1x1013

	1x1014

	1x1015

	1x1016

	1x1017

	1x1018

	1995 	2000 	2005 	2010 	2015 	2020

Fl
op

s/
s

Year

Expected increase of computational power is exponential
Moore’s Law is ending
Technological breakthrough needed (quantum computing?)

1flops/s: floating point operations per second

The supercomputing race

Worldwide technological competition
1997 : Terascale : Distributed parallelism
2008 : Petascale : Multi-core chips or accelerators
2020? : Exascale : Hybrid architectures are inevitable

Peak flops/s improved by 1000×. What about

Memory capacity per core?
Memory bandwidth? latency?
I/O bandwidth? latency?
Network bandwidth? latency?

Exascale

Transition to exascale will be painful
Network becomes slow vs computation
Memory per core decreases
Heterogeneous machines (accelerators)
Need to find even more fine-grained parallelism

Very few applications will scale
Exascale machines will run high throughput computing (HTC) workloads

The TREX CoE

Quantum Monte Carlo (QMC)

QMC
Extremely precise model
Expensive in CPU
Fully parallel
Perfectly well adapted to HPC (in
2011, 0.96 PFlops/s)

QMC in a few words

Stochastic solution of the electronic Schrödinger equation (nuclei are fixed):

E =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

=
〈Φ|Ĥ|Ψ〉
〈Φ|Ψ〉

=

∫
Φ(r1, . . . , rN)ĤΨ(r1, . . . , rN) dr1 . . . drN∫
Φ(r1, . . . , rN)Ψ(r1, . . . , rN) dr1 . . . drN

=

∫
[Φ(r1, . . . , rN)Ψ(r1, . . . , rN)] ĤΨ(r1,...,rN)

Ψ(r1,...,rN) dr1 . . . drN∫
[Φ(r1, . . . , rN)Ψ(r1, . . . , rN)] dr1 . . . drN

∼ 1
M

∑
M

ĤΨ(r1, . . . , rN)

Ψ(r1, . . . , rN)
, sampled with (Ψ× Φ)

Ĥ: Hamiltonian
E : Energy

r1, . . . , rN : Electron coordinates
Φ: Quasi-exact (fixed-node) wave function
Ψ: Trial wave function

QMC in a few words

In practice

Walker: vector (r1, . . . , rN) ∈ R3N of electron coordinates
Diffusion + drift with a birth/death process to sample the 3N-dimensional density
(Ψ× Φ)

At each step, Eloc(r1, . . . , rN) = ĤΨ(r1,...,rN)
Ψ(r1,...,rN) is computed

The total energy is the the average of all the computed Eloc

HPC
Very low memory requirements (no integrals)
Distribute walkers on different cores or compute nodes
No blocking communication: near-ideal scaling
Difficulty: parallelize within a QMC trajectory

Fixed-node approximation

As (Ψ× Φ) is a probability density, (Ψ× Φ) ≥ 0 so Φ has the same sign as Ψ:
fixed-node (FN) approximation.
FN: only approximation of QMC. If the nodes of Ψ coincide with the exact nodes,
we obtain the exact energy
Using increasingly large sCI determinant expansions (CIPSI), the fixed-node error
can be controlled

The TREX CoE

Codes
CHAMP
QMC=Chem
TurboRVB
NECI
Quantum
Package
GammCor
QML

The TREX CoE

TREX CoE: Targeting REal chemical accuracy at the eXascale
Started in Oct. 2020
Objective: Make codes ready for exascale systems
Two regimes:

Single exascale run
Thousands of petascale simulations in high-throughput (HTC)

How: Instead of re-writing codes, provide libraries
One library for high-performance (QMCkl)
One library for exchanging information between codes (input of QMC is Ψ)

QMC kernel library (QMCkl)

Programming for the exascale

Progress in quantum chemistry may require codes with new ideas/algorithms
New ideas/algorithms are implemented by physicists/chemists
Different scientists have different programming language knowledge/preference
Exascale machines will be horribly complex to program

Question
Is it reasonable to ask physicists/chemists to write codes for exascale machines?

No: Proof

Vector addition

do i=1,n
Z(i) = Z(i) + A * X(i) + Y(i)

end do

(from https://github.com/jeffhammond/dpcpp-tutorial)

https://github.com/jeffhammond/dpcpp-tutorial

No

The dream

A compiler2 that can read an average researcher’s code and transform it into highly
efficient code on an exascale machine.

2Wikipedia: A compiler is a computer program that translates computer code written in one
programming language (the source language) into another language (the target language)

Reality

Artificial Intelligence is not ready yet . . .

Reality

. . . so let’s use Natural Intelligence and add a human layer between the machine and
the researchers : a bio-compiler

Strategy

Identify the common computational kernels of QMC
Implement these kernels in a human-readable library (QMC experts)
Bio-compile the human-readable library in a HPC-library (HPC experts)
Scientists can link either library with their codes

Benefits of this model

For scientists
We don’t impose a programming language
The code can stay easy to understand by the physicists/chemists
Performance-related aspects are delegated to the library
Codes will not die with a change in architecture
Scientific code development does not break the performance
Scientists don’t lose control on their codes

Separation of concerns
Scientists will never have to manipulate low-level HPC code
HPC experts will not be required to be experts in theoretical physics
Better re-use of the optimization effort among the community

QMCkl documentation library

The API is C-compatible: QMCkl appears like a C library =⇒ can be used in all
other languages
System functions in C (memory allocation, thread safety, etc)
Computational kernels in Fortran for readability
A lot of documentation (remember: the HPC compiler is a human!)

Literate programming

Literate programming is a programming paradigm introduced by Donald Knuth
in which a computer program is given an explanation of its logic in a natural
language, such as English, interspersed with snippets of macros and traditional
source code, from which compilable source code can be generated. (Wikipedia)

Documentation library

Literate programming with org-mode:
Here, comments are more important than code
Can add graphics, LATEXformulas, tables, etc
Documentation always synchronized with the code
Some routines can be generated by embedded scripts
Web site auto-generated when code is pushed
Most of the the first EU report was auto-generated from the documentation

Instead of writing comments documenting code, we write code illustrating
documentation.

Literate programming with org-mode

Generated code

Generated web site

Identified kernels

At each QMC step, we need to evaluate Eloc(r1, . . . , rN) = ĤΨ(r1,...,rN)
Ψ(r1,...,rN) :

Ψ(r1, . . . , rN)

∆iΨ(r1, . . . , ri , . . . , rN): kinetic energy
~∇iΨ(r1, . . . , ri , . . . , rN): drift in the stochastic process

Main kernels

AOs: χ(r), ~∇χ(r),∆χ(r)
MOs: φ(r), ~∇φ(r),∆φ(r)
Slater determinants (value, gradient, Laplacian)
Pseudo-potential
Jastrow correlation factor (eN, ee, eeN)

Codesign strategy

1 Kernel extraction: QMC experts agree on the mathematical expression of the
problem

2 A mini-application is written to find the best data layout with HPC experts from
real-size examples

3 The kernel is written in the documentation library
4 HPC experts provide an HPC version of the kernel with the same API
5 The library is linked in the QMC codes of the CoE

Our first application : 3-body Jastrow factor

Jeen(r,R) =

Nnucl∑
α=1

Nelec∑
i=1

i−1∑
j=1

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

clkpα (rij)
k
[
(Riα)l + (Rjα)l

]
(Ri α Rjα)(p−k−l)/2

can be rewritten as

Jeen(r,R) =

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

Nnucl∑
α=1

clkpα

Nelec∑
i=1

R̄i ,α,(p−k−l)/2 P̄i ,α,k,(p−k+l)/2 (↓ complexity)

with

P̄i ,α,k,l =

Nelec∑
j=1

r̄i ,j ,k R̄j ,α,l . (GEMM)

Our first application : Gradient and Laplacian

∇imJeen(r,R) =

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

Nnucl∑
α=1

clkpα

Nelec∑
i=1

Ḡi ,m,α,(p−k−l)/2 P̄i ,α,k,(p−k+l)/2 +

Ḡi ,m,α,(p−k+l)/2 P̄i ,α,k,(p−k−l)/2 + R̄i ,α,(p−k−l)/2 Q̄i ,m,α,k,(p−k+l)/2 +

R̄i ,α,(p−k+l)/2 Q̄i ,m,α,k,(p−k−l)/2 + δm,4
(

Ḡi ,1,α,(p−k+l)/2 Q̄i ,1,α,k,(p−k−l)/2 + Ḡi ,2,α,(p−k+l)/2 Q̄i ,2,α,k,(p−k−l)/2 +

Ḡi ,3,α,(p−k+l)/2 Q̄i ,3,α,k,(p−k−l)/2 + Ḡi ,1,α,(p−k−l)/2 Q̄i ,1,α,k,(p−k+l)/2 +

Ḡi ,2,α,(p−k−l)/2 Q̄i ,2,α,k,(p−k+l)/2 + Ḡi ,3,α,(p−k−l)/2 Q̄i ,3,α,k,(p−k+l)/2
)

with

Ḡi ,m,α,l =
∂ (Riα)l

∂ri
, ḡi ,m,j ,k =

∂ (rij)
k

∂ri
, and Q̄i ,m,α,k,l =

Nelec∑
j=1

ḡi ,m,j ,k R̄j ,α,l

Speed up

 4

 6

 8

 10

 12

 14

 16

 18

 20

 500 1000 1500 2000 2500

S
p

e
e
d

u
p

Number of electrons = 5x(number of nuclei)

∼ 80% of the AVX-512 peak is reached on a Skylake CPU.

TREXIO: The TREX I/O library

Current situation

Goal

TREXIO

Front-end
Definition of an API for to read/write wave functions
C-compatible API: Easy bindings in other languages

Back-end
HDF5: Efficient I/O
Text: debugging, fallback when HDF5 can’t be installed

TREXIO

Front end

Groups

Electron AO Basis ECP OneRDM
Nucleus MO Determinants Jastrow TwoRDM

Data
Inside each group, multiple values.
Strong conventions (atomic units, ordering of cartesian orbitals, etc)
File is self-contained: no external knowledge is necessary to compute Ψ(r1, . . . , rn)
(normalization factors, basis set parameters, etc)

API

Computable function names:
trexio_<read|write|has>_<group>_<data>[_32|_64]

return code for error handling
Auto-generated from a JSON config file defining groups, data and types

Example

Links

TREX web site : https://trex-coe.eu
QMCkl documentation : https://trex-coe.github.io/qmckl
QMCkl repository : https://github.com/trex-coe/qmckl
TREXIO repository : https://github.com/trex-coe/trexio

https://trex-coe.eu
https://trex-coe.github.io/qmckl
https://github.com/trex-coe/qmckl
https://github.com/trex-coe/trexio

	Presentation of TREX
	QMC kernel library (QMCkl)
	TREXIO: The TREX I/O library

