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The operation of a human-machine interface is increasingly often referred to as a

two-learners problem, where both the human and the interface independently adapt

their behavior based on shared information to improve joint performance over a specific

task. Drawing inspiration from the field of body-machine interfaces, we take a different

perspective and propose a framework for studying co-adaptation in scenarios where the

evolution of the interface is dependent on the users’ behavior and that do not require

task goals to be explicitly defined. Our mathematical description of co-adaptation is built

upon the assumption that the interface and the user agents co-adapt toward maximizing

the interaction efficiency rather than optimizing task performance. This work describes

a mathematical framework for body-machine interfaces where a naïve user interacts

with an adaptive interface. The interface, modeled as a linear map from a space with

high dimension (the user input) to a lower dimensional feedback, acts as an adaptive

“tool” whose goal is to minimize transmission loss following an unsupervised learning

procedure and has no knowledge of the task being performed by the user. The user is

modeled as a non-stationary multivariate Gaussian generative process that produces a

sequence of actions that is either statistically independent or correlated. Dependent data

is used to model the output of an action selection module concerned with achieving

some unknown goal dictated by the task. The framework assumes that in parallel to

this explicit objective, the user is implicitly learning a suitable but not necessarily optimal

way to interact with the interface. Implicit learning is modeled as use-dependent learning

modulated by a reward-based mechanism acting on the generative distribution. Through

simulation, the work quantifies how the system evolves as a function of the learning time

scales when a user learns to operate a static vs. an adaptive interface. We show that

this novel framework can be directly exploited to readily simulate a variety of interaction

scenarios, to facilitate the exploration of the parameters that lead to optimal learning

dynamics of the joint system, and to provide an empirical proof for the superiority of

human-machine co-adaptation over user adaptation.

Keywords: co-adaptation, human-machine interface, use-dependent learning,model-free learning, reinforcement,
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INTRODUCTION

Interfaces between human and a machine are at the forefront
of research in human augmentation [e.g., supernumerary limbs
(Prattichizzo et al., 2014; Parietti and Asada, 2016; Yamen
Saraiji et al., 2018), myoelectric prostheses (Antuvan et al., 2014;
Wright et al., 2016; Dyson et al., 2018)], assistance [e.g., brain-
computer interfaces (Santhanam et al., 2006; Millán et al., 2010;
Nicolas-Alonso and Gomez-Gil, 2012; Jarosiewicz et al., 2015),
brain-machine interfaces (Collinger et al., 2013), body-machine
interfaces (Antuvan et al., 2014; Farshchiansadegh et al., 2014;
Chau et al., 2017; Fall et al., 2017; Aspelund et al., 2020; Rizzoglio
et al., 2020)], and rehabilitation (Rohm et al., 2013; Pierella et al.,
2014; Donati et al., 2016).

In the majority of these applications, human-machine
interfaces (HMIs) are expected to provide support to their users
for prolonged periods of time. However, extensive usage requires
interface stability, which is at present a considerable challenge
both due to technological characteristics of the device, and due
to physiological and functional processes active at the user’s level
(Young et al., 2011; Barrese et al., 2013; Orsborn et al., 2014;
Downey et al., 2018). Co-adaptive algorithms for HMIs have been
developed to address the issue of decoder instability (Vidaurre
et al., 2011; Kao et al., 2017; Yeung et al., 2019; Degenhart et al.,
2020; Silversmith et al., 2020) and to compensate for performance
degradation due to the emergent closed-loop dynamics during
use (Orsborn et al., 2012; Dangi et al., 2013; Shenoy andCarmena,
2014; Hahne et al., 2015; De Santis et al., 2018). One goal of these
strategies is to reduce reliance on user adaptation to compensate
for imperfections in the interface, a process that can be lengthy
and cognitively demanding, besides being often insufficient for
guaranteeing efficient control (Sadtler et al., 2014; Golub et al.,
2018).

Despite the growing body of research, the majority of the
efforts have been devoted to improving the decoding power of the
algorithms while still little work has addressed the mechanisms
that enable the user to learn an efficient control strategy to
interact with the interface (Héliot et al., 2010; Kübler et al., 2014;
Couraud et al., 2018; Perdikis and Millán, 2020). A few studies
proposed to investigate user-interface co-adaptation through
mathematical models in a two-learners setting as a viable way
to study the system’s learning trajectory. These models share the
assumptions that (i) the user intention is known, (ii) the task
goal is defined and accessible, (iii) the user and the interface
act as independent agents that work together either to minimize
some joint cost function (Müller et al., 2017), to minimize
closed-loop error through joint stochastic optimization (Merel

et al., 2013), to minimize an individual cost function in a game-

theoretic formulation (Madduri et al., 2020), or to maximize
the expected reward via reinforcement learning (DiGiovanna

et al., 2009). These models are particularly suited for guiding

and interpreting co-adaptation in the context of brain-machine
interfaces. However, the requirements of knowing user intentions
and task goals limits their application to situations when
explicit information regarding the task objectives might not be
directly accessible or user intentions cannot be reliably estimated.
Moreover, there is no knowledge whether these models can be

generalized to a task different from the one they have been
trained on.

In order to tackle these limitations, here we propose a novel
framework for studying co-adaptation in a human-machine
interface setting when explicit information regarding the tasks
goal might not be directly accessible. We draw inspiration from
the field of body-machine interfaces, which have traditionally
adopted what we may call general purpose-decoders and aim
to identify a suitable low-dimensional encoding of the user’s
body signals to use for control in a variety of tasks. We
propose a framework where the user and the interface are
non-independent agents that co-adapt toward maximizing the
interaction efficiency rather than optimizing task performance.
We believe our approach is novel also in that it addresses
the problem of non-stationarity in the user behavior together
with learning through data that is not independently identically
distributed, as it is generally the case in practical applications
(Perdikis and Millán, 2020).

The framework defines a mathematical model of a user
learning and a model of an adaptive body-machine interface.
User learning is implemented through a strategy based on
reward-weighted use-dependent learning (Diedrichsen et al.,
2010) with the goal of generating actions that maximize the
coherence with the associated sensory feedback over time.
We use experimental data obtained from a previous study
where participants interacted with a body-machine interface (De
Santis and Mussa-Ivaldi, 2020) to validate the plausibility of
the model. The interface, on the other hand, is modeled as a
linear compression map from high-dimensional actions to low
dimensional feedback, that adapts to minimize transmission loss
through an unsupervised learning procedure (De Santis et al.,
2018). We simulate the models in different scenarios to study the
final performance and convergence of the system as a function of
the learning time scales of both the user and the interface.

In the following sections, we provide a mathematical
formulation for framing the problem of co-adaptation in the
context of body-machine interfaces. In the first section, we
provide details of the mathematical models for a generic interface
user, a model for an adaptive interface, and of their interaction.
We then describe the simulation scenarios developed to test the
plausibility of the proposedmodel for the user and to evaluate the
effect of the learning time scales of the user and the interface on
the ability of the system to converge to a joint solution.

We provide a thorough interpretation of the results to show
that this novel framework can be directly exploited (i) to readily
simulate a variety of interaction scenarios, (ii) to facilitate the
exploration of the parameters that lead to optimal learning
dynamics of the joint system, and (iii) to provide an empirical
proof for the superiority of human-machine co-adaptation over
user adaptation.

PROBLEM FORMULATION

The control problem in a human-machine interface (HMI)
scenario can be formulated as follows. The user has to control
some physical or virtual device in order to perform a certain task.
The interface implements a continuous map B, between a certain
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n-dimensional vector of inputs q generated by the user, and an
m-dimensional output vector of controls to the machine, p.

p = B(q), B :R
n → R

m (1)

For instance, wemay consider a user wanting to bring a computer
cursor to a certain location on a screen. In this scenario, an
interface may implement a map from body postures to the
{x,y} location of the cursor on a screen (Mosier et al., 2005).
Equivalently, another interface may define a transformation
between the activity of neurons in the motor cortex and the
velocity of the cursor (Santhanam et al., 2006).

As is often the case for HMI applications, we will assume
that the dimensionality of the space of input signals recorded
from the user is greater than the dimensionality of the signals
necessary to control the device, m < n. This implies that not all
inputs that the user generates will be equally effective in driving
the device, as only vectors lying in the potent space of the map
will determine a change in the output. Hence, when learning to
operate the interface, a user is faced with both an explicit goal—to
satisfy specific task requirements—and an implicit objective—to
generate control signals that produce a change in the state of the
device. We will call the space of all possible low dimensional
vectors {p} different from the zero vector the latent space of
the map.

For the sake of clarity, we will develop our formulation
with application to body-machine interfaces, where B
implements a linear map and, in particular, an orthogonal
transformation between body postures and the state of the device
(Farshchiansadegh et al., 2014). These particular properties
allow us to derive a simplified and tractable mathematical
formulation for the problem and to highlight interesting
properties of the human-machine system that can extend beyond
our particular case.

Considering the subset of linear orthogonal maps, for any
given input vector q the corresponding set of output vector p can
be defined as the orthogonal projection of q onto Rm:

p = Bq+ B⊥q (2)

Where B⊥ denotes the orthogonal complement of B, that maps
the vector q into the zero vector or null space of B. Here B
effectively defines an m-dimensional hyperplane embedded in
R
n. Because the dimension of the null space is n − m > 0,

the problem of identifying the inverse transformation of B is
ill posed. Thus, we may expect the user to learn one out of
the possible infinite particular solutions to the forward-inverse
problem (Pierella et al., 2019).

Note that out of the possible generalized right-inverses of B,
the pseudoinverse, also known as the Moore-Penrose inverse,

B† = BT
(

BBT
)−1

represents the minimum norm solution in a
least-square sense. In particular, for matrices with orthonormal
columns, B† = BT .

Figure 1 summarizes the individual components of the
proposed framework that will be described in the following

sections. Section A Model for the User details the proposed
model for a body-machine interface user that learns to
interact with a static interface through a strategy based on
reinforcement and use-dependent learning. Section A Model
for an Adaptive Interface summarizes the proposed algorithm
for implementing an adaptive body-machine interface. Finally,
section A Model for User-Interface Coadaptation describes the
algorithm for implementing user-interface co-adaptation within
the proposed framework.

A Model for the User
Let us assimilate a generic user to a generative process
characterized by a probability distribution, Pu, over the inputs
q. We will assume that the user is initially naïve to the interface,
and that, with practice, will learn to control the interface up to a
certain degree of proficiency. We then assume that learning will
be reflected into a change in time of the probability of generating
certain inputs based on the feedback received by the device (e.g.,
visual feedback of the cursor position).

Let us consider the case ofPu following a multivariate Normal
distribution with mean µ ∈Rn and covariance matrix 6 ∈

R
n×n. To account for time-dependency, we then assume that the

distribution is non-stationary and can be summarized by a mean
µk and a covariance matrix 6k at a certain discrete time k:

Pu

(

k
)

∼N
(

µk,6k

)

(3)

In order to simulate how the probability distribution of the user’s
data changes with practice, we need to make certain assumptions
as to what learning strategy the user might adopt. Previous
work assumed the user follows an optimal control policy for
directly minimizing task-related error (Merel et al., 2013, 2015;
Müller et al., 2017). The authors of these studies rely on the
knowledge of user intent for computing an error metric that
guides an optimization routine over the model’s parameters.
However, the availability of the error depends on the capability
to generate adequate input signals. Hence, when interacting
with a system whose properties are still unknown, exploration
of the input space is required (Bernardi et al., 2015; van Vugt
and Ostry, 2019). Consistently, here we hypothesize learning in
the early stages of interaction with the interface can be better
approximated by a mechanism that acts through reinforcement
and a memory of past inputs and their observed consequences.
As a definition of error becomes unnecessary, the proposed
approach allows framing the learning problem in a way that is
task independent.

Let us assume that the user associates to every generated
“action” qk a certain reward rk based on the feedback received
from the map and that the objective of the user is to learn to
generate actions that maximize the expected reward over time:

{qk} :maxΣ ,µ,B {E [rk]} (4)

In particular, we assume that the reward assigned to each action
is proportional to the “amount of feedback” the user receives for
that action. For instance, actions that lie in the null space of Bwill
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FIGURE 1 | Model components and behavior. The user is composed of a generative model (1) that describes the probability of drawing a certain n-dimensional action

qk at the instant k. The action qk contributes to generating a smooth trajectory of control signals sk for the interface (2). The interface map computes a vector pk of a

dimension m < n and provides it to the user as feedback related to the smooth control action sk (3). The user model processes the feedback assigning a reward for

the action based on the feedback (4). After each iteration, the map recursively updates its parameters based on the distribution of the observed user commands sk
with learning rate γ . The user updates its generative model with learning rate η after a feedback is received, reinforcing the generated smooth action according to its

reward.

receive zero reward, as they will produce no change in the state
of the device, while actions that produce an observable change in
state will receive a reward discounted by the amount of their null
space component. The reward assignment rule, given (1), can be
formalized as:

rk=
tr

(

pkp
T
k

)

tr
(

qkq
T
k

) =
tr

(

Bqkq
T
k
BT

)

tr
(

qkq
T
k

) (5)

Note that the reward is a non-negative scalar, 0 ≤ rk ≤ 1:

tr
(

Bqkq
T
k B

T
)

= tr
(

qkq
T
k

)

, if
∥

∥Bqk
∥

∥ =
∥

∥qk
∥

∥

tr
(

Bqkq
T
k B

T
)

< tr
(

qkq
T
k

)

, if
∥

∥Bqk
∥

∥ <
∥

∥qk
∥

∥ (6)

Equation (5) defines the reward as the amount of power
transferred through the map and Equation (6) gives us the
intuition that the reward is maximized if qk lies in the potent
space of B at every instant of time.

Let us now consider a set of samples {q} generated over
a finite time horizon [k0, k1] within which the generative
model Pu

(

k0 ≤ k ≤ k1
)

∼ N
(

µ,Σ
)

can be considered

approximately stationary. Given (5) and knowing that Σ =

E
[

(

q−µ
) (

q− µ
)t

]

= E
[

q qT
]

− µ µT , we can formulate the

maximization policy for the expected reward in Equation (4)

as follows:

E [rk] =
tr

(

E
[

p pT
])

tr
(

E
[

q qT
])

=
tr

(

BE
[

q qT
]

BT
)

tr
(

E
[

q qT
])

=
tr

(

BΣB
T
)

+tr(BµµTBT )

tr
(

Σ
)

+tr(µµT )

(7)

We can find a more interesting expression for Equation (7)
considering the set of input vectors centered in the mean:
{

q
}

= {q}−µ. Knowing that Σ is symmetric and positive
definite, we can define two matrices, a diagonal matrix 3 =

diag([λ1, . . . , λn]), where λn are the eigenvalues of Σ , and an
orthogonal matrix V = [v1| . . . | vn] with the corresponding
eigenvectors as columns such that:

Σ = V3VT (8)

Using Equation (8), we can then rewrite Equation (7) in the case
of random variables with zero mean:

E [rk] =
tr

(

BΣB
T
)

tr
(

Σ
) =

tr
(

BV3VTBT
)

∑

λi
=

tr(C3CT)
∑

λi
(9)

where C = BV . We can immediately see from Equation (9)
that the expected reward will be maximized if CCT = I, hence
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if V = B†. This is equivalent to say that the reward will be
maximized if the user learns to generate inputs that lie in the
potent space of the interface map.

We have assumed the user could be modeled as a non-
stationary generative process characterized by a certain expected
value and covariance matrix at a certain instant of time. In
the following paragraph we will now provide a mathematical
formulation for iteratively computing the parameters of the user
distribution based on the feedback received by the interface and
the reward.

Given that the user receives feedback as a continuous stream,
the distribution parameters should be estimated following an
incremental approach. In the following, we will report the
formulation originally proposed by Weng and colleagues (Zhang
and Weng, 2001; Weng et al., 2003) for iteratively estimating
the eigenvectors and eigenvalues of the data covariance matrix,
that we have modified to account for non-stationarity in the
distribution that generated the data (De Santis et al., 2018; De
Santis and Mussa-Ivaldi, 2020). Every time a new sample qk is
received, the sample estimates for the mean and the principal
components of the covariance matrix can be updated as follows:

µk+1 = (1− η)µk + ηqk (10)

wk+1 = (1− η)wk + η
(qk − µk+1)(q

T
k − µk+1)

‖wk‖
wk (11)

where wk=λkvk is the estimate of the eigenvector scaled by its
corresponding estimated variance.

Equations (10) and (11) effectively implement a first order
exponential smoothing filter with time constant τ = −T/ ln(1−
η), where T is the sampling interval and η the learning
rate. Hence, the η parameter describes how fast new data is
incorporated in the model or, equivalently, how quickly the user
is willing to discount older memories. It has been suggested that
the learning rate should be chosen within the range [10−5, 10−1]
to ensure convergence and stability of the solution (Schmitt et al.,
2016). By modulating the learning rate η we can characterize
processes with a variable amount of memory and sensitivity to
data that lie outside the distribution. In particular, small values
of η will decrease the likelihood that new data will considerably
affect the distribution parameters. This may be desirable when
the reward for the current action is low. Conversely, the user
should reinforce actions that are highly rewarded. This can be
accounted for in the model by modulating the learning rate in
proportion to the reward, as suggested by Diedrichsen et al.
(2010):

ηk = η·rk (12)

According to Equation (12), at each iteration the learning rate
will always be bounded between zero, whenever the current
action receives zero reward, and η. It is interesting to note
that for ηk = η the model would effectively mimic a process
that is referred to as “use-dependent” or “experience-dependent”
learning (Butefisch et al., 2000; Diedrichsen et al., 2010; Huang

et al., 2011), which describes the progressive consolidation of
patterns of activity by repeated occurrence of a same action.

The last component of the model that has to be addressed
is how the process of action selection is carried out. In a real
scenario, the user would select actions directed toward a goal,
for instance to reach a target position with the computer cursor
or when carrying out a pursuit task. As we are not interested in
modeling the behavior of the user under specific task conditions,
we will only include in themodel the general requirement that the
samples drawn by the user ought to be statistically dependent.

In practice, we simulate data to be dependent within a
certain window L by filtering successive randomly drawn inputs
{qk,. . .,qk+L} with a first order autoregressive exponentially
weighted moving average (ARMA)model, initialized with s0=q0:

sk = αsk−1+βqk (13)

The parameters values α = 0.99, β = 0.15 have been chosen
to resemble the correlation encountered in experimental data
sequences from upper-limb movements after centering the data
in the mean (De Santis and Mussa-Ivaldi, 2020). An example of
real vs. simulated data is shown in Figure 2.

Finally, we have to add a regularizing term that encodes some
constraints on the structure of the variance of the generated
action that, under conventional circumstances, would be induced
by task requirements. Given that the model generates correlated
data, the possibility for the simulated user to successfully learn
to generate actions that increase the expected reward depends on
the specific sequence of actions the user produces. In fact, it is
likely that the model in the present form will learn degenerate
solutions. For example, the user may learn to consistently
produce actions along a line parallel to one column of the
map rather than in two dimensions. Another, less intuitive,
singularity relates to the magnitude of the actions the user
learns. As we assume that samples generated by the user are
normally distributed, actions that lie closer to the mean are
more likely to be produced than actions that lie further from
the mean. Consequently, we can predict from the recursiveness
of Equations (10) and (11) that the user distribution will
progressively shrink until the variance becomes zero.

In order to prevent the user from learning degenerate
solutions and to avoid the problem of the “vanishing variance,” we
need to introduce two regularizing constraints on the structure
of the covariance matrix used to generate data at each step. In
particular, we assume here that the user is motivated in producing
actions that span (at least) two dimensions. This motivation is
then translated into a corrective term for the variance matrix 3k

at each time step:

3̂k = diag(|λk + λC + z|) (14)

where λC is a n-dimensional vector of corrective factors and z is
a n-dimensional vector of random noise.

The first constraint, formalized in Equation (15), imposes that
the vigor of the user’s actions in the task dimensions over time has
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FIGURE 2 | Experimental vs. simulated data. From left to right: normalized orientation data from one channel of IMU recordings while the user controlled the position

of a 2D cursor in a reaching task with a body-machine interface (black line) and simulated sensor data channel extracted from a distribution with the same mean and

covariance matrix (gray line); autocorrelation function of the experimental and simulated signal cropped at a lag of 500 samples; single-sided amplitude spectrum of

the experimental and simulated signal assuming a sample frequency of 50Hz.

to remain constant. No constraint is imposed on the cumulative
variance distributed along the remaining dimensions.

tr





m
∑

j=1

λj,k



=tr





m
∑

j=1

λj,0



 (15)

The second constraint imposes that the percentage of variance
accounted for by the first m eigenvalues does not decrease
compared to the initial condition.

3k

tr (3k)
≥

30

tr (30)
(16)

A Model for an Adaptive Interface
In order to simulate interface adaptation, we refer to the
algorithm initially proposed in De Santis et al. (2018). The goal
of interface adaptation is to incrementally adjust the interface
map to better resemble the distribution of the user’s action while
the user is controlling the interface. If we recall Equation (9),
the optimal solution to the control problem in terms of reward
maximization is given by BV (BV)T = I. If the interface is static,
this can be achieved only if the user learns to generate data points
that lie in the potent space of the map. However, this process
is likely to develop over a prolonged period of time as a result
of the interaction of multiple learning mechanisms with task
constraints (Rohde et al., 2019) and even then, the user may learn
a solution far from the one with minimum norm.

A simple way to speed up the process is to steer the interface
toward finding a better low-dimensional approximation of the
user’s input covariance. We can then reformulate Equation (11)
to iteratively update the orthogonal components of the map to
resemble the first eigenvectors of 6k:

bk+1 = (1− γ ) bk + γ
qkq

T
k

‖bk‖
bk (17)

TABLE 1 | Coadaptation.

Define: η, γ ,K

Initialize model parameters Σ0 = Σ ,

µ0 = 0,

B0= [b1,0

∣

∣b2,0] ;

for k in [1, K], do:

Draw an independent input: qk∼N (0,6k)

Update the sample trajectory (Equation 13): sk = αsk+βqk

Project the data onto the map (Equation 1): pk = Bksk

Assign the reward (Equation 5): rk=
tr(pkp

T
k
)

tr(sksk )

Update user parameters (Equation 11): wk+1 ←

(1− ηrk)wk + ηrk f (sk ,wk )

Compute eigenvectors and eigenvalues: vk+1 = wk+1/ ‖wk+1‖ ;

λk+1 = ‖wk+1‖ ;

Compute regularized variance (Equation 14): 3̂k+1 = diag(|λk + λC + z|)

Update the generative model (Equation 8): Σk+1 = Vk+13̂k+1Vk+1

Update map parameters (Equation 17): bk+1 ← (1− γ )bk + γf (sk ,bk )

end for

where b is the first column vector of B. The expression can be
easily generalized to multiple orthogonal components but, for
brevity, we let the reader refer to Weng et al. (2003) for a detailed
formulation. Equation (17) in its form assumes that qk comes
from a distribution with zero mean. In the following, we will
assume without loss of generality that this condition is true.

A Model for User-Interface Coadaptation
In this section, we provide a mathematical modeling of a user
coupled with an adaptive interface. In the context of the proposed
framework, both the user and the interface aim at maximizing
the transfer between a user-generated input qk and its low
dimensional counterpart pk. However, the user follows a strategy
driven by reward maximization, while the map simply tries
to approximate the covariance of the user’s generative process.
The algorithm for implementing user-interface coadaptation is
summarized in Table 1.
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The ability of the joint system to converge to a solution
largely depends on the choice of the learning rate parameters
for the user and the map, η and γ . Previous theoretical work
suggested that imbalanced learning rates are more likely to
converge to a stable equilibrium (Igual et al., 2019) and that
interface learning rates that are too high quickly lead the joint
system to instability and prevent the user from adapting (Hahne
et al., 2015; Müller et al., 2017). Tuning the learning rate of the
interface to find the ideal trade-off between speed and stability
is often impractical especially when the learning rate of the
user is unknown. The simulations proposed in the next sections
aim to contribute some theoretical guidance for implementing
interface adaptation and the consequences of parameters choices
on the joint system convergence that find direct application to
body-machine interfaces.

SIMULATION SCENARIOS

In this section we analyze two scenarios in order of complexity.
We first examine the simulated user behavior in relation to
the choice of the learning parameter when interacting with a
stationary interface. We also verify that our model is sufficient
to explain experimental data. We then propose simulations to
characterize the behavior of the joint user-interface system for a
range of possible learning parameters.

Simulating a User Learning a Stationary
Interface
As previously mentioned, we assume that the user can be
assimilated to a generative process with zero mean and a non-
stationary covariance matrix 6 that generates a sequence of
dependent samples through the ARMA model in Equation (13).
The dimensionality of the input data and the interface have been
chosen to match the ones in our previous experimental study,
where 10 individuals learned to control a 2D cursor moving their
upper limbs (De Santis and Mussa-Ivaldi, 2020). In the study,
participants first performed 60 s of random arm movements
and then a reaching task with the interface. Each participant
interacted with a customized interface, initialized to the first two
eigenvectors extracted applying principal component analysis to
the dataset of random motions.

Consequently, here the dimension of the user input was set
to eight and the dimension of the feedback to two, leaving the
simulated user with 6 redundant dimensions. The interface map
B is 2×8 rectangular matrix and was chosen identical to the
map the participant interacted with during the experiment. The
user model covariance matrix was instead initialized using the
first 60 s of sensor data recorded when the same subject first
performed the reaching task.

We ran multiple simulations with 20 different values of
learning rate logarithmically spaced between 10−4 and 10−1

over a 40k samples horizon, which roughly correspond to an
experimental session of 10–15min. Since the trajectory of the
simulated user is dependent on the random sequence of samples
that are generated, each simulation was repeated 20 times with

TABLE 2 | User learning.

Define: B,K = 10k

for n in [1,10], do:

for η in list, do:

Initialize model parameters 60 = Σ ,

µ0 = 0,

B0= [b1,0

∣

∣b2,0] ;

for k in [1, K], do:

Draw an independent input: qk∼N (0,6k)

Update the sample trajectory (Equation 13): sk = αsk+βqk

Project the data onto the map (Equation 1): pk = Bksk

Assign the reward (Equation 5): rk=
tr(pkp

T
k
)

tr(sksk )

Update user parameters (Equation 11): wk+1 ←

(1− ηrk)wk + ηrk f (sk ,wk )

end for

end for

end for

different random seeds. The variance of the additive random
noise term in Equation (14) was chosen to be 10− 4.

The simulation steps are summarized in Table 2.
We then asked whether the model was able to fit the actual

user distribution parameters recorded during the reaching task.
We modified Table 2 to take as input a sequence of 40k samples
from the experimental data rather than asking the model to
generate its own. As the assumption of the data having zero
mean does not hold in this case, we simulated a non-centered
user model. Since in this condition the reward associated to
each sample is predefined, the model’s behavior is deterministic.
Accordingly, the model was simulated only once for each
learning rate.

Simulating User–Interface Coadaptation
In this scenario, both the user and the interface parameters are
allowed to change following the steps described in Table 1. In
order to simulate a more realistic condition, we implemented the
user as a generative process that outputs statistically dependent
data according to Equation (13).

We simulated all the possible combinations for the learning
rate of both the user and the interface considering 20 log spaced
values between 10−4 and 10−1. Hence, we trained a total of
400 models over 40,000 iterations 20 times, each using different
random seeds.

The interface map and the virtual user’s distribution
parameters were once again initialized using participant #S8
as a reference, to allow comparing the results across the
different scenarios.

Performance Metrics
We computed three metrics to assess the evolution of the user
covariance manifold in relation to the interface map across
samples. Thesemetrics are commonly used to assess user learning
in body-machine interfaces as well as other redundant control
tasks (Ranganathan et al., 2014; Thorp et al., 2017; De Santis et al.,
2018).
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1. Planarity: quantifies the amount of variance that the simulated

user distributes in two dimensions. If the user is effectively
learning to maximize the reward over time (that is amount of
data that project onto the potent space of the map) we expect
the user to progressively reduce the probability of generating
actions along the dimensions associated with a null feedback.
Experimental data confirmed that body-machine interface
users learn to increase planarity in a 2D task (Ranganathan
et al., 2013, 2014; De Santis and Mussa-Ivaldi, 2020). Planarity
varies between 0 and 1 and is computed at each iteration from
the variance of the user generative model as follows:

λ1,k + λ2,k

tr (6k)

2. Subspace Angle [deg]: is a measure of angular distance

between subspaces and is used here to quantify how close
the user distribution is to the interface map. Two maximally
tangent (parallel) subspaces will have a Subspace Angle close
to 0 deg, while 90 deg indicated that the two subspaces are
orthogonal and share a minimal projection. It is computed
as the angle between the hyperplane described by the map
and the hyperplane described by the first two principal
component of variance extracted from the user distribution at
each iteration:

cos−1
(
∣

∣

∣
BTk ·

[

V1,k|V2,k

]

∣

∣

∣

)

· 180/π

3. VAF: Variance Accounted For by the interface map, varies
from 0 to 100% and quantifies the percentage of user
covariance that is transferred to the feedback though the
interface map. This metrics effectively encodes the average
reward associated with the current user distribution and can
be considered a measure of control efficiency. It is computed
every iteration as:

tr(Bk6k)

tr (6k)
· 100

4. Rate of convergence [samples]: quantifies the number of

iterations needed for the user to improve performance by 63%
while converging toward a stable solution either independently
or jointly with an adaptive interface. It is computed over the
values of Subspace Angle between the user and the interface
over training as the time constant of the single exponential
function that yields the best least square fit to the data.

In order to evaluate the proposed metrics over the experimental
data, the parameters of the covariance matrix through time were
estimated using a sliding window of 3,000 samples (60 s of data)
over the recorded data sequence.

RESULTS

Simulating a User Learning a Stationary
Interface
Here we consider the effect of the choice of the learning rate
parameter on the ability of a simulated user to maximize the
expected reward over time when interacting with a static map
(γ = 0). We will first consider the plausibility of our simplified
model of user learning by testing its ability to emulate the
performancemetrics extracted by the experimental data recorded
from 10 actual users of our previous study (De Santis andMussa-
Ivaldi, 2020). Then we will analyze the results obtained after
training an array of 20 user models with varying learning rates
to interact with a static interface.

Emulating a Real User
The generative portion of the model has been replaced by a
sequence of experimental data and we evaluated the ability of
the model to fit the performance metrics computed from the
users’ data.

Figure 3 summarizes the performance of the user model
trained on data from 10 individuals controlling a body-machine
interface with the upper limbs. Figure 3, panel A compares the
average performance of the model over the 10 experimental
datasets in terms of Root Mean Squared Error (RMSE) on
Planarity and Subspace Angle metrics computed on simulated
and experimental distributions and the average reward computed
over the dataset given the interface map.

Themodel that achieved theminimum average RMSE on both
metrics was found for η = 0.0013 which corresponded to an
average error on Planarity of 0.0639 ± 0.028 and 12.35 ± 7.72
deg on the Subspace Angle (mean± standard deviation).

The evolution of Planarity and Subspace Angle across
iteration for all the 10 participants considered is depicted in
Figure 3, Panel B, where the solid black lines represent the
metrics computed from experimental data, while the colored
line the metrics computed from the model’s distribution with
η = 0.0013. From the figure, we can see that the behavior across
participants varies greatly, both in terms of the evolution of the
distributionmetrics and the reward computed a-posteriori on the
data. Nevertheless, the model allows to closely follow the course
of Planarity and Subspace Angle in time.

Simulating a Virtual User
After having verified the plausibility of our model, we simulated
a virtual user in a body-machine interface scenario using the
algorithm outlined in Table 2 while varying the fixed component
of the learning rate, the parameter η. We compared the impact of
assuming that the user learns though a sequence of independent
vs. dependent data inputs. Figure 4 summarizes the results of
the simulations.

Panels A and D show how the expected reward changes
across iterations as a function of the user distribution and
the interface map. The results show that assuming data to be
dependent does not affect the course of Planarity of the generative
model covariance. However, this assumption greatly impacts
the distance between the model distribution and the interface
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FIGURE 3 | Model prediction of experimental data. Planarity and Subspace Angle estimated from the data of 10 study participants from De Santis and Mussa-Ivaldi

(2020) (A): from left to right, average performance of the model vs. experimental datasets in terms of Root Mean Squared Error (RMSE) on Planarity and Subspace

Angle metrics and the average reward computed over the dataset given the user interface map. (B) Model performance across iterations. Metrics computed on the

experimental data are reported in black solid lines. Colored lines represent the values obtained from the data distribution generated iteratively by one out of 20 models

with varying learning rates that have been trained with experimental data. The selected models in the figure have learning rate of 0.0013.
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FIGURE 4 | User Model simulation: independent vs dependent data. Average expected reward, planarity, and subspace angle over 20 simulation runs of a model with

varying learning rates generating a sequence of 40k independent (top row) or dependent (bottom row) data. Each model was simulated to evolve from the same initial

condition as participant S8. (A,E) Expected reward computed over the generated sequences of independent and dependent data, respectively and averaged over the

20 simulation runs; (B,F) Subspace Angle between the 2D approximation of the simulated user’s covariance and the interface map at each learning iteration for

independent and dependent samples, respectively; (C,G) Planarity index computed from the simulated user’s covariance matrix at each learning iteration for

independent and dependent samples, respectively. The range of the learning rate parameter spanned an interval from to and the relative performance of the model is

identified by a color that changes from light blue to pink for increasing learning rates, as indicated by the color bar. The dotted lines overlay the experimental metrics

obtained from #S8, also reported in Figure 3; (D,H) summary of Planarity (blue line) vs. Subspace Angle (black line) obtained in the final 200 learning iterations at each

learning rate in the case of independent and dependent samples, respectively. The solid lines represent the average value computed over the 20 simulation runs for

each model, while the dispersion indicates the 95% confidence interval. The red dotted lines mark the best performing model for the two parameters considered.

map. As suggested by the difference in the values of Subspace
Angle obtained in the case of independent (Figure 4, panel B) vs.
dependent observations (Figure 4, panel E), random exploration
leads to solutions that lie closer to the subspace identified by the
interface map.

A first important observation is that the assumption that

the data is independently distributed affects the relationship
between the learning rate parameter and model convergence.

From Figure 4 (panels D and G) we notice that the range of
values of the learning rate parameter that yield better final
performance is reduced in the case of dependent data, with
smaller learning rates leading to an overall better performance.
In our simulations, the model that drew nearest to the subspace
identified by the interface map was found for η = 0.0162
in the case of independent observations, and η = 0.0004
for dependent data sequences. Moreover, accounting for data
dependency determined more than a 3-fold increase (3.2 ± 1.7)
in the variability of the final solution across simulation runs
(Figure 4, panels D vs. G).

This observation finds its counterpart in the experimental
evidence that every user develops a unique solution to the

interface control problem, as exemplified by Figure 3, Panel
B. In fact, given a same model starting from the same initial
condition, divergent results can be obtained for different data
sequences. This can be seen comparing the results obtained
for the two sequences of user’s playback and simulated data in
Figures 3, 4 and from Supplementary Video 1, that shows the
complete evolution of VAF, Planarity, and Subspace Angle in each
of the 20 simulation runs as the learning rate of the user increases
from 10−4 to 10− 1.

In summary, these results suggests that (i) the particular
solution an interface user may converge to depends strictly on
the patterns of input covariance generated during learning and
that (ii) it is virtually impossible to accurately predict the learning
trajectory of an interface user unless the exact sequence of control
actions is known.

Simulating User-Interface Coadaptation
This section summarizes the results obtained simulating a set of
user-interface dyads with different combinations of the respective
learning rate parameters η and γ . Here we assumed that the
user generates a sequence of dependent inputs, and both the
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FIGURE 5 | User-interface joint performance after co-adaptation. Final performance computed as the average value over the final 200 iterations of joint learning

across all combinations of user (η) and interface (γ ) rates of adaptation; (A) average Subspace Angle between the maximum variance 2D approximation of the user’s

covariance and the interface map. Levels indicate steps of 5 degrees; (B) average Planarity (colored lines). The x-axis represents the learning rate of the user, while the

color represents the interface adaptation rate. The gray and black lines represent the final Planarity obtained in the case of user learning with dependent and

independent samples, respectively; (C) average Variance Accounted For by the interface map. Levels indicate steps of 5%; (D) comparison of the average percentage

of variance accounted for by the interface for different degrees of user learning in the case of a static interface and independent samples (RND—black line) or

dependent samples (DEP—gray line) and after interface coadaptation with γ = 10−3 (red line). The error bars represent the 95% confidence interval over 20 simulation

runs.

user and the interface adapt their parameters every iteration
step. The interface’s goal is to minimize information loss and the
user’s implicit objective is to maximize the expected reward over
time through action reinforcement. Results obtained during co-
adaptation are contrasted with simulation results of user learning
with dependent and independent data sequences but without
interface adaptation in terms of (i) final performance (Figure 5)
and (ii) the evolution of the solution over time (Figures 7, 8).

Figure 5 summarizes the final performance of the user model
relative to the interface as a function of the learning rate of
the two processes and provides a visual comparison between

the performance achieved by user learning alone and by user-
interface co-adaptation. As we can see from Figure 5—panel A,
in the end of the simulation the user model and the adaptive
interface learn to encode very similar subspaces for a broad
combination of user/interface learning rates. In general, the
best performance was achieved when the user and the interface
adopted comparable learning rates (ηi = γi: 0.87 ± 2.0
deg), while the least favorable conditions occurred when a fast-
adapting interface (γ ≥ 10−2) was combined with a very slow
learner (η < 10−3) and whenever a very fast learner was
paired with a slow-adapting interface. Notably, co-adaptation
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FIGURE 6 | Control efficiency after user learning vs. co-adaptation. Projection of six simulated smooth trajectories in the 8D space of the sensors into (top panels) the

first three eigenvectors of the user model movement distribution, (bottom panels) the first two eigenvectors of the user model movement distribution and the

corresponding 2D cursor movement at iteration 1000. The user model was trained with η = 0.0013 in both conditions, while the interface had γ = 0 in the user

learning condition, and γ = 0.0013 during co-adaptation. The trajectories in body space are depicted in black, while the corresponding cursor trajectories are depicted

in blue. All trajectories start from the origin. Red circles denote the end of a trajectory (the equivalent of a target point). The blue hyperplane B represents the subspace

of the cursor coordinates defined by the interface map, the gray hyperplane represents the subspace spanned by the first two components of body movement

variance (V̂ ). The subspace angle between B and V̂ was 69.12 deg in the User Learning condition and 21.79 deg in the Co-learning condition at iteration 1000.

yielded considerably smaller Subspace Angle on average (11.5 ±
12.6 deg) compared to a user learning through dependent data
sequences for any combination of learning rates (≥40 deg on
average, see Figure 4—panel G).

Contrarily to the distance between subspaces, Planarity of the
user’s generative model (Figure 5—panel B) was not dependent
on the rate of model adaptation. Compared to the case of
a user learning a static map, planarity during co-adaptation
developed on average to a lesser extent only for very slow learning
rates (η < 0.0005).

The global effect of co-adaptation on the control efficiency in
terms of Variance Accounted for by the interface is summarized
in Figure 5—panel C, while panel D compares the control
efficiency during no map adaptation vs. γ = 10−3. The
figures show that even a relatively small degree of interface co-
adaptation significantly improves the VAF compared to user’s
solo learning. More in general, we observe that co-adaptation
yields a variance accounted for by interface map of 90% on
average with the exception of user-interface dyads composed of
very slow learners. This latter point should not be surprising,

given that slow learners paired with a sufficiently slow-adapting
interface can learn to accurately approximate the subspace
spanned by the interface map, but are unable to sufficiently
minimize variance in non-relevant dimensions, as shown by low
levels of distribution Planarity.

Figure 6 provides an intuition of the impact of user-interface
co-adaptation on control efficiency when controlling a 2D cursor
through the body-machine interface. We simulated a set of six
smooth trajectories in the 8D space of the sensors, that we
call body trajectories. These trajectories were then mapped into
2D cursor trajectories by the interface map B. For the sake of
visualization, we limit ourselves to consider the 3D subspace
spanned by the first three components the body movement at a
certain iteration k [the projection of the body movement along
(v1,k, v2,k, v3,k)]. This subspace is depicted in the top panels of
Figure 6. The blue hyperplane B represents the subspace of
the cursor coordinates defined by the interface map, the gray
hyperplane represents the subspace spanned by the first two
components of body movement variance (V̂). The two planes
correspond to B and V̂ computed at k = 1000 from a model
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FIGURE 7 | Co-adaptation: examples of user and interface evolution though time. Effect of six different interface adaptation rates on the Subspace Angle of the

simulated users relative to the initial condition (leftmost column), of the interface relative to the initial condition (middle columns) and the relative angle between the

interface and the user at each training iteration (rightmost column). The effect of co-adaptation has been exemplified here for a slow-learning user (η = 0.00014,

bottom row), a user with intermediate learning rate (η = 0.0026, middle row), and a fast-learning user (η = 0.048, top row).

of a user learning with η = 0.0013 vs. a model of user-
interface co-adaptation with η = γ = 0.0013. The six body
trajectories are shown in black starting from the center (gray
circle) and ending each in a red circle. The bottom panels show
the projection of the body trajectories on V̂ (in gray) and on B (in
blue). As previously noted, user-interface co-adaptation allows
maximizing the amount of movement that projects into cursor
displacements compared to user learning, yielding to a minimal
distortion between the intended and perceived trajectory. The
subspace angle between B and V̂ was 69.12 deg in the User
Learning condition and 21.79 deg in the Co-learning condition

at iteration 1000. The figure shows how coadaptation can be
advantageous from the standpoint of interface controllability
already early in the traning.

Figure 7 provides a series of examples regarding the effect of
co-adaptation on the average time course of the Subspace Angle
between the user and the interface over training iterations. Three
main points should be highlighted.

Firstly, interface co-adaptation does not eliminate the need for
user learning. In fact, Figure 7 (left column) shows that amount
of change in the 2D subspace containing most variance of user
input induced by learning is generally greater when the user
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interacts with an adaptive interface (colored lines), rather than
a static interface (black line).

Secondly, user-interface co-adaptation yields better
performance than user learning alone, as the relative distance
tends to zero for suitable choices of interface adaptation rate
(Figure 6, right column). In particular, adaptation rates that are
too small tend to steer the system toward sub-optimal solutions
(e.g., in the case of η = 0.048 and γ = 0.0003). Whereas
adaptation rates that are too high induce not only suboptimal
convergence, but also instability in the joint solution as the
variability in the relative angular change grows proportionally
with γ (e.g., in the case of η = 0.00014 and γ > 0.0003).

Lastly, the particular choice of γ seems to have a very
marginal influence on the amount of change in the interface map
compared to the initial condition (Figure 7, middle column). A
two-way ANOVA considering the user and interfaces learning
rates as independent factors over the 20 independent runs found
that the amount of interface change is heavily dependent on
the learning rate of the user [F(19, 7600) = 44.29, p << 0.001],
with greater change induced by faster-learning users (about 10
degrees more than slower users). The effect of the interface
change is more marginal [F(19, 7600) = 2.14, p = 0.003] mostly due
to the high variability across repetitions, as a post-hoc test with
Bonferroni correction only identified one significant comparison
at the significance level of 0.01 (γ = 0.0001 vs. γ = 0.0055). No
effect of the interaction between user and interface learning rates
was found [F(361, 7600) = 1.05, p = 0.233].

Finally, Figure 8 summarizes the effect of co-adaptation on
the speed of convergence of the user-interface dyad compared
to a user interacting with static interface. Panel A highlights the
combined effect of the user and the interface in determining
the time constant for convergence to a negotiated solution in
the co-adaptation scenario. Fastest convergence is achieved when
the interface adapts as fast as the user does. Interestingly, the
figure suggests that interface adaptation values in the interval
0.0006 < γ < 0.0026 can yield to a reasonably fast convergence
even in the case of very slow learners. Indeed, Figure 8—panel
B clearly shows that interface adaptation allows reducing time
to convergence compared to a static map condition consistently
over the whole range of user learning rates.

Taken together, these systematic results provide an empirical
evidence that co-adaptive interfaces can guide the user
toward discovering more efficient solutions to the interface
control problem.

DISCUSSION

This work introduced a mathematical framework for studying
co-adaptation in body-machine interfaces that emphasizes the
role of user’s learning in shaping the interaction with an adaptive
interface. The framework formulates co-adaptation in a task-
independent and model-free way assuming that the user and the
interface co-adapt toward maximizing control efficiency.

The generality of this novel framework can be exploited
to simulate a variety of interaction scenarios, as knowledge of
user intent or task goals is not required, it allows investigating

the parameters leading to optimal co-adaptation dynamics
and allows to empirically demonstrate the superiority of co-
adaptation over user adaptation.

In the next sections, we will discuss the potential implications
of our assumptions about user learning, what general
recommendations for choosing the interface adaptation rate can
be derived from our analysis, and finally how the framework
could be generalized beyond the context of body-machine
interfaces and what the possible limitations of the proposed
formulation are.

What Can a Simple User Model Tell Us?
The starting point of our reasoning lies in the search for
a suitable strategy in the context of learning in redundant
environments (Newell and Vaillancourt, 2001; Ranganathan
et al., 2013; Pacheco et al., 2019). It has been suggested that the
earliest stages of learning a new skill are primarily reliant on
mechanisms of exploration and reinforcement (Bernardi et al.,
2015), whereas model-based learning requires a pre-existing
internal representation of the environment the user is interacting
with (Huang et al., 2011). When a first-time user is faced with the
problem of controlling an external object through an interface,
the need to attain task goals is blurred by the need to identify
a suitable way to transfer intended commands to the object, in
other words, to discover the causality of the interface as a “tool”
(Maravita and Iriki, 2004).

Hence, we postulated a division of roles between the half of
the user that aims at optimizing task performance and the half
that aims to build a sensorimotor representation of the interface
(Di Pino et al., 2014; Bernardi et al., 2015). Here we addressed
how to model the second problem, reducing the first problem to
its observable consequences. In particular, instead of modeling
the process of generating reaching movements toward a target in
the task space, we resolved to reproducing the observable traces
of a reaching command—a trajectory of statistically dependent
points. Then, we assumed that the problem of learning to interact
with the interface successfully—that does not imply optimally or
efficiently—could be solved by a model-free mechanism relying
on reinforcement of successful actions through a process of trial
and error (Huang et al., 2011; Sutton and Barto, 2018). The
process results in the consolidation of memories through use-
dependent plasticity (Krutky and Perreault, 2005; Diedrichsen
et al., 2010). We are aware that this interpretation is fairly
simplified, as multiple model-free and model-based mechanisms
are likely contributing jointly to skill acquisition (Dingwell et al.,
2002; Pierella et al., 2019). Nevertheless, we asked whether this
simplified vision could be sufficient to reproduce features of skill
learning expressed when interacting for the first time with a
redundant tool in the form of a body-machine interface.

The results of our simulations suggest that this simplified
model is indeed able to faithfully represent the emergence of
a stable subspace of actions that result from the interaction
with the interface. Interestingly, our model was also able to
reproduce another feature of learning, that is the emergence of
individual strategies as a function of the trajectory of actions
generated during learning (Pacheco et al., 2019).When themodel
was trained on experimentally observed sequences of data, it
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FIGURE 8 | Convergence analysis. Estimated convergence rate from exponential fitting of Subspace Angle values over iterations for different combinations of user

and interface rates of adaptation; (A) estimated time constant to convergence for Subspace Angle during co-adaptation. Only values for which the goodness of fit

R2 ≥ 0.40 have been included (black regions correspond to missing data); (B) comparison between the estimated time constants for different degrees of user learning

in the case of a static interface and independent samples (RND—black line) or dependent samples (DEP—gray line) and after interface coadaptation with γ = 10−3

(red line). Again, only values for which R2 ≥ 0.40 have been reported.

exhibited a similar trajectory as the individual the data was
produced from. Variability in model solutions across multiple
simulation runs was a direct consequence of assuming that the
user explores the available action space through a sequence of
dependent observations. Variability became irrelevant when the
simulated user was given the possibility to sample the action
space through independent observations. Moreover, learning
with dependent action sequences made the model more likely
to converge to sub-optimal solutions from the point of view
of control efficiency, a tendency also observed in practice
(De Santis and Mussa-Ivaldi, 2020). This result has important
practical implications for the design and interpretation of studies
involving sensorimotor learning, as it highlights how the simple
choice of target locations in the workspacemay implicitly bias the
subject’s behavior (Rohde et al., 2019).

How to Choose the Learning Rate for
Optimal Co-adaptation?
Before answering, we should first ponder another question, that
is “what should be considered optimal in co-adaptation?” For
some, co-adaptation was successful if it could lead to improving
control performance in a specific task (Orsborn et al., 2012;
Hahne et al., 2015; Abu-Rmileh et al., 2019). For others, optimal
co-adaptation was able to return performance to the baseline
level after compensating for interface instabilities (Jarosiewicz
et al., 2015; Kao et al., 2017). Here, we suggest that co-adaptation
is optimal if it maximizes control efficiency. In this sense, the
unsupervised paradigm for interface adaptation proposed here,
was successfully applied in two studies, the first implementing
a linear interface as described in this work (De Santis et al.,
2018) and the second using a non-linear interface implemented
through an autoencoder network (Rizzoglio et al., 2021). In the

latter, co-adaptation led to both an increase in control efficiency
and an improvement in performance during a reaching task.

Our simulations predict that for a same user (i.e., a model
characterized by a certain learning rate and initial condition)
co-adaptation leads to greater control efficiency than what the
user would have otherwise attained and allows reaching a stable
equilibrium faster. We found that, for a given user learning
rate, interface efficiency could be maximized for a relatively
broad range of interface adaptation rates. However, choosing
an adaptation rate similar to the time scale of user learning
would lead to the best performance, both in terms of steady state
solution and in terms of stability. This result seems to disagree
with that of Igual et al. (2019), where imbalanced learning rates
between the adaptive myoelectric controller and the user were
found more likely to drive convergence to a stable equilibrium
in a reaching task. Simulation results within our framework also
suggest that interface adaptation should be chosen conservatively
small rather than too large. In fact, adaptation rates that are
smaller than the user learning rate still lead to improvements
in control efficiency at the cost of a slightly slower convergence
and possibly to suboptimal solutions, while larger learning rates
tend to introduce instability in the solution and inhibit joint
adaptation, in agreement with the results of Hahne et al. (2015)
and Müller et al. (2017). From the simulations carried out
here, a value of interface adaptation rate close to 10−3 seems
to be the recommended conservative choice. Indeed, this value
is close to the empirical choice for the adaptation rate of the
interface (η = 0.002) tested in De Santis et al. (2018), and the
value of 0.005 identified as optimal in the tests performed in
Hahne et al. (2015).

One point should be stressed. Interface co-adaptation is a
viable way to optimize interface control, but it does not eliminate
the need for user learning. Plug-and-play interfaces (Silversmith
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et al., 2020) are only applicable whenever a stable action subspace
(or neural manifold) for a certain task has formed through
repeated exposure to the interface.

Framework Generalizability and
Limitations
One of the main features of the proposed framework is that
it allows framing co-adaptation in a context that is task
independent. However, we believe this should not hinder its
application to instances when task goals and dynamics are well-
known and/or can be modeled. In fact, the user generative model
described here could be replaced with a model that select actions
in a task-dependent or goal-oriented way. It could potentially be
further expanded to account for the role of error-based and/or
model-based mechanisms in determining the sequence of actions
and corrections the user produces in response to the feedback
from the interface and the task goals or constraints.

In this way, the framework could be exploited to study the
effect of co-adaptation in the interaction between the user and
the interface in specific tasks, as for instance during reaching,
or in response to other design factors, such as the position and
sequence of the reaching targets.

The other distinctive trait that increases the applicability of the
framework is that interface adaptation in unsupervised, does not
require any optimization routine, and can be run in real-time.
The proposed interface is particularly well-suited for applications
that make use of the statistics of the user’s input to encode a lower
dimensional space in which movement of the external device
occurs, such as body-machine interfaces. However, supervised
approaches are far more popular in brain computer interfaces
where the decoder is trained to recognize motor intention. We
believe that these two formulations are not incompatible, rather
they can take advantage of each other’s strengths. Stable decoders
rely on the existence of consolidated patterns of brain activity,
often referred to as neural manifolds (Gallego et al., 2017, 2020).
Unsupervised adaptive approaches for subspace estimation in
non-stationary situations could be applied to identify emergent
patterns of brain activity concurrent to interface use upon which
the decoder could be built. Degenhart and colleagues proposed
a very similar concept to stabilize a brain-machine interface
across days, with the difference that their approach relied on the
existence of an already consolidated neural manifold (Degenhart
et al., 2020).

One possible limitation to the proposed framework is
that the analysis has been carried out for a user interacting
with a linear interface, whose representational power may be
limited when the input distribution presents considerable non-
linearities (Portnova-Fahreeva et al., 2020). In a recent work
(Rizzoglio et al., 2021) we proposed an implementation of a
co-adaptive interface that makes use of an iteratively trained
autoencoder network (Kramer, 1991) to perform unsupervised
dimensionality reduction as opposed to standard principal
components analysis. Hence, we believe the framework could
be easily generalized to implement non-linear dimensionality
reduction for manifold estimation and future work should
investigate whether the conclusions drawn here still apply to
non-linear interfaces.

A second limitation is that our approach does not allow
considering the effects of interface adaptation on the explicit
components of motor planning and on the engagement of
model-based mechanisms in response to altered feedback. It
is indeed possible that changes in the interface map introduce
variability in the sensory feedback and further inconsistencies
that negatively affect the performance in the task, triggering other
mechanisms of adaptation (e.g., error-based). This phenomenon
may be amplified whenever the learning rate imbalance triggers
instability in the interface map. For an appropriate choice of
learning rates, this effect is expected to rapidly disappear as soon
as the system reaches an equilibrium.

Finally, as we have focused our investigation on the impact of
co-adaptation on the convergence and stability of the system in
the initial phases of learning, we have not specifically addressed
the problem of stability over a long period of time. Nevertheless,
the results from simulations foster the idea that the joint system
reaches a point of equilibrium, suggesting that the solution could
be stable over extended interaction despite the adaptive model
having a constant learning rate. It is however possible that non-
stationary adaptation rates for the interface may lead to further
stability enhancement.
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