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Flavonoids are by far the largest class of polyphenols with huge

structural and functional diversity. However, the mystery

regarding the exact evolutionary pressures which lead to the

amazing diversity in plant flavonoids has yet to be completely

uncovered. Here we review recent advances in understanding

the conservation and diversification of flavonoid pathway from

algae and early land plants to vascular plants including the

model plant Arabidopsis and economically important species

such as cereals, legumes, and medicinal plants. Studies on the

origin and evolution of R2R3-MYB regulatory system

demonstrated its highly conserved function of regulating

flavonoid production in land plants and this innovation appears

to have been crucial in boosting the overall levels of these

compounds in land plants. Convergent evolution has occurred

as different flavonoids independently which emerged in distant

taxa resulting in similar defense and tolerance characteristics

against environmental stresses. Future studies on an

increasing number of plant species taking advantage of newly

developed genomic and metabolite profiling technologies are

envisaged to provide comprehensive insight into flavonoid

biosynthesis as well as pathway diversification and the

underlying evolutionary mechanisms.
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Introduction
Flavonoids are by far the largest class of polyphenols and

have been estimated to comprise over 8000 metabolites —
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theybearacommondiphenylpropane(C6-C3-C6)backbone

in which two aromatic rings are linked via a three-carbon

chain (Figure 1). The A ring is normally formed from a

molecule of resorcinol or phloroglucinol synthesized via the

acetate pathway [1] and displays a characteristic hydroxyl-

ation pattern at the C5 and C7 positions [2��]. By contrast, the

B ring comes from the far more comprehensively character-

ized shikimate pathway and is often 40-hydroxlated, 3040-
hydroxlated, or 304050-hydroxlated [3]. Flavonoids have been

further subdivided into six major subclasses and in excess of

5000 minor subclasses, in the seminal phytochemical work of

Harbone (see for example [4]), on the basis of the oxygen-

ation pattern of the heterocyclic C ring; namely flavones,

flavonols, flavanones, flavanols, anthocyanidins, and isofla-

vones. We will, largely, not discuss anthocyanidins here since

they are covered in detail in another article in this issue

(Tohge article this issue), although for the discussion on

transcriptional control we do additionally cover this class of

flavonoids.

Before discussing the natural variation in flavonoid compo-

sition and content we feel it is prudent to briefly outline

what is known concerning their biological function(s).

Flavonoids play a variety of roles in extant plants such as

protectant functions against biotic and abiotic stresses,

visual signals for attracting pollinators, and the regulation

of plant hormonal activity. For instance, the levels of

phenylpropanoids fluctuate greatly in response to extracel-

lular circumstance with numerous factors including light

irradiation [5] as well as other abiotic stresses including

nitrogen deficiency, cold and drought [6]. In addition, they

have been demonstrated to be very important with regard

to biotic stresses with evidence accumulating for the roles

of flavones and isoflavones in the response of medicago to

fungal pathogens [7], while the presence of maysin in maize

confers resistance against the major pest Helicoverpea zea
[8�]. The function of flavonoids has recently been compre-

hensively reviewed [2��], so we will not cover this here.

Flavonoid biosynthesis in early diverging
extant plant lineages
It is considered that defense against solar irradiation and

regulation of plant hormonal activity were the original

functions of flavonoids in the earliest flavonoid producing

plants, and these functions have been greatly diversified

in the long evolutionary process [9,10]. Although some

algal species can produce mycosporin-like amino acids as

light tolerance compounds, generating novel mechanisms

or compounds to deal with the increased stress from lack
www.sciencedirect.com
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Figure 1
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Structure of major flavonoid aglycones (a). Flavones (b), Flavonols (c), Flavanones (d), Flavananols (e) and Isoflavones (f).
of light protection by water are postulated as key evolu-

tionary innovations that occurred during land colonization

[9–12]. That said the capacity of flavonoids to scavenge

ROS (generated by high irradiance but essentially all

types of biotic and abiotic stresses), has also been sug-

gested to be a driver for the fixation of flavonoid chemistry

with the capacity to absorb UV-B radiation perhaps being,

at least initially, ancillary [9–12]. Furthermore, in angios-

perms anthocyanin pigments function as visual signals for

attracting pollinators and fruit dispersal agents, but these

functions were acquired late in the evolutionary diversi-

fication of flavonoids [9,10].

Genome surveys carried out in 2013 refuted early claims

[13] of the presence of flavonoid biosynthesis in the

unicellular green alga Chlamydomonas eugametos [2��].
However, in marine brown algae specialized polyphenolic

derivatives for UV-B protection such as phlorotannins and

fucols derived via the polyketide pathway have been

found (reviewed in Ref. [2��]). There is furthermore
www.sciencedirect.com 
convincing evidence that phenylpropanoid production

occurs in charophytic algae – the likely precursors of land

plants – including the presence of both orthologs of

phenylpropanoid biosynthetic genes [14] and down-

stream lignin and lignin-like structures [15]. The sugges-

tion by Stebbins and Hill that Charophyceae secondarily

returned to an aquatic habitat, after adaptation to terres-

trial or amphibian life may, however, offer an explanation

for the above-mentioned observations [16]. Wolf et al.
found the existence of UV-B-dependent induction of

flavonol biosynthesis in Physcomitrella patens which sup-

ports the hypothesis that enzymes involved in the early

flavonoid secondary metabolism and corresponding signal

transduction pathways evolved with the water-to-land

transition due to higher UV-B radiation exposure, as

extant algal species are not able to synthesize flavonoids

[17]. Gene duplication and cis-regulatory evolution are

proposed as the major driving forces for evolution of

phenolics in land plants. For instance, chalcone synthase

(CHS), the first enzymatic gene of flavonoid biosynthesis,
Current Opinion in Plant Biology 2020, 55:100–108
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like many genes involved in secondary metabolism, has

been derived via gene duplication from genes coding for

enzymes of primary metabolism and undergone cis-

regulatory evolution [2��].

Moreover, knowledge concerning biochemical plant-host

responses to microbial invasion, which has until recently

been poorly characterized, has recently advanced consid-

erably. Indeed, Carella et al. [18��], recently studied the

response of the early divergent liverwort Marchantia poly-
morpha to infection with the oomycete pathogen Phy-
tophthora pakmivora uncovering a robust response utiliz-

ing the same conserved pathways observed in the model

angiosperm Nicotiana benthiamiana. Another study on

liverwort by Albert et al. supports the hypothesis that

an inducible flavonoid pathway was an early evolutionary

adaption to the abiotic stresses of life on land [19�]. As

such these data suggest that combined pressures from

light stress, the need to develop a vertical stand and

defense against both biotic and abiotic stress led to the

metabolic innovation that results in the core pathway of

flavonoid metabolism. In addition, recently Goiris et al.
found the widespread occurrence of flavonoids (flavones,

isoflavones, and flavonols) in microalgae from diff ;erent

evolutionary lineages (Cyanobacteria, Rhodophyta,

Chlorophyta, Haptophyta, and Ochrophyta), implying

that plants may have acquired the ability to produce

flavonoids earlier than previously thought [20]. These

also suggest that the ability of plants to produce flavo-

noids, which provide the adaptive mechanisms needed

for their survival in changing environments, may have

evolved multiple times, or that in some instances the

ability was lost during evolution.

In the following sections we will discuss some papers

detailing the diversification of flavonoids in angiosperms

exemplified by model plant Arabidopsis, and economi-

cally important plants including cereals, legumes, and the

medicinal plant Scutellaria baicalensis. For deeper infor-

mation concerning research on the evolution of citrus

flavonoids the reader is referred to recent studies and

reviews [21�,22].

Arabidopsis
As a model species, the flavonoid biosynthetic pathway and

genes have been relatively well characterized in Arabidop-

sis [23–27]. A recent work, which identified flavonol-

phenylacyltransferase 2 (FPT2) as being responsible for

the production of saiginols and conferring greater UV light

tolerance in planta based on the natural variation in Arabi-

dopsis, is noteworthy [28�]. The phenylacylated-flavonols

(saiginols) highly accumulated in floral tissues of Arabidop-

sis were identified in a subset of accessions, especially those

deriving from latitudes between 16� and 43� North. The

presence of a functional FPT2 seemingly confers a selec-

tive advantage in high light growth habits. Moreover,

analysis of polymorphism within the FPT duplicated
Current Opinion in Plant Biology 2020, 55:100–108 
genomic region provides an evolutionary framework of

the natural history and current status of this locus in the

Brassicaceae. In addition, a recent report revealed that

there is phenylacylation of flavonoids at a position distinct

from that of the saiginols which is rare but occurs in families

spanning the green lineage [6].

Cereals
The top three high produced cereals worldwide, maize (Zea
mays ssp. mays), rice (Oryza sativa), and wheat (Triticum
aestivum) are of massive importance to the human diet.

Several kinds of flavonoids are ubiquitously distributed in

these grass crops but almost absent in Brassicaceae for

instance glycosylated flavones [29]. A recent study

indicated that flavones constitute the majority flavonoids

in rice and two UDP-dependent glycosyltransferases (i.e.

OsUGT707A2 termed flavone 5-O-glucosyltransferase,
F5GlcT and OsUGT706D1 termed flavone 7-O-glucosyl-
transferase, F7GlcT) in a new clade of flavonoid glucosyl-

tranferases are the major enzymes controlling the natural

variation of flavones in rice [29]). It is also showed that

variation of major rice flavonoids is regulated at RNA

transcript and enzyme activity level, thus providing an

example of multi-layered regulation of natural variation

within a single biosynthetic pathway. In accordance with,

the results, it was speculated that decorating enzymes,

which are responsible for the final steps of metabolite

synthesis generally make a greater contribution to the

natural variation of metabolite abundance than early path-

way enzymes. More interestingly, this study also suggested

thatO-glycosylated flavonesplay a positive role inplant UV-

B protection and that the allelic variation of these two newly

characterized genes contributes to UV-B tolerance in

nature. However, the exact mechanism by which this super-

ior protection to UV-B is conferred is currently unknown.

Studies on maize flavonoid biosynthesis have been carried

out since the 1970�s. From these studies a large number of

genes including enzymes, and regulatory factors and trans-

porters were identified and characterized [30,31]. Specially,

the flavonoid diversity of maize kernels has been repeat-

edly studied as its kernels make a very large contribution to

the diets of humans and animals [32–34]. Flavones which

have potent anti-inflammatory and anticarcinogenic activi-

ties are present primarily as C-glucosides and O-glucosides
in maize kernels [32,35]. A C-glycosyl flavone – maysin –

confers natural resistance to the maize earworm (H. zea)
when present in silks. The maize maysin biosynthetic

pathway is completed and the Sm1 (UDP-rhamnose

synthase RHS1) and Sm2 (rhamnosyl transferase

UGT91L1) responsible for the last biosynthetic steps are

direct targets of P1 which is an R2R3-MYB transcription

factor [32]. P1 is the major regulator for a set of genes

involved in flavonoid biosynthesis and a minor modulator of

the expression of a much larger gene set that includes genes

involved in primary metabolism and production of other

specialized compounds [36]. However, P1 does not control
www.sciencedirect.com
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anthocyanin biosynthesis [30]. Studies on metabolic diver-

gence between maize and its wild progenitor teosinte have

been reported recently that focused on several metabolic

pathways (carbohydrates, amino acids, alkaloids, terpenoids,

flavonoids, lipids etc.) and provided important insights into

domestication-associated changes in the metabolism

[37,38]. In terms of flavonoid pathway, Xu et al. [36] found

two genes FHT1 (flavanone 3-hydroxylase) and Pr1 (flavo-

noid 30-hydroxylase, F30H) contributed to the metabolic

divergence and the cis-variant at FHT1 might have played

an important role in driving the metabolic divergence in

flavonoid subgroups, including flavanones, flavones, isofla-

vones, and flavonols, since maize domestication.

Legumes
Flavonoid metabolism in legumes is of particular interest

given the presence of isoflavonoids which play important

roles as phytoalexins and as nodulation signals — they are

additionally almost entirely restricted to the subfamily

Papilionoideae [39]. A total of 690 isoflavonoids have

been reported to date [6]. As can be seen in Figure 2,

isoflavonoid biosynthesis shares the core pathway with

other flavonoids up to CHS where legume-specific type II

CHSs convert both naringenin-chalcone and isoliquirti-

genin into naringen and liquirtigenin, respectively, before

subsequent metabolism by isoflavone synthase and 2-

hydroxyflavanone dehydratase which result in genistein

and daidzein [40]. These backbones are subjected to

further modifications — normally by glycosyltransferases

and methyltransferases [41] with their products being

stored in the vacuole [5]. Alternatively they can be con-

verted into antimicrobial pterocarpans [42].

This isoflavonoid class of flavonoids are almost certainly a

consequence of tandem gene duplications and neo-func-

tionalization (the most prominent route for innovation in

plants; [43]). Indeed, isoflavone-related orthologs of chal-

cone reductase, isoflavone reductase, and 2-hydroxyfla-

vanone dehydratase are only found in leguminous species

and are co-incident with high levels of gene duplication

within these species [44]. Furthermore, the isoflavones

used for sensing root nodule interactions [45] are thought

to have co-evolved with the symbiosis of plants and

nitrogen fixing bacteria. In addition, non-isoflavonoid

flavonoids in bean have been subject to considerable

research [39]; however, these are by-and-large similar

to those synthesized by non-leguminous species [46],

so we will not detail them further here.

The medicinal plant S. baicalensis
Flavonoids are a major constituent in lists of metabolites

responsible for the bioactivities of medicinal plants. We

cannot possibly do justice to the diversity of this com-

pound class in a short review, so rather focus on recent

insights derived from a single such species. The family

Lamiaceae notably contains multiple species such as S.
baicalensis (Huangqin) and Salvia miltiorrhiza (Danshen)
www.sciencedirect.com 
which are commonly used in traditional Chinese medi-

cine. For instance, the bioactivities of the root flavonoids

of S. baicalensis include antibacterial, antiviral, antioxi-

dant, anticancer, hepatoprotective, and neuroprotective

properties [47–50]. To date the genomes of S. baicalensis,
S. miltiorrhiza and Salvia splendens of the Lamiaceae

family have been reported [51,52�,53]. A high-quality

386.63 Mb (about 94%) reference genome sequence for

S. baicalensis released recently is the first genome

assembly at chromosome-level resolution in the family

Lamiaceae [52�].

Scutellaria is rich in flavones and expression of the classic

flavone biosynthetic pathway genes leads to the produc-

tion of the 4 O-hydroxyflavone apigenin, which is hydrox-

ylated and glycosylated to form scutellarein and scutel-

larin, respectively in the aerial parts of the S. baicalensis
plant [49]. However, Scutellaria roots accumulate large

amounts of specialized root-specific 40-deoxyflavones bio-

synthesized from a new pathway which has evolved

relatively recently [49]. Root-specific flavones (RSFs)

in S. baicalensis include chrysin, norwogonin, baicalein,

wogonin, together with their glycosides baicalin and

wogonoside. RSFs without a 40�OH on the B-ring are

the major bioactive compounds found in S. baicalensis

[54,55]. On top of the well-assembled genome of S.

baicalensis and comparative genomic analyses, Zhao

et al. [52�] suggested that the evolutionary path for the

biosynthesis of RSFs appears to have arisen by specific

recruitment of a gene encoding a CoA ligase, and four of

the genes involved in RSF synthesis (CHS-2, FNSII-2,

F8H, and PFOMT5) present as tandem repeats in the

genome of S. baicalensis are the result of relatively recent

tandem duplications. The results also revealed that gene

duplications, segmental duplication, gene amplification,

and point mutations coupled to gene neofunctionaliza-

tions and subfunctionalizations were involved in the

evolution of 40-deoxyflavone synthesis in the genus

Scutellaria. The high-quality reference genome of S.
baicalensis thus would facilitate improved assembly of

other genomes of members of the mint family, including

S. splendens and S. miltiorrhiza as well as the elucidation of

the biosynthetic pathways of specialized metabolites.

Regulatory genes in flavonoid biosynthesis
The flavonoid biosynthetic pathway has been deemed as

a model system for understanding gene regulation in

plants. In the case of transcriptional regulators MYB,

WD40 and bHLH proteins have been extensively char-

acterized in the biosynthesis of flavonoid. The transcrip-

tional control of flavonoid biosynthesis by MYB–bHLH–

WDR complexes has been well reviewed elsewhere [56].

While some late biosynthetic genes involved in the

flavonoid pathway are activated by the R2R3MYB-

bHLH-WD40 (MBW) ternary transcriptional complex

here we detail in the recent advances on R2R3-MYBs

which are characterized in a wider range of species in the
Current Opinion in Plant Biology 2020, 55:100–108
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Figure 2

Current Opinion in Plant Biology

Representative flavonoid biosynthetic pathways. Different colors of metabolites correspond to known flavonoids in Arabidopsis (green), medicinal

plants (purple), legumes (brown), and cereals (light blue). Note: this only covers a small fraction of the diversity of flavonoids known to occur in

nature.
past few years. Compared to those of basal plants the

R2R3MYB gene families were expanded in angiosperms,

which are key for environmental and developmental

regulation of flavonoid production.

Compared to the R2R3-MYBs that regulate other flavo-

noid compounds, anthocyanin-regulating R2R3-MYBs

have been more frequently characterized in species such
Current Opinion in Plant Biology 2020, 55:100–108 
as Arabidopsis, apple, carrot, cherry, citrus, grapevine,

potato, pear, strawberry, tea, tomato, and so on (Table 1).

The origin and evolution of its regulatory system in

flavonoid biosynthesis are intriguing and to what extent

this system is conserved remains an open question. The

survey of orthologous MYB genes regulating phenolic

secondary metabolites indicates that not only phenolic

secondary metabolism enzymatic genes but also their
www.sciencedirect.com
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Table 1

Summary of R2R3MYBs characterized in a wide range of

species

Species Genes Metabolites Reference

Arabidopsis

thaliana

MYB4 Flavonoids [59]

Vitis vinifera VvMYBPA1 Flavonol, PA [60]

VvMYBC2 Anthocyanin,

PA

[61]

Solanum

lycopersicum

SlAN2 Anthocyanin [62]

SlMYB75 Anthocyanin,

flavonoids

[63]

Camellia sinensis CsMYB75 Anthocyanin [64]

CsMYB5b Catechins, PA [65]

Citrus sinensis Ruby1& Ruby2, Anthocyanin [65,66]

CsPH4, Noemi PA [67]

Daucus carota DcMYB113,

DcMYB7,

DcMYB6

Anthocyanin [68–70]

Marchantia

polymorpha

MpMyb14 Flavones,

riccionidin A

[19�]

Malus domestica

Borkh

MdMYB1 Anthocyanin,

Malate

[71]

MdMYB9,

MdMYB11

Anthocyanin,

PA

[72]

Malus sieversii f.

niedzwetzkyana

MYB12, MYB22 PA, flavonol [73]

Pyrus

bretschneideri

Rehd

PyMYB114 Anthocyanin [74]

PbMYB10b,

PbMYB9

Anthocyanin,

PA, flavonol

[75]

Actinidia species AcMYB110 Anthocyanin [76]

Medicago

truncatula

MtMYB2 Anthocyanin,

PA

[77]

Populus spp MYB182 Anthocyanin [78]

Solanum

tuberosum

AN1, MYBA1 Anthocyanin [79]

Fragaria vesca FveMYB10 Anthocyanin [80]

Prunus avium L. PavMYB10.1 Anthocyanin [81]

Picea abies PaMYB29,

PaMYB32

Flavonoids [57]

PA: proanthocyanin.
transcription factors are absent in algal species [2��]. It is

suggested that phenolic secondary metabolites regulating

MYB genes co-evolved at a later stage of evolution. A

recent study on R2R3-MYBs in liverwort, one of the

earliest diverging land plant, found MpMyb14 activates

both flavone glycoside and red pigmentation riccionidin A

biosynthesis [19�]. An ancient origin in the plant lineage

was also suggested by a recent finding of a conserved

MBW complex which activates flavonoid biosynthesis in

Norway spruce, a gymnosperm species [57]. The obser-

vations indicate that R2R3MYB-activation of flavonoid

production which may arise early during land colonization

is a conserved characteristic across land plants. The

number of MYB and bHLH genes in the genomes of

the basal plant groups liverworts [58] and mosses [58] are

much smaller compared with those of angiosperms and

gymnosperms. The regulatory system in marchantia
www.sciencedirect.com 
could be a basal state which has been expanded through

duplication and sub-functionalization of R2R3MYB

genes during evolution, promoting the diversity of flavo-

noid functions in angiosperms [19�].

Conclusion and future directions
The increasing number of plant species under investiga-

tion coupling with the advances of metabolite profiling

techniques enabled the illustration of unprecedented

metabolic diversity in the plant kingdom. Flavonoid

biosynthesis initiates from phenylalanine which is cata-

lyzed by the core general phenylpropanoid-related bio-

synthetic genes phenylalanine ammonia lyase (PAL),

cinnamate 4-hydroxylase (C4H) and 4-coumarate CoA

ligase (4CL), providing precursors for the biosynthesis of

all major phenolic secondary metabolites in higher plants.

The variation of flavonoids is extensive and exhibits both

qualitative and quantitative pattern across species as well

as between different genotypes/tissues/developmental

stages within a specific species. Despite its huge diversity

the core flavonoid biosynthesis pathway is conserved in

plants which is ancient and diversity is rather conferred by

the reactions that tailor the core.

Plants are sessile organisms and consequently must be

extremely adaptive to the environment. As a large group

of plant-specialized metabolites flavonoids represent

adaptive characteristics that have been subject to natural

selection during evolution. Extension of the flavonoid

pathway during evolution underpins the emergence of

huge plant diversity and confers functional compounds

for plant fitness in challenging and changing environmen-

tal niches. The examples provided above suggest that

convergent evolution has occurred as different kinds of

flavonoids that independently evolved in unrelated

organisms resulted in similar defense and tolerance char-

acteristics against various environmental stresses. It is

thus of great interest to uncover the historical genetic

and biochemical basis underlying the independent ori-

gins of such similar characteristics.

Because of the availability of multiple resources such as

genomic and metabolomic data, genetic populations, and

experimental tools for gene function analysis, a great

amount of information on model species Arabidopsis

and the cereals has been acquired. Species containing

particular flavonoids such as the legumes have also been

extensively characterized. Our knowledge of the dynam-

ics of metabolic evolution has been considerably boosted

recently owing to the availability and exploration of the

whole genomes on more species. However, as studies in

the metabolic pathways are limited to a subset of plant

species so far, we consider that we have only scratched the

surface of the diversity of flavonoids. Studies on non-

traditional models and non-crop plants for instance the

medicinal species and basal plants are at the beginning,

which are showing how diverse the flavonoid pathway
Current Opinion in Plant Biology 2020, 55:100–108
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may actually be. The novel flavones discovered in medic-

inally useful species [50] and the recent discovery of the

auronidins in basal plants are notable [82]. It is challeng-

ing to extend such depth of study across the huge diver-

sity of species of interest. Newly developed genomic and

metabolite profiling technologies such as sequencing

platforms including the Pacific Biosciences and Oxford

Nanopore Technologies, machine learning based bioin-

formatic approaches and genome editing tools would offer

excellent opportunities for us to further boost under-

standing of flavonoid biosynthesis and pathway diversifi-

cation as well as their underlying evolutionary mecha-

nisms. As such we are entering a highly exciting era —

one in which great insights into the evolution of metabo-

lism will certainly be realized.
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