

Dielectric parameters extraction and modelling of brain cancer stem-like cells

C. Merla¹, C. Palego²,

S. Ghamal², N. Karim², R. Pinto¹, M. Tanori¹, A. Casciati¹, A. Zambotti¹, M. Mancuso¹

1, ENEA, Division of Health Protection Technologies

2, Bangor University

- Context and application
- Dielectric parameters extraction
 - Experimental setup and statistical approach
 - -CSC content for tested cell types
 - -Complex permittivity measurement results
- Compact circuit modeling approach
 - Motivation
 - -Implementation approach
 - -Observations
- Conclusions

Semiconductor based Micromanipulation of Cancer Stem Cells (CSCs)

EM based on-chip: discrimination neutralization imaging of CSCs

Target: brain tumors

- Glioblastoma Multiforme
- Medulloblastoma

CSCs

Tumorigenic cells with ability to give rise to all tumor cell type:

- with self-renewal capabilities
- differentiation into multiple cell types (progenitors...)
- hypothesized to be the main cause of relapse and metastasis

Quiescent properties -> Resistant to conventional chemo and ionizing treatments

Th1A-2

4

International Microwave BioMedical Conference

14-17 December 2020, Toulouse, France

IMBioC 2020

New therapies targeting CSCs

Th1A-2

IMBioC 2020

EMB

International Microwave BioMedical Conference 14-17 December 2020, Toulouse, France

Specific immunostaining markers are lacking:

Stemness lineament can be accessed with commonly used markers for stem cells (anti-Nanog, anti-Sox2, anti-OCT4 anti-CD133...) without 100% absolute certainty

Université de Limoge

µsPEF ⇒ charge displacement ⇒ main target : plasma membrane nsPEF ⇒ charge displacement + dipole orientation ⇒ main target : organelle membranes and plasma membrane

- Non thermal effects on cells
- Observed effects are repeatable and stable among different labs
- Primary effects implies transient structural alteration of cell membranes
- Secondary effects elicited modulation of different cell functions (e.g. viability, proliferation, apoptosis, differentiation, activation of stress pathways, Ca release)

Why cell modelling

Experimental drive hypothesis

How perform cell

14-17 December 2020, Toulouse, France

Dielectric properties of CSCs

Bioelectromagnetics 25:492-497 (2004)

The Dielectric Properties of Cancerous Tissues in a Nude Mouse Xenograft Model

Done-Sik Yoo*

 \Rightarrow Lack of complex permittivity measurements on cancer tissues/cells

Th1A-2

EMB

⇒ Absence of complex permittivity measurements on CSCs

International Microwave BioMedical Conference

14-17 December 2020, Toulouse, France

IMBioC 2020

Cell electrical parameter assessment

Experimental Conditions

- MEM
- DMEM
- **D283 in MEM** (5, 10, 20 mln)
- **U87 in DMEM** (5, 10, 20 mln)

Combining Re and Im parts

Evaluation of statistical significant differences of final parameters for Re and Im parts

Maximum Likelihood minimization of fitted parameters (μ and σ^2) for Im and Re parts on the basis of evaluated p

A S

EEE 🕂 EÅB

for imaginary parts Repeat process

Th1A-2

Computing average of real part (AVGs)

- 3 independent experiments
- Each experiment has 5 repetitions
- Total file averaged for each condition=15
- Comparison of AGV for the different concentrations

Fitting of AVGs using inverse EMT - 15 different fitting

Evaluation of statistical significant differences for comparable conditions - Fit AVG(medium), Fit AVG(20 mln), FitAVG(10mln), FitAVG(5mln) \Rightarrow p for each set of assessed parameters

- Maximum Likelihood minimization of fitted parameters (μ and σ^2) on the basis of p - Averaging only parameters which are statistically
- Averaging only parameters which are statisticall different

IMBioC 2020

International Microwave BioMedical Conference

14-17 December 2020, Toulouse, France

Complex permittivity measurement: setup

- ⇒ VNA, Keysight E5071C ENA + open-ended coaxial line probe Keysight 85070E slim-form 500 MHz- 3 GHz, IFBW 300 Hz. 1601 frequency points
- \Rightarrow Calibration: air, short and distilled water at 22°C. Calibration is refreshed in air
- ⇒ Cell viability was evaluated before and just after each measurement

D283 cells: high content of CSCs

Casciati et al., Cancers, 2019

Th1A-2

A S

U87 cells: medium content of CSCs

Casciati et al., under submission

Complex permittivity measurement: results

Complex permittivity measurement: results

Circuit Model Implementation & Results

- Motivation
- Implementation approach
- Observations

- Support cell characterization, design of experiment and end-point interpretation
- Allows compact, iterative representation for multilayer structure for which analytical expression are cumbersome
- Can take advantage of circuit simulators (e.g. SPICE, ADS) optimizers and time/frequency domain analysis tools

2 layers, 1 membrane Single Shelll

Th1A-2

4 layers, 2 membranes **Double Shelll**

Complex permittivity in AC domain:

$$\tilde{\varepsilon}_{x} = \varepsilon_{x}' - j\varepsilon_{x}'' = \varepsilon_{x\infty} + \frac{\varepsilon_{x\infty} - \varepsilon_{xs}}{1 + j\omega\tau} - j\frac{\sigma_{xs}}{\omega\varepsilon_{0}}$$

Debye relaxation model with finite static conductivity

- Spherical single shell model assumed to start. Double shell through iteration, later
- Indexes: x= *i* (cytoplasm), *mem* (membrane), *m* (medium)

Circuit implementation

$$j\omega\tilde{\varepsilon}_{\chi} = j\omega\varepsilon_{\chi\infty} + j\omega\frac{\Delta\varepsilon_{\chi}}{1+j\omega\tau} + \frac{\sigma_{\chi\varsigma}}{\varepsilon_{0}}$$

This is the admittance of a frequency variable, lossy capacitor with unit area and spacing

- 3 constituents of Debye relaxation model seen as admittances
- Extended to all compartments

- Mapping is straightforward and exploits symmetry
- 12 parameter model for entire cell
- Further circuit implementation required for:
 - 1) effective cell parameters and

2) cell suspension (mixture)

T. B. Jones, *Electromechanics of Particles*. Cambridge University Press, 1995

$$"Y_{AB}" = Y_B \frac{Y_A - Y_B}{Y_A + 2Y_B} = Y_B \frac{j\omega\tilde{\varepsilon}_A - j\omega\tilde{\varepsilon}_B}{j\omega\tilde{\varepsilon}_A + j\omega2\tilde{\varepsilon}_B} = Y_B k \quad \Rightarrow \quad k_i = \frac{Y_{EQ}}{Y_B}$$

 k_i (similar to but not= Clausius-Mossotti Factor) can be expressed as a normalized admittance!

Th1A-2

(A Ke)

IMBioC 2020 International Microwave BioMedical Conference 14-17 December 2020, Toulouse, France

Both
$$Y_{AB}$$
 and Y_{eff} are of the form : $Y_{in} = y_{11} - \frac{y_{12}y_{21}}{y_{22} + Y_L}$

which is the input admittance of a loaded a 2-Port pi network :

Same form but different coefficients for loaded π -network-1 (Y_{AB}) and -2 (Y_{eff}):

Coefficient depend on elementary Y_B and $(r_A/r_B)^3 = r$ but not k_i . This allows cascaded approach!

Mixture and Iterative Model

$$K_o = \frac{\tilde{\varepsilon}_{eff} - \tilde{\varepsilon}_m}{\tilde{\varepsilon}_{eff} + 2\tilde{\varepsilon}_m} \quad CMF = Re\{K_o\} \qquad \qquad \tilde{\varepsilon}_{mix} = \tilde{\varepsilon}_m \left[\frac{1 + 2\varphi K_0}{1 - \varphi K_0}\right] \qquad \qquad \text{where } \boldsymbol{\varphi} \text{ is the fractional volume}$$

• The mixture parameters is just another π -network-2 (Y_{AB}) with r=1/ ϕ

• Then a double shell model can be iteratively implemented as:

IEEE K EMB

Extracted parameters: U87/D283 Cells (single shell)

IMBioC 2020

	\mathcal{E}_{xs}	ε _{x∞}	$ au_{x}[s]$	$f_x = 1/2\pi \tau_x [Hz]$	$\sigma_{_{xs}}$ [S/m]				
<i>R</i> [μm]	7.5								
<i>d</i> [nm]	5								
φ	1.10-4								
x=c	65.9	7.5	55.4/56.2 ·10 ⁻¹²	2.87/2.83 ·10 ⁹	0.68/0.66				
x=mc	15	1.7	35.9/42.3·10 ⁻⁹	443/378·10 ⁶	71.5/75.5 ·10 ⁻⁹				
x=e	76.52/76.49	15	12.7/14.4 ·10 ⁻¹²	12.5/13.1·10 ⁹	1.55				

Th1A-2

EMB

24

International Microwave BioMedical Conference

14-17 December 2020, Toulouse, France

Weak Dependence on Cell Parameters for Low Fractional Volume (φ =10⁻⁴)

But CMF Sensitive to Internal Parameters! (even for $\varphi = 10^{-4}$)

IEEE K EÅB

Th1A-2

Parameters Extracted at 0.5-3 GHz Match Crossover Frequencies in Lower Range!

DIEEE KA EMB

Non-dispersive Compartments Reduce Model Cost

x=mc

x=e

15

76.7

EMB

	\mathcal{E}_{xs}	$\mathcal{E}_{\chi\infty}$	$ au_{x}[s]$	$f_x = 1/2\pi \tau_x$ [Hz]	$\sigma_{_{\! XS}}$ [S/m]	\rightarrow 15 Parameters (S-shell)
<i>R</i> [µm]			7.5			
<i>d</i> [nm]			5			⁷⁰ . <i>E</i> '
φ			1.10-4			50 -
x=c	65.9	7.5	55.4/56.2 ·10 ⁻¹²	2.87/2.83 ·10 ⁹	0.68/0.66	40 20
x=mc	15	1.7	35.9/42.3·10 ⁻⁹	443/378·10 ⁶	71.5/75.5 ·10 ⁻⁹	20
x=e	76.52/76.49	15	12.7/14.4 ·10 ⁻¹²	12.5/13.1 ·10 ⁹	1.55	0.5 I I.5 2 2.5 3 Frequency (GHz)
						No difference!!
	ε _{xs}	€ _{x∞}	$ au_{x}[s]$	$f_x = 1/2\pi \tau_x [Hz]$	$\sigma_{_{\! XS}}$ [S/m]	ightarrow 11 Parameters (S-shell)
<i>R</i> [µm]			7.5			ightarrow 15 Parameters (D-shell)
<i>d</i> [nm]			5			80
φ			60 - E			
x=c	65.9	7.5	55.4/56.2 ·10 ⁻¹²	2.87/2.83 ·10 ⁹	0.68/0.66	$-\frac{\omega}{\omega}$ 50 = 40 =
		-				ε''

NA

NA

Th1A-2

3

30 20

0.5

1

International Microwave BioMedical Conference

1.5

Frequency (GHz)

2

2.5

1.55

IMBioC 2020

Circuit Model: Lessons Learned

- Computationally efficient but limited to simple spherical shapes for now
- 1-2GHz frequency dependence captured but can be improved
- Low fractional volumes challenging for modeling
- (High fractional volumes challenging for logistics...)
- The approach could be equally applied to single cell settings
- Predicted to be useful for time domain analysis, too

- Effort to fill lack of dielectric parameters for brain cancer stem-like cells articulated in two approaches
- Statistical modeling across different fractional volumes
- Construction of a model for agile f- and t-domain simulation
- Model and extracted parameters match relevant experimental observations

