

DOI: 10.5281/zenodo.4705970

RDA P17
IG RDMinEng session, Breakout 7
Thursday, 22 April 2021 10:15 - 11:45 UTC

FAIR DATA COLLECTIVE FAIR MADE EASY

Nikola Vasiljevic and John Graybeal

with support, advocacy and early adoption by Anders Conrad, Erik Schultes and Barbara Magagna

Need(s)

- Scalable end-to-end solution(s) for the implementation of the FAIR principles in production
 - Simple tools across the entire FAIRification lifecycle
 - Practical training targeting topics related to the creation of FAIR machine-actionable:
 - Controlled vocabularies
 - Metadata

Turning needs into solutions

• It is 'all' about being a meticulous engineer

yielding specs from needs

creating solutions based on specs!

Controlled vocabulary specs

DATA MODEL

TURTLE

JSON-LD XML-RDF

FORMAT

SKOS

OWL

REPRESENTATION LANGUAGE

Why RDF, Turtle and SKOS?

- **RDF** (Resource Data Framework) is a standard model for information (e.g. vocabularies) interchange on the Web
- **Turtle** is a common, human-readable and very compact data format for storing RDF data
- **SKOS** (Simple Knowledge Organization System) is a W3C recommendation designed for representation of thesauri, classification schemes, taxonomies, subject-heading systems, or **any other type of structured controlled vocabulary**.

Metadata specs

LINKED DATA

 \bigcirc

APPROACH

JSON-LD

TURTLE XML-RDF

FORMAT

Why LINKED DATA and JSON-LD?

- **LINKED DATA** builds upon standard Web technologies such as HTTP and URIs/IRIs, but rather than using them to serve web pages for human readers, it extends them to share information in a way that can be read automatically by machines. This enables data from different sources to be connected and queried.
- **JSON-LD** is a lightweight Linked Data format. It is easy for humans to read and write. It is based on the already successful JSON format and provides a way to help JSON data interoperate at Web-scale. JSON-LD is an ideal data format for programming environments, REST Web services, and unstructured databases such as Apache CouchDB and MongoDB.

FAIRification roadmap

Solutions

Template

- Generic Dataset Metadata Template (GDMT) domain agnostic machine-actionable metadata template
- Google Sheet / Excel template for machine-actionable controlled vocabulary creation (see sheet2rdf and excel2rdf)

Tools

- <u>excel2rdf</u> / <u>sheet2rdf</u> automatic workflows for building machine-actionable controlled vocabularies using Excel / Google Sheets
- OntoStack graph database, SPARQL endpoint, URI resolver and ontology browser all in one
- <u>CEDAR WorkBench</u> online collaborative platform for creation of metadata templates and their instances (i.e., metadata)
- <u>BioPortal</u> ontology registration and indexing service

Training

• Rapid Metadata 4 Machine (M4M) Workshops - low-barrier course that train participants to build controlled vocabularies and metadata templates and create machine-actionable metadata using the above tools.

FAIRification roadmap

Controlled vocab template based on **SKOS Play!**

ConceptScheme URI	http://ontology.deic.org/cv/vocab-name/		
PREFIX	vocab-name	http://ontology.deic.org/cv/vocab-name/	
PREFIX	pav	http://purl.org/pav/	
PREFIX	dct	http://purl.org/dc/terms/	General setup
PREFIX	owl	http://www.w3.org/2002/07/owl#	Scholar Schol
PREFIX	xsd	http://www.w3.org/2001/XMLSchema#	
PREFIX	skos	http://www.w3.org/2004/02/skos/core#	
dct:title			
dct:description			
dct:creator			Controlled and by
dct:rights			Controlled vocabulary
pav:version			
pav:createdOn			metadata
pav:lastUpdatedOn			
-			
Identifier	skos:prefLabel@en	skos:altLabel(separator=",")	
vocab-name:			
vocab-name:			
vocab-name:			Definition of terms
vocab-name:			
vocab-name:			(and optionally properties)
vocab-name:			

excel2rdf & sheet2rdf

Excel2RDF and Sheet2RDF

- Automatic workflows executed by means of GitHub actions
- Contains underlying shell, python and java programs which:
 - (1) converts Excel/Google Sheet to the machine-actionable controlled vocabulary using xls2rdf
 - (2) tests the derived controlled vocabulary using <u>qSKOS</u>
 - (3) commits the conversion results and tests logs to a Git repository
 - (4) deploys the vocabulary to OntoStack to be served to humans and machines
- Currently an initial manual configuration is required to set up BioPortal to fetch and index vocabulary
- Workflows are used by: VODAN Africa and Asia, ZonMW Covid program, DTU Wind Energy, DeiC, International Energy Agency WIND Task 32

OntoStack

A set of orchestrated micro-services configured and interfaced such that they can intake terminologies and serve them to humans or machines

OntoStack in its core

- A set of orchestrated micro-services:
 - Edge router/URI resolver (<u>Traefik</u>)
 - Graph database (<u>Apache Jena Fuseki</u>)
 - Web-based terminology browser/UI (<u>SKOSMOS</u>)
- Four instances of OntoStack:
 - Departmental: http://data.windenergy.dtu.dk/ontologies/view
 - National: http://ontology.deic.dk
 - International: http://vocab.fairdatacollective.org/ and http://vocab.fairdatacollective.org/ and http://vocab.ieawindtask32.org/

BioPortal

- Upload/register ontology to its database
- Browse the library of ontologies
- Search for a term across multiple ontologies
- Browse mappings between terms in different ontologies
- Receive recommendations on which ontologies are most relevant for a corpus
- Annotate text with terms from ontologies
- ...
- Make ontology visible/accessible in CEDAR Workbench

CEDAR WorkBench

Generic Dataset Metadata Template (GDMT)

- Inspired by DataCite and DCAT scheme
- Scheme fused, improved, extended and 'simplified'
- GDMT contains 100 fields ('only' 13 mandatory) grouped in ~20 elements
- Unlike the DataCite template, GDMT is MACHINE-ACTIONABLE, details at:
 - o **CEDAR**
 - GitHub
- GDMT contains a <u>'back-end' vocabulary</u> that enables machine-actionability, which contains:
 - ~130 RDF properties
 - ~1000 controlled terms
- The development of the template partially funded by DeiC and ZonMW Covid program, but largely by our free time

'Typical' elements

You can find definitions of elements and fields on **CEDAR** and **GitHub**.

OntoStack serves the GDMT ontology, which contains a number of controlled terms and RDF properties that enable machine-actionability.

By creating domain specific controlled vocabularies and updating GDMT to use them, we turn this template to be domain specific

GDMT in CEDAR OpenView

Rapid M4M* Workshops

- Low-barrier training
- Instructing participants in :
 - How to use tooling presented in previous slides
 - How to build machine actionable controlled vocabularies and metadata templates
 - Create machine-actionable metadata
- Rapid M4Ms take place over 2 x 0.5 days
- Almost exclusively focused on practical work instead of theory
- Development of the rapid M4M training material funded by <u>DeiC</u>
- This training is offered in Denmark by DeiC, while globally the training is organized via Go FAIR Foundation

Visual training material with simple tools = simplifying FAIR data principles implementation

See Wind Energy use case

http://bit.ly/we-fair

Future work

- Automate metadata generation, i.e. reduce or completely remove a need for human interaction
- The idea will be implemented as one of the features of:

 RESTful API for New European Wind Atlas micro scale data subsetting and aggregation

Thank you.

Source of material

Icons made by https://www.freepik.com

Vasiljevic, Nikola. (2021). **MetaManMachine**. Zenodo.

http://doi.org/10.5281/zenodo.4471098

Licensed under: CC BY-SA 4.0

Logo made by Bill Schwappacher < bill@tracermedia.com> provided by W3C for public use

Released by https://json-ld.org/ under CCO