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Annotation 
We are presenting a new method and algorithm for solving 

several common problems of linear algebra and optimization,   
where  only vectors multiplication is used (matrices inversion 
and division is absent). The solution of these problems is 
reduced to consequently performed multiplication of a matrix by 
a vector. It leads to significant simplification of the 
corresponding programs for multi-core processors, and the 
solution time is very much reduced.  

Open codes of the programs in MATLAB system are 
presented. In these programs the above mentioned method is 
realized for a single-core processor.  

 
Programs can be purchased from the author to the 

address: solik@netvision.net.il. 
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Preface 
It is well known that 75% of all numerical mathematical problems are 

essentially the problems of linear algebra [1]. It will not be an 
exaggeration to say that the super processors and multi-core processors 
owe their upraise exactly to these problems. But in these problems only 
the multiplication of matrices harmonizes ideally with the  with the 
possibility of parallel computations in matrix processors. Other 
operations, necessary for bringing the linear system to a form suitable for 
iterations  or for matrix inversion [2], are ill fitted to parallelizing. This 
problem, along with the high cost of matrix processors, is an obstacle to 
their expansion.

In the most part the above mentioned problems  are as follows
1. Solving an equations system with complex variables, 

including underdetermined and overdetermined equations 
systems.

2. Solving the systems of equations and inequalities
3. Solving a quadratic programming  problem with constraints 

in the form of equalities and inequalities.
These problems, aside from their direct use,  are included as sub-

problems into numerous applied mathematical problems. Their 
importance is stressed also  because  it is a test problem for comparison 
between multi-core systems and super processors. At the same time these 
problems  are hard to parallelize (it is caused by the fact that for their 
solution it is anyway necessary to find the inverse matrix, and each 
element of the inverse matrix in general  is significantly depending on all 
the elements of the original matrix). Thus, it is for these problems that 
the  advantage of multi-cored systems is poorly expressed.

We are presenting a method (and MATLAB-programs for its 
realization) for solving the above named problems; this method consists 
in consequently performed multiplications of matrix by vector. Such 
operation is easily parallelized (and there exist several methods for doing 
it [5, 6, 7]). 

Thus, the proposed method [3, 4] for solving these problems consists 
only of   the multiplication of matrix by vector. There is no matrix 
inversion and division operations. Such programs are much simpler for 
multi-core processor and their speed is much  higher  (we can assume 
that the solution time for these problems is reduced 5-10 times).

The method is based on a principle found by the author – variational 
optimum principle in linear alternating current electric circuits. This 
means that for every such circuit there exists a sole optimum of a certain 
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functional. This sole optimum may be found with the aid of a high-speed 
gradient descent method, which is very attractive for applications. There 
exists an inverse proportionality between the accuracy and the solution 
time. On practice it means that the user may quickly look through 
approximate solutions, and then compute a chosen variant with more 
accuracy. The method may be employed not only for computing complex 
electric circuits, but also for solving listed tasks.

Thus,
 In presented method only algebraic addition and multiplication of 

vectors are being used.

 The inverse matrix computation is absent

 Such processor should contain only summators. 

 The number of summators S should be in proportion with the 
processor’s volume and in inverse proportion with the 
performance time of these operations.

 The solution of linear equations system for an proposed matrix 
processor is performed iteratively. Here on every iteration the 
multiplication of a squarte matrix by a vector is being performed.

 The solution time for an proposed matrix processor is 

proportional to S
N3

, where N - the vector dimension.
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1. The First Method for Solution of Linear Algebraic Equations System

1. The First Method for Solution of 
Linear Algebraic Equations System

1.1. Introduction
In this and in the following section  we are describing a new method 

and algorithm for solving the systems of linear equations  (including the 
underdetermined and overdetermined ones) with complex coefficients. 
This method is based on the author's variational optimum principle 
which may be observed in linear AC electric circuits [1]. It means that for  
every such circuit there exists a unique optimum of a certain functional. 
Therefore, there exists a unique optimum of a functional whose optimal 
value is a solution of a linear equations system with complex coefficients. 
This unique optimum may be found by a fast gradient descent method, 
which is very attractive for the applications. Also, there exists an inverse 
relationship between the accuracy and the solution time. On practice it 
means that the user may promptly sort through the approximate variants, 
and then compute the chosen variants with greater accuracy.  

1.2. Description of the Method
The system being solved should have the following form
  cxjba  , (1)

where
x – the complex variables vector,
a, b – given squarte matrixes,
d - a given vector.

On each iteration the new value of charge is found from the formula

  p
pjpbpa

ppxx



: . (2)

Here symbol   denotes the operation of scalar multiplication of 
complex vectors and the summation of these products. The result of 
such operation is a real number. It is easy to see that

TT bababa  )Im()Re( .           (2а)
Here and further superscript «Т» denotes the operation of conjugation.  

Notice that formula (2) cannot be presented in the form:
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1. The First Method for Solution of Linear Algebraic Equations System

  p
pjbap

ppxx



: ,

Notice also that using the formula 

  p
pjbap

ppxx



:          (2в)

instead of formula (2) leads ( as the experiments show) to the same 
results and affects not very significantly the accuracy and speed of 
calculation. Here the symbol   denotes the component-wise 
multiplication of complex vectors and summation of the obtained 
products. The result of such operation will be a complex number 
(compare with the operation  ). It is easy to see that

Tbaba  .           (2с)
The gradient by which we move to the defined functional’s optimum, 

has the following form
  cxjbap  . (3)

Thus, the computations are conducted according to the following 
gradient descent algorithm.

Algorithm 1
1. fix 0x ;
2. compute gradient p using formula (3);
3. determine the norm p  of gradient p;

4. if p  the computation is terminated with the value of х,  
which has been fixed previously;

5. otherwise the new value is determined using the formula (2);
6. points 2-5 are repeated.

During the movement to an optimum the norm p  of this gradient 
(3) is decreased. 

The following fig. 1 shows the typical graph of p  as a function of 
the iteration number. The following fig. 2 shows for the same case the 

graph of plog  as a function of the iteration number. 
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1. The First Method for Solution of Linear Algebraic Equations System

Fig. 1.

Fig. 2.

Example 1. One branch. Let us assume that the system (1) consists 
of only one equation. On the first iteration cpx  ,0  and from 

(2) follows that 
 jba

px


 .

The norm may be computed by different formulas. For instance, the 
following formula may be used:
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1. The First Method for Solution of Linear Algebraic Equations System

k
kk

p
p

p

p max

...

...
1

 .          (3а)

As the norm is needed only for comparison, the following formula may 
be applied instead of (3a):

 2max k
k

pp  .         (3в)

The latter formula is preferable for hardware realization, as

      pppppp TT
k

k
ImImReRemax 2  .       (3с)

Simultaneously with the solution of equation (1) two functions 
written below are being optimized:

    xcaxqF T  21 
 ,          (4)

    xjcbxqF T  22  .          (5)

1.3. Main program
M-function for the calculation is as follows:

function [res,erMin,k,q,er] = ...
      SinLin(E,Z,maxEr,maxK)

In this program the following parameters are used:
input parameters:

E – vector с, defined in (1),
Z = a + j*b – see (1),
maxEr =  - relative mean square residua,
maxK  - allowed number of iterations,

output parameters:
q = x - calculation result,
k  - reached number of iterations,
er – array of errors at each iteration,
erMin – received error of result,
res – a sign of the result:

o res=0 – result was obtained,
o res=1 – exceeded allowed number of iterations,
o res=2 - exceeded the permissible error.

9



1. The First Method for Solution of Linear Algebraic Equations System

1.4. Tests
In the tests additionally made the following notation:

qt=xt=Z\c – result of the traditional calculation,
ert = Z*xt - c – error of the traditional calculation,
comp – relative error of calculations results for this and the 

traditional algorithms.

Example 4. Program for solving one equation with complex 
coefficients in the MATLAB:
function [xt,x,erMin,k] = test1

Example 5. Program for solving two equations with complex 
coefficients in the MATLAB:
function [res,qt,q,erMin,k] = test2
Displays graphs in the form of Fig. 1 and Fig. 2.

Example 6. Program for solving three equations with complex 
coefficients in the MATLAB:
function [res,qt,q,erMin,k] = test3
Displays graphs in the form of Fig. 1 and Fig. 2.

Example 7. Program for solving N equations with complex 
coefficients in the MATLAB: 
function [comp,erMin,k] = testN(N, maxEr)
Displays graphs in the form of Fig. 1 and Fig. 2.
Graphs of the form shown in Fig.1 and Fig. 2 are depicted. The 
parameter comp serves to compare the calculations results using the 
considered and the traditional algorithms.
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1. The First Method for Solution of Linear Algebraic Equations System

1.5. About convergence
The iterative process converges, if the matrices M and R are  of fixed sign 

(positive or negative).

Fig. 3.

Example 8. The program for solution of three equations with 
complex coefficients in the MATLAB system: 

function [res,qt,q,erMin,k] = test3r 
Here the matrix M is not of fixed sign, the process does not converge 
and is terminated when the error becomes 100 times higher than at 
the beginning of the iteration. Graphs of the form shown on Fig. 3  
are depicted. The user may experiment with matrices of fixed sign or 
not of fixed sign, namely matrices а and в, indicated in 
commentaries.

1.6. About speed and accuracy
Experiments show that

 comp ~ maxEr,
 comp is proportional to  maxEr,
 the iterations number is proportional to maxEr,
 the iterations number is proportional to the dimension N.
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1. The First Method for Solution of Linear Algebraic Equations System

Example 9. Program for solving N equations with complex 
coefficients in the MATLAB:

 function testNv
Parameter comp serves for precision comparison for this and the 
traditional algorithms. Fig. 4 shows graphs of the  iteration  number 
and the error comp as functions of dimension number N with fixed 
value maxEr.  One can see that, first, comp < maxEr and, second, 
the iteration  number is proportional to the dimension  number N.

Fig. 4.

Example 10. Program for solving N equations with complex 
coefficients in the MATLAB:

function testNe
Parameter comp serves for precision comparison for this and the 
traditional algorithms. Fig. 5 shows graphs of the  iteration  number 
and the error comp as functions of dimension number N with fixed 
value maxEr.  One can see that, first, comp < maxEr and, second, 
the iteration  number is proportional to the dimension  number N.
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1. The First Method for Solution of Linear Algebraic Equations System

Fig. 5.

Let us consider now the solution of ill-determined systems of the 
form (1).

1.7. Underdetermined system
In such system the number of equations is less than the number of 

variables. In this case the system (1) may be complemented by an 
equation

  0 xmjn TT , (4)
where mn,  – matrices of given weight coefficients. The system (1) is 
transformed into the system:

0
c

x
n
b

jx
m
a

 . (5)

Matrices mn,  are going to complement the matrices ba,  to squarte 

matrices
n
b

m
a

, . The solution of this system correspond to 

minimization of a weighted sum of squared variables.
The functionals (4) and (5) for relatively large weight coefficients will 

take the form of the following functions: 
xmxxF T )(1 ,           (8)
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1. The First Method for Solution of Linear Algebraic Equations System

xnxxF T )(2 .           (9)
These functions correspond to the minimization of   weighted sum of 
variables' squares. 

1.9. Overdetermined System
In such system the number of equations is larger than the number of 

variables. In this case the system (1) may be transformed to the form:

c
y
x

n
bj

y
x

m
a 

00 ,           (10)

where у – the vector of complementary variables mn,  – matrices of 
given weight coefficients of the complementary variables.

matrices  mn,  are going to complement matrices ba,  to squarte 

matrices 
n

b
m

a
0

,
0

. The solution of this system correspond to the 

minimization of a weighted sum of squared residuals.
The functionals (4) and (5) for relatively large weight coefficients will 

take the form of the following functions  
ymyxF T )(1 ,          (11)

ynyxF T )(2 .          (12)
These functions correspond to the minimization of weighted sum of 
residuals' squares. 
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2. The Second Method for Solution of Linear Equations System

2. The Second Method for 
Solution of Linear Algebraic 

Equations System
2.1. Description of the method
Let us consider now an equation of the form
    0 cjbaxbbaa TT .          (13)

Evidently, equation (13) differ from equation (1) by the factor  jba  . 
Simultaneously with the solution of system (13) two functions of the 
following form are being optimized

   xcjabbaxxF TT )(1 ,          (14)

     xcjbabbaaxxF TTT  2)(2 .          (15)
For well determined system of equations (1), this system, as well as the 
system (13) have only one solution. For an ill-determined system (1) the 
solution of system (13) is equivalent to the solution of system (1) with 
minimization of functions (14) и (15).

Notice, that in equations with real variables  and coefficients b=0, 
equation (13) takes the form

0 acxaaT ,          (16)
And the minimized  function (15) will be

  xacaaxxF TT  2)(2  .          (17)

2.2. Main program
M-functions for solving a linear equations system with complex 

coefficients of the form (a+j*b)*q+c=by the second method are as 
follows:
function [res,erMin,k,q,er] = ...
      SinLin2(E,Z,maxEr,maxK)

The parameters used in it are described in Section 1.2.
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2. The Second Method for Solution of Linear Equations System

2.3. Underdetermined System
In such a system the number of equations is less than the number of 

variables, and there exists a set of solutions. But the solution obtained by 
the presented method, minimizes the quadratic forms (14) and (15).

Example 12. The program for solution of underdetermined linear 
equations system with complex coefficients (a+j*b)*q+c=0 in the 
MATLAB system:

function [res,k,q] = testNedo

2.4. Overdetermined System
In such a system the number of equation is larger than the number of 

variables, and the system has no solution. But in our method a solution 
with a certain residual is found, and it minimizes the quadratic forms (14) 
and (15).

Example 14. The program for solution of overdetermined linear 
equations system with complex coefficients of the form 
(a+j*b)*q+c=0 in the  MATLAB system:

function [res,k,q] = testPere

Thus, to solve the system (1) by the presented method, the latter 
should be transformed into system (13). This rule is applicable for 
any system (1) – well-determined, underdetermined or 
overdetermined.
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3. The Method for Solving Linear Equations and Inequalities Systems

3. The Method for Solving Linear 
Equations and Inequalities Systems 

3.1. Introduction
In the book [1]  the method for solving the problems indicated in the 

headline of this section is described (in particular). Here we are  giving 
the open codes of the MATLAB program for such computations.   The 
main features of these program  are as follows: 

1. The main matrix may be singular.
2. The equations and inequalities may be incompatible.
3. The system of equations and inequalities may be 

underdetermined or overdetermined.  
4. A solution with a certain residual is always found ( with standard  

MATLAB the solution may not exist at all, for example if the 
matrix is singular, or no active inequalities are found, or the 
system is underdetermined or overdetermined). 

5. We are using an iterative method that has no operations of 
division  or matrix inversion.  

6. The solution algorithm is suitable for parallelized processing.
7.  The problem's size is limited only by the computer's resources. 

3.2. Basic Problem
We shall begin with a certain basic problem (using the notations from 

[1]), and then we shall formulate a number of problems in the terms of 
the basic problem.

So, we are considering a system of equalities  

1nCIT T  (1)
and a system of inequalities

2nUT   , (2)
where

IR  , (3)
T as a superscript is the sign of transposition,  

21,,,,, nnUCI   - are k -dimensional vectors,
  - is a m -dimensional vector,
T  - is a  matrix of dimensions mk  ,
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3. The Method for Solving Linear Equations and Inequalities Systems

R  - is a diagonal matrix of dimensions kk  .
The unknown variables are the vectors ,I . The values 21,nn  are the 
residuals of corresponding equations appearing in the solution process.  

It is important to note that here and further the inequality sign 
may belong only to a subset of equations, and in the remaining 
equations it should be replaced by the sign of strict equality.  

In [1] it is shown that the solution of this problem is at the same 
time the solution of two dual problems of quadratic programming. The 
first of them is as follows:

,0
,0

min,
22

1

1

11






I
nCIT

IUnnIRI

T

TTT 

(4)

and the second is

.0

min,
2
1

2
1

2

1



 

nUT

CR TTT







(5)

Also

ITCT   . (6)
Besides, according to the complementary slackness condition, 

  .02  nUTIT  (7)
Здесь   – величина, определяемая пользователем. В [1] показано, 
что при   величины 21,nn  стремятся к нулю и сагаемое 

112
nn T   в (4) также стремится к нулю.

Here   is a user determined value. In [1] it is shown that for   

the values 21,nn  tend to zero, and the summand 112
nn T   in (4) 

also tends to zero.
The method is based on moving along the gradient of the minimized 

functions. The computation is performed in iterations, and the 
computation result will as a rule be an approximate value.  So we are 
getting the above mentioned residuals 21,nn . Corresponding to them 
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3. The Method for Solving Linear Equations and Inequalities Systems

are the relative errors 21, . The value 1  is determined by 
computation, and 2  is determined by the user.

The number of iterations (i. e. the duration of computation) and the 
value of 1  are regulated by the value  . The larger is the value  , the 
less is 1 , but the longer is computation time.

3.3. The Solution of Linear Equations System
For this in the basic problem we assume that .0,0  UR  Then 

(2.4) takes the form

,01  nCxT T (1)

.min11 nn T (2)
The system (1) may be incompatible, underdetermined or 
overdetermined. We search for a solution corresponding to minimum   
(2).

М-function for solving this problem is:  
function [x,eps1,k,n1,mini]=...

anySLAE2(A,B,r,eps2,kmax)
А – the matrix TA   – see (1),
B – the vector  C – see (1),
r – the value   – see section 2,
eps2 – the value 2  – see section 2,
kmax – maximal iterations number,

The output  values here are:
x – the vector I  – see (2.4, 1),
eps1 – the relative residual value 1  – see section 2,
k – iterations number,
n1 – the residuals vector in equation (1),
mini –value of the minimum (2).

The M-functions for test problems looks as :
function test_anySLAE2()
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3. The Method for Solving Linear Equations and Inequalities Systems

The test includes the solution for various types of systems. For control 
the same system is being solved by MATLAB means.  The test performs 
also

function [m_x, m_eps1, m_n1, 
m_minx, tmatlab] = anySLAE2m(A,B)

Here the values similar to the output values of the function 
anySLAE2 are computed by traditional methods.  Parameter   mode 
defines the  test's  number. Let us consider these tests.  .

1. Well determined small dimension system.  
2. Underdetermined  small dimension system,  
3. Overdetermined  small dimension system,  
4. Overdetermined system for the computation of such vector x, 

with respect to which the components of vector B have 
minimal dispersion.

5. Underdetermined large dimension problem.
6. Overdetermined large dimension problem.
7. Poorly determined small dimension problem. In this case the 

problem cannot be solved by MATLAB means: a message 
"Warning: Matrix is singular to working precision" is displayed.

3.4. The Solution of Linear Equations and 
Inequalities  System
The system we are going to solve has the form (see 2.2):

0 UxT . (1)
In the basic system we assume: .0,0  CR  System (1) may be 
incompatible, underdetermined, overdetermined.  We are searching for 
such solution, that corresponds to the minimum for the (2.5) or

.min xxT (2)
The M-function for solving this problem has the form:  
function [k,x,er2K,n2eq,n2neq,minf]...

=anySLAE3(A,B,D,r,eps2,kmax)
The input arguments here are:  

А – is the matrix TA   – see (1),
B – vector  U – see (1),
D – the equation type indicators vector: if the m-equation is an 

equality, then 0mD , in the opposite case 1mD ,
r – the value   – see Section 2, 
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3. The Method for Solving Linear Equations and Inequalities Systems

eps2 – the value 2  – see Section 2,
kmax – maximal iterations number.

The output arguments here are:  
k – iterations  number,
x – vector  – see (2.5, 1),
ep2K – the reached value 2  – see Section 2,
n2eq – vector of residuals in the equalities of (1),
n2neq – vector of residuals in the inequalities of the (1), which by 

the problem's conditions may have any positive value.  
minf – the minimum value (2).

The M-function for test problems is:
function testqw3

The test may solve various versions of the system.  In some cases for the 
sake of control the same system is solved by MATLAB means. The 
parameter eq  determines the number of such solution method In the 
test parameter  mode determines the test number. Let us consider 
these tests. 

1. Well determined small dimension system. The control is 
performed  according to formula y=A\B.

2. Underdetermined small dimension system. The control is 
performed  according to formula y=A\B.

3. Overdetermined small dimension system. The control is 
performed  according to formula y=A\B.

4. Well determined  equalities system(A,B). The control is 
performed  according to formula y=A\B.

5. The inequalities system (A,B), coinciding in its left parts with 
the equalities of the system from p. 4.  This system cannot be 
solved by MATLAB means as a quadratic programming problem 
A message "No active inequalities" is displayed.

6. The inequalities system (A,B), coinciding in its left parts with 
the equalities of the system from p. 4The equality and inequality 
signs may be determined by the user in the vector D. The control 
of this problem by MATLAB means is not performed.

7. Underdetermined inequalities system.  When trying to solve it by 
MATLAB means as a quadratic programming problem a message 
"A must have 2 column(s)" is displayed.
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8. Overdetermined inequalities system.  When trying to solve it by 
MATLAB means as a quadratic programming problem a message 
"A must have 6 column(s)" is displayed.

9. Overdetermined system of equalities and inequalities (in its left 
part the same as in p. 8). The vector D is such that the obtained 
solution has large residuals in the equalities.

10. Overdetermined system of equalities and inequalities (in its left 
part the same as in p. 8). The vector D is such that the obtained 
solution has large residuals in the equalities.
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4. A Method for Solving Quadratic 
Programming Problems

4.1. The First Problem of Quadratic 
Programming  

In the book [1] there was  described (in particular)  a method for 
solving the problem of quadratic programming. The following problem is 
considered.

To find minimum of the function

xUxRxxF TT  5.0)( (1)
under the restraints

0 CxT T , (2)
0x , (3)

where
T  is a superscript  - the transposition sign,

UCx ,,   - k -dimensional vectors,
T  -  mk  matrix
R  - a kk   square positive definite matrix    

The unknown variable here is vector   x .  The equations set (2) must 
not be empty. The constraint (3) may relate only to certain variables, or 
not exist at all. Further in this problem we shall use vector D – the 
equation type indicator in (3): if an m-equation is an equality, then 

0mD , in an opposite case 1mD .
The solution method is based on movement along the gradient of the 

minimized function   (1). The computation is going in iterations, and the 
result as a rule is approximate. As a result there appear residuals in the 
equations (2, 3). The relative residual in the equation (2) is determined as

    xxCxTCxT TTTT  . (4)
The permissible value of this residual max  is given by the user. 

The number of iterations (i.e. the computation time) and the value 

max  are regulated by the value  . The larger is the value   , the less 
is the value max , but the longer is computation time. 
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The M-functions for this problem solution is:   
function [x,n1,k,ero,Fmin,...

kk,erok,Fmink,xx]=...
squ2 (R,T,C,U,D,r,erd,kmax)

The input  arguments here are:
R,T,C,U, D – matrices and vectors defined in    (1, 2),
r – the value  , 
erd - the value max ,
kmax – maximal iterations number,

The output  arguments here are:
x – the unknown vector,
n1 – the vector of residuals in the equations (2),
k – iterations number,
ero – value of relative residual  ,
Fmin – minimum of the function (1).

The following output values are used for creating the graphs: 
kk – the vectors of iterations numbers,
erok  - the vector of relative residuals      in each iteration,
Fmink – the vector of function (1)  minimum value on each 

iteration,   
xx  - the matrix of  x vectors on each iteration.

4.2. The Second Problem of Quadratic 
Programming  
Let us consider now the following problem. We are searching for the 

minimum of function (1) 

11111 5.0)( xUxRxxF TT  (5)
under the restraints

0111  CxT T . (6)
Here the unknown variable is vector 1x .  The set of equations (6) 

should not be empty. The sign " " in (6) may refer only to certain 
equations, and in the remaining equations it may be replaced by the sign 
of strict equality.  Further in this problem we shall use the vector   1D  – 
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the equation type indicator in (6): if m-equation is an equality, then 
01 mD , and in the opposite case 11 mD .

The second problem may be transformed into first problem in the 
following way. We shall present the restraint (6) in the form

02111  xCxT T , (7)
02 x . (8)

Let us consider the  vector











2

1
x
x

x (9)

and rewrite the formulas (5, 7, 8) in the form (1, 2, 3) accordingly, where











QQ
QR

R
12

211 , (10)












E

T
T 1 , (11)











uV
U

U 1 , (12)

1CC  , (13)











1D
V

D d , (14)

E  identity matrix, 

2112 ,, QQQ  - zero vectors,

du VV ,  - zero vectors

The M-function for the transformation of the second problem into 
the first problem has the form: 

function [R,T,U,C,D]=squ21(R1,T1,U1,C1,D1)
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4.3. Test for the First Problem
The M-function function testsqu2() solves the first 

problem for a two-dimensional vector x.  here we are building the graphs 
shown on Figure   1, where

o the window  'Error (testsqu2)' shows the error   
change depending on iteration number   ,

o   the window  'Log of error' shows the error  ln  
change depending on iteration number.

o the window  'Minimum' shows the function (1) change 
depending on iteration number.

Let us consider the two-dimensional vector x as a point on the plane. 
The window 'Trajectory' shows the movement of this point with 
iteration number growth beginning from the initial point (0, 0) to the final 
point – the problem's solution.
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Fig. 1.
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4.4. Test for the Second Problem
The M-function function testsqu4() solves the second 

problem for a four-dimensional vector x. Here the graphs shown on 
Figure 2 are built, where

o the window  'Error (testsqu2)' shows the error   
change depending on iteration number   ,

o the window  'Log of error' shows the error  ln  
change  depending on the iteration number,

o the window  'Minimum' shows the function (1) change 
depending on iteration number,

o the window 'Trajectory' shows the change of four 
components of vector x with iteration number growth beginning 
from the initial value   (0) to the final point, that is the problem's 
solution.

0 20 40 60
-4

-2

0

2

4

6

x1
,x

2,
x3

,x
4

Trajectory

0 20 40 60
-6

-4

-2

0

2

4
Log of error

Iter

0 20 40 60
0

10

20

30

40
Error (testsqu4)

0 20 40 60
-6

-4

-2

0
x 10

6 Minimum

Iter

Fig. 2.
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5. Algorithms
Here we are considering block diagrams for the algorithms for 

solving the above enumerated problems. We are using the following 
notations:

Ba   - multiplication (of a vector of a number В) by a number а,
BA - multiplication of a matrix А by a matrix or a vector В,
BA  - operation of  componentwise multiplication of complex 
vectors   А, В  and summation of the obtained products,

A  - transposition of a matrix А.

5.1. Algorithm for Solving a Linear Algebraic 
Equations System  
Let u consider the block diagrams of the algorithms for solving a 

linear algebraic equations system – see Fig. 1-4.

q=0

p=-E

ppa 

EEe 

BjAZ 

begin

1
Fig. 1. 
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ppBjppAb  )()(

c=a/b

q:=q-cp

EqZp 

ppa 

control

end

error

1

Fig. 2. 

Figures  1 and 2 show the block diagram of computation algorithm 
by the first method  а   (see also the SinLin function), and Figures 3 and 4 
– the block diagram of computation algorithm by the second method 
(see also the SinLin2 function). Figures 2 and 4 show the blocks realizing 
the iterations cycle in these algorithms. The differing blocks in these 
algorithms are shown by different coloring 

29



5. Algorithms

q=0

p=-E

ppa 

EEe 

BjAZ 

begin

BjAD 

EDE 

B=0

BBAAA 

2
Fig. 3. 
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ppAb  )(

c=a/b

q:=q-cp

EqAp 

ppa 

control

end

error

2

Fig. 4. 

The  CONTROL block in these algorithms on each iteration 
checks the condition for ending the iteration  process - see SinLin and 
SinLin2 functions.

The comparison of the two algorithms shows that the second 
algorithm is more attractive for technical realization, as it contains less 
operations of  matrix by vector multiplication.  
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5.2. Minimization Algorithms

ppa 

controlerror

bac /

pcxx 

2

1
minF

  ppRb n 

nn UxRp 

Fig. 5. 

In the considered problems of the Sections 3 and 4 a quadratic 
functional of the following type is being minimized:  

xUxRxxF T
nn

T  5.0)( (1)
under linear and nonlinear constraints: 

0 CxT T , (2)
0x , (3)

where TUR T
nn ,,  are determined by the problems conditions. The 

minimization is performed by the gradient descent method [4]. Without 
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constraints (3) the block diagram of the algorithm is of the form shown 
on Figure 5,  where

p – is the functional's gradient,
a, b, c- scalar values.

The iterations process  goes on till the value 
pp2  (4)

will not reach the preset value 1 . The  CONTROL block in these 
algorithms on each iteration checks the condition of iteration process 
ending, which is  

 u2 , (5)
where

NN UUu  , (6)

   ppRRb nd 

nnd UxRUp 

ppa 

controlerror

  ),(, xDfRU dd 

bac /

2

1
minFd

pcxx 

Fig. 6. 
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If the constraints (3) are present, the block diagram becomes more 
complicated and take the form shown on Figure  6, where   D is the 
vector of indicators for different types of conditions in (3): if 0mx  is 
present in (3), then 1mD , in the opposite case 0mD . The 
function is determined in M-function Rdiod.

5.3. Algorithms for Solving Linear 
Equations and Inequalities System  

minF

AARn  

begin

BAUn  

BxA 

nnn UUU 

 

end

2

1

Fig. 7.  

Figure 7 presents the block diagram of the algorithm for solving a 
linear equations system   A*x-B=0, where the computation error is:

Figure 8 presents the block diagram for solving the linear equations 
and inequalities system   A*x-B>=0.
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AARn  

begin

BUn 

nnn UUU 

 

end

minFd

1

2

BxA 

Fig. 8. 

5.4. Algorithms for Solving a Quadratic 
Programming Problem  
Figure 9 presents the block diagram of the algorithm for solving a 

quadratic programming problem considered in Section 4.
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TTRRn  

begin

CTUUn  

CxT 

nnn UUU 

 

end

minFd

1

2

Fig. 9. 

5.5. Conclusion
When viewing the presented algorithms, one may note that they 

contain only the operations of multiplication by a number а,  
multiplication of matrix by matrix or by vector, scalar multiplication of 
vectors and matrix transposition, Q.E.D. Let us consider now a  function 

 xDfRU dd ,,  , used in the algorithm on Figure 6 and determined 
in M-function Rdiod:








































,0,

,1
,0,

,0,

min

max

min

k

k
k

k

dk

Difd

Dif
xifd

xifd

R (1)
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.kdkdk xRU  (2)
Here kDdd ,, maxmin  are constants unchanged from iteration to 
iteration. So the function (1) may be computed in parallel for all vector   
х. We can reach additional acceleration if we complement the arithmetic 
unit by two simple operations: 

1. placing the constants kDdd ,, maxmin  into the arithmetic 
units registers, where they will be kept during all computation process.  

2.   computing dkdk UR ,  as functions depending only on kx .
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