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where only vectors multiplication is used (matrices inversion
and division is absent). The solution of these problems is
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Preface

It is well known that 75% of all numerical mathematical problems are
essentially the problems of linear algebra [1]. It will not be an
exaggeration to say that the super processors and multi-core processors
owe their upraise exactly to these problems. But in these problems only
the multiplication of matrices harmonizes ideally with the with the
possibility of parallel computations in matrix processors. Other
operations, necessary for bringing the linear system to a form suitable for
iterations or for matrix inversion [2], are ill fitted to parallelizing. This
problem, along with the high cost of matrix processors, is an obstacle to
their expansion.

In the most part the above mentioned problems are as follows

1. Solving an equations system with complex variables,

including underdetermined and overdetermined equations
systems.

2. Solving the systems of equations and inequalities

3. Solving a quadratic programming problem with constraints

in the form of equalities and inequalities.

These problems, aside from their direct use, are included as sub-
problems into numerous applied mathematical problems. Their
importance is stressed also because it is a test problem for comparison
between multi-core systems and super processors. At the same time these
problems are hard to parallelize (it is caused by the fact that for their
solution it is anyway necessary to find the inverse matrix, and each
element of the inverse matrix in general is significantly depending on all
the elements of the original matrix). Thus, it is for these problems that
the advantage of multi-cored systems is poorly expressed.

We are presenting a method (and MATLAB-programs for its
realization) for solving the above named problems; this method consists
in consequently performed multiplications of matrix by vector. Such
operation is easily parallelized (and there exist several methods for doing
it [5, 6, 7]).

Thus, the proposed method [3, 4] for solving these problems consists
only of the multiplication of matrix by vector. There is no matrix

inversion and division operations. Such programs are much simpler for
multi-core processor and their speed is much higher (we can assume
that the solution time for these problems is reduced 5-10 times).

The method is based on a principle found by the author — variational
optimum principle in linear alternating current electric circuits. This
means that for every such circuit there exists a sole optimum of a certain

4



functional. This sole optimum may be found with the aid of a high-speed
gradient descent method, which is very attractive for applications. There
exists an inverse proportionality between the accuracy and the solution
time. On practice it means that the user may quickly look through
approximate solutions, and then compute a chosen variant with more
accuracy. The method may be employed not only for computing complex
electric circuits, but also for solving listed tasks.

Thus,

In presented method only algebraic addition and multiplication of
vectors are being used.

The inverse matrix computation is absent
Such processor should contain only summators.

The number of summators S should be in proportion with the
processor’s volume and in inverse proportion with the
performance time of these operations.

The solution of linear equations system for an proposed matrix
processor is performed iteratively. Here on every iteration the
multiplication of a squarte matrix by a vector is being performed.

The solution time for an proposed matrix processor is

) 3 ) .
proportional to N where N - the vector dimension.

S b




1. The First Method for Solution of Linear Algebraic Equations System

1. The First Method for Solution of
Linear Algebraic Equations System

1.1. Introduction

In this and in the following section we are describing a new method
and algorithm for solving the systems of linear equations (including the
underdetermined and overdetermined ones) with complex coefficients.
This method is based on the authot's variational optimum principle
which may be observed in linear AC electric circuits [1]. It means that for
every such circuit there exists a unique optimum of a certain functional.
Therefore, there exists a unique optimum of a functional whose optimal
value is a solution of a linear equations system with complex coefficients.
This unique optimum may be found by a fast gradient descent method,
which is very attractive for the applications. Also, there exists an inverse
relationship between the accuracy and the solution time. On practice it
means that the user may promptly sort through the approximate variants,
and then compute the chosen variants with greater accuracy.

1.2. Description of the Method

The system being solved should have the following form

(a+jb)=c, )

X — the complex variables vector,

where

a, b — given squarte matrixes,
d-a given vector.
On each iteration the new value of charge is found from the formula
ymx—— POP p- @
(pa+ jpb)® p
Here symbol & denotes the operaton of scalar multiplication of

complex vectors and the summation of these products. The result of
such operation is a real number. It is easy to see that

a®b=Re(a) b’ +Im(a)-b’ . 2a)
Here and further superscript «I» denotes the operation of conjugation.
Notice that formula (2) cannot be presented in the form:
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x=x-—27> ® P D>
pla+jb)® p
Notice also that using the formula
o pOp 25)

=x———~———p
pla+ jb)op

instead of formula (2) leads ( as the experiments show) to the same
results and affects not very significantly the accuracy and speed of
calculation. Here the symbol ® denotes the component-wise
multiplication of complex vectors and summation of the obtained
products. The result of such operation will be a complex number
(compate with the operation ®). It is easy to see that

a®b=a-b’. 20
The gradient by which we move to the defined functional’s optimum,
has the following form

p=(a+jb)—c. 3)
Thus, the computations are conducted according to the following
gradient descent algorithm.

Algorithm 1
1. fix x=0;
compute gradient p using formula (3);

2
3. determine the norm” p” of gradient p;
4

if || p||< & the computation is terminated with the value of x,

which has been fixed previously;
otherwise the new value is determined using the formula (2);
points 2-5 are repeated.

oo

During the movement to an optimum the norm H pH of this gradient
(3) is decreased.

The following fig. 1 shows the typical graph of H pH as a function of

the iteration number. The following fig. 2 shows for the same case the

graph of IOgH pH as a function of the iteration number.




1. The First Method for Solution of Linear Algebraic Equations System
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Example 1. One branch. Let us assume that the system (1) consists
of only one equation. On the first iteration x =0, p =—c and from

_r
(a+jb)

The norm may be computed by different formulas. For instance, the
following formula may be used:

(2) follows that x = —
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4

P =max\pk\' (32)
Pk k

As the norm is needed only for comparison, the following formula may

be applied instead of (3a):
||p||=mlgx(lpkl)2- (3v)
The latter formula is preferable for hardware realization, as
P = m}gX(kalf =Rep) ‘Rep+(mp) -Imp. (9

Simultaneously with the solution of equation (1) two functions
written below are being optimized:

Fl(q):Z)QTa—Zc)S)x, Q)
Fz(q): —ﬂQ)be+2jc)§x. (5)
1.3. Main program

M-function for the calculation is as follows:
function [res,erMin,k,q,er] =
SinLin(E, Z,maxEr,maxK)
In this program the following parameters are used:
mput parameters:
E — vector C, defined in (1),
Z =a+j*b—see (1),
maxEr =¢ - relative mean square residua,
maxK - allowed number of iterations,
output parameters:
( = X - calculation result,
k - reached number of iterations,
€I — array of errors at each iteration,
erMin — received error of result,
res - asign of the result:
o res=0 — result was obtained,

o res=1 — exceeded allowed number of iterations,
o res=2 - exceeded the permissible error.
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1.4. Tests

In the tests additionally made the following notation:
qt:X'[:Z\C - result of the traditional calculation,
ert = Z*xt - ¢ - error of the traditional calculation,

comp - relative error of calculations results for this and the
traditional algorithms.

Example 4. Program for solving one equation with complex
coefficients in the MATLAB:
function [xt,x,erMin,k] = testl

Example 5. Program for solving two equations with complex
coefficients in the MATLAB:

function [res,qgt,q,erMin,k] = test2

Displays graphs in the form of Fig. 1 and Fig. 2.

Example 6. Program for solving three equations with complex
coefficients in the MATLAB:

function [res,qt,q,erMin,k] = test3

Displays graphs in the form of Fig. 1 and Fig. 2.

Example 7. Program for solving N equations with complex
coefficients in the MATLAB:

function [comp,erMin,k] = testN (N, maxEr)
Displays graphs in the form of Fig. 1 and Fig. 2.

Graphs of the form shown in Fig.1 and Fig. 2 are depicted. The
parameter comp serves to compare the calculations results using the
considered and the traditional algorithms.

10
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1.5. About convergence

The iterative process converges, if the matrices M and R are of fixed sign
(positive or negative).

Relative Error of Calculaion
40 . T T . . T

Relative Errars
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g 102 T T T T T T
i
=
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=
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1] A 10 15 20 26 an 35
lteration Murnbers
Fig. 3.

Example 8. The program for solution of three equations with
complex coefficients in the MATLAB system:
function [res,qt,q,erMin,k] = test3r

Here the matrix M iS not of fixed sign, the process does not converge
and is terminated when the error becomes 100 times higher than at
the beginning of the iteration. Graphs of the form shown on Fig. 3
are depicted. The user may experiment with matrices of fixed sign or
not of fixed sign, namely matrices a and B, indicated in
commentaries.

1.6. About speed and accuracy

Experiments show that

comp ~ maxFEr,

comp is proportional to maxEr,

the iterations number is proportional to maxEr,

the iterations number is proportional to the dimension N.

YV VYV

11
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Example 9. Program for solving N equations with complex
coefficients in the MATLAB:
function testNv

Parameter comp serves for precision comparison for this and the
traditional algorithms. Fig. 4 shows graphs of the iteration number
and the error comp as functions of dimension number N with fixed
value maxEr. One can see that, first, comp < maxEr and, second,
the iteration number is proportional to the dimension number N.

lterations and Errars

N i
Y s e T |
[ A s Y e N |

Iterations

1 1 1 1
150 200 250 300 350

1
0 50 100
Dirnension MM
0.06 T T T T T T
0.04 E
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5
]
002 - B
D 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Fig. 4.

Example 10. Program for solving N equations with complex
coefficients in the MATLAB:
function testNe

Parameter comp serves for precision comparison for this and the
traditional algorithms. Fig. 5 shows graphs of the iteration number
and the error comp as functions of dimension number N with fixed
value maxEr. One can see that, first, comp < maxFEr and, second,
the iteration number is proportional to the dimension number N.

12
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lterations and Errars
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Let us consider now the solution of ill-determined systems of the
form (1).

1.7. Underdetermined system

In such system the number of equations is less than the number of
variables. In this case the system (1) may be complemented by an
equation

'nT+mT)=O, )
where n, m — matrices of given weight coefficients. The system (1) is

transformed into the system:

a b c
x+7j |x=|. )
m n 0
Matrices n, m are going to complement the matrices @, b to squatte
el P . .
matrices| |, The solution of this system correspond to
m| n

minimization of a weighted sum of squared variables.
The functionals (4) and (5) for relatively large weight coefficients will
take the form of the following functions:

F(x)= Im®x, ©)

13
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Fr(x)= xInex . ©)
These functions correspond to the minimization of weighted sum of
variables' squares.

1.9. Overdetermined System
In such system the number of equations is larger than the number of
variables. In this case the system (1) may be transformed to the form:

0 0

m n

x X
Y Y

where y — the vector of complementary variables n, m — matrices of

a + jib =c, (10)

given weight coefficients of the complementary variables.
matrices p, m are going to complement matrices g, b to squarte

0
b

n

matrices |g . The solution of this system correspond to the

>

m

minimization of a weighted sum of squared residuals.
The functionals (4) and (5) for relatively large weight coefficients will
take the form of the following functions

Ax)=y'm®y, (11)
Bx)=-yn®y . (12)

These functions correspond to the minimization of weighted sum of
residuals' squates.

14
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2. The Second Method for
Solution of Linear Algebraic
Equations System

2.1. Description of the method

Let us consider now an equation of the form
QaT+bbT)+(a—jb)c:0. (13)
Evidently, equation (13) differ from equation (1) by the factor (a - ]b)

Simultaneously with the solution of system (13) two functions of the
following form are being optimized

F(x)= xTaTb+(b—ja)c X, (14)
B(x) = TQaT+bbT)2(a+jb))®x. (15)

For well determined system of equations (1), this system, as well as the
system (13) have only one solution. For an ill-determined system (1) the
solution of system (13) is equivalent to the solution of system (1) with
minimization of functions (14) u (15).

Notice, that in equations with real variables and coefficients b=0,
equation (13) takes the form

aa’ x+ac =0, (16)
And the minimized function (15) will be
hx)=x Taa® +2ac P x. (17)

2.2. Main program

M-functions for solving a linear equations system with complex
coefficients of the form (atj*b)*q+c=by the second method are as
follows:

function [res,erMin, k,q,er] =
SinlLin2 (E,Z ,maxEr ,maxK)
The parameters used in it are described in Section 1.2.

15
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2.3. Underdetermined System

In such a system the number of equations is less than the number of
variables, and there exists a set of solutions. But the solution obtained by
the presented method, minimizes the quadratic forms (14) and (15).

Example 12. The program for solution of underdetermined linear
equations system with complex coefficients (a+j*b)*q+c=0 in the
MATLAB system:

function [res,k,q] = testNedo

2.4. Overdetermined System

In such a system the number of equation is larger than the number of
variables, and the system has no solution. But in our method a solution
with a certain residual is found, and it minimizes the quadratic forms (14)

and (15).

Example 14. The program for solution of overdetermined linear
equations system with complex coefficients of the form
(atj*b)*qtc=0 in the MATLAB system:

function [res,k,q] = testPere

Thus, to solve the system (1) by the presented method, the latter
should be transformed into system (13). This rule is applicable for
any system (1) — well-determined, underdetermined or
overdetermined.

16
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3. The Method for Solving Linear
Equations and Inequalities Systems

3.1. Introduction

In the book [1] the method for solving the problems indicated in the
headline of this section is described (in particular). Here we are giving
the open codes of the MATLAB program for such computations. The
main features of these program are as follows:

1.
2.
3.

4.

~

The main matrix may be singular.

The equations and inequalities may be incompatible.

The system of equations and inequalities may be
underdetermined or overdetermined.

A solution with a certain residual is always found ( with standard
MATLAB the solution may not exist at all, for example if the
matrix is singular, or no active inequalities are found, or the
system is underdetermined or overdetermined).

We are using an iterative method that has no operations of
division or matrix inversion.

The solution algorithm is suitable for parallelized processing.

The problem's size is limited only by the computer's resources.

3.2. Basic Problem

We shall begin with a certain basic problem (using the notations from
[1]), and then we shall formulate a number of problems in the terms of
the basic problem.

So, we are considering a system of equalities

where

. 1+C= n (1)
and a system of inequalities

T-p+¢-U=ny, 2)

#=R-I, (3

T asa superscript is the sign of transposition,
1,C,U,qp, ny,ny -are k -dimensional vectors,
@ -is a m -dimensional vector,

T -isa matrix of dimensions k -m,

17



3. The Method for Solving Linear Equations and Inequalities Systems

R -is a diagonal matrix of dimensions k -k .
The unknown variables are the vectors ,¢ . The values ny,ny are the

residuals of corresponding equations appearing in the solution process.
It is important to note that here and further the inequality sign
may belong only to a subset of equations, and in the remaining
equations it should be replaced by the sign of strict equality.

In [1] it is shown that the solution of this problem is at the same
time the solution of two dual problems of quadratic programming. The
first of them is as follows:

LT Reas o o —U7 -1 = min,
2 2
T —
T 14+C—n =0, @
<0,

and the second is

2 2p

®)
T-p+¢-U-ny 20.
Also
clp=T-p-1. ©)
Besides, according to the complementary slackness condition,
1T (T-p+¢-U=-ny)=0. @)

3A6Cb — BCAHMYMHA, OIIPCACAACMAA ITOAB3OBATCACM. B [1] mokazano
> b

9TO npu O —» 00 BeAndMHBl N],H) CTPEMATCA K HYAKO U CaracmMoe

L. I’llT N1 B (4) TaKKe CTPEMHUTCA K HYATO.

2

Here p is a user determined value. In [1] it is shown that for p —>

the values ny,n) tend to zero, and the summand g-an ‘ny in (4)

also tends to zero.

The method is based on moving along the gradient of the minimized
functions. The computation is performed in iterations, and the
computation result will as a rule be an approximate value. So we are

getting the above mentioned residuals 77,75 . Corresponding to them

18



3. The Method for Solving Linear Equations and Inequalities Systems

are the relative errors &],&7. The value &] is determined by
computation, and &) is determined by the user.
The number of iterations (i. e. the duration of computation) and the

value of &] are regulated by the value o . The larger is the value O, the

less is &7, but the longer is computation time.

3.3. The Solution of Linear Equations System
For this in the basic problem we assume that R =0, U =0. Then

(2.4) takes the form
TT-x+C—n1=O, M)

an -7 = min. 2
The system (1) may be incompatible, underdetermined or
overdetermined. We search for a solution corresponding to minimum

2.

M-function for solving this problem is:
function [x,epsl,k,nl,mini]=...
anySLAE2 (A,B, r,eps2,kmax)
A the matrix A=T" —see (1),
B — the vector (— C)— see (1),
I — the value p — see section 2,
eps2 — the value &) — see section 2,
kmax — maximal iterations number,
The output values here are:
X — the vector I —see (2.4, 1),
eps1 - the relative residual value &) — see section 2,
k —iterations number,
nl — the residuals vector in equation (1),
mini —value of the minimum (2).

The M-functions for test problems looks as :

function test anySLAE2 ()

19



3. The Method for Solving Linear Equations and Inequalities Systems

The test includes the solution for various types of systems. For control
the same system is being solved by MATLAB means. The test performs
also

function [m x, m epsl, m nl,

m minx, tmatlab] = anySLAE2m(A,B)
Here the wvalues similar to the output values of the function_
anySLAE2 are computed by traditional methods. Parameter mode
defines the test's number. Let us consider these tests. .

1. Well determined small dimension system.

2. Underdetermined small dimension system,

3. Opverdetermined small dimension system,

4. Overdetermined system for the computation of such vector X,
with respect to which the components of vector B have
minimal dispersion.

5. Underdetermined large dimension problem.

Overdetermined large dimension problem.
7. Poorly determined small dimension problem. In this case the
problem cannot be solved by MATLAB means: a message

"Warning: Matrix is singular to working precision" is displayed.

a

3.4. The Solution of Linear Equations and
Inequalities System

The system we are going to solve has the form (see 2.2):
T-x-U2>0. M)
In the basic system we assume: R =0, C =0. System (1) may be

incompatible, underdetermined, overdetermined. We are searching for
such solution, that corresponds to the minimum for the (2.5) or

x! - x = min. )
The M-function for solving this problem has the form:
function [k,x,er2K,n2eq,n2neq,minf]. ..
=anySLAE3 (A,B,D,r,eps2,kmax)
The input arguments here are:
A _is the matrix A =T —see (1),
B — vector (U)— see (1),
D — the equation type indicators vector: if the m-equation is an
equality, then D,, =0, in the opposite case D,, =1,

I — the value p — see Section 2,

20



3. The Method for Solving Linear Equations and Inequalities Systems

eps2 — the value &) — see Section 2,

kmax — maximal iterations number.

The output arguments here are:

k —iterations number,
X —vector (—see (2.5, 1),
ep2K - the reached value &y — see Section 2,

n2eq - vector of residuals in the equalities of (1),
n2neq - vector of residuals in the inequalities of the (1), which by

the problem's conditions may have any positive value.

minf — the minimum value (2).

The M-function for test problems is:

function testqw3

The test may solve various versions of the system. In some cases for the
sake of control the same system is solved by MATLAB means. The

parameter €q determines the number of such solution method In the

test parameter Mmode determines the test number. Let us consider

these tests.

1.

Well determined small dimension system. The control is
performed according to formula y=A\B.

Underdetermined small dimension system. The control is
performed according to formula y=A\B .

Overdetermined small dimension system. The control is
performed according to formula y=A\B.

Well determined — equalities system (A ,B). The control is
performed according to formula y=A\B.

The inequalities system (A ,B), coinciding in its left parts with
the equalities of the system from p. 4. This system cannot be
solved by MATLAB means as a quadratic programming problem
A message "No active inequalities" is displayed.
The inequalities system (A ,B), coinciding in its left parts with
the equalities of the system from p. 4The equality and inequality
signs may be determined by the user in the vector D. The control
of this problem by MATLAB means is not performed.
Underdetermined inequalities system. When trying to solve it by
MATLAB means as a quadratic programming problem a message
"A must have 2 column (s)" is displayed.
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3. The Method for Solving Linear Equations and Inequalities Systems

8. Overdetermined inequalities system. When trying to solve it by
MATLAB means as a quadratic programming problem a message
"A must have 6 column (s)" is displayed.

9. Overdetermined system of equalities and inequalities (in its left
part the same as in p. 8). The vector D is such that the obtained
solution has large residuals in the equalities.

10. Overdetermined system of equalities and inequalities (in its left
patt the same as in p. 8). The vector D is such that the obtained
solution has large residuals in the equalities.
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4. A Method for Solving Quadratic Programming Problems

4. A Method for Solving Quadratic
Programming Problems

4.1. The First Problem of Quadratic

Programming

In the book [1] there was described (in particular) a method for
solving the problem of quadratic programming. The following problem is
considered.

To find minimum of the function

F(x):O.S-xT-R'x—UT'x )
under the restraints

Tl .x+C=0, )

x>0, ©)

where
T is a superscript - the transposition sign,
x,C,U - k -dimensional vectors,
T - k-mmatrix
R -a k-k square positive definite matrix

The unknown variable here is vector X . The equations set (2) must
not be empty. The constraint (3) may relate only to certain variables, or
not exist at all. Further in this problem we shall use vector D — the
equation type indicator in (3): if an m-equation is an equality, then
Dm =0,inan opposite case Dm =1.

The solution method is based on movement along the gradient of the
minimized function (1). The computation is going in iterations, and the
result as a rule is approximate. As a result there appear residuals in the
equations (2, 3). The relative residual in the equation (2) is determined as

€=€T-x+C5€T-x+C)€Tx) @

The permissible value of this residual &4 is given by the user.
The number of iterations (i.e. the computation time) and the value

Emax are regulated by the value p. The larger is the value P, the less

is the value &pax , but the longer is computation time.
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4. A Method for Solving Quadratic Programming Problems

The M-functions for this problem solution is:
function [x,nl,k,ero,Fmin, ...
kk,erok,Fmink,b xx]=...
squ2 (R,T,C,U,D,r,erd, kmax)

The input arguments here are:
R,T,C,U, D - matrices and vectors defined in (1, 2),
X — the value O,
erd - the value Emax
kmax — maximal iterations number,
The output arguments here are:
X — the unknown vector,
nl — the vector of residuals in the equations (2),
k —iterations number,
€Xro — value of relative residual &,
Fmin — minimum of the function (1).
The following output values are used for creating the graphs:
kk — the vectors of iterations numbers,
erok - the vector of relative residuals &€ in each iteration,

Fmink — the vector of function (1) minimum value on each
iteration,
XX - the matrix of X vectors on each iteration.

4.2. The Second Problem of Quadratic

Programming
Let us consider now the following problem. We are searching for the
minimum of function (1)

ﬂ‘ﬂ=05ﬂdiRmﬁ—U{'ﬂ (5)
under the restraints
Tl x;+C; 20. ©)

Here the unknown variable is vector X|. The set of equations (6)

should not be empty. The sign "2" in (6) may refer only to certain
equations, and in the remaining equations it may be replaced by the sign

of strict equality. Further in this problem we shall use the vector D] —
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4. A Method for Solving Quadratic Programming Problems

the equation type indicator in (06): if m-equation is an equality, then
Dl m= 0, and in the opposite case Dl m= 1.

The second problem may be transformed into first problem in the
following way. We shall present the restraint (6) in the form

i - x+C—x; =0, (7)
Xy 20. (8)

Let us consider the vector

a
X2

and rewrite the formulas (5, 7, 8) in the form (1, 2, 3) accordingly, where

R
ro| QZI}’ 10
O ©Q
T
T=|""! } (1)
—E
- Ul}, (12)
_Vu
c=q, (13)
v
B _Dl} o

E identity matrix,
Qa Q12, Q21 - ZE€ro vectors,

Vu N Vd - Z€rOo vectors

The M-function for the transformation of the second problem into
the first problem has the form:
function [R,T,U,C,D]=squ2l1(R1,T1,U1,C1l,D1)
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4. A Method for Solving Quadratic Programming Problems

4.3. Test for the First Problem

The M-function function testsqu2 () solves the first
problem for a two-dimensional vector X. here we are building the graphs
shown on Figure 1, where

o thewindow 'Error (testsqu?2) ' shows theerror&

change depending on iteration number

>
o thewindow 'Log of error' shows the error ln(g)
change depending on iteration number.
o the window 'Minimum' shows the function (1) change
depending on iteration number.
Let us consider the two-dimensional vector x as a point on the plane.
The window 'Trajectory' shows the movement of this point with
iteration number growth beginning from the initial point (0, 0) to the final
point — the problem's solution.

Error (testsqu2) Trajectory
60 40
30 \
40
¥ 20
20 \
10
0 b 0
0 100 200 -100 -50 0 50
x1
Log of error X 106 Minimum
5

\
| -2
N NG

0 100 200 0 100 200
Iter lter

Fig. 1.
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4. A Method for Solving Quadratic Programming Problems

4.4. Test for the Second Problem

The M-function function testsquéd () solves the second
problem for a four-dimensional vector x. Here the graphs shown on
Figure 2 are built, where

o thewindow 'Error (testsqu2)' shows theerror&

change depending on iteration number

o the window 'Log of error' shows the error ln(g)

change depending on the iteration number,

o the window 'Minimum' shows the function (1) change

depending on iteration number,

o the window 'Trajectory' shows the change of four

components of vector X with iteration number growth beginning

from the initial value (0) to the final point, that is the problem's
solution.

Error (testsqu4) Trajectory
40

30

20

. \ :

0 20 40 60 0 20 40 60

x1,x2,x3,x4

Log of error X 106 Minimum

0 20 40 60 0 20 40 60
Iter Iter

Fig. 2.
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5. Algorithms

5. Algorithms

Here we are considering block diagrams for the algorithms for
solving the above enumerated problems. We are using the following
notations:

a - B - multiplication (of a vector of a number B) by a number &,
A e B - multiplication of a matrix A by a matrix or a vector B,

A® B - operation of componentwise multiplication of complex
vectors A, B and summation of the obtained products,

A - transposition of a matrix A.

5.1. Algorithm for Solving a Linear Algebraic

Equations System

Let u consider the block diagrams of the algorithms for solving a
linear algebraic equations system — see Fig. 1-4.

begin
v

/=A+j-B
Y
e=FEQF
v
g=0
v
p=-E
v
a=pRp

Fig. 1.
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5. Algorithms

b=(A'p)®p++j-(B'p)®p
c=a/b
v
g:=9g-cp
v
p=Zeq-Fk
v
a=pRp

control error

end

Fig. 2.

Figures 1 and 2 show the block diagram of computation algorithm
by the first method a (see also the SinLin function), and Figures 3 and 4
— the block diagram of computation algorithm by the second method
(see also the SinLin2 function). Figures 2 and 4 show the blocks realizing
the iterations cycle in these algorithms. The differing blocks in these
algorithms are shown by different coloring
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5. Algorithms
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b=(A°+p)®p
c=a/b
v
q:=?-cp
p=Adeq-E
v
a=pOp

control error

end

Fig. 4.

The CONTROL block in these algorithms on each iteration
checks the condition for ending the iteration process - see SinLin and
SinLin2 functions.

The comparison of the two algorithms shows that the second
algorithm is more attractive for technical realization, as it contains less
operations of matrix by vector multiplication.
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5. Algorithms

5.2. Minimization Algorithms

-

-

I
I
I
I
I
I
I
I
I
I
I
I
| [error 2)
I
I
I
I
I
I
I
I
I
I
I
I

In the considered problems of the Sections 3 and 4 a quadratic
functional of the following type is being minimized:

F(x):O.S-xT-Rn-x—UnT-x )
under linear and nonlinear constraints:

T . x+C=0, )

x>0, 3)

where R,, U Z , T are determined by the problems conditions. The

minimization is performed by the gradient descent method [4]. Without

32



5. Algorithms

constraints (3) the block diagram of the algorithm is of the form shown
on Figure 5, where
P — is the functional's gradient,

a, b, c- scalar values.
The iterations process goes on till the value

&=p®p )
will not reach the preset value & << 1. The CONTROL block in these

algorithms on each iteration checks the condition of iteration process
ending, which is

&lue, ®)
whete
r—---=-"-"-"-"—-—"—-—-—"—-"—""—"""=""7-— =
minFd

error e

b:((Rd+§n>-p>®p i

c=al/b
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5. Algorithms

If the constraints (3) are present, the block diagram becomes more
complicated and take the form shown on Figure 06, where D is the

vector of indicators for different types of conditions in (3): if X, =0 is

present in (3), then Dm =1, in the opposite case Dm =0. The
function is determined in M-function Rdiod.

5.3. Algorithms for Solving Linear
Equations and Inequalities System

begin
v

R,=p-A'e4
v
U,=p-A'*B
v
U,|=U,®U,

0

minF

2

p=Aex—-B
v

P=p® ¢

!

end
Fig. 7.

Figure 7 presents the block diagram of the algorithm for solving a
linear equations system A*x-B=0, where the computation error is:

Figure 8 presents the block diagram for solving the linear equations
and inequalities system A*x-B>=0.
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5. Algorithms

begin
v

R,=p-A'e4
v
U, =

v
uU,l=U,®U,

0

minFd

2

p=Aex—B
Y
lpl=p® e

!

end
Fig. 8.

5.4. Algorithms for Solving a Quadratic

Programming Problem

Figure 9 presents the block diagram of the algorithm for solving a
quadratic programming problem considered in Section 4.
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5. Algorithms

begin
v

R,=R+p-T'eT
v
U,=U-p-TeC
v
U, =U,®U,

0

minFd

2

p=T'ex+C
v

=S¢
v

end
Fig. 9.

5.5. Conclusion
When viewing the presented algorithms, one may note that they

contain only the operations of multiplication by a number 4,
multiplication of matrix by matrix or by vector, scalar multiplication of
vectors and matrix transposition, Q.E.D. Let us consider now a function

Uj,Ryj=f (D,x ), used in the algorithm on Figure 6 and determined
in M-function Rdiod:

dmin> I x>0,
. if Dy =1,
Ry, = dmax> If xXp <0, (1)
dmina ika:()a
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5. Algorithms

Udk =de-xk. 2
Here dmina dmaxa Dk are constants unchanged from iteration to
iteration. So the function (1) may be computed in parallel for all vector
X. We can reach additional acceleration if we complement the arithmetic
unit by two simple operations:
1. placing the constants dmina dmaxo Dk into the arithmetic
units registers, where they will be kept during all computation process.

2. computing R, U g as functions depending only on X, .
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