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Figure S1: Performance and scalability evaluation on a subset of the Love et al. dataset.  To allow for a 4 
performance and scalability evaluation of BANDITS, which does not scale to datasets with a large number of 5 
transcripts, we here perform a DTU analysis for the 6 versus 6 samples dataset of Love et al. with only 1000 6 
transcripts. Left panel: performance evaluation. The results are in line with those of Figure 1A. The performance 7 
of BANDITS is indicated in pink. Right panel: Scalability evaluation. BANDITS scales linearly with respect to the 8 
number of cells (or samples) in the dataset. The slope of the linear trend, however, is considerably larger than 9 
those of the other DTU methods that scale linearly. Note that the profiles of limma diffsplice, edgeR diffsplice 10 
and DoubleExpSeq overlap in this figure. 11 
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Figure S2: Performance evaluation of satuRn on different subsamples of the simulated bulk RNA-Seq dataset 36 
by Love et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 37 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 38 
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points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 39 
empirical FDR is equal or below the imposed FDR threshold. We subsampled two-group comparisons according 40 
to three different samples sizes; a 3 versus 3, 6 versus 6 and 10 versus 10 comparison, as denoted in the panel 41 
titles. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million 42 
(TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport1.  We additionally adopted two 43 
different filtering strategies: an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 44 
4). Overall, the performance of satuRn is on par with those of the best tools in the literature, DEXSeq and 45 
DoubleExpSeq. In addition, satuRn achieves a better control of the FDR on all datasets. For extremely small 46 
sample size, i.e. the 3 versus 3 comparison, the performance is slightly below that of DEXSeq, and inference does 47 
become slightly too conservative. Note that, as expected, the performances increase with increasing sample 48 
size, and a higher performance is achieved with the more stringent DRIMSeq filtering criterion (see Methods), 49 
which goes at the cost of retaining fewer transcripts for DTU analysis. Finally, we note that the performances 50 
and FDR control are consistently higher for the scaled TPM data as compared to the raw counts. Note that this 51 
was only observed for this particular dataset. 52 
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Figure S3: Performance evaluation on different subsamples of the simulated bulk RNA-Seq dataset by Love et 87 
al. with a reduced number of transcripts to allow for a comparison with BANDITS. FDR-TPR curves visualize the 88 
performance of each method by displaying the sensitivity of the method (TPR) with respect to the false discovery 89 
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rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels 90 
of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR 91 
threshold. We subsampled two-group comparisons according to three different samples sizes; a 3 versus 3, 6 92 
versus 6 and 10 versus 10 comparison, as denoted on top of the panels. The benchmark was performed both on 93 
the raw counts (rows 1 and 2) or on scaled transcripts-per-million (TPM) (rows 3 and 4) as imported with the 94 
Bioconductor R package tximport1.  We additionally adopted two different filtering strategies: an edgeR-based 95 
filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 4). Note that, in contrast to Figure S2, we 96 
additionally randomly subsampled 1000 genes (~3000-5000 transcripts) after filtering, in order to reduce the 97 
number of transcripts in the data and thereby allowing for a DTU analysis with BANDITS. In concordance with 98 
Figure S2, the performance of satuRn is on par with the best tools of the literature with a better control of the 99 
FDR in general. While the performance of BANDITS is good for the settings for which it was originally developed, 100 
(i.e., small datasets with a stringent filtering criterium), its performance is reduced in larger, more leniently 101 
filtered datasets and inference is also overly liberal in these settings. In addition, while all other methods perform 102 
much better on the scaledTPM data (rows 3 and 4) than on the raw count data (rows 1 and 2), BANDITS has a 103 
similar performance on both input data types. This can be explained by the fact that BANDITS inherently corrects 104 
for differences in transcript length, even when raw counts are used as an input.   105 
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 134 
Figure S4: Performance evaluation of satuRn on the “Dmelanogaster” simulated bulk RNA-Seq dataset by Van 135 
den Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 136 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 137 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 138 
empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the raw 139 
counts (row 1) and on scaled TPM (row 2) as imported with the Bioconductor R package tximport1.  We 140 
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeq-based 141 
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature, 142 
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A 143 
and S2), there is a limited difference in performances based on the data input type (i.e., counts versus scaled 144 
TPM), and DRIMSeq also performs well on these datasets. 145 
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 155 
Figure S5: Performance evaluation of satuRn on the “Hsapiens” simulated bulk RNA-Seq dataset by Van den 156 
Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 157 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 158 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 159 
empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the raw 160 
counts (row 1) and on scaled TPM (row 2) as imported with the Bioconductor R package tximport1.  We 161 
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeq-based 162 
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature, 163 
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A 164 
and S2), ), there is a limited difference in performances based on the data input type (i.e., counts versus scaled 165 
TPM), and DRIMSeq also performs well on these datasets. 166 
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Figure S6: Performance evaluation of satuRn on the GTEx bulk RNA-Seq dataset. FDR-TPR curves visualize the 173 
performance of each method by displaying the sensitivity (TPR) with respect to the false discovery rate (FDR). 174 
The three circles on each curve represent working points when the FDR level is set at nominal levels of 1%, 5% 175 
and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR threshold. 176 
The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million (TPM) 177 
(rows 3 and 4) as imported with the Bioconductor R package tximport1.  We additionally adopted two different 178 
filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 4).  The 179 
performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq. In addition, 180 
satuRn consistently provides a stringent control of the FDR, while DoubleExpSeq becomes more liberal with 181 
increasing sample sizes. Note that DEXSeq, DRIMSeq and NBSplice were omitted from the largest comparison, 182 
as these methods do not scale to large datasets (Figure1). 183 
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Figure S7: Performance evaluation of satuRn on the real scRNA-Seq dataset by Chen et al. FDR-TPR curves 230 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 231 
false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 232 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 233 
imposed FDR threshold. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 234 
transcripts-per-million (TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport1.  We 235 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-236 
based filtering (rows 2 and 4). The performance of satuRn is at least on par with the best tools from the 237 
literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently controls 238 
the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with increasing 239 
sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 50 cells each), 240 
as these methods do not scale to large datasets (Figure 1). NBSplice was omitted from all comparisons, as it does 241 
not converge on datasets with many zeros, such as scRNA-Seq datasets. 242 
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Figure S8: Performance evaluation of satuRn on the real scRNA-Seq dataset by Tasic et al. FDR-TPR curves 267 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 268 
false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 269 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 270 
imposed FDR threshold. We generated three two-group comparisons of 20, 75 and 200 cells each (left, middle 271 
and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 272 
transcripts-per-million (TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport1. We 273 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-274 
based filtering (rows 2 and 4). Overall, satuRn slightly outperforms DoubleExpSeq, the best tools from the 275 
literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently controls 276 
the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with increasing 277 
sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 75 cells and 278 
200 cells each, respectively), as these methods do not scale to large datasets (Figure 1). NBSplice was omitted 279 
from all comparisons, as it does not converge on datasets with many zeros, such as scRNA-Seq datasets. 280 
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Figure S9: Performance evaluation of satuRn on the real scRNA-Seq dataset by Darmanis et al. FDR-TPR curves 323 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 324 
false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at 325 
nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the 326 
imposed FDR threshold. We generated three two-group comparisons of 20, 50 and 100 cells each (left, middle 327 
and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 328 
transcripts-per-million (TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport1. We 329 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-330 
based filtering (rows 2 and 4). Overall, the performance of satuRn is similar to DoubleExpSeq, the best tools 331 
from the literature. In addition, our method consistently controls the FDR close to its imposed nominal FDR 332 
threshold, while DoubleExpSeq becomes more liberal with increasing sample sizes. On the dataset with the 333 
smallest sample size, the FDR control of satuRn does become too strict. 334 
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 372 
Figure S10: The effect of using an empirical null distribution on the false discovery control of satuRn. Panel A: 373 
Empirical distribution of the satuRn test statistics in one of the bulk transcriptomics benchmark datasets adapted 374 
from Love et al. The test statistics are z-scores, calculated from satuRn p-values as described in formula 5 (see 375 
Methods). As this benchmark dataset is constructed to have 15% DTU transcripts and thus 85% non-DTU or null 376 
transcripts, most of these z-scores are expected to follow a standard normal distribution (mean = 0, standard 377 
deviation = 1). This is reflected in the maximum likelihood estimates for the mean and variance of the empirical 378 
null distribution (mean = -0.002, standard deviation = 1.029). Panel B: Corresponding FDP-TPR curve for the bulk 379 
transcriptomics benchmark dataset. As the theoretical null distribution and the empirical null distribution are 380 
virtually identical, we observe a negligible difference between both strategies, both in terms of performance 381 
and FDR control. Panel C: Empirical distribution of the satuRn test statistics in one of the single-cell benchmark 382 
datasets adapted from Chen et al. Again, most of these z-scores are expected to follow a standard normal 383 
distribution as this benchmark dataset is also constructed to have 15% DTU transcripts and thus 85% non-DTU 384 
or null transcripts. However, the empirical distribution is considerably wider than expected (standard deviation 385 
= 1.236). We additionally observe a small shift of the distribution (mean = 0.072). Panel D: Corresponding FDP-386 
TPR curve for the single-cell benchmark dataset. While the inference for satuRn is overly liberal when working 387 
under the theoretical null, FDR control is restored by adopting the wider empirical null distribution. Note that 388 
the performance will only be affected when the empirical null distribution is strongly shifted with respect to the 389 
theoretical null (i.e., a large mean in absolute value), which was not the case in this example nor in any other 390 
dataset from our analyses. 391 
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 395 
Figure S11: Adopting an empirical null distribution to improve FDR control is infeasible for DoubleExpSeq. 396 
Panel A: Distribution of the p-values from a DoubleExpSeq analysis in one of the single-cell benchmark datasets 397 
adapted from Chen et al. We immediately observe the large spike of p-values equal to 1, which distorts the p-398 
value distribution. In addition, the p-values in the mid-range (e.g., from 0.1 to 0.9), which are expected to be 399 
uniformly distributed, are skewed towards smaller values, which underlies the overly liberal results of 400 
DoubleExpSeq in our single-cell benchmarks. Panel B: The corresponding empirical distribution of the 401 
DoubleExpSeq test statistics. The test statistics are z-scores, calculated from the original DoubleExpSeq p-values 402 
as described in formula 5 (see Methods). As all our benchmark datasets are constructed to have 15% DTU 403 
transcripts and thus 85% non-DTU or null transcripts, most of these z-scores are expected to follow a standard 404 
normal distribution (mean = 0, standard deviation =1). However, given the pathological distribution of the p-405 
values it is not feasible to properly estimate the empirical null distribution, as also clearly shown by the widely 406 
different parameter estimates obtained using the two estimation frameworks implemented in the locfdr R 407 
package2; compare the estimates between MLE (maximum likelihood estimation) and CME (central matching 408 
estimation). 409 
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Comparison 
Cell type 1 

(ALM) 
Cell type 2 

(VISp) 
DoubleExpSeq 

FDR 
Limma  

FDR 
Limma 

Empirical FDR 

1 Cpa6 Gpr88 Batf3 2142 3602 169 

2 Cbln4 Fezf2 Col27a1 644 468 297 

3 Cpa6 Gpr88 Col6a1 Fezf2 335 1029 77 

4 Gkn1 Pcdh19 Col6a1 Fezf2 1878 2861 58 

5 Lypd1 Gpr88 Hsd11b1 Endou 829 1411 249 

6 Tnc Hsd11b1 Endou 4580 4819 341 

7 
Tmem163 

Dmrtb1 
Hsd11b1 Endou 3388 5603 176 

8 
Tmem163 
Arhgap25 

Whrn Tox2 455 1387 166 

 433 
Figure S12: Number of differentially used transcripts as identified by DoubleExpSeq and limma diffsplice. The 434 
first three columns indicate the comparisons between ALM cell types (column 2) and VISp cell types (column 3), 435 
respectively. Column 4 indicates the number of differentially used transcripts as identified by DoubleExpSeq. 436 
Column 5 indicates the number of differentially used transcripts as identified by a limma diffsplice analysis with 437 
default settings. Column 6 displays the number of differentially used transcripts found by limma diffsplice after 438 
correcting for deviations between the theoretical and empirical null distributions. 439 
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 461 
 462 
Figure S13: Histograms of the p-values from limma diffsplice. From these histograms, the huge number of DTU 463 
transcripts identified by limma diffsplice become apparent. Note that the general tendency of limma diffsplice 464 
for smaller p-values is better visible when converting the p-values into z-scores (see Figure S13) 465 
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Figure S14: Empirical distribution of the limma diffsplice test statistics. The test statistics are z-scores, 466 
calculated from limma diffsplice p-values as described in formula 5. Theoretically, these z-scores are expected 467 
to follow a standard normal distribution (mean = 0, standard deviation =1). Here, however, the empirical 468 
distributions are considerably wider (standard deviation > 1), as indicated underneath the plots. This indicates 469 
that the results returned by limma diffsplice in this case study are overly liberal. 470 
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 471 
Figure S15: Histograms of the p-values from DoubleExpSeq. From these histograms, the huge number of DTU 472 
transcripts identified by limma diffsplice become apparent. In addition, we observe a gradual decrease of p-473 
values over the interval [0.05 < p < 0.95], with a very large spike of p-values that are exactly 1 in all comparisons 474 
or contrasts of interest. 475 
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 476 
Figure S16: Empirical distribution of the test statistics in comparison #6 of the case study with DoubleExpSeq. 477 
The test statistics are z-scores, calculated from DoubleExpSeq p-values as described in formula 5 (see Methods). 478 
Theoretically, the bulk of these z-scores are expected to follow a standard normal distribution (mean = 0, 479 
standard deviation =1), i.e., assuming that most transcripts are not differentially used. However, the large spike 480 
of p-values equal to 1 (See Figure S14) results spike of z-scores equal to zero, which poses a problem when 481 
estimating the empirical null distribution (blue dashed curve). 482 
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