
Historic Builds
Ensuring usability of a scientific code base 



Software Preservation 

● Software preservation is an important requirement to 
ensure re-use certain digital (data-)objects 

● Re-using preserved software preservation requires 
infrastructure

○ Runtime dependencies (operating system, libraries, etc…)
○ Hardware or hardware equivalents  (emulation) 

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/


Scientific Software

● Scientific software (usually part of the 
publication) published as source code 
(archive)

○ Source code is human readable
○ Can be reviewed 
○ Can be re-used and further developed by a 

scientific community
● To re-run with data the code has to be 

usually compiled to a binary or the 
appropriate runtime is required



Software Heritage 

Software Heritage - a non-profit organisation to collect, preserve and share 
software.

„ Science relies more and more on software. To guarantee scientific reproducibility we 

need to preserve it [.] ...” https://www.softwareheritage.org/mission/

https://www.softwareheritage.org/mission/


Software Heritage 

Software Heritage - a non-profit organisation to collect, preserve and share 
software.

„ Science relies more and more on software. To guarantee scientific reproducibility we 

need to preserve it [.] ...”

… and one should be able to re-run it. 

https://www.softwareheritage.org/mission/

https://www.softwareheritage.org/mission/


Scientific Software Preservation

- Software became an essential part of computational science
- Software can be part of the publication (together with data and article)
- Software becomes an integral part of RDM  
- Software then needs to be FAIR 
- How?

→ FAIR 4 Research Software WG 

https://rd-alliance.org/groups/fair-research-software-fair4rs-wg

→ Infrastructure and workflows are required

https://rd-alliance.org/groups/fair-research-software-fair4rs-wg


Archiving and Accessing Scientific Code

- Re-create (re-build) code from source 
requires another set of dependencies 

- → build dependencies

- Usually no formal description, implicit 
for a given time context 



Re-Build (Scientific) Source Code

- Best outcome 
- Can be compiled with contemporary tool chain

- If not possible, tweaks to the code / build infrastructure are required
- Libraries may have changed
- Build tools may have changed

- Re-run of a successfully compiled binary does not automatically yield a valid 
/ usable result, i.e. replicate a program’s run

- Libraries or other dependencies may have changed semantics
- Scientific workflows may require a specified set of dependencies (tool-chain) in exact versions



Example 

From:
“Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into 
Scientific Contributions” von Fabien C. Y. Benureau und Nicolas P. Rougier.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758530/


Infrastructure and Requirements

- Archival, management and access to historic (build) 
environments

○ Emulation infrastructure EaaS(I), CiTAR, etc. 
○ Systematic collection of relevant “base” environments
○ Maintain/archive/manage external software repositories 

■ Distribution repositories
■ Special “repositories” like npm, pip, CPAN, …  

→ ideally have snapshots to allow implicit versioning 



Historic Build Environments 

Build environment

- Machine (emulator) + installed 
disk image

- Managed context 
- E.g. time/date settings 
- Isolated network with transparent 

repository mapping



Infrastructure and Requirements

- Fetch source code “as an object” 
- EaaS plugin for Software Heritage https://github.com/Aeolic/swh-downloader
- Supports retrieval of code by commit hash / Software Heritage persistent ID (SWHID)
- Available as tar.gz archive

- Prepare code to be available in a selected environment
- Inject as CD-ROM

- Good operating system support, simple file system
- Read-only medium, might complicate automation

- Inject as auxiliary disk
- Choose an OS supported file system
- For automation: anticipate how the target OS manages aux. disks   

- Inject into “root” file system
- Find root partition, detect file-system, mount and copy/extract code to user-defined directory
- Preferred solution to support automation

- Provide via network share (CIFS/NFS/…) 

https://github.com/Aeolic/swh-downloader


Infrastructure and Requirements

- Preparation and interactive build
- Interactively explore build environment
- Install dependencies as needed 
- Build! 

- Keep successful builds (build environment and result) 
accessible 

- Keep as reference for quick inspection or/and to run with data
- Keep as reference for other similar tasks, keep to build knowledge
- Keep as reference to compare / audit binaries 
- Outcome 1:

- Save build environment as derivative (with or without code and 
build result

- Connect with source code (metadata)
- Outcome 2:

- Create a build recipe containing all preparation and build steps
- Currently a shell / batch script
- Requires formalization



Example Workflow

- Choose a target environment 
- either a plain base environment 
- Or previously prepared   

Example environments available in the EaaSI public sandbox
https://eaasi-sandbox.softwarepreservationnetwork.org/eaasi

https://eaasi-sandbox.softwarepreservationnetwork.org/eaasi


Example Workflow

- Choose a target environment 
- either a plain base environment 
- Or previously prepared   

- Enter SWH revision ID
- Enter (or upload) recipe (content)
- Choose build mode 
- Configure autostart
- If necessary, inject additional files 

- E.g. data to be processed 



Infrastructure and Requirements

- Automation and API access
- If a “recipe” is available, builds can be 

automated
- POST JSON data to HTTP endpoint

- Returns job ID 
- Wait / poll for job completion
- Process build result 

- Build result
- Save environment, re-use with data or for 

next build step (pipeline)
- Request and download result 

- ZIP/tar with binaries / output 
- Hash values or similar checks 



Next Steps

- Gradually improve meta-data for past code contributions
- Metadata “language” and representation still an open question
- Automate (record) environment preparations 
- Share build environments and recipes 

- Continuous Access for up-coming code contribution
- Encourage better practice for current code contributions 

- Derive and describe dependencies
- Encourage use of CI pipelines

- Preserve CI setting and dependencies with code archive
- Consolidate and archive CI dependencies (VM, docker image) if necessary

- Integrate long-term infrastructure as soon as possible 
- Integrate automated long-term builds in CI/test pipelines


