Best Practice Guide - GPGPU

Momme Allalen, Leibniz Supercomputing Centre
Vali Codreanu, SURFsara
Nevena llieva-Litova, NCSA

Alan Gray, EPCC, The University of Edinburgh
Anders Sjostrom, LUNARC

Volker Weinberg, Leibniz Supercomputing Centre

Editors: Maciej Szpindler (ICM, University of Warsaw)
and Alan Gray (EPCC, The University of Edinburgh)

January 2017

PRACE

Best Practice Guide - GPGPU

Table of Contents

O [gL oo [0 1o o R PSP PP 4
2. The GPU ATCHITECIUIE ... ettt ettt et et e et eeeena s 5
2.1. Computational Capabilityoiieiiiiieiiiii e e 5

2.2. GPU Memory BanOWidlhuuiiiiiiiiiii et 5

2.3. GPU @nd CPU INEEICONMNECLcieeeiieeeiii ettt ettt ettt e e et et et e e e nne e e enees 6

2.4. Specific information on Tier-1 accelerated CIUSIEIScivuuuiiiiii et 6
241 DGX-L CIUSIEr 8t LRZociiiiiieeie et 6

2.4.2. JURON (IBM+NVIDIA) @ JUEICH ... 6

2.4.3. Euroraand PLX accelerated clusters at CINECAoiiiiiiiiiieiiii e 6

2.4.4, MinoTauro accelerated clusters a BSCcoovviiiiiiiiii e 7

2.4.5. GALILEO accelerated cluster at CINECAuiiiiiiiieiiii et 7

2.4.6. Laki accelerated cluster and Hermit Supercomputer at HLRS ..o, 7

2.4.7. Cane accelerated cluster af PSNCooiiiiiieiieii e 7

2.4.8. Ansalm cluster a ITAINNOVELIONSuieiiitiieiiiii et 8

2.4.9. Cy-Teracluster a CaSTORCcccouuieiiiiiiiee ettt 8

2.4.10. Accessing GPU accelerated system with PRACE Rloooiviiiiiii e 8

3. GPU Programming With CUDAot e e e et e e e et e e e en e e e entaeaees 9
3.1. Offloading Computation t0 the GPUociiiiiiiiiiii et 9
3.1.1. Simple Temperature Conversion EXampleooiiiiiiiiiie e 9

3.1.2. Multi-dimensional CUDA deCOMPOSITIONSuueeiirieiiiiiieeeiiie e et 12

3.2. MemMOry ManaQEMENTccuuiiiiieii ettt et et 12
321 UNIfIE MEIMONY .ttt et ettt et e e e e e e enaans 13

3.2.2. Manual Memory ManaQEmMENTceuuueiiriieieeii ettt et e e e e e e ene e eenees 13

3.3, SYNCAIONIZALION ... e ettt ettt e e et e e e e et e e e ente e eaees 14

4. Best Practice for Optimizing CodeS 0N GPUSuiiiiiiieiiiii et 15
4.1. Minimizing PCI-e/NVLINK Data Transfer Overhead ... 15

4.2. Being Careful with use of Unified MemOryoooiiiiiiiiii e 16

4.3. Occupancy and MEMOIY LEEMNCYoeeeruueeeiiii et e ettt e et e e ettt e e e er e e e eeb e e eena e eeens 16

4.4. Maximizing Memory BanaWidth 16

4.5. USe Of ON-ChiP IMBIMOTY ..ottt eeeae s 17
451, ShAred MEMOIY ...euieiiiii ettt e e et e e et eeeebe s 17

4.5.2. CONSLANT IMEIMOMY ..ottt ettt e et et e e n et et e e e e eena e 17

4.5.3. TEXIUIE IMBIMOIY ..cvtiiiii ettt ettt e e e e e 17

A.6. WD DIVEIGEINCE ...ttt ettt ettt ettt ettt e ettt e et e et et e e e enees 17

5. MUItI-GPU ProgramiMingccceuueeeitieeeetie ettt e et e et e et e e et et e e e e et e e et et e e e e era e eeenan s 19
5.1. Multi-GPU Programming With MPI ... 19

5.2. Other related CUDA TEAIUIEScoouiiieiiii ettt et e e et e eeent e eees 20
N T o 1Y/ o= o PPN 20

5.2.2. DYNamMiC Parall@liSMccoiiiiiiii e 21

B 2.3, RDIM A e e e 21

5.2.4, Virtual 80drESSINGeieeeieiiii et 22

5.2.5. Debugging and Profilingoooeeuuiiiii e 23

B. GPU LIDIBIIES ...ttt et e et e ettt ettt e et et e e et e e 24
6.1. The CUDA TOOIKIT 8.0 .. .ceeitieiiiiii ettt ettt ettt e e et et et e e e e e eennes 24
6.1.1. CUDA Runtime and Math lIDrariescooeuuiiiiiiiiiec e 24

B.1.2. CUR T ittt ettt ettt ettt e e et e eeen e een 24

B.1.3. CUBLAS ...ttt 24

B.1.4. CUSPARSE ...ttt ettt 25

B.1.5. CURAND ...ttt ettt ettt e e et et e ettt e et e e e e e een 25

B. 1.6, N PP i e 25

B. 1.7, TRIUSE .ottt 26

B.1.8. CUSOLVERoiiiiiiiiieiet ettt et e e e e e e e 26

6.1.9. NVRTC (Runtime COompil@tion)ccuuuieeiimuneeiiii e 26

B.2. OhEr [IDraIES ...ttt et 26
B.2. L. CUL A o e e et 26

Best Practice Guide - GPGPU

6.2.2. NVIDIA COUEC lDrariEs ...ouvuieeiiiii et e e e e aees 26
ST T U 1 = SRR 26
B.2.4. MAGIMA .o a e — e aaaa 26
LS N = Y/ T (P 26

7. Other Programming ModelS fOr GPUSoiiiiiiiiiciie e e e e e e e e e e e eees 27
725 @ =3 PP 27
7.2, OPENACKC ..ottt e e e e e et e e e e e et e e e e e et e et e eeaeaaat e eeaeaeaarnn, 28
7.3. OpeENMP 4.X OfflOa0iNg . .cevuniiiiieiiie e e e e e e e e e e aaaas 34
7.3.1. EXECULION MOGE! ...ttt e e e e 34
7.3.2. Overview of the most important device CONSIIUCESocvvueiiiieiiii e 35
7.3.3. The target CONSLIUCEciuviiii e e e e e e e e e et e e e e e et e et e e et e e eaneeaanas 36
7.3.4. THE LEAMS CONSITUCE ...vuuieiiiit ettt e e e et e e e et e e e e et e e e eatn e eeens 36
7.3.5. The diStribute CONSIIUCEuiiieiii e e e e eanns 37
7.3.6. Composite constructs and shortcuts in OpenMP 4.5cooiiiiiiiiiii e 37
A A T 1 o= 38
7.3.8. Runtime routines and environment variableSoooeiiiiiiiiiiiiii i 39
7.3.9. Current COMPIEr SUPPOITcvuuiiiieiie e e e e e e e e e e e e e e et e e et e e eeanaas 39
7.3.10. Mapping of the Execution Model to the device architecture..............cccoecviiiviiieeinnnnn, 39

A T 2T o ot SRR 40
7.3.12. References used for this SECHION:uuuiiiiiii i 41

Best Practice Guide - GPGPU

1. Introduction

Graphics Processing Units (GPUs) were originaly developed for computer gaming and other graphical tasks,
but for many years have been exploited for general purpose computing across a number of areas. They offer
advantages over traditional CPUs because they have greater computational capability, and use high-bandwidth
memory systems (where memory bandwidth is the main bottleneck for many scientific applications).

This Best Practice Guide describes GPUs: it includes information on how to get started with programming GPUSs,
which cannot be used in isolation but as "accelerators' in conjunction with CPUs, and how to get good perfor-
mance. Focusisgiven to NVIDIA GPUs, which are most widespread today.

In Section 2, “The GPU Architecture”, the GPU architecture is described, with a focus on the latest "Pascal”
generation of NVIDIA GPUs, and attention is given to the architectural reasons why GPUs offer performance
benefits. This section aso includes details of GPU-accelerated services within the PRACE HPC ecosystem. In
Section 3, “GPU Programming with CUDA”, the NVIDIA CUDA programming model, which includes the nec-
essary extensions to manage parallel execution and data movement, is described, and it is shown how to write a
simple CUDA code. Often it isrelatively simple to write aworking CUDA application, but more work is needed
to get good performance. A range of optimisation techniques are presented in Section 4, “Best Practice for Opti-
mizing Codes on GPUS’. Large-scale applications will require use of multiple GPUs in paralldl: thisis addressed
in Section 5, “Multi-GPU Programming”. Many GPU-enabled libraries exist for common operations. these can
facilitate programming in many cases. Some of the popular libraries are described in Section 6, “GPU Libraries’.
Finally, CUDA is not the only option for programming GPUs and alternative models are described in Section 7,
“Other Programming Models for GPUS”.

Best Practice Guide - GPGPU

2. The GPU Architecture

In this section we describe the GPU architecture, and discuss why GPUs are able to obtain higher performance
than CPUs for many types of application. We highlight the new features and enhancements offered by the recent
"Pascal" generation of NVIDIA GPUs.

2.1. Computational Capability

GPUs are able to perform more operations per second than traditional CPUs, because they have many more com-
pute cores. Modern CPUs are also parallel devices. they have multiple cores, with each core able to perform mul-
tiple operations per cycle. But since CPUs must be able to perform a wide range of tasks effectively, much of
the area on the CPU chip (and power expended by the CPU) is dedicated to the complexity required for such
generality, rather than computation itself. GPUs, conversely, are purposed specifically for problems which are
highly data parallel: the same operation (or set of operations) must be performed across alarge data-set. The GPU
chip dedicates much of its area, and power budget, to many compute cores. Each coreis simplistic compared to a
CPU core, but nevertheless can still be very effective in performing numerical computation. Traditionally, GPUs
evolved to be able to perform graphics operations, which are inherently parallel due to the many pixels involved.
But such data-parallel problems are also commonplace much more widely, not least in science and engineering,
and over the last decade GPUs have established themselves as very effective and powerful processorsfor tackling
such problems.

Thetotal compute performance offered by each GPU depends on the precision required. Many applicationsrequire
full double precision (where each numerical value is stored using 64 bits). At this "FP64" precision, there are
1,792 cores available on the NVIDIA Tesla P100 chip: the first of the "Pascal” generation to be announced. This
collection of coresisdecomposed, in the hardware, into 56 Streaming Multiprocessors (SMs), where each SM has
32 cores. The total FP64 performance on each GPU is 5.3 TFops (5.3 thousand billion floating point operations
per second). Thisis several times higher than the previous fully FP64-enabled "Kepler" series, for example the
Tesla K40 which offers 1.7 Tflops through its 960 FP64 cores. These improvements are largely due to power
efficiency enhancements resulting from the new 16nm FinFET process, which alow more cores and higher clock
frequencies.

For those problemswhich do not need such high precision arithmetic, higher performanceis possible. On the P100,
there are two FP32 cores for each FP64 core: atotal of 3854 cores across the GPU and atota of 10.6 Tflops of
single precision performance. Furthermore, the P100 introduces a new type of instruction for those problems that
only require half-precision arithmetic, FP16, for which another doubling of performance is available: atota of
21.2 Tflops. Note that there are no cores solely dedicated to these FP16 operations: they must be coupled together
in pairsto utilise the FP32 cores with vector operations.

2.2. GPU Memory Bandwidth

As described above, modern GPUs are able to perform avery large number of operations each second. However,
for this to be practically useful, the compute units must be fed with data at a high enough rate, and this can be a
problem since the time taken for data to travel between different parts of the system is significant. Performance
closeto peak istypically only possible for those problems which involve repeated operations on arelatively small
amounts of data, since that data can be staged on-chip in caches close to the compute units. However, many
scientific applications rely on operations on relatively large datasets that must reside in the GPU's main off-chip
memory: the key bottleneck is often the bandwidth available between the main memory and the GPU.

A key advantage of GPUs over traditional CPUs isthat they use higher bandwidth memory systems, to the benefit
of those bandwi dth-bound applications. Prior to the latest Pascal generation, GPUs employed "GraphicsMemory",
for which the bandwidth is several times higher than the regular memory used by CPUs. The Pascal generation
GPUs offer a further several-fold bandwidth improvement with the introduction of High Bandwidth Memory 2
(HBM2). This involves multiple memory dies being stacked verticaly, linked with many microscopic wires and
located very close to the GPU.

Best Practice Guide - GPGPU

2.3. GPU and CPU Interconnect

GPUsare not used inisolation, but instead in conjunction with "host” CPUs. The CPUs are responsible for running
the operating system, setting up and finalising the calculation, performing 1/0 etc, whilst the computationally
intensive parts of the calculation are offloaded to the GPU, which acts as an accelerator. This means the overall
physical memory space isdistributed into the memory attached to the CPU and the high bandwidth GPU memory.
Furthermore, it is common for workstations or servers to contain multiple GPUs, each with their own memory
space. Traditionally, the PCl-express bus has been used to transfer data between the distinct spaces, but thisis
relatively low bandwidth and can often cause a bottleneck. The Pascal generation introduces a new interconnect,
NVLINK, which offers several-fold bandwidth improvements over PCI-express. NVLINK can be used to directly
connect multiple GPUs, and also to connect GPUs and CPUs together. For the latter, however, the CPU must also
be NVLINK-enabled, and at the time of writing the only NVLINK-enabled CPUs are the IBM Power series.

Inrelation to this, another modern feature fully supported by the Pascal generation is Unified Memory. Thisallows
the programmer to treat the distributed memory space described above as a single unified space, which can ease
programmability (although sometimes at the expense of performance). Thisfeature had partial support in previous
generations (with limitations and overheads), but the invent of 49-bit virtual addressing (corresponding to 512 TB,
large enough to cover the CPU virtual address space plusthe GPU memory) and page faulting meansthat it is now
fully supported in Pascal. Thisis discussed morein Section 3, “GPU Programming with CUDA”.

2.4. Specific information on Tier-1 accelerated clusters
2.4.1. DGX-1 Cluster at LRZ

DGX-1 cluster at LRZ, is a special computer designed to accelerate deep-learning applications and can reduce
the optimization and training of large neural networks from days to a few hours or even minutes thanks to its
enormous computing power of 170 Teraflop/s. For complete information about the DGX1 system refer to http://
www.nvidia.de/object/deep-learning-system-de.html

2.4.2. JURON (IBM+NVIDIA) at Juelich

JURON is apilot system comprises 18 IBM S822L.C servers ("Minksky") each with

» 21BM POWERS processors (up to 4.023 GHz, 2* 10 cores, 8 threads/core)

4 NVIDIA TeslaP100 GPUs ("Pascal")

4x16 GByte HBM memory attached to GPU

256 GByte DDR4 memory attached to the POWERS processors
* 1.6 GByte NVMe SSD
All nodes are connected to asingle Mellanox InfiniBand EDR switch.

For more technical information see https://indico-jsc.fz-juelich.de/event/27/session/2/contribution/1/materi-
al/slides/0.pdf

2.4.3. Eurora and PLX accelerated clusters at CINECA

For complete information on GPU accelerated resources at CINECA refer to: http://www.hpc.cinecait/con-
tent/gpgpu-general -purpose-graphi cs-processi ng-unit#gpgpuatCineca.

The GPU resources of the Eurora cluster consist of 2 nVIDIA Tesla K20 "Kepler" per node, with compute capa-
bility 3.x.

The GPU resources of the cluster PLX consist of 2 NVIDIA TeslaM2070 GPUs "Fermi" per node with compute
capability 2.0. Ten of the nodes are equipped with 2 NVIDIA QuadroPlex 2200 S4. The GPUs are configured with

http://www.nvidia.de/object/deep-learning-system-de.html
http://www.nvidia.de/object/deep-learning-system-de.html
http://www.hpc.cineca.it/content/gpgpu-general-purpose-graphics-processing-unit#gpgpuatCineca
http://www.hpc.cineca.it/content/gpgpu-general-purpose-graphics-processing-unit#gpgpuatCineca

Best Practice Guide - GPGPU

the Error Correction Code (ECC) support active, that offers protection of datain memory to enhance dataintegrity
and reliability for applications. Registers, L1/L 2 caches, shared memory, and DRAM all are ECC protected.

All tools and libraries required in the GPU programming environment are contained in the CUDA toolking. The
CUDA toolkit is made available through the “cuda’ module. When need to start a programming environment
session with GPUS, the first thing to do is to load the CUDA module.

2.4.4. MinoTauro accelerated clusters at BSC

For complete information on GPU accelerated resources at BSC refer to: http://www.bsc.es/marenostrum-sup-
port-services/other-hpe-facilities/nvidia-gpu-cluster

Figurel.

MinoTauro isaNVIDIA heterogeneous cluster with 2 configurations:

- 61 Bull B505 blades equiped with 2 M2090 NVIDIA GPU Cards and 2 Intel E5649 (6 cores) processor, 24 GB
of Main memory, 250 GB SSD (Solid State Disk) as local storage, and with a peak performance of 88 THops.

- 39 Bull R421-E4 servers, each server consists of: 2 K80 NVIDIA GPU Cards and 2 Intel Xeon E5-2630 v3
(Haswell) 8-cores processors, 128 GB of main memory distributed in 8 DIMMs of 16 GB, 128 GB SSD as local
storage and with a peak performance of 250.94 THops.

The operating system is RedHat Linux for both configuration.

2.4.5. GALILEO accelerated cluster at CINECA

For complete information on GPU accelerated resources at CINECA refer to: http://www.hpc.cineca.it/hard-
ware/galileo.

GALILEO cluster consist of 2 NVIDIA K80 per node on 40 nodes (80 GPUs in total) with 2 8-cores Intel Haswell
2.40 GHz per node, interna network: Infiniband with 4x QDR switche, model IBM NeXtScale.

2.4.6. Laki accelerated cluster and Hermit Supercomputer at
HLRS

For compl ete information on GPU accel erated resources at HLRS refer to: http://www.hlrs.de/systems/platforms/.
Laki is a SandyBridge and Nehalem based clusted with 32 Nvidia Tesla S1070 GPU nodes.
2.4.7. Cane accelerated cluster at PSNC

For complete information on GPU accel erated resources at PSNC refer to: https://hpc.man.poznan.pl/modules/re-
sourcesection/item.php?itemid=61.

http://www.bsc.es/marenostrum-support-services/other-hpc-facilities/nvidia-gpu-cluster
http://www.bsc.es/marenostrum-support-services/other-hpc-facilities/nvidia-gpu-cluster
http://www.hpc.cineca.it/hardware/galileo
http://www.hpc.cineca.it/hardware/galileo
http://www.hlrs.de/systems/platforms/
https://hpc.man.poznan.pl/modules/resourcesection/item.php?itemid=61
https://hpc.man.poznan.pl/modules/resourcesection/item.php?itemid=61

Best Practice Guide - GPGPU

Caneis Opteron accelerated cluster with 334 NVIDIA TeslaM2050 GPU modules.

2.4.8. Anselm cluster at IT4lnnovations

For complete information on GPU accelerated resources at 1T4lnnovations refer to: https://docs.it4i.cz/anselm-
cluster-documentation/hardware-overview.

The Ansalm cluster consist of 209 computational nodes where 180 are regular compute nodes and 23 are acceler-
ated with GPU Kepler K20 giving over 94 Tflop/s theoretical peak performance. Each node equipped with Intel
Sandy Bridge processors (16 cores) interconnected by fully non-blocking fat-tree Infiniband network.

2.4.9. Cy-Tera cluster at CaSToRC

For complete information on GPU accelerated resources at CaSTORC have a look at: http://www.cyi.ac.cy/
index.php/castorc/about-the-center/castorc-facilities.html.

The IBM Hybrid CPU/GPU Cy-Tera cluster consist of 98 twelve-core compute nodes and 18 dual-GPU compute
nodes.

2.4.10. Accessing GPU accelerated system with PRACE RI

For more recent information on GPGPU systems available follow the PRACE DECI Calls. More information is
available on the PRACE website: http://prace-ri.eu

https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview
https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview
http://www.cyi.ac.cy/index.php/castorc/about-the-center/castorc-facilities.html
http://www.cyi.ac.cy/index.php/castorc/about-the-center/castorc-facilities.html
http://prace-ri.eu

Best Practice Guide - GPGPU

3. GPU Programming with CUDA

GPUs do not replace CPUSs, but act as "accelerators' in conjunction with CPUs. The idea is that the application
initiates on the CPU as normal, but those computationally expensive parts that dominate the runtime are offloaded
to the GPU to take advantage of the many cores and high memory bandwidth.

Traditional programming languages such as C, C++ and Fortran are not capable, on their own, of performing such
offloading, since they have no concept of the distinct memory spaces and of the parallel GPU architecture. The
CUDA programming model defines language extensions which allow NVIDIA GPUsto be programmed in C and
C++. CUDA compilersand libraries are available for free directly from NVIDIA. There also exists the equivalent
CUDA Fortran, with compilers provided by the Portland Group (a subsidiary of NVIDIA).

In this chapter we will show how to use CUDA functionality to define and launch kernels which execute using
multiple threads concurrently on the GPU. Another major component of GPU programming is the management of
the distinct CPU and GPU memory spaces. Relatively recently, the introduction of the concept of Unified Memory
(See Section 2, “The GPU Architecture”) meansthat it isnow possibletowritefunctional CUDA programswithout
explicit memory management (and only minimal changesto theway data structuresare created). Although Unified
Memory has been available since the Kepler architecture, only in new Pascal architecture isit fully supported in
hardware without significant limitations. This functionality lowersthe barrier in creating aworking CUDA code,
but must be used with caution since it relies on the system to automatically perform the data transfers between
CPU and GPU which can be very expensive (see Section 4, “Best Practice for Optimizing Codes on GPUS").
So in this chapter we will include details on how to use Unified Memory, but also show how to use the explicit
memory management functionality of CUDA to have finer control of data movement between the distinct CPU
and GPU memory spaces.

3.1. Offloading Computation to the GPU

In this section we show how, using CUDA, we can specify that a certain operation should be offloaded to the GPU
rather than being executed on the CPU. To illustrate, we use a simple example where we convert temperature
values from the Celsius to the Kelvin scale.

3.1.1. Simple Temperature Conversion Example

To convert atemperature from the Celsius scale to the Kelvin scale, you add 273.15. To perform thisin software,
a reasonable approach is to operate on an input array, cel si us, converting each element to the corresponding
Kelvin value, which can be stored in a separate output array, kel vi n.

Using atraditional sequential programming model, the below C code would perform this operation for atotal of
N values.

for(i=0;i<Ni++){
kel vin[i]=cel sius[i]+273.15;
}

Thisloop isparalel in nature, since each iteration isindependent of every other. So, it is possible to use a parallel
processor such as a GPU, and distribute across the multiple cores. It isimportant to realise that NVIDIA GPUs
architecturally have a 2-level hierarchy:

Best Practice Guide - GPGPU

Figure 2. GPU architecture hierarchy

-

GPU SM

SM SM EEEEEEERAERN
| | EEEEEEEBAER
N ™
. EEEEEEEEE

SM sM EEEEEEEEE

b EEEEEEEER
EEEEEEEER

Shared memory

Each chip comprises multiple Stream Multiprocessors (SMs), each featuring multiple cores. The aim of CUDA
is to abstract this architecture in a way which allows good performance, not just for a specific GPU version but
across the whole family of GPUs (which may differ in terms of the number of SMs and cores per SM). CUDA
therefore uses the concept of a Grid of Thread Blocks, where the multiple blocks in a grid map onto the multiple
SMss, and each block contains multiple threads, mapping onto the coresin an SM. When programming in CUDA it
isnot necessary to know the exact details of the hardware (i.e. number of SMs or cores per SM), sincetypically it
is best to oversubscribe (i.e. use more blocks than SM's, and more threads than cores), and the system will perform
scheduling automatically. This allows the same code to be portable and efficient across different GPU versions
with different specific configurations. (Notethat, for architectural reasons, threads actually operatein groups of 16
called warps asdescribed in Section 4, “Best Practice for Optimizing Codes on GPUS’. This detail isimportant
to appreciate in relation to performance, but is not explicitly reflected in the programming model.)

So, going back to our temperature conversion example, we can express the operation asa CUDA kernel asfollows
(noting, as we will explain, that thisis not yet an optimal final version):

__global __ void convert(float *kelvin, float *celsius){

int i = threadldx. x;
kel vin[i]=celsius[i]+273.15;

Note that the loop has disappeared (since we are exploiting parallelism), and the code which originally appeared
in the loop body now is contained within a function. The gl obal __ specifier is used to specify that this
functionistoform aGPU kernel. Theinternal CUDA variablet hr eadl dx. x isuniqueto each thread in ablock:
this replaces the loop index. When this kernel is run in parallel across multiple threads, each thread will have a
different value of t hr eadl dx. x and therefore i , so will perform the conversion of one specific temperature
valuein the array.

Now we launch this kernel by calling the function on multiple CUDA threads using special CUDA bracketing
syntax:

10

Best Practice Guide - GPGPU

di 8 bl ocksPerGid(1,1,1); //use only one block
di n8 threadsPerBl ock(N,1,1); //use N threads in the bl ock

conver t <<<bl ocksPer G'i d, threadsPerBl ock>>>(kel vin, celsius);
cudaDevi ceSynchroni ze() ;

The dim3 types (which simply each comprise 3 integers corresponding to X, Y and Z directions), combined with
the special syntax within the function call, are used to specify the CUDA decomposition into blocks and threads.
Thissolutionissub-optimal sinceonly uses 1 block, i.e. only 1 SM onthe GPU (and theremaining SMswill remain
idle). Also, it assumesthat N, the total number of valuesto be converted, is smaller than the maximum number of
threads per block (which will be limiting for real examples). In practice, we need to use multiple blocks, e.g.:

__global __ void convert(float *kelvin, float *celsius){
int i = blockldx.x * blockDimx + threadl dx. x;
if (i<N

kel vin[i]=cel sius[i]+273. 15;

di nB bl ocksPer Gri d((N+THREADS_PER BLOCK- 1) / THREADS_PER BLCCK, 1, 1);
di 8 t hreadsPer Bl ock(THREADS_PER BLOCK, 1, 1);

convert <<<bl ocksPer Gri d, threadsPerBl ock>>>(kel vin, celsius);
cudabDevi ceSynchroni ze();

The loop index is now replaced with a unique global thread index, calculated through use of t hr eadl dx. x
(uniqueto each thread in ablock) together withbl ockdl dx. x (uniquetoeachblockinagrid) andbl ockDi m x
(the number of threads per block). The THREADS PER_BL OCK variable can be tuned through experimentation,
but typically should beasmall multiple of 32 (with 128,256,512 commonly used values). Thecodeused toinitialise
bl ocksPer Gri d just ensuresthat there are enough blocks even when N does not perfectly divide by the number
of threads per block (and, similarly, the conditional statement in the kernel ensuresthat no more than N threadstry
to operate on the data). The call to cudaDevi ceSynchr oni ze ensures that the GPU has finished executing
the kernel before any further work is done on the CPU (and it is possible to overlap work on the CPU and GPU
where dependencies allow, by inserting suitable code after the kernel launch and before the synchronisation).

In Section 2, “The GPU Architecture”, we stated that the GPU offers performance benefits over regular CPUs due
to two main factors: superior compute capability and superior memory bandwidth. The reader therefore may be
curious as to what to benefit to expect, in this context, from porting a kernel such as the above to the GPU archi-
tecture. A standard methodology for comparing observed performance to the capability of the hardware involves
the “Roofline” model as given in (Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: an insightful
visual performance model for multicore architectures. Communications of the ACM, 52(4):65-76.). Thisusesthe
concept of “Operational Intensity” (Ol): the ratio of operations to bytes accessed from main memory. The Ol, in
Flops/Byte, can be calculated for each computational kernel. A similar measure (also given in Flops/Byte), exists
for each processor: the ratio of peak operations per second to the memory bandwidth of the processor. This quan-
tity, which gives a measure of the balance of the processor, is known as the “ridge point” in the Roofline model.
Any kernel which has an Ol lower than the ridge point is limited by the memory bandwidth of the processor, and
any which has an Ol higher than theridge point islimited by the processor’ sfloating point capability. In the above
case, we are only performing a single operation (+) for each 8 bytes accessed (one load plus one store, where

11

Best Practice Guide - GPGPU

the word length is 4 bytes in single precision), so the Ol will be low compared to the ridge point of any modern
system and the operation will be memory bandwidth bound. Therefore, in this case, the expected performance
increase can be predicted by looking up the peak memory bandwidths of the specific GPU and CPU architectures
of interest and taking ratios.

3.1.2. Multi-dimensional CUDA decompositions

The previous example was naturally one dimensional since we operated on a 1D array of temperature values. But
many problems are naturally of higher dimension, e.g. linear algebrainvolving 2D matrices or CFD in 3D space.
The the CUDA grid and blocks can be 1D, 2D or 3D to best fit the algorithm, e.g. for matrix addition:

__global __ void matrixAdd(float a[NJ[N], float b[NJ[N],float c[N[N){
int i = blockldx.x * blockDimx + threadl dx. x;

int j = blockldx.y * blockDimy + threadldx.y;

} clillil =ali]l[jil + b[il[jl;

di 8 bl ocksPerGid(N 16, N 16, 1); // (N 16)x(N 16) bl ocks/grid (2D)
di nB threadsPerBl ock(16, 16, 1); // 16x16 threads/ bl ock (2D)
mat ri xAdd<<<bl ocksPer Gri d, threadsPerBl ock>>>(a, b, c);

It can be seen that the . y components of the CUDA variable are now also being invoked, in addition to the . x
components. Note that the above code assumes that 16 divides N exactly; this can be made more general in a
similar way to the previous 1D example.

3.2. Memory Management
The GPU has a separate memory space from the host CPU:

Figure 3. CPU/GPU memory scheme

DRAM GDRAM/HBM?2
| [

CPU GPU

0 PCle s

Asdescribed at the start of this chapter, recent advancesin CUDA and in hardware allow this aspect to be largely
hidden from the programmer with automatic data movement, but for performanceit is often necessary to manually

12

Best Practice Guide - GPGPU

manage these distinct spaces. In this section we first describe the simplistic solution using unified memory, which
can be used as an incremental stepping stone to manual data management, which we go on to describe.

3.2.1. Unified Memory

Returning to our temperature conversion example, it can be seen that the cel si us and kel vi n arrays are
accessed on the GPU. Before the GPU kernel commences, the cel si us array must be initialised with data on
the CPU, and after the kernel isfinished the resulting kel vi n array will be further processed (e.g. printed out),
again using the CPU. With Unified Memory, the data can be accessed in such a unified manner on either the CPU
or GPU if alocated using the cudaMal | ocManaged call, and freed using cudaFr ee, e.g.

fl oat *cel si us;

float *kel vin;

cudaMal | ocManaged(&cel si us, Ntsizeof (float));
cudaMal | ocManaged(&el vin, N¢tsizeof (float));

setup, |aunch kernel, process output
cudaFr ee(cel si us);

cudaFr ee(kel vi n);

The datawill be automatically transferred to/from the GPU as necessary.

3.2.2. Manual Memory Management

Often, it is highly desirable for performance reasons (or if utilising older hardware that does not support Unified
Memory), to explicitly manage GPU memory and copy datato/from it before/after the kernel islaunched. Analo-
goustotheCmal | oc andf r ee cals, cudaMal | oc isused to allocate GPU memory and cudaFr ee releases
it again. So, for the temperature conversion example, we have the following

float *d_cel sius;

float *d_kel vin;

cudaMal | oc(&d_cel sius, N+sizeof (float));
cudaMal | oc(&d_kel vin, Ntsizeof(float));

cudaFree(d_cel sius);
cudaFree(d_kel vin);

It can be seen that thisis very similar to the Unified Memory case, but now the datais only accessible on the GPU
device (and to keep track of this we have prefixed the names with d_). Therefore, once this memory has been
allocated on the GPU, we need to be able to copy data to/from it. cudaMentpy, analogous to the C nenctpy,
doesthis, e.g.

cudaMenctpy(d_cel si us, cel sius, N¢sizeof(float), cudaMencpyHost ToDevi ce);
...launch kernel ...

cudaMencpy(kel vin, d_kelvin, N*si zeof (fl oat), cudaMentpyDevi ceToHost);

13

Best Practice Guide - GPGPU

Thefirst and second arguments specify the destination and source memory locations respectively. Thethird argu-
ment specifies the amount of data, and the final argument specifies the direction of transfer. The cel si us and
kel vi n arrays now refer to separate arrays which must exist on the host CPU; it can be seen that the programmer
is now responsible for manually keeping the CPU and GPU copies of these arrays up-to-date from each other as
and when required.

Transfers between host and device memory are relatively slow and can become a bottleneck, so should be min-
imised when possible, as discussed in the next chapter.

3.3. Synchronization

Kernel calls are non-blocking: the host program continues immediately after it calls the kernel. This alows the
overlap of computation on CPU and GPU. The cudaDevi ceSynchroni ze() cal waits for the kernel to
finish. Standard cudaMentpy calls are blocking (but non-blocking variants exist).

Within a kernel, to synchronize between threads in the same block usethe synct hr eads() call. Thisalows,
for example, threads in the same block to communicate through memory spaces that they share. For example,
assuming x islocal to each thread and ar r ay isin a shared memory space, the value of x can be communicated
from thread O to thread 1 asfollows:

if (threadldx.x == 0)
array[0] =x;
synct hreads() ;

if (threadldx.x == 1)
x=array[0];

Notethat it is not possiblefor threads that exist in different blocksto communicate with each other within asingle
kernel. If such communication is necessary, then multiple kernels will be required.

14

Best Practice Guide - GPGPU

4. Best Practice for Optimizing Codes on
GPUs

In order to get good performance on the GPU architecture, it is often necessary to perform code optimization.
This section highlights some key GPU performance issues, and provides optimization advise. Concentration ison
the NVIDIA GPU (with particular attention to the latest Pascal models), but many concepts will be transferable
to other accelerators.

Most performance bottlenecks are related to data movement. This figure shows an overview of the architecture of
anode/workstation containing a NVIDIA Pascal GPU:

DRAM GDRAM/HBM2Z
1 o T | |
PCle or

NVLINK |NVIDIA Pascal
CPU e GPU

The connecting lines represent data movement channels. The GPU and CPU are connected to each other via ei-
ther a PCl-e or NVLINK bus (which have relatively low bandwidth and high latency, although NVLINK has
several times higher bandwidth than PCI-€). The GPU is connected to a high-bandwidth GDRAM or even higher
bandwidth HBM2 memory space. On the GPU chip itself, there exist relatively small memory spaces with high-
er bandwidth and lower latency than the off-chip memory. A key to optimisation is to limit data movement by
organising the application such that it can use aslocal amemory space as possible for key parts of the algorithm:
this will maximise the bandwidth and minimize the latency for the data movement required by the application.
It is also possible to hide latency through use of multithreading. Some techniques for achieving these goals are
discussed in more detail below.

4.1. Minimizing PCI-e/NVLINK Data Transfer Overhead

The CPU (host) and GPU (device) have separate memory spaces. All data read/written on the device must be
copied to/fromthedevice (over the PCIe/NVLINK bus). Thisisvery expensive, soitisimportant to try to minimize
copies wherever possible, and keep data resident on device. This may involve porting more routines to device,
even if they are not computationally expensive. For example, code such as the following

Loop over tinmesteps
i nexpensi ve_routine_on_host (data_on_host)
copy data from host to device
expensi ve_routi ne_on_devi ce(data_on_devi ce)
copy data from device to host

End | oop over timesteps

would be optimized by porting the inexpensive routine to device and moving the data copies outside of the loop:

copy data from host to device
Loop over tinmesteps
i nexpensi ve_routine_on_devi ce(data_on_device)
expensi ve_routine_on_devi ce(data_on_devi ce)
End | oop over tinesteps

15

Best Practice Guide - GPGPU

copy data from device to host

Also, in some cases it may be quicker to calculate quantities from scratch on the device instead of copying from
the host.

4.2. Being Careful with use of Unified Memory

As described in Section 2, “The GPU Architecture” and Section 3, “GPU Programming with CUDA”, the new
Pascal products feature unified memory which can make it easier to write CUDA applications. However, code
that uses unified memory will result in PCI-e/NVLINK data movements being performed automatically, and these
can result in the same bottlenecks as described in the previous section. Therefore, it is important to structure
applications such that data can be kept resident on the device, by porting all routines to the device, in the same
way as described above. To ensure that data transfers are minimised, it may be necessary to use manual data
management rather than unified memory for key parts of the application.

4.3. Occupancy and Memory Latency

When programming for the GPU architecture, the programmer decomposes loops to threads. Obviously, there
must be at |east as many total threads as cores, otherwise coreswill be left idle. For best performance, we actually
want the number of threads to be much greater than the number of cores. Accesses to off-chip memory have
several hundred cycles latency: when athread stalls waiting for data, if another thread can switch in this latency
can be hidden. NVIDIA GPUsfeature very fast thread switching, and support many concurrent threads. The GPU
architecture supports thousands of concurrent threads on an SM. But note that resources must be shared between
threads: high use of on-chip memory and registers will limit number of concurrent threads. Typically it is best to
use at least tens or hundreds of thousands of threads in total. The optimal number of threads per block should be
found by experimentation. For example, the (serial) code

Loop over i from1 to 512
Loop over j from1 to 512
i ndependent iteration

could be ported to the GPU using a 1D decomposition:

Calc i fromthread/block ID
Loop over j from1 to 512
i ndependent iteration

or a 2D decomposition:

Calc i &j fromthread/block ID
i ndependent iteration

The latter will be more optimal since it results in 262,144 threads, as opposed to just 512.

4.4. Maximizing Memory Bandwidth

The memory bandwidth for the GDRAM or HBM2 memory on the GPU is high compared to the CPU, but there
are many data-hungry cores so memory bandwidth is still a performance bottleneck. The maximum bandwidth

16

Best Practice Guide - GPGPU

is achieved when data is loaded for multiple threads in a single transaction: this is called memory coalescing.
Thiswill happen when data access patterns meet certain conditions: 16 consecutive threads (i.e. ahalf-warp) must
access data from within the same memory segment. This condition is met when consecutive threads read consec-
utive memory addresses within awarp. If the condition is not met, memory accesses are serialized, significantly
degrading performance. Adapting code to allow coalescing can dramatically improve performance. For example,
the code

row = bl ockl dx. x*bl ockDi m x + threadl dx. x;
for (col =0; col<N; col ++)
output[row][col]=2*input[row][col];

will not result in coalesced memory accesses since consecutive threads belong to consecutive rows, but the data
structures are stored in row-major format (in C), so consecutive row values do not have consecutive memory
addresses. The aternative

col = bl ockl dx.x*bl ockDi m x + threadl dx. x;
for (row=0; row<N, rowt+)
output[row][col]=2*input[row][col];

will result in coalesced memory accesses, so will be more optimal.

4.5. Use of on-chip Memory

Expensive off-chip memory accesses can be avoided altogether if the on-chip memory can be utilized, but these
are relatively small resources. Here we briefly describe the types of on-chip memory: for full usage instructions
see The CUDA Programming Guide [https:.//docs.nvidia.com/cuda/cuda-c-programming-guide] .

4.5.1. Shared Memory

Each NVIDIA SM has a"shared memory" space accessibleto all threadsin ablock. For certain algorithmswhich
involve re-use of small amounts of datawithin each thread block, it may be beneficial to utilise this memory space
through declaring variableswiththe _shar ed__ qualifier, and performing direct copies within the kernel.

4.5.2. Constant Memory

There also exists read-only "Constant memory" on the GPU which isideal for parametersthat stay constant for the
duration of the kernel. These can be used in a similar way to regular GPU data structures, but should be declared
usingthe___const ant __ qualifier and data should be transferred using cudaMencpy ToSynbol library call.

4.5.3. Texture Memory

Another form of on-chip memory isthe texture cache, which can be used as atemporary location for storing read-
only memory that permanently resides in off-chip global memory. It is quite involved to explicitly use texture
memory, but the system will try to automatically exploit it for any data structures that are passed as arguments
into functions, where the function declaration includes both theconst and __restri ct __ keywords, e.g.

voi d nyfunction (const double* _restrict__ nydata);

4.6. Warp Divergence

On NVIDIA GPUs, there are less instruction scheduling units than cores. Threads are scheduled in groups of 32,
called awarp. Threads within awarp must execute the same instruction in lock-step (on different data elements).

17

https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide

Best Practice Guide - GPGPU

The CUDA programming allows branching, but this resultsin all coresfollowing all branches, with only the re-
quired results saved. Thisisobviously suboptimal; it isimportant to avoid intra-warp branching wherever possible

(especially in key computational sections). For example, suppose you want to split your threads into 2 groups,
each to perform a separate task. The code

i = bl ockldx.x*bl ockDim x + threadl dx. x;
if (iR == 0)

el se

would lead to threads within awarp diverging, whilst the alternative

i = bl ockl dx. x*bl ockDi m x + threadl dx. x;
if ((i/32)9® == 0)

el se

would result in threads within warp following same path, and would hence be more optimal.

18

Best Practice Guide - GPGPU

5. Multi-GPU Programming

It iscommonplacefor modern workstations or compute nodes to contain multiple GPUs, for examplethefollowing
image depicts a node containing two GPUs (plus two CPUS):

PCle
ﬂ———*
GPU +
CPU GDRAM/
HBM2
Interconnect ||
DRAM
/ GPU +
CPU GDRAM/
Interconnect allows HBM2
multiple nodes to be
connected PCle
1/0

Furthermore, it is possible to connect multiple nodes together via an interconnect to form large GPU-enabled
compute clusters or supercomputers:

GPU+CPU GPU+CPU GPU+CPU
Node Node Node
GPU+CPU GPU+CPU GPU+CPU
Node Node . Node
GPU+CPU GPU+CPU GPU+CPU
Node Node v Node

5.1. Multi-GPU Programming with MPI

In this best-practice guide, you have seen how to adapt an application to utilise a GPU using CUDA. Managing
multiple GPUs from a single CPU thread can be done using the CUDA call cudaSet Devi ce() , for example:

cudaSet Devi ce(0);
kernel <<<...>>>(...);
cudaSet Devi ce(1);

kernel <<<...>>>(...);

A common way to utilise multi-GPU architectures (with the GPUs possibly distributed across multiple nodes) is
to combine CUDA with MPI. You can simply set the number of MPI tasks equal to the number of GPUs, and
each MPI task controlsits own GPU (where, if there are multiple GPUs per node, cudaSet Devi ce can beused
in asimilar fashion to the above).

19

Best Practice Guide - GPGPU

REGULAR MPI GPU TO REMOTE GPU

MPI Rank 0 MPI Rank 1

oo [N 1
$ *

v [y I W I =) I [

To handle MPI communications, the user can either explicitly copy from/to the GPU with CUDA before/after
any MPI communications which access host data, or use CUDA-aware MPI (if available) such that MPI directly
accesses GPU memory. Several CUDA -aware implementations are available, including

* MVAPICH2 1.8/1.9b

e OpenMPI 1.7 (beta)

« CRAY MPI (MPT 5.6.2)
e IBM Platform MPI (8.3)

Theideaisto avoid the coding overhead of copying the data from the device to the host but rather pass the GPU
Buffersdirectly to MPI, e.g.:

/1 MPl rank O

MPI _Send(s_buf _d, size, MPI _CHAR, 1, 100, M°PI _COVM WORLD) ;

/1 MPl rank n-1

MPlI _Recv(r_buf_d, size, MPl _CHAR, 0, 100, MPI _COW WORLD, &st atus);

which is equivalent to:

/1 MPI rank O
cudaMencpy(s_buf _h,s_buf _d, size, cudaMentpyDevi ceToHost) ;
MPlI _Send(s_buf _h, size, MPl _CHAR, 1, 100, MPl _COVM WORLD) ;

/1 MPl rank 1
MPlI _Recv(r_buf_h, size, MPl _CHAR, 0, 100, MPI _COVWM WORLD, &st at us);
cudaMencpy(r_buf _d,r_buf _h, size, cudaMentpyHost ToDevi ce) ;

5.2. Other related CUDA features

In this section we briefly describe some other related features of CUDA.

» Hyper-Q: multiple threads or processes can launch work on asingle GPU.

* Dynamic parallelism: Allowing a CUDA kernel to create and synchronize new nested work.
» GPUDirect: Allowing communication between devices.

* Unified Virtual Addressing: Unified memory address space.
5.2.1. Hyper-Q

Hyper-Q enable mutiple threads or processes on the CPU to launch work on a single GPU simultaneously. This
lead to better utilization of the GPU resources. The total number of connections between the host and the GPU is
32. Hyper-Q connections from multiple CUDA streams or from multiple MPI processes.

20

Best Practice Guide - GPGPU

Figure 4. Hyper-Q multiple threads launching work on the GPU

GPU

/"
\.:*

CPU

5.2.2. Dynamic parallelism

Dynamic parallelism givesthe ability for a CUDA kernel to create and synchronize new nested work, launch other
kernels using the CUDA runtime API, synchronize on kernel completion, do device memory management, and
create and use streams and events.

Figure 5. GPU creating new nested work

AR

Time

\

CPU

D/D
5.2.3. RDMA

RDMA introduced in CUDA 8.0 enables adirect path for communi cation between the GPU and a peer device via
PCI Express. GPUDirect and RDMA enable direct memory access (DMA) between GPUs and other PCle devices,
Peer-To-Peer transfers between GPUs, and Peer-To-Peer memory access.

Figure 6. Peer-To-Peer GPU DirectAccess

GPU [GPU 1
O
GPU Memory GPU Memory

Load/Store

PCl bus

21

Best Practice Guide - GPGPU

Peer-To-Peer GPU DirectAccess is a single node optimization technique - load/store in device code is an opti-
mization when the 2 GPUs that need to communicate are in the same node, but many applications also need a
non-P2P code path to support communication between GPUs in different nodes which can be used when commu-
nicating with GPUs separated by a QPI bus aswell.

Figure 7. Peer-To-Peer GPUDirect Transfer

PCI bus

.
GPU GPU
A A
v vy Vv
~
GPU Memory GPU Memory
| ~

cudaMemcpy()

Peer-To-Peer GPUDirect Transfer is always supported cudaMemcopy () automatically falls back to "Device-to-
Host-to-Device" when P2P is unavailable

5.2.4. Virtual addressing

Unified virtual addressing (UVA) introduced in CUDA 4.0 isavailable on Fermi and Kepler class GPUs. Memory
address management system is enabled by default in CUDA 4.0 and later releases on Fermi and Kepler GPUSs.
The virtual address (VA) range of the application is partitioned into two areas. the CUDA-managed VA range
and the OS-managed V A range.

Figure 8. Unified Virtual Addressing

Without UVA
GPU_0 Memory GPU_1 Memory System memory
0x0000 0x0000 0x0000
OxFFFF OxFFFF OxFFFF
GPU_O GPU_1 CPU
PCle
With UVA
GPU_0 Memory GPU_1 Memory System memory
0x0000
OxFFFF
GPU_0 GPU_1 CPU

PCle

22

Best Practice Guide - GPGPU

5.2.5. Debugging and Profiling

Asthe complexity of debugging and profiling increases with the number of threads the absolute recommendation
isto use a parallel debugger/profiler preferrably with a graphical user interface to debug GPU accelerated code.
Examples of parrallel visual debuggers/profilersare AllineaDDT, NVIDIA Nsight (for Visual studio or Eclipse)
VampirTrace or TotalView.

Other tools for MPI+CUDA applications:

e - Memory checking: cuda- nentheck whichissimilar to Valgrind's memcheck, can be usein aMPI enviro-
ment: npi exec -np 2 cuda- menctheck ./ mayexe (args)

» - Debugging:cuda- gdb, just like gdb, and cabe used: npi exec -x -np 2 xterm-e cuda-gdb ./
myexe (args)

» - Profiling with nvprof and the NVIDIA Visua Profiler (nvvp). Embed MPI rank in output file-
name, process name, and context name, and can be use. npirun -np $np nvprof --
output-profile profile.%g{OwWl _COW WORLD RANK} , or --process-nane "rank
%g{ OVPI _COMM WORLD RANK} ,or--context-name "rank %g{ OvPl _COVM WORLD RANK} .
Once the files"*.nvprof" are generated start: nvvp program nane. *. nvpr of

With CUDA_ENABLE_COREDUMP_ON_EXCEPTION=1 core dumps are generated in case of an exception,
and can be use for offline debugging.

23

Best Practice Guide - GPGPU

6. GPU Libraries

6.1. The CUDA Toolkit 8.0

Within the CUDA programming model there are built-in libraries that provide efficient realization of different
algorithms on the GPU without having to write the GPU code yourself. These libraries provide highly-optimized
algorithms and functions, which you can incorporate into your new or existing applications. Some of these algo-
rithms can be found in the CUDA Toolkit, the newest production release of which isthe CUDA Toolkit 8.0. The
toolkit also contains a CUDA compiler and various tools for debugging and optimization.

The CUDA Tooalit inludes the following libraries:

e CUFFT - an implementation of the Fast Fourier Transform;

* CUBLAS- acomplete BLASlibrary;

* CUSPARSE - alibrary for handling sparse matrices;

» cURAND - arandom number generator;

* NPP - aset of performance primitives for image and video processing;

e Thrust - template parallel algorithms and data structures and

» CUDA Runtime and Math Libraries that provide system calls and high performance mathematical routines.

The standard use of routines from the CUDA libraries follows this scheme: applications allocate the required
variablesin the GPU memory space, fill them with data, execute a sequence of desired functions on them and then
return the results from the device memory to the memory of the host.

6.1.1. CUDA Runtime and Math libraries

CUDA Runtime Library contains important system calls needed for the operation of the device and other basic
functions, for example: memory access. CUDA Mathematical Library isacollection of all C/C++ standard library
mathematical functions that are supported in device code, as well asintrinsic functions which are only supported
in device code. Thislibrary isaccessible by ssmply adding #i ncl ude mat h. h inthe source code. All functions
are extensively tested, and information about the error bounds being also available, see: http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html#mathemati cal -functions-appendix.

6.1.2. CUFFT

The cuFFT library provides asimpleinterface for computing discrete Fourier transforms of complex and real-val-
ued data sets on the GPU. The library provides an algorithm for every data input size and is highly optimized
for input sizes that can be written in the form 2a 3b 5¢ 7d. There is a complex to complex, real to complex and
complex to real input to output in 1D, 2D and 3D for transform sizes up to 128 million elementsin single and 64
million elements in double precision in any dimension, limited only by the available device memory. For more
details on cuFFT see: http://docs.nvidia.com/cuda/cufft/index.html.

6.1.3. CuBLAS

CuBLAS is NVIDIA's solution for a GPU-accelerated version of the complete standard BLAS (Basic Linear
Algebra Subroutines) library, supporting al 152 standard BL ASroutinesusing single, double, complex and double
complex datatypes. It supports multiple GPU's and concurrent kernels. Since CUDA Toolkit version 5, the device
API can be called also from CUDA kernels and there is a batched LU factorization API.

Within cuBLAS datais stored in column-major style and with 1-based indexing. For C/C++ applications macros
should be defined to convert to their native array semantics in order to implement matrices on top of one-dimen-

24

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#mathematical-functions-appendix
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#mathematical-functions-appendix
http://docs.nvidia.com/cuda/cufft/index.html

Best Practice Guide - GPGPU

sional arrays. In case of natively written C/C++ code with 0-based indexing, the array index of a matrix element
inrow i and columnj can be computed with the following macro:

#define Index2C(i,j,1d) (((j)*1d))+(i))

where | d is the leading dimension of the matrix, which in the case of column-major storage is the number of
rows of the allocated matrix.

The cuBLAS ibrary can be used viathe legacy APl when including thecubl as. h header file. It is recommend-
ed to use the new version of the API for its greater functionality and for being more consistent with other CU-
DA libraries by including the cubl as_v2. h header file. In addition, applications using the CUBLAS library
need to link against the DSO cubl as. so (Linux), the DLL cubl as. dl | (Windows), or the dynamic library
cubl as. dyl i b (Mac OS X). (http://docs.nvidia.com/cuda/cublas/index.html).

6.1.4. CUSPARSE

The NVIDIA CUDA Sparse Matrix library provides a set of basic linear algebra subroutines that operate with
sparse matrices and is designed to be called from C or C++ applications. It supports severa types of storage
formats of the matrices— dense, coordinate, compressed sparse row, compressed sparse column and hybrid storage
formats of float, double, complex and double complex data types. The library routines are classified in 3 levels of
operations, which can handle sparse vector by dense vector operations, sparse matrix by dense vector and sparse
matrix by aset of dense vectorsoperations. Thereisalso aconversion level, which includes operationsthat convert
matricesin different matrix formats.

Other features of thelibrary aretheroutinesfor sparse matrix by sparse matrix addition and multiplication, asparse
triangular solver and atri-diagonal solver.

The cuSPARSE library can be used via the legacy APl when including the cuspar se. h header file. It is rec-
ommended to use the new version of the API for its greater functionality and for being more consistent with other
CUDA libraries by including cuspar se_v2. h header file. Applications using the CUBLAS library need to
link against the DSO cuspar se. so (Linux), the DLL cuspar se. dl | (Windows), or the dynamic library
cuspar se. dyl i b (Mac OS X) (http://docs.nvidia.com/cuda/cusparse/index.html).

6.1.5. CURAND

CuRAND istheNVIDIA CUDA library for random number generation. It isvery flexible and consists of two parts
- astandard CPU library for execution on the host, which is accessible viathe cur and. h header file and device
library for the GPU, accessible viathe cur and_ker nel . h header file. Random numbers can be generated on
the host or on the device. In this case, other user written kernels can use the random numbers without having to
copy them in the global memory of the device or to transfer them to the host and back.

There are seven types of random number generators in cuRAND that fall in two categories — pseudo-random
number and quasi-random number generators, including the MRG32k3a, MTGP, XORWOW and Sobol algo-
rithms with adjustable options. Random number generators support sampling from uniform, normal, log-normal
and Poisson distributions in single and double precision (http://docs.nvidia.com/cuda/curand/index.html).

6.1.6. NPP

NPP is NVIDIA's CUDA Performance Primitives library and contains over 1900 image processing, 600 signal
processing and numerous video processing routines. The main feature of thelibrary isthat it iswritten in away that
eliminates unnecessary data transfer to/from the Host memory. It also supports data exchange and initialization,
arithmetic and logical operations, color conversions, several filter functions, jpeg functionality, geometry trans-
forms, statistics functions and more (https://devel oper.nvidia.com/sites/defaul t/files/akamai/cudal/filess CUDAD-
ownloads/NPP_Library.pdf).

25

http://docs.nvidia.com/cuda/cublas/index.html
http://docs.nvidia.com/cuda/cusparse/index.html
http://docs.nvidia.com/cuda/curand/index.html

Best Practice Guide - GPGPU

6.1.7. Thrust

ThrustisaC++ templatelibrary for CUDA, based on the Standard Template Library (STL). It containsacollection
of paralel algorithms and data structures, which provide a high-level interface for GPU programming (http://
docs.nvidia.com/cuda/thrust/index.html).

6.1.8. cuSOLVER

The cuSolver library is a high-level package based on the cUBLAS and cuSPARSE libraries. It combines three
separate libraries under asingle umbrella, each of which can be used independently or in concert with other toolkit
libraries (http://docs.nvidia.com/cudal/cusol ver/index.html).

6.1.9. NVRTC (Runtime Compilation)

NVRTC is aruntime compilation library for CUDA C++. It accepts CUDA C++ source code in character string
formand createshandlesthat can be used to obtainthe PTX. The PTX string generated by NVRTC can beloaded by
cuModulel oadData and cuM odul el oadDataEx, and linked with other modules by cuLinkAddData of the CUDA
Driver API. This facility can often provide optimizations and performance not possible in a purely offline static
compilation.

6.2. Other libraries

There are also other libraries for accelerating CUDA applications delivered both from NVIDIA, as well as from
third parties.

6.2.1. CULA

The CULA libraries contain linear algebra routines for both dense and sparse matrices.

6.2.2. NVIDIA Codec libraries

The NVIDIA Codec libraries provide tools for video encoding and decoding on NVIDIA GPU's.

6.2.3. CUSP

The CUSPlibrary isaC++ templatelibrary for sparse matrix computations, devel oped by Nathan Bell and Michael
Garland.

6.2.4. MAGMA

MAGMA isadense linear algebralibrary for heterogeneous/hybrid architectures such as "multicore+GPU" sys-
tems.

6.2.5. ArrayFire

The ArrayFire library contains functions for mathematical operations, signal and image processing, statistics and
more and isavailable for C, C++ and Fortran programming languages. It can be used on AMD, Intel and NVIDIA
hardware both under CUDA and OpenCL.

26

http://docs.nvidia.com/cuda/thrust/index.html
http://docs.nvidia.com/cuda/thrust/index.html
http://docs.nvidia.com/cuda/cusolver/index.html

Best Practice Guide - GPGPU

7. Other Programming Models for GPUs
7.1. OpenCL

OpenCL (Open Computing Language) isthe first open, royalty-free standard for cross-platform, parallel program-
ming of modern processors found in personal computers, servers and handheld/embedded devices. OpenCL is
maintained by the non-profit technology consortium Khronos Group. It has been adopted by Apple, Intel, Qual-
comm, Advanced Micro Devices (AMD), Nvidia, Altera, Samsung, Vivante and ARM Holdings. OpenCL 2.0 is
the latest significant evolution of the OpenCL standard, designed to further simplify cross-platform programming,
while enabling arich range of algorithms and programming patternsto be easily accelerated. Some of the features
added to OpenCL 2.0 are;

 Shared Virtual Memory: host and device kernels can directly share complex, pointer-containing data structures
such astrees and linked lists, eliminating costly data transfers between host and devices.

» Dynamic Parallelism: device kernels can enqueue kernel s to the same device with no host interaction, enabling
flexible work scheduling paradigms and avoiding the need to transfer execution control and data between the
device and host

» C11 Atomics: asubset of C11 atomics and synchronization operations to enable assignments in one work-item
to be visible to other work-items in a work-group

Unfortunately, not all devices currently support OpenCL 2.0. Only the GPUsfrom Intel and AMD support it, with
NVIDIA lagging behind and offering support only for OpenCL 1.2.

OpenCL views a computing system as consisting of a number of compute devices. The compute devices can
be either CPUs or accelerators, such as graphics processing units (GPUs), or the many-core Xeon Phi, attached
to a CPU. OpenCL defines a C-like language for writing programs, and the functions that are executed on an
OpenCL device are called "kernels'. Besides the C-like programming language, OpenCL defines an application
programming interface (API) that allows host programs to launch compute kernels on the OpenCL devices and
manage device memory. Programs in the OpenCL language are intended to be compiled at run-time (although
it's not strictly required), so that OpenCL-using applications are portable between implementations for various
host devices.

OpenCL platform and execution model

Figure 9. OpenCL vs. CUDA vs. DirectCompute terminology .

Execution Model
OpenCL |DirectCompute CUDA Definition/Comment
Kernel Compute Shader Kernel Instruction stream that operates on many data items (~10,000s)
Work-item [Thread Thread Data element in a kemnel, conceptually similar to a SIMD lane
Work-group |Thread Group Thread Block [Work-items (~100s) that communicate and logically execute together
MN-D Range |Dispatch Grid Organization of a kernel into a 1-3 dimensional array of work-groups
Vec2-16 Vec2-4 Vec2-4 General vector support is necessary for a broad hardware ecosystem

Memory Regions
OpenCL |DirectCompute CUDA Definition

Private NA Local Private variables for each work-item

Local Thread Local Storage |Shared Shared RAW variables for all work-items in a work-group
Constant |Constant Constant Read only data for an entire kernel

Global Global Global R/VW data for an entire kemnel

OpenCL hassimilar conceptsto CUDA, athough it uses adifferent terminology. The figure above lists the equiv-
alent terms between CUDA and OpenCL.

CUDA is the main competitor of OpenCL in the GPU programming realm. However, CUDA can run only on
NVIDIA devices, so OpenCL's main power is it's versatility vendor-independence. Another major advantage of
OpenCL over CUDA isthat it can harness all resources in a computing system for a given task, hence enabling
heterogeneous computing. For example, in the case of a system featuring an AMD GPU, an NVIDIA GPU, and a
Xeon Phi accelerator, all controlled from aXeon host, all 4 computing devices canbeused in parallel with the same
OpenCL program. However, CUDA has it's own merits, as NVIDIA is very fast in including the new hardware
featuresin CUDA, and usually good performanceis easier achieved on NVIDIA devices when using CUDA.

27

Best Practice Guide - GPGPU

In the following example we show a naive implementation of matrix-matrix multiplication on the using OpenCL.
The following kernel uses only global memory, and hence it is not performance-optimized.

__kernel void nmat Mat Mul t Kern(__gl obal doubl e *out put, gl obal double *d_MatA,
__global double *d_MatB, _ global int* d rows, _ global int* d_cols)

{

i nt gl oballdx get gl obal _id(0);

i nt globalldy get gl obal id(1);
doubl e sum =0. 0;
int i;
doubl e t nmpA, t npB;
for (i=0; i < (*d_rows); i++)
{
tnpA = d_MatAlgloballdy * (*d rows) + i];

tnpB = d_MatB[i * (*d_cols) + globalldx];
sum += tnpA * tnpB;
}
output[globalldy * (*d _rows) + globalldx] = sum

7.2. OpenACC

L anguage extensions such as Cudaand OpenCL are very powerful sincethey give programmersthe flexibility and
control to interface with the GPU at alow level. However, the development processiis often tricky and time con-
suming, and results in complex and non-portable code. An aternative approach is to allow the compiler to auto-
matically accelerate code sections on the GPU (including decomposition, datatransfer, etc). For rea applications,
compilers are typically not intelligent enough (or smply can't deduce the required information from the source
code) to generate optimal GPU-accelerated code, so there must be a mechanism for the programmer to provide
the compiler with hints regarding which sections to be accelerated, available parallelism, data usage patterns etc.
Directives provide this mechanism: these consist of aspecial syntax which is understood by accelerator compilers
and ignored (treated as code comments) by non-accelerator compilers. This means in principle the same source
code can be compiled for either a GPU-accel erated architecture or atraditional CPU-only machine.

Several accelerator compilers have emerged over the last few years including the PGl Accelerator Compiler, the
CAPSHMPP compiler and the Cray compiler. Thesevariantsinitially involved programming model swhich differ
syntactically but are similar conceptually. The OpenACC standard was announced in November 2011 By CAPS,
CRAY, NVIDIA and PGI: this is a standardised model which is supported by all of the above products. The
remainder of this sectionillustrates accelerator directivesusing OpenACC. For adefinitive guideincluding full list
of available directives, clauses and options please see the documentation at www. openacc- st andar d. or g.

With directivesinserted, the compiler will attempt to compile the key kernels for execution on the GPU, and will
manage the necessary data transfer automatically. The format of these directivesis asfollows:

C:
#pragma acc ...
Fortran:

| $acc ...

28

Best Practice Guide - GPGPU

These are ignored by non-accelerator compilers.

The programmer specifies which regions of code should be offloaded to the accelerator with the par al | el
construct:

C:
#pragma acc parall el
{
code region
}
Fortran:

I $acc parall el
code region

I $acc end parall el

This directive is usualy not sufficient on its own to create efficient GPU-accelerated code: it needs (at least) to
be combined with thel oop directive.

Thel oop directive is applied immediately before aloop, specifying that it should be paralelised on the accel-
erator:

C:
#pragma acc | oop
for(.){
.l oop body...
}
Fortran:
I $acc | oop
do ...
.l oop body...
end do

Thel oop construct must be used inside a parallel construct:

C:

29

Best Practice Guide - GPGPU

#pragma acc parall el

{

#pragma acc | oop

for(.){
.l oop body...

}

Fortran:

I $acc parallel

I $acc | oop ...
do ...
.l oop body...
end do
I $acc end | oop

I $acc end parallel

Multiplel oop constructs may be used within asingle par al | el construct.

Theparal | el | oop construct is shorthand for the combination of apar al | el and (single) | oop construct

C.

#pragma acc parallel |oop

for(.){
.l oop body...

}

Fortran:

I $acc parallel |oop
do ...
...l oop body. ..
end do
I $acc end parallel |oop

Here is an example of a code being accelerated through use of the par al | el | oop construct:

30

Best Practice Guide - GPGPU

' $acc parallel |oop
do i=1, N
out put (i)=2.*i nput (i)
end do
I $acc end parallel |oop

The compiler automatically offloadstheloop to GPU and performs necessary datatransfers. Useof thepar al | el

| oop construct may be sufficient, on its own, to get code running on the GPU, but further directives and clauses
exist to give more control to programmer to improve performance and enable more complex cases. By default the
compiler will estimate the most efficient decomposition of the loops onto the hierarchical parallelism of the GPU
architecture, but in some cases the programmer can achieve better performance by overriding the defaults, and the
availabhility of tuning clauses provide this mechanism. Please see the official documentation for full details.

The programmer can also have more control over data movement. Consider the following combination of two
parallel loops:

' $acc parallel |oop

do i=1, N
out put (i)=2.*input(i)
end do

I $acc end parallel |oop
wite(*,*) "finished 1st region"

' $acc parallel |oop

do i=1, N
out put (i) =i *out put (i)
end do

I $acc end parallel |oop

By default the compiler will unnecessarily copy the output array from and then back to the device between the
distinct regions. Such data copies are very expensive so thiswill result in suboptimal code. The accelerator dat a
construct allows more efficient memory management:

C:

#pragma acc data

{

..code region...

}

Fortran:

| $acc data
..code region...
I $acc end data

31

Best Practice Guide - GPGPU

The programmer applies clausesto thisconstruct suchascopyi n and copyout to specify desired datatransfers,
for example the above example can be optimised as follows:

I $acc data copyin(input) copyout (output)

' $acc parallel |oop

do i=1, N
out put (i)=2.*input(i)
end do

I $acc end parallel |oop
wite(*,*) "finished first regi on"

' $acc parallel |oop

do i=1, N
out put (i) =i *out put (i)
end do

I $acc end parallel |oop

| $acc end dat a

Now the only data transfers the copying of the input array in to the device at the start of the data region, and the
copying of the output array out of the device at the end of the region. The output array is no longer unnecessarily
transferred between the two parallel 1oops.

We have demonstrated the basic functionality of the accelerator directives programming model. More complex
codes require additional functionality, for example the ability to share data between different functions or subrou-
tines. Thefull set of directivesprovides support for such cases, please seethe official documentation for full details.

In the following example we show a naive implementation of the matrix-matrix multiplication algorithm using
OpenACC. Theexamplewill becompiled for running on two completely different architectures: an NVIDIA Tedla
K40m Kepler GPU, and an Intel Haswell CPU. Important speed-ups can be obtained using a portable implemen-
tation such as the one we describe below:

voi d
MatrixMul tiplicationOpenACC(float * restrict a,float * restrict b, float * restrict c, |
{
int i, j, k;
#pragma acc data copy(a[0:(nmn)]), copyin(b[O:(nfp)],c[O0:(p*n)])
{
#pragma acc kernels | oop gang, vector(32) independent
for (i=0; i<m i++){
#pragma acc | oop gang, vector(32) independent
for (j=0; j<n; j++) {
#pragma acc | oop
for (k=0; k<p; k++)
af[i*n+j] += b[i*p+k]*c[k*n+j] ;
}

32

Best Practice Guide - GPGPU

The first pragma instructs the OpenACC compiler to copy the initialized a, b, and ¢ arrays to the device, and
to only copy out from the device array a, that holds the final result. The second and third pragmas instruct the
OpenACC compiler that thei and j loop iterations are independent. The code can be compiled for a Tesla K40m
target using the PGI compiler as follows:

[val eri uc@cn900 openacc]$ pgcc -acc -ta=tesla:cc35,tine -fast -tp=sandybridge -M nfo=a
MatrixMul tiplicati onOpenACC
32, Generating copy(a[:n*m)
Generating copyin(b[:mp],c[:n*p])
35, Loop is parallelizable
37, Loop is parallelizable
41, Loop carried dependence of a-> prevents parallelization
Conpl ex | oop carried dependence of a-> prevents parallelization
Loop carried backward dependence of a-> prevents vectorization
I nner sequential |oop schedul ed on accel erator
Accel erator kernel generated
Generating Tesla code
35, #pragma acc | oop gang, vector(32) /* blockldx.y threadldx.y */
37, #pragma acc | oop gang, vector(32) /* blockldx.x threadldx.x */
41, #pragnma acc | oop seq

When running the code on 4096x4096 matrices, it turns out it takes around 0.9 seconds when executing on the
TeslaK40m.This implementation is far from getting the best performance that can be achieved using this device,
but considering it's simplicuty, it's worthwhile to consider this approach.

On the other hand, when executing the code on the 24-core Haswell system, the performance is much worse, the
exact same computation.taking 45 seconds.By just interchanging the innermost two for loops, the performance is
almost 20-fold improved. The execution finishes now in only 2.1 seconds, about 2 times slower than our GPU
version. Moreover, the implementation below (that includes the loop interchange) performs similar in the GPU
case, S0 it can be seen as a performance portable implementation. The compilation output for the CPU version, as
well as the final OpenACC implementation are shown below.

[val eriuc@cn900 openacc]$ pgcc -fast -acc -tp=haswell -ta=nulticore,tine -M nfo=accel
MatrixMultiplicati onOpenACC
36, Loop is parallelizable
Generating Milticore code
36, #pragma acc | oop gang
38, Loop is parallelizable
42, Loop carried dependence of a-> prevents parallelization
Conpl ex | oop carried dependence of a-> prevents parallelization
Loop carried backward dependence of a-> prevents vectorization

voi d
MatrixMul tiplicationOpenACC(float * restrict a,float * restrict b, float * restrict c, |
{
int i, j, k;
#pragma acc data copy(a[0:(nn)]), copyin(b[O:(nfp)],c[O0:(p*n)])
{
#pragnma acc kernels | oop gang, vector(32) independent
for (i=0; i<m i++){
#pragnma acc | oop
for (k=0; k<p; k++)
#pragma acc | oop gang, vector(32) independent
for (j=0; j<n; j++) {
a[i*n+j] += b[i*p+k]*c[k*n+j] ;

33

Best Practice Guide - GPGPU

It is important to mention that performance can be improved even further by tuning the directives for each par-
ticular architecture, but the purpose of this exercise was to show that the same implementation can offer decent
performance on very different compute architectures.

7.3. OpenMP 4.x Offloading
7.3.1. Execution Model

OpenMP is the de facto standard pragma-based parallel programming model for shared memory systems. The
standard can be found online under http://www.openmp.org/specifications/ [1]. Starting with OpenMP 4.0 new
device constructs have been added to the OpenM P standard to support heterogeneous systems and enable offload-
ing of computations and data to devices.

The OpenM P language terminol ogy concerning devicesisquite general. A deviceisdefined asan implementation
defined logical execution unit (which could have one or more processors). The execution model is host-centric:
Thehost device, i.e. the device on which the OpenM P program begins execution, offloads code or datato atar get
device. If an implementation supports target devices, one or more devices are available to the host device for
offloading. Threads running on one device are distinct from threads that execute on another device and cannot
migrate to other devices.

The most important OpenM P device constructs are the tar get and the teams construct. When a target construct
is encountered, a new target task is generated. When the target task is executed, the enclosed target region is
executed by aninitia thread which executes sequentially on atarget device if present and supported. If the target
device does not exist or the implementation does not support the target device, all target regions associated with
that device execute on the host device. In this case, the implementation must ensure that the target region executes
asif it were executed in the data environment of the target device.

The teams construct creates aleague of thread teams where the master thread of each team executes the region
sequentialy.

This is the main difference in the execution model compared to versions < 4.x of the OpenMP standard. Before
device directives have been introduced, a master thread could spawn ateam of threads executing parallel regions
of aprogram as needed (see Figure 10).

Figure 10. Execution model before OpenM P 4.x. From [3].

Fa
- L “_"-:\ ——
‘ - ..-lf"' 'E - ..-l* G - __,!1
/ h “ s i\'\ "f \'\ ' ’
— AN—, —_
Master N
Thread \ A Nested
\ ¥ / Parallel
) region
Parallel Regions g

http://www.openmp.org/specifications/

Best Practice Guide - GPGPU

With OpenMP 4.x the master thread spawns a team of threads, and these threads can spawn leagues of thread
teams as needed. Figure 11 shows an exampl e of ateams region consisting of one team executing aparallel region,
while Figure 12 shows an example using multiple teams.

Figure 11. Execution model after OpenM P 4.x executing oneteam. From [3].

A Nested
Teams Region — :’_ Ko ‘H Pare?llel
(one team) -). region
F
Master 5 N /
Thread JPEad
AN —=_ o L e—
" - -— - —_— :“
~ e 'E\ _--,/
| ~ »

«—— Parallel Regions ——

Figure 12. Execution model after OpenM P 4.x executing multiple teams. From [3].

A Nested
Teams Region Rl Parallel
(multiple teams) C—" region
Master
Thread P 7
N M —
L - < by
* .~ r A . #

«~— Parallel Regions —

7.3.2. Overview of the most important device constructs

The following table gives an overview of the OpenMP 4.x device constructs:

#pragma omp target data Creates a data environment for the extent of the region.

#pragma omp target enter data Specifies that variables are mapped to a device data en-
vironment.

#pragma omp target exit data Specifiesthat list itemsare unmapped from adevicedata
environment.

#pragma omp target Map variablesto adevice data environment and execute
the construct on the device.

35

Best Practice Guide - GPGPU

#pragma omp target update Makes the corresponding list items in the device data
environment consistent with their original list items, ac-
cording to the specified motion clauses (to/from).

#pragma omp declare target A declarative directive that specifies that variables and
functions are mapped to a device.

#pragma omp teams Createsaleague of thread teamswhere the master thread

of each team executes the region.

#pragma omp distribute

Specifies loops which are executed by the thread teams

#pragmaomp ... simd

Specifies code that is executed concurrently using
SIMD instructions.

#pragma omp distribute parallel for

Specifiesaloop that can be executed in parallel by mul-
tiple threads that are members of multiple teams.

The most important constructs are the tar get, teams and distribute constructs, which are explained in the follow-

ing in more detail.

7.3.3. The target construct

Thetarget construct maps variables to a device data environment and executes the construct on that device.

#pragma onmp target [clause[[,] clause] ...] newline

structured- bl ock

where clause is one of the following:

o if([target :] scalar-expression)

* device(integer-expression)

* private(list)

o firstprivate(list)

» map([[map-type-modifier[,]] map-type:] list)
* is device ptr(list)

* defaultmap(tofrom:scalar)

* nowait

* depend(dependence-type: list)

7.3.4. The teams construct

The teams construct creates aleague of thread teams and the master thread of each team executes the region.

#pragma onp teans [clause[[,] clause]

struct ur ed- bl ock

where clause is one of the following:
* num_teams(integer-expression)

« thread limit(integer-expression)

] newline

36

Best Practice Guide - GPGPU

default(shared | none)

private(list)

firstprivate(list)

shared(list)

reduction(reduction-identifier : list)
7.3.5. The distribute construct

The distribute construct specifies that the iterations of one or more loops will be executed by the thread teamsin
the context of their implicit tasks. Theiterations are distributed across the master threads of all teams that execute
the teams region to which the distribute region binds.

#pragma onmp distribute [clause[[,] clause] ...] newline
for-1oops

Where clause is one of the following:

o private(list)

firstprivate(list)

|astprivate(list)

collapse(n)
dist_schedule(kind[, chunk_size])

A detailed description of the most important clauses will be included in a future version of this guide.

7.3.6. Composite constructs and shortcuts in OpenMP 4.5

The OpenM P standard defines a couple of combined constructs. Combined constructs are shortcuts for specifying
one construct immediately nested inside another construct. The semantics of the combined constructs areidentical
to that of explicitly specifying the first construct containing one instance of the second construct and no other
statements. Figure 13 gives an overview of the supported composite constructs and shortcuts.

Figure 13. Overview of composite constructs and shortcutsin OpenMP 4.5.

. omp distribute Iterations distributed across the master threads of all teams in a teams region
- omp distribute simd dito + executed concurrently using SIMD instructions
- omp distribute for executed in parallel by multiple threads that are members of multiple teams
- omp distribute for simd dito + executed concurrently using SIMD instructions
. omp teams creates aleague ofthread teams and the master thread ofeach team executes the region

- omp teams distribute
- omp teams distribute simd

- omp teams distribute for
- omp teams distribute for simd
. omp target map variables to a device data environment and execute the construct on that device
- omp target simd
- omp target
- omp target for
- omp target for simd
. omp target teams

- omp target teams distribute

- omp target teams distribute simd

- omp target teams distribute for

- omp target teams distribute for simd

37

Best Practice Guide - GPGPU

Thelast construct (onp target teans distribute parallel for sind)containsthemostlevelsof
parallelism. The computations are offloaded to a target device and the iterations of aloop are executed in parallel
by multiple threads that are member of multiple teams using SIMD instructions.

7.3.7. Examples

Many useful examples can be found in the examples book of the OpenMP standard [2].
We are showing some selected examples in the following.

Thefollowing example (from [2]) shows how to copy input data (v 1 and v2) from the host to the device, execute
the computation of a parallel for loop on the device and copy the output data (p) back to the host.

#pragma onp target nmap(to: vi, v2) map(from p)
#pragnma onp parallel for

for (i=0; i<N;, i++)

pli] = vi[i] * v2[i];

The next example (from [3]) shown in Figure 14 demonstrates how to create a device data environment, al-
locate memory in this environment, copy input data (i nput) before the execution of any code from the
host data environment to the device data environment and copy output data (r es) back from the device da-
ta environment to the host data environment. Both for loops are executed on the device, while the routine
updat e_i nput _array_on_t he_host () isexecuted on the host and updates the array input.

The#pragma onp target updat e isusedto synchronisethe value of avariable (i nput) in the host data
environment with a corresponding variable in a device data environment.

Figure 14. Examplefor a device data environment. From [3].

frragma omp target data map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
¥pragma omp target
fpragma omp parallel for

for (1=0; i<N; i++)

aebiey 1soy

tmp[i] = some_computation (input[il]l, 1);

update_input_array on_the host (input);

=i
. o
frragma omp target update to(input[:N]) w0
fpragma omp target
fpragma omp parallel for reduction (+:res)

for (1=0; 1<M; i++)

res += final computation (input[i], tmp[i], i)

g

The next example (from[2]) showshow thet ar get t eans andthedi stribute parallel | oop SINMD
constructs are used to execute aloop in atarget teamsregion. Thet ar get t eans construct creates aleague of
teams where the master thread of each team executestheteamsregion. Thedi stri bute parallel | oop
SI MD construct schedul es the loop iterations across the master thread of each team and then across the threads of
each team where each thread uses SIMD parallelism.

#pragma onp target teans map(to: v1[O0: N}, v2[:N]) map(from p[0:N])

38

Best Practice Guide - GPGPU

#pragma onp distribute parallel for sind
for (i=0; i<N, i++)
pli] = vi[i] * v2[i];

More examples will be added in the next version of this guide.

7.3.8. Runtime routines and environment variables

The following runtime support routines deal with devices.

void omp_set_default_device(int dev_num) Controls the default target device.

int omp_get_default_device(void) Returns the number of the default target device.

int omp_get_num_devices(void); Returns the number of target devices.

int omp_get_num_teams(void) Returnsthe number of teamsin the current teamsregion,
or 1if caled from outside ateams region.

int omp_get_team_num(void); Returns the team number of the calling thread (O ...
omp_get_num_teams() - 1).

int omp_is initia_device(void); Returns true if the current task is executing on the host
device; otherwise, it returns false.

int omp_get_initial_device(void); Returns a device number representing the host device.

7 Memory routines not mentioned in the table were added in OpenM P 4.5 to allow explicit all ocation, deallocation,
memory transfers and memory associations.

The default device can be set through the environment variable OMP_DEFAULT_DEVICE aswell. The value
of this variable must be a non-negative integer value.

7.3.9. Current compiler support

An overview of compilers supporting OpenMP can be found under http://www.openmp.org/resources/open-
mp-compiler [http://www.openmp.org/resources/openmp-compilers/].

Recently severa OpenMP 4.x implementations are emerging, however the maturity of the implementations is
quite different (see [4]).

1. Cray provided the first vendor implementation targeting NVIDIA GPUs in late 2015. The current version
supports OpenMP 4.0 and a subset of OpenMP 4.5.

2. IBM offers a compiler implementation using Clang, with support for OpenMP 4.5. This is being introduced
into the Clang main trunk.

3. GCC 6.1 introduced support for OpenMP 4.5, and can target Intel Xeon Phi and HSA enabled AMD GPUs.
However, the implementation is still very immature.

4. Intel only supports offloading to Intel Xeon Phi coprocessors.

7.3.10. Mapping of the Execution Model to the device architecture

The threads within the league of thread teams have to be mapped by the compiler to the underlying target archi-
tecture. In the case of CUDA the architecture model consists of a grid of thread blocks. The way in which this
mapping is done is implementation dependent. Often OpenM P can express more levels of parallelism that is sup-
ported by the underlying target architecture, which leaves alot of ambiguities.

39

http://www.openmp.org/resources/openmp-compilers/
http://www.openmp.org/resources/openmp-compilers/
http://www.openmp.org/resources/openmp-compilers/

Best Practice Guide - GPGPU

Figure 15. Mapping of the OpenM P 4.x execution model to CUDA GPUsor CPUs. From
[4].

team 0
OpenMP 4.0 thread 0 thread n
Target simd 0 |--.| simd n ||| simd 0 |...| simd n
CUDA Grid block 0
d thread 0 thread n
CPU 8-wide core 0
DP SIMD simd O simd 7

The default Mapping of the OpenMP execution model to CUDA or CPUs (cf. Figure 5) is analysed in [4] as
follows:

1

4,

Using the Cray Compiler the teams directive either initialisest = num_teamsteamsif avalueis provided, or
t = 128. The eams map to individual CUDA blocks, with each containing 128 CUDA threads.

. The Clang compiler’s default is to create 1 team (maps to 1 CUDA block) per multiprocessor. Each block

contains 1024 CUDA threads

. Thelntel compiler only initialisesasingleteam per default (on Intel Xeon Phi coporcessors), so both theteams

and distribute directives can be omitted in principle.

The GCC compiler for AMD GPUswith HA'S maps OpenM P teams to work groups containing 64 work items.

7.3.11. Best Practices

Many of the following best practice recommendations aiming for performence portability are cited from [4] and

[6]:

1

2.

Keep data resistant on the device, since the copying of data between the host and the device is a bottle nack.

Overlap data transfers with computations on the host or the device using asynchronous data transfers.

. Useschedul e(static, 1) fordistributing threads using the Clang compiler (default for Cray, not sup-

ported by GCC).

. Prefer to include the most extensive combined construct relevant for the loop nest, i.e. #pragma onp

target teans distribute parallel for sind(howevernotavailablein GCC 6.1).

. Alwaysincludepar al | el for,andteans anddi stri but e, evenif thecompiler does not require them.
. Include the si nd directive above the loop you require to be vectorised.

. Neither col | apse nor schedul e should harm functional protability, but might inhibit performance porta-

bility.

. Avoid settingnum t eans andt hr ead_| i mi t since each compiler uses different schemes for scheduling

teams to adevice.

40

Best Practice Guide - GPGPU

More recommendations will be included in a future version of this guide.

7.3.12. References used for this section:

* [1] OpenMP Application Programming Interface Version 4.5 — November 2015, http://openmpcon.org [http://
openmpcon.org]

* [2] Application Programming Interface Examples Version 4.5.0 — November 2016, http://openmpcon.org
[http://openmpcon.org)]

* [3] James Beyer, Bronis R. de Supinski, OpenMP Accelerator Model, IWOMP 2016 Tutorial
* [4] Simon MacIntosh-Smith, Evaluating OpenM P s Effectiveness in the Many-Core Era, OpenM PCon’ 16 talk

* [5] OpenMP: Memory, Devices, and Tasks12th International Workshop on OpenMP, IWOMP 2016, Nara,
Japan, October 5-7, 2016, Proceedings, Springer

» [6] Matt Martineau, James Price, Simon Mclntosh-Smith, and Wayne Gaudin (Univ. of Bristol, UK Atomic
Weapon Est.), Pragmatic Performance Portability with OpenMP 4.x, published in [5].

41

http://openmpcon.org
http://openmpcon.org
http://openmpcon.org
http://openmpcon.org
http://openmpcon.org

	Best Practice Guide - GPGPU
	Table of Contents
	1. Introduction
	2. The GPU Architecture
	2.1. Computational Capability
	2.2. GPU Memory Bandwidth
	2.3. GPU and CPU Interconnect
	2.4. Specific information on Tier-1 accelerated clusters
	2.4.1. DGX-1 Cluster at LRZ
	2.4.2. JURON (IBM+NVIDIA) at Juelich
	2.4.3. Eurora and PLX accelerated clusters at CINECA
	2.4.4. MinoTauro accelerated clusters at BSC
	2.4.5. GALILEO accelerated cluster at CINECA
	2.4.6. Laki accelerated cluster and Hermit Supercomputer at HLRS
	2.4.7. Cane accelerated cluster at PSNC
	2.4.8. Anselm cluster at IT4Innovations
	2.4.9. Cy-Tera cluster at CaSToRC
	2.4.10. Accessing GPU accelerated system with PRACE RI

	3. GPU Programming with CUDA
	3.1. Offloading Computation to the GPU
	3.1.1. Simple Temperature Conversion Example
	3.1.2. Multi-dimensional CUDA decompositions

	3.2. Memory Management
	3.2.1. Unified Memory
	3.2.2. Manual Memory Management

	3.3. Synchronization

	4. Best Practice for Optimizing Codes on GPUs
	4.1. Minimizing PCI-e/NVLINK Data Transfer Overhead
	4.2. Being Careful with use of Unified Memory
	4.3. Occupancy and Memory Latency
	4.4. Maximizing Memory Bandwidth
	4.5. Use of on-chip Memory
	4.5.1. Shared Memory
	4.5.2. Constant Memory
	4.5.3. Texture Memory

	4.6. Warp Divergence

	5. Multi-GPU Programming
	5.1. Multi-GPU Programming with MPI
	5.2. Other related CUDA features
	5.2.1. Hyper-Q
	5.2.2. Dynamic parallelism
	5.2.3. RDMA
	5.2.4. Virtual addressing
	5.2.5. Debugging and Profiling

	6. GPU Libraries
	6.1. The CUDA Toolkit 8.0
	6.1.1. CUDA Runtime and Math libraries
	6.1.2. CuFFT
	6.1.3. CuBLAS
	6.1.4. CuSPARSE
	6.1.5. CuRAND
	6.1.6. NPP
	6.1.7. Thrust
	6.1.8. cuSOLVER
	6.1.9. NVRTC (Runtime Compilation)

	6.2. Other libraries
	6.2.1. CULA
	6.2.2. NVIDIA Codec libraries
	6.2.3. CUSP
	6.2.4. MAGMA
	6.2.5. ArrayFire

	7. Other Programming Models for GPUs
	7.1. OpenCL
	7.2. OpenACC
	7.3. OpenMP 4.x Offloading
	7.3.1. Execution Model
	7.3.2. Overview of the most important device constructs
	7.3.3. The target construct
	7.3.4. The teams construct
	7.3.5. The distribute construct
	7.3.6. Composite constructs and shortcuts in OpenMP 4.5
	7.3.7. Examples
	7.3.8. Runtime routines and environment variables
	7.3.9. Current compiler support
	7.3.10. Mapping of the Execution Model to the device architecture
	7.3.11. Best Practices
	7.3.12. References used for this section:

