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Introduction

• Once a model is obtained, it is crucial to study its performance and
impact
• How do we find a correlation between quality and evaluation score?
• What are the common techniques in Natural Language Processing

(NLP)?
• We need reproducibility, scalability, and proper benchmarking

(Dacrema et al., 2019)
• Today we will learn how to do it!

Core Idea: Measure Twice and Cut Once
You can invent a method every day. How do you know if it is actually good?
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How to Evaluate?

Online Evaluation

Pros:
+ Objective
+ Interpretable

Offline Evaluation

Pros:
+ Scalable
+ Reproducible
+ Safe

Cons:
− Can hurt users
− Irreproducible
− Poor scalability

Cons:
− Can be unobjective

Today we will focus on offline evaluation.
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Ground Truth

Offline evaluation requires ground truth to
be available; typical sources are:
• Expert Assessment
• Gold and Silver Standards
• Crowdsourcing

Source: Finnsson (2017)

Dr. Dmitry Ustalov (Yandex) Evaluation in NLP May 15, 2021 6 / 56



Ground Truth: Expert Assessment

In Expert Assessment, the output of the system is manually evaluated by a
group of expert assessors who ultimately decide whether it works well or
not.
Pros:
+ Very high quality and accuracy
+ Evaluation can be very complex

Cons:
− Does not scale
− Have to trust the experts
− Only one data point per expert

Examples:
• Search engines
• Sensitive domains (Medicine, Security, etc.)
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Ground Truth: Gold and Silver Standards

Gold Standards are well-known, expert-annotated, and trustworthy
datasets dedicated to a particular problem. Silver Standards are the gold
ones matched with unverified data.
Pros:
+ Very high quality and accuracy
+ Trusted by the community

Cons:
− Could be missing for your task or be smaller than needed
− Requires expert annotation or matching

Examples:
• Gold: Penn Treebank (Marcus et al., 1993), WordNet (Fellbaum, 1998),

FrameNet (Baker et al., 1998)
• Silver: BabelNet (Navigli et al., 2012)
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Ground Truth: Crowdsourcing

Crowdsourcing is a type of participative online activity in which
the requester proposes to a group of individuals ... the voluntary
undertaking of a task (Estellés-Arolas et al., 2012).
Pros:
+ Scalability
+ Flexibility

Cons:
− Need for task design
− Need for quality control

Examples:
• Data Acquisition: Wikipedia, Wiktionary, ESP Game (von Ahn et al.,

2004), Common Voice (Ardila et al., 2020)
• System Evaluation: Search Relevance (Alonso et al., 2008), Machine

Translation (Callison-Burch, 2009), Intruders (Chang et al., 2009)
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Decision Support Systems

Suppose that you have a decision support system (DSS).

• The system’s response can be positive
or negative; both can be true or false:
Type I error aka false positive (FP)
Type II error aka false negative (FN)
• A confusion matrix C shows how well

a decision support system works
* It would be more convenient to have a

single number indicating the system’s
performance

Actual
+ −

Pr
ed

ic
te

d + TP FP

− FN TN

Note that in some sources
this matrix is transposed!
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Information Retrieval Evaluation

Two ways for evaluating Information Retrieval (IR) systems: unranked and
ranked, see van Rijsbergen (1979, Chapter 7) and Manning et al. (2008,
Chapter 8).

In unranked evaluation, a set of all
the obtained results is assessed.
• Accuracy
• Precision, Recall, and F-score
• Fowlkes–Mallows Index
• ROC-AUC
• ...

In ranked evaluation, an ordered list
of top k results is assessed.
• Precision@K
• Mean Average Precision
• NDCG
• pFound and ERR
• ...
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Section 2

Classification Evaluation
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Accuracy

Accuracy (Ac) is the fraction of correct responses provided by the system.

Ac =
TP + TN

TP+ TN+ FP + FN

• Interpretable
• Easy to compare against random baseline of Ac = 1

# of classes
• Biased when the class distribution is skewed (Powers, 2008)
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Precision and Recall

Precision (Pr) is the fraction of retrieved documents that are relevant.

Pr =
TP

TP + FP

Recall (Re) is the fraction of relevant documents that are retrieved.

Re =
TP

TP + FN

Both are proposed by Kent et al. (1955) specially for IR systems:
• Not very useful without each other
• Biased when the class distribution is skewed (Powers, 2008)

Dr. Dmitry Ustalov (Yandex) Evaluation in NLP May 15, 2021 14 / 56



F-score (aka F-measure)

F-score (Fβ) is the weighted harmonic mean of precision and recall
(van Rijsbergen, 1979), also known as Dice coefficient.

Fβ = (1 + β2) · Pr · Re
β2 · Pr + Re

F1 = 2 · Pr · Re
Pr + Re

Fowlkes–Mallows Index (FM) is the geometric mean of precision and
recall (Fowlkes et al., 1983).

FM =
√
Pr · Re

So far we considered only the binary classification case.
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Multiple Classes

What if we have more than two classes, i.e., k > 2?
• Micro-Average: compute scores for each class together

Prmicro =
∑k

i=1 TPi∑k
i=1(TPi+FPi)

Remicro =
∑k

i=1 TPi∑k
i=1(TPi+FNi)

• Macro-Average: compute Pri and Rei for each 1 ≤ i ≤ k, so

Prmacro = 1
k

∑k
i=1 Pri Remacro = 1

k

∑k
i=1Rei

• Weighted: for each 1 ≤ i ≤ k use the number of instances #(i)

Prweighted =
∑k

i=1(#(i)·Pri)∑k
i=1 #(i)

Reweighted =
∑k

i=1(#(i)·Rei)∑k
i=1 #(i)
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Issues with Traditional IR Scores

Despite the huge popularity of Ac,Pr,Re,
etc., these scores have major issues (Powers,
2008; Chicco et al., 2020):
• they are biased towards dominant

classes
• they can be manipulated
• they are not metrics

Source: Rahman Rony (2016)
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Bias

Consider a part-of-speech tagger that classifies everything as NN
and our evaluation dataset is imbalanced.

Ac =
90

90 + 10 + 0 + 0
= 90%

Pr =
90

90 + 10
= 90%

Re =
90

90 + 0
= 100%

F1 = 2 · 0.9 · 1
0.9 + 1

≈ 95%

FM =
√
0.9 · 1 ≈ 95%

P\E NN VBP
NN 90 10
VBP 0 0

Not a very good evaluation of
such a trivial classifier.

Labels are part-of-speech (PoS) tags from the Penn Treebank
(Marcus et al., 1993), e.g., influence/NN is a singular or mass noun ,
influence/VBP is a non-third person singular present verb .
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Mathews Correlation Coefficient

Matthews (1975) proposed the correlation coefficient that balances classes
of different sizes:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In the previous example,MCC = 0; note that MCC ∈ [−1;+1].
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Mathews Correlation Coefficient: Multiclass

Gorodkin (2004) generalized MCC to multiple classes as RK coefficient of
the confusion matrix C :

MCC =

∑
k,l,mCkkClm − CklCmk√∑

k (
∑

l Ckl)

(∑
l′

k′ 6=k
Ck′l′

)√∑
k (
∑

l Clk)

(∑
l′

k′ 6=k
Cl′k′

)
MCC is stable except in very extreme cases,
see Chicco et al. (2020) for a detailed discussion.

Dr. Dmitry Ustalov (Yandex) Evaluation in NLP May 15, 2021 20 / 56



Classification Curves

• A single number is not enough: it is
important to study the algorithm’s
sensitivity and specificity
• Receiver Operator Characteristics (ROC)

and Precision-Recall (PR) curves allow
examining these properties

* They can be applied as soon as the
method returns the probability,
confidence, or decision value, etc.

Source: rawpixel (2017)
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Receiver Operator Characteristics

Receiver Operator Characteristics (ROC) curve shows a trade-off between
true positive rate (recall) and false positive rate.

1 Perform the classification
and obtain a score for each
response

2 Iterate over the responses in
ascending order and plot
points

3 Compute the area under
curve (ROC-AUC) using the
trapezoidal rule
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LinearSVC (AUC = 0.85)

Consider using the more informative
precision-recall (PR) curve (Saito et al., 2015).
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Precision-Recall Curve

Precision-Recall (PR) curve shows a trade-off between precision and recall.

1 Perform the classification
and obtain a score for each
response

2 Iterate over the responses in
descending order and plot
interpolated points

3 Due to the interpolation,
PR-AUC might be too
optimistic; compute the
average precision (AP)

* Note that the first element is
undefined
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LinearSVC (AP = 0.88)

If one method dominates another on ROC,
it will dominate on PR, too (Davis et al., 2006).
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Classification Evaluation: Wrap-Up

• Use the MCC and ROC-AUC
measures to report quality
• Report a PR curve to evaluate the

precision and recall dynamics
• Always check for class imbalance
• Implementations: R, scikit-learn

(Pedregosa et al., 2011) for Python, etc.

Source: Free-Photos (2016)
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Section 3

Clustering Evaluation
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Clustering Evaluation

• Two classes of clustering evaluation
criteria: internal and external
• Internal criteria measure intra-cluster

similarity and inter-cluster similarity,
which do not necessarily correspond to
your task (Manning et al., 2008,
Chapter 16)
• External criteria compare the obtained

clustering with ground truth; see
discussion on measures in Yang et al.
(2013, Section 6.2) Source: Buissinne (2016)
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Pairwise Evaluation

• Every cluster Ci can be represented as a complete graph of
(|Ci|

2

)
undirected edges P i

• A clustering C can be then compared to a gold clustering CG using
paired F-score between pair unions P and PG (Manandhar et al., 2010):

TP = |P ∪ PG|, FP = |P \ PG|, FN = |PG \ P |

Pr =
TP

TP + FP
, Re =

TP

TP + FN
, F1 = 2

Pr · Re
Pr + Re

• This is a very straightforward and interpretable approach
• It allows applying the techniques from the classification evaluation
• It does not explicitly assess the quality of overlapping clusters

(larger are preferred)
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Adjusted Rand Index

• Rand (1971) proposed an index for clustetring evaluation:

RI =
TP + TN

TP+ TN+ FP + FN

• RI is the same as the accuracy measure Ac
from the classification evaluation
• Hubert et al. (1985) proposed a chance-corrected version,

Adjusted Rand Index:

ARI =

∑
ij

(nij

2

)
−
[∑

i

(
ni·
2

)∑
j

(n·j
2

)]
/
(
n
2

)
1
2

[∑
i

(
ni·
2

)
+
∑

j

(n·j
2

)]
−
[∑

i

(
ni·
2

)∑
j

(n·j
2

)]
/
(
n
2

)
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Purity

Purity is a measure of the extent to which clusters contain a single class,
which is useful for evaluating hard clusterings (Manning et al., 2008):

PU =
1

|C|

|C|∑
i

max
j
|Ci ∩ CjG|

iPU =
1

|CG|

|CG|∑
j

max
i
|Ci ∩ CjG|

F1 = 2
PU · iPU
PU + iPU
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Normalized Modified Purity

Kawahara et al. (2014) proposed normalized modified purity for soft
clustering that considers weighted overlaps δCi(Ci ∩ CjG):

nmPU =
1

|C|

|C|∑
i s.t. |Ci|>1

max
1≤j≤|CG|

δCi(Ci ∩ CjG)

niPU =
1

|CG|

|G|∑
j=1

max
1≤i≤|C|

δ
Cj

G
(Ci ∩ CjG)

F1 = 2
nmPU · niPU
nmPU+ niPU
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Soft Clustering Evaluation: Example

Gold Clustering

bank, riverbank, streambank, streamside
bank, building, bank building

Soft Clustering

bank
bank, building
riverbank, streambank, streamside
bank building

Pairwise Evaluation

Pr =
4

4 + 0
= 1

Re =
4

4 + 5
= .44

F1 = 2
Pr · Re
Pr + Re

= .62

Normalized Modified Purity

nmPU = .75

niPU = .75

F1 = .75
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Clustering Evaluation: Wrap-Up

• Evaluate hard clustering with
ARI and soft clustering with
nmPU/niPU
• More difficult tasks, such as

taxonomy evaluation, can be
reduced to clustering evaluation
(Velardi et al., 2013)
• Implementations: scikit-learn

(Pedregosa et al., 2011),
xmeasures (Lutov et al., 2019),
etc.

Source: Pexels (2016)
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Section 4

Ranked Evaluation
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Ranked Evaluation

• Assume we have retrieved top k
results
• We want the most relevant

items to be on the top of this list
• Measures include binary (Pr@k,

MAP,MRR) and graded
(NDCG, pFound/ERR), etc.

Source: Amos (2011)
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Mean Average Precision

Precision@k is the fraction of relevant items in the k top retrieved items
for the given query:

Pr@k =

k∑
i=1

1i-th item is relevant

Average Precision (AP) is the non-interpolated area under the PR curve
(Buckley et al., 2000):

AP =
1

# of relevant items

k∑
i=1

Pr@i · 1i-th item is relevant

Mean Average Precision is the average AP of all the queries Q:

MAP =
1

|Q|
∑
q∈Q

AP(q)
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Normalized Discounted Cumulative Gain

Cumulative Gain (CG) in top k items is a sum of the relevance grades
reli ∈ N corresponding to every i-th retrieved item (Järvelin et al., 2002;
Wang et al., 2013):

CG =

k∑
i=1

reli

Discounted Cumulative Gain (DCG) is a CG divided by the logarithm of
each item’s position:

DCG = rel1 +

k∑
i=2

reli
log2 i

Normalized Discounted Cumulative Gain (NDCG) is the fraction of the
obtained DCG in the “perfect”DCG:

NDCG =
DCG

ideal DCG
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Yandex’ pFound

pFound is a cascade probabilistic ranked evaluation measure that
simulates how a user looks at the search results.

The user looks at items sequentially in top-down order and stops if either
the relevant item is found or they gave up with probability pBreak.

pFound =

n∑
i=1

user looks
at i-th item︷ ︸︸ ︷
pLook[i] ·

i-th item
is relevant︷ ︸︸ ︷
pRel[i]

pLook[i] =

{
1, i = 1

pLook[i− 1] · (1− pRel[i− 1]) · (1− pBreak), i 6= 1

pBreak = 0.15

Invented at Yandex and was the optimization goal back in 2007
(Segalovich, 2010); similar to Expected Reciprocal Rank
(Chapelle et al., 2009, Section 7.2).
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Expected Reciprocal Rank

Mean Reciprocal Rank (MRR) is the mean rank position of the first
relevant item (rank) in all the queries Q (Voorhees, 1999):

MRR =
1

|Q|
∑
q∈Q

1

rankq

Expected Reciprocal Rank (ERR) is the expected reciprocal length of time
that the user will take to find a relevant document (Chapelle et al., 2009)

ERR =

n∑
r=1

1

r

(
r−1∏
i=1

(1−Ri) ·Rr

)

To translate relevance grades to probability of relevance, we define
Rg : g → [0; 1],∀g ∈ {0, . . . , gmax} and then compute the score:

Rg =
2g − 1

2gmax
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Expected Reciprocal Rank: Algorithm

Input: relevance grades gr, 1 ≤ r ≤ n, mapping R : gr → [0; 1]
Output: expected reciprocal rank ERR

1: p← 1
2: ERR← 0
3: for r ← 1. . .n do
4: v ← R(gr)

5: ERR← ERR+ p · v
r

6: p← p · (1− v)
7: return ERR
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Expected Reciprocal Rank: Discussion

Pros:
+ Sound method that takes into account user behaviour
+ Fast; running time is O(n)

Cons:
− Model assumptions need to be met
− Low discriminative power (Sakai, 2006)
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Ranked Evaluation: Wrap-Up

• Use MAP for binary relevance,
NDCG for graded relevance,
and ERR for graded relevance
with user’s behaviour
• Implementations: scikit-learn

(Pedregosa et al., 2011),
RankEval (Lucchese et al., 2017)

Source: Dumlao (2017)
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Section 5

Statistical Significance
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Statistical Significance

• How to determine if the method is not
just good, but it outperforms other
approaches?
• Just computing evaluation scores is not

sufficient
• We perform a statistical test,

e.g., Z-test, t-test, etc.
• In this section we will focus on simple

permutation testing
Source: Merrill (2014)
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Permutation Testing

• Use computationally-intensive
randomization tests for precision, recall,
and F-score (Yeh, 2000)
• “No difference in means after shuffling”
• Consider the sigf toolkit (Padó, 2006)

that implements these tests in Java

Source: Alexas Fotos (2017)
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Randomization Test for Average Values

Input: vectors ~A and ~B, number of trials N ∈ N
Output: two-tailed p-value

1: uncommon← {1 ≤ i ≤ | ~A| : Ai 6= Bi}
2: s← 0
3: for all 1 ≤ n ≤ N do
4: ~A′ ← ~A . Copy ~A
5: ~B′ ← ~B . Copy ~B
6: for all i ∈ uncommon do
7: if random({0, 1}) = 0 then . Flip a coin
8: A′

i, B
′
i ← Bi, Ai . Shuffle by swapping the values if tails

9: if |mean( ~A′)−mean( ~B′)| ≥ |mean( ~A)−mean( ~B)| then
10: s← s + 1 . The test is two-tailed
11: return s

N . This value can be compared to a significance level
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Randomization Test for Average Values: Example

Example from Padó (2006):
• ~A = (1, 2, 1, 2, 2,2, 0), mean( ~A) ≈ 1.4286

• ~B = (4, 5, 5, 4, 3,2, 1), mean( ~B) ≈ 3.4286

• uncommon = {1, 2, 3, 4, 5, 7}
• |mean( ~A)−mean( ~B)| = 2

• N = 106

• p ≈ 0.0313

• Given the significance level of 0.05, the difference is significant
This technique can be generalized to the F-score and others (Yeh, 2000).
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Statistical Significance: Wrap-Up

• Always perform statisical testing
• Report not only statistical

significance, but also the score
distributions (Reimers et al.,
2017)
• The topic is huge and deserves a

dedicated course; see more in
the context of NLP in Dror et al.
(2018)

Source: Reimers et al. (2017)
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Section 6

Inter-Rater Agreement
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Inter-Rater Agreement

• How reliable is the annotation?
• In the example in 51.1% cases

the raters agree with each other,
is it a good thing?
• A low value indicates issues with

task design and difficulty: the
answers might make no sense

w1 w2 w3 w4
t1 NN NN NN
t2 NN VBP VBP NN
t3 VBP VBP VBP NN
t4 VBP NN NN VBP
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Krippendorff’s α

Krippendorff’s α (2018) is a versatile inter-rater agreement measure that
takes into account the observed disagreement Do and the expected
disagreement De:

α = 1− Do

De

α is chance-corrected, handles missing values, and allows for arbitrary
distance functions (binary, nominal, interval, etc.)

In the nominal case of C classes α is computed using a coincidence matrix
O ∈ R|C|×|C|:

nominalα = 1− (n− 1)
n−

∑
c∈C Occ

n2 −
∑

c∈C n
2
c

,

where nc =
∑

k∈C Ock and n =
∑

c∈C nc.
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Krippendorff’s α: Algorithm

Input: m raters,N tasks,C classes, . Missing values are (−)
data matrix U ∈ ({−} ∪ C)m×|N |

Output: 0 ≤ nominalα ≤ 1
1: Ock ← 0 for all c ∈ C, k ∈ C
2: for all u ∈ N do . Each task
3: for all c, k ∈ P (U>u , 2) do . Each possible non-missing (c, k) pair
4: Ock ← Ock +

1
mu−1 . mu is the number of raters in task u

5: nc ←
∑

k∈C Ock for all c ∈ C
6: n←

∑
c∈C nc

7: return 1− (n− 1)
n−

∑
c∈C Occ

n2 −
∑

c∈C n
2
c
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Krippendorff’s α: Example

O =

(
4.33 3.67

3.67 3.33

)
nc =

(
8 7

)
n = 15

U>

w1 w2 w3 w4
t1 NN NN NN
t2 NN VBP VBP NN
t3 VBP VBP VBP NN
t4 VBP NN NN VBP

nominalα = 1− (n− 1)
n−

∑
c∈C Occ

n2 −
∑

c∈C n
2
c

= 1− 14
15− ( 4.33 + 3.33 )

152 − ( 82 + 72 )

= 1− 102.76

112
≈ 0.083
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Inter-Rater Agreement: Discussion

• α provides a convenient single number
indicating the extent of how the raters
agree with each other
• Interpretation by Krippendorff (2018):
α > 0.800: reliable annotation
(reliability ; correctness!)
0.667 ≤ α ≤ 0.800: tentative
conclusions only
• Implementations: DKPro for Java (Meyer

et al., 2014), NLTK for Python (Bird et al.,
2017), irr for R, etc.
• A good discussion on this topic is

available in Artstein et al. (2008)
Source: rawpixel (2018)
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Conclusion

• Choose quality criteria wisely
• Compare the results against those of others
• Perform statistical testing
• Not covered here: taxonomy evaluation (Bordea

et al., 2016), online evaluation (Kohavi et al.,
2020), behavioural testing (Ribeiro et al., 2020),
bootstrap-based testing, regression evaluation

Source: bamenny (2016)
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Thank You!
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