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Counting graphlets is a well-studied problem in graph mining and social network analysis. Recently, several

papers explored very simple and natural algorithms based on Monte Carlo sampling of Markov Chains (MC),

and reported encouraging results. We show, perhaps surprisingly, that such algorithms are outperformed by

color coding (CC) [2], a sophisticated algorithmic technique that we extend to the case of graphlet sampling

and for which we prove strong statistical guarantees. Our computational experiments on graphs with millions

of nodes show CC to be more accurate than MC; furthermore, we formally show that the mixing time of the

MC approach is too high in general, even when the input graph has high conductance. All this comes at a

price however. While MC is very efficient in terms of space, CC’s memory requirements become demanding

when the size of the input graph and that of the graphlets grow. And yet, our experiments show that CC can

push the limits of the state of the art, both in terms of the size of the input graph and of that of the graphlets.
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1 INTRODUCTION
Counting graphlets is a well-studied problem in graph mining and social-networks analysis [1, 3, 7,

8, 11, 14, 18, 20, 26–28, 31]. Given an input graph, the problem asks to count the frequencies of all

induced connected subgraphs (called graphlets), up to isomorphism, of a certain size. This problem

is highly motivated in the context of studying behavioral and biological networks. Understanding
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the distribution of graphlets allows us to make key inferences about the structural properties

of the underlying graph and the interaction of the nodes in the graph (e.g. [22]). It sheds light

on the type of local structures that are present in the graph, which can be used for a myriad of

analysis [3, 8, 16, 26–28]. For example, an extreme case of graphlets are three-node graphlets:

counting triangles is a fundamental problem that has been repeatedly studied for the insights it

can yield about the health of a network and also for pushing the boundaries of computation that is

possible with large networks [13, 21, 23]. How the graphlets form in the first place and how they

temporally evolve are semantically more actionable than the interpretation yielded by the mere

evolution of nodes and edges.

Since the exact counting of graphlets can be computationally demanding, one usually settles for

less ambitious goals. One such goal, and the one we pursue in this paper, is frequency estimation:

for each subgraph we want to estimate, as accurately as possible, its relative frequency among all

subgraphs of the same size. Less ambitiously still, since the number of subgraphs of a given size

grows exponentially, we will be interested in the problem of estimating the relative frequency of

only the most frequent ones, say, those that appear at least a certain fraction of the time.

There have been two popular approaches to obtaining such estimates. The first is to use Markov

Chain Monte Carlo (henceforth, MC). Given an input graph, consider a Markov chain whose nodes

(states) are the graphlets, and where two graphlets are connected if they differ by a node. After

adding an appropriate number of self-loops to make the chain regular, it follows from standard

facts that a random walk of length equal to (or greater than) the mixing time will stop at a uniform

node (i.e., a graphlet). This gives a very simple and space-efficient way to sample the population

of graphlets. Just repeat the walk independently a large number of times. Recently this approach

has been tried by several authors with encouraging results [3, 11, 20, 26]. However, for this type

of approach to be statistically reliable the crucial question is: how long is the mixing time of this

natural walk? To the best of our knowledge, this question has not been addressed in a principled

manner.

A second approach to count graphlets (especially, trees) is to use color coding (CC), an elegant

randomized algorithmic technique introduced in [2]. CC provides strong, provable statistical

guarantees for the problem of approximating exact graphlet counts, from which the frequencies

can be easily derived. From a computational point of view, perhaps its main drawback is its space

requirement, that can quickly become insurmountable as the graphlet size grows. Furthermore, for

its nice statistical guarantees to hold in the case of graphlets, one needs to run CC an exponential

(in the subgraph size) number of times, which can be prohibitive. This heavy price must be paid if

one needs precise estimates of exact counts. But what if one is just interested, as we are in this

paper, in estimating the frequency of the most common graphlets, can a linear upper bound be

attained?

1.1 Our contributions
In this work, we study MC and CC as the most viable methods for counting reasonably sized

graphlets in massive graphs. Our goal is to understand and compare these methods from a practical

point of view and en route show provable guarantees. Let n be the size of the input graph and let k
be the size of graphlet. We are interested in input sizes that are currently considered challenging,

i.e. in the range n ≥ 10
6
and k ≥ 5. As of today, efficient algorithms for counting the frequencies

of all k-graphlets are known only for k ≤ 5, and if one wants to scale to k > 5, then only results

about special classes of graphlets are available (see Section 2).

Our first contribution is to study the mixing time of MC. We show that even if the input graph is

well mixing (as most social networks are) and even if there is one graphlet that appears more that
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99% of the time, it is possible that MC will take Ω(nk−1) steps before sampling the most frequent

graphlet just a single time! Note that this is not far from the naive O (nk ) bound needed to perform

exact counting by an exhaustive enumeration. In particular, this shows that the mixing time of MC

can be huge even when that of the input graph is very small, a somewhat counterintuitive statement.

For large graphs and even modest values of k this readily implies that, unless one makes specific

assumptions about the input graph and exploits them in the analysis, several MC approaches which

have been used in the past effectively give no statistical guarantees. On the positive side, we show

that the mixing time of MC is O (n2∆2k ), a bound that can be useful for graphs of moderate size

and small maximum degree ∆.
Our next contribution is to study the effectiveness of CC for graphlet counting. We show that

the classic CC technique can be easily extended to sample induced graphlets almost uniformly at

random in the graph, which enables us to estimate their frequency. This CC extension has two

phases: a building phase and a sampling phase. The building phase, which is basically a dynamic

program, is a time and space consuming process and is, in a sense, inevitable. The sampling phase,

instead, is rather efficient and in practice much faster than MC. We then show that even a single

run of CC, whose output can be seen as a large sample of the population of graphlets, gives

reasonably good statistical guarantees. We remark that these bounds are still too weak to provide

strong confidence in realistic situations. But, at the very least, they offer some evidence that by

compounding the estimates obtained with very few runs of CC one can get good, perhaps even

strong, statistical guarantees. We view our result as an encouraging step along this direction, a

line of research that we believe is an interesting one. We also describe an alternative extension of

CC that requires less space in the building phase at the expense of sampling efficiency; this is the

version we employ in our experiments.

Our last contribution is an experimental analysis with real-world graphs to compare the perfor-

mance of MC and CC when the goal is estimating the frequencies of the most common graphlets.

Our experiments are performed on the largest graphs used in recent work, whose sizes vary from

small to several millions of nodes, on a commodity machine. The values of k we use range from 5 to

8. In a nutshell, it turns out that CC provides much better estimates, both on a sample-size budget

and on a running-time budget. The drawback of CC is mainly its space complexity, which limits

the size of the largest instances on which it can run. It is often the case that theoretical bounds

are too coarse, while in actuality algorithms are much better behaved. Indeed, this seems to be the

case with CC, for which we consistently observe that the estimate given by just a single run of

CC is comparable to that obtained by averaging many runs, an outcome that is in line with our

bounds. All in all, CC allowed us to reach beyond the current limits of graphlet counting. Notably,

we were able to estimate the distribution of graphlets of size 6, 7 and 8 in graphs for which k = 5

was the state-of-the-art. As a rule of thumb, in our opinion CC remains preferable where accuracy

guarantees are critical, while MC becomes competitive in the remaining cases.

1.2 Outline of the paper.
The rest of the paper is organised as follows. Section 2 discusses related work. Section 3 pins down

the notation and definitions used throughout the paper. Our results on MC are given in Section 4.

The CC extension is described and analysed in Section 5. Experimental results are presented in

Section 6. The final remarks of Section 7 conclude the paper.

2 RELATEDWORK
The naive algorithm for counting the exact number of occurrences of all graphlets of size k in an

n-node graph by enumeration takes O (k2nk ) time. Faster exact algorithms are known [10, 29], but
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their complexity remains nΘ(k ) and are infeasible in practice already for moderate values of n and

k . Indeed, the problem is #W[1]-hard and thus unlikely to admit an f (k )nO (1)
-time algorithm [12].

For k = 4, a major improvement in exact counting is the combinatorial method of [1], which was

shown to scale to n = 148M. For k = 5, [18] managed graphs on up to n = 4.8M nodes by exploiting

a decomposition of graphlets together with a degree-based orientation of the host graph. Note that

these methods are tailored to k = 4 and k = 5 and it is not known how to extend them to k > 5. In

this work, instead, we focus on techniques that can scale to k > 5, at least in principle, even if by

only approximating the graphlet count.

In practice, counting (large) graphlets is often performed using approximate algorithms or

heuristics. One heuristic approach is path sampling, a technique introduced in [14], which consists

in sampling a path uniformly at random from G and checking the graphlet it induces; in this way

one can sample graphlets having paths as spanning trees. In practice this has been shown to be

effective for 4-graphlets [14], and can be adapted to k = 5 by using a set of sampling strategies

for trees on five nodes [27, 28]. However, for k > 5 this method becomes overly intricate and can

significantly suffer from rejection (the path is rejected if its k nodes are not distinct). Again, here

we aim at counting graphlets of size k > 5 through approaches that give provable guarantees.

The first random walk-based algorithm, GUISE, was introduced in [3] and allowed the authors

to collect, in just a few minutes, samples of graphlets of size k = 4 and 5 in graphs with up to 4

million nodes—a significant advancement of the state of the art at the time. Further generalisations

and refinement of this technique followed [8, 11, 19, 26], confirming its prowess at least for

sampling graphlets of size k ≤ 5 in graphs of a few million nodes (and k = 6 on one small

graph). Unfortunately, for the two of these algorithms that are currently faster [8, 11] it is unclear

how to extend the techniques to the case k > 5; in fact, the results available are for k ≤ 5. The

two techniques developed earlier [19, 26], although reportedly slower, are less sophisticated and

can be easily employed for any value of k . However, no non-trivial bounds on the running time or

number of samples needed to achieve a given accuracy are known for these methods. Obtaining

such a result is part of the goals of our work.

The attractive bounds offered by color coding has made it possible to push the task of estimating

subgraph counts in the realm of graphs with millions of nodes. A first distributed algorithm based

on color coding, ParSE [31], was used to count seven different subgraphs of size k ranging from 4

to 10 in graphs with up to 20 million nodes. A subsequent distributed scalable implementation of

color coding, SCALA [20], allowed the authors to count on graphs with 1—2M nodes the number of

non-induced paths and trees. Another recent effort to scale color coding is [7]: using a distributed

algorithm, the authors estimate the occurrences of ten different subgraphs of treewidth 2 and size

up to k = 10 nodes, in graphs of up to 2M nodes. While these encouraging results make clear that

color coding is a promising approach, they leave wide open the important question of estimating

the distribution of induced subgraphs, aka graphlets. In this paper we show how color coding fits

the purpose—with almost no overhead.

Finally, a preliminary version of the present work [6] provided a first theoretical and experimental

comparison between random walks and color coding, suggesting the two are both viable, with

color coding winning on some large instances. In this paper we complement those by extensively

showing that color coding is the most promising technique for scaling graphlet counting to k > 5 in

graphs with millions of nodes. We also improve the lower bound of Lemma 14 in [6] from Ω(nk−2)
to Ω(nk−1), see Theorem 4.4.
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3 PRELIMINARIES
A graph G = (V ,E) is composed of a set V of nodes and a set E ⊆

(
V
2

)
of edges

1
. In this paper we

will assume the graph is connected and undirected. The degree of a node v ∈ V is the number of

nodesw such that {v,w } is an edge of G: degG (v ) = |{w | {v,w } ∈ E}|. We use ∆(G ) to denote the

maximum degree of G: ∆(G ) = maxv ∈V degG (v ). When G is obvious from the context, we simply

use deg(·) and ∆.

Graphlets. Given a graph G = (V ,E), and a subsetW ⊆ V of its nodes, we let the subgraph of G

induced byW , or G |W , be the graph composed of the set of nodesW and the set of edges E ∩
(
W
2

)
.

If |W | = k and if G |W is connected, then G |W is a k-graphlet of G. We denote byVk (G ) the set of
k-graphlets of G. Finally, if H is a connected undirected graph on k nodes, we say “the number of

occurrences of H in G” to refer to the number of elements inVk (G ) that are isomorphic to H .

4 GRAPHLETS VIA RANDOMWALKS
In this section we analyse the performance of graphlet-sampling algorithms based on random walks.

Such algorithms are appealing for their simplicity and their encouraging empirical performance;

on the other hand, however, they often come with weak theoretical guarantees in terms of n and k .
Here we aim at obtaining bounds on those guarantees. We focus on the two algorithms that are

known to work for k ≥ 5 [19, 26]; faster ones are known for k ≤ 5 [8, 11] and we shortly discuss

them at the end of the section. Both algorithms are based on a very natural approach – the simple

random walk on the space of k-graphlet occurrences.
Recall thatVk (G ) is the set of k-graphlet occurrences of G. Consider then a new graph whose

nodes areVk (G ). There is an edge between two graphlets if and only if the node set of one can be

obtained by the node set of the other by removing one node and adding another. More precisely,

Ek (G ) = {{X ,Y } | X ,Y ∈ Vk (G ) and |X ∩ Y | = k − 1} .

We let Gk (G ) be the graph Gk (G ) = (Vk (G ), Ek (G )). WhenG is clear from the context, we use the

notation Gk = (Vk , Ek ). We are interested in studying the simple random walk on Gk . First of all,

note that the connectedness of G implies the connectedness of Gk . Furthermore, the Markov chain

associated to walk is aperiodic under mild conditions: it is sufficient thatG is non-bipartite or there

is v ∈ G with dv ≥ 3, see e.g. Theorem 3.3 in [26]. We thus assume the chain is aperiodic. If we

then let d (H ) denote the degree in Gk of a k-graphlet occurrence H ∈ Gk , by standard Markov

Chain theory we have:

Observation 4.1. The simple random walk on Gk converges towards the distribution where H has

probability p (H ) = d (H )
2 |Ek |

.

This observation can be used to build an unbiased estimator for the graphlet frequencies. To this

end, one must ensure that each graphlet occurrence visited by the walk has the same weight in

the final count. This can be achieved via rejection sampling (accepting H with probability
1

d (H ) )

or via reweighting (counting H as a “fraction”
1

d (H ) of a sample). These rejection and reweighting

techniques are at the heart of all state-of-the-art graphlet-sampling algorithms based on random

walks [8, 11, 19, 26]. The fundamental question now is how many steps are needed to reach

stationarity, or more formally, what is the mixing time [17] of the random walk – the number of

steps required to reach (within an ϵ-statistical error from) the stationary distribution. The remainder

of this section is devoted to developing bounds on such a mixing time.

1
For a finite set S and an integer 0 ≤ k ≤ |S |, we use

(
S
k

)
to denote the set of k -subsets of S , i.e.,

(
S
k

)
= {T | T ⊆ S, |T | = k }.
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Let us start by recalling some standard notion. Given a setW ⊆ V of nodes, the volume ofW
is vol(W ) =

∑
v ∈W deg(w ). The cut induced byW ⊆ V is equal to the number of edges that have

exactly one endpoint inW , that is, cut(W ) = |{e : |e ∩W | = 1}|. The conductance of a set of nodes

W ⊆ V is defined as ϕ (W ) = cut(W )
vol(W ) . The conductance of G is defined as

ϕ (G ) = min

W ⊆V
vol(W )≤ |E |

ϕ (W ).

Consider the uniform random walk on G, where at each node v ∈ V , the next node to visit is

chosen uniformly at random from among the neighbors of v . Cheeger’s inequality [9] implies that

the mixing time of the walk is between Ω(ϕ (G )−1) and O (ϕ (G )−2 log 1

ϵ ). A large conductance thus

implies a small mixing time and vice versa.

Social graphs have been empirically observed to have small mixing times [16]. A natural question

then is: can we give small upper bounds on the mixing time of Gk by using the fact that G has a

small mixing time? We will show in Section 4.2 that, unfortunately, the answer to this question

is negative in general: there are graphs G with very large (constant) conductance for which the

corresponding Gk has a tiny conductance. Before addressing these lower bounds, in the next section

we give an upper bound on the mixing time of Gk that may be of use in low-degree graphs.

4.1 An upper bound on the mixing time
Theorem 4.2. For any given G we have ϕ (Gk ) ≥ Ω(n−1∆−k ), and thus the mixing time of the

simple random walk on Gk is upper bounded by O (n2∆2k ).

Proof. Observe that, sinceG is connected, the degrees of nodes in Gk range from 1 to k ·∆(G ) =
k∆. We first upper bound the number of k-graphlets of G, i.e., |V |. Note that any element H ∈ V
with node set {v1, . . . ,vk } can be mapped to a unique tuple (v1, . . . ,vk ) where, for each i = 2, . . . ,k ,
node vi neighbors some of v1, . . . ,vi−1. By bounding the number of such tuples we can thus bound

|V |. Any such tuple can be constructed by choosing v1,v2, . . . ,vk in turn. We have n different

choices for v1. Once v1 is chosen, we have at most ∆ possible choices for v2, since it must be a

neighbor of v1. Similarly, we have at most 2∆ choices for v3, which must be a neighbor of v1 or v2,
and so on till vk for which we have at most (k − 1)∆ choices. Therefore |V | ≤ n(k − 1)! · ∆k−1

.

Now, since for any H ∈ Vk the degree of H in Gk is at most k∆, the volume of any subset of

nodes ofVk can be upper bounded by k∆ · |Vk | ≤ k!n∆k
. Furthermore, since Gk is connected, any

non-empty and proper subset of nodes ofVk will have at least one edge in the cut. It follows that

ϕ (Gk ) ≥
1

k !n
−1∆−k . The upper bound on the mixing time of Gk then follows. □

4.2 Lower bounds on the mixing time
We next show a mixing time lower bound by exhibiting a graph G with large conductance such

that Gk has tiny conductance.

Definition 4.3. Let k ∈ Z+ be given. Let ℓ ∈ Z+ be sufficiently large. Take ℓ disjoint paths of 2k
nodes each; create two additional nodes a and b; for each path, add an edge between one of its

endpoints and a, and an edge between its other endpoint and b. Let G = (V ,E) be the resulting
graph.

Note that |V | = 2ℓk + 2; let n = |V |. One can easily see that the conductance of G is a constant,

ϕ (G ) = Θ(1/k ) = Θ(1). We next prove that the conductance of Gk is tiny, which by Cheeger’s

inequality implies that its mixing time is huge, thus obtaining:

Theorem 4.4. Let G be the graph of Definition 4.3. Then the mixing time of G is Θ(1), and yet the
mixing time of Gk is at least Ω(nk−1).
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Proof. Consider the closed ball S of radius k centered at a. Observe that it is (i) disjoint and (ii)

isomorphic to the closed ball T of radius k centered at b. Now, consider the set X of k-graphlets
that contain only nodes in S , and the set Y of k-graphlets that contain only nodes in T . By (ii),

the subgraph that X induces on Gk will be isomorphic to the subgraph that Y induces on Gk .

Moreover, by (i), those two subgraphs will be disjoint. Thus, vol(X ) ≤ vol(Gk )/2 = |Ek | and
hence ϕ (G′k ) ≤ ϕ (X ). Now, |X | = Ω(nk−1) since there are Ω(nk−1) graphlets isomorphic to the

star on k nodes centered at a. Also, each such graphlet H satisfies degGk
(H ) = Ω(n), since it

is a neighbor of the Ω(kℓ) graphlets H ′ that share a and k − 2 neighbors of a with H itself.

Therefore, vol(X ) ≥ |X | degGk (H ) = Ω(nk ). Also, cut(X ) = n−2
2k ≤ O (n). Therefore we have

ϕ (Gk ) ≤ ϕ (X ) = cut(X )
vol(X ) = O (n1−k ). □

We observe that in time O (nk ) one can just enumerate all the k-subsets of nodes of a graph of n
nodes, check whether they form a k-graphlet and, if so, which graphlet do they form. As shown

above, the random walk on G′k has to run for at least Ω(nk−1) steps, to guarantee any statistical

significance of the sampled graphlet.

Next, we show that not only the random walk does not converge in o(nk−1) steps for some

graphs with constant conductance, but in fact there are constant-conductance graphs such that

o(nk−1) steps of the random walk are not even enough to see any copy of a graphlet that occurs an

overwhelming fraction (i.e., 1 − o(1)) of the times. This means we need Ω(nk−1) steps to see some

occurrence of a graphlet appearing more than 99% of the times in the graph. We will consider a

graph similar to the one in Definition 4.3.

Definition 4.5. Let k ∈ Z+ be given. Let ℓ ∈ Z+ be sufficiently large. Take ℓ disjoint paths of
2k nodes each; create an additional node a and, for each path, add an edge between one of its

endpoints and a. Construct a clique out of the ℓ other endpoints of the ℓ paths. Let G = (V ,E) be
the resulting graph.

As before, let n = |V | = 2ℓk + 1 and one can show that ϕ (G ) = Θ(1/k ) = Θ(1). We prove:

Theorem 4.6. LetG be the graph of Definition 4.5. ThenG has mixing time Θ(1), and the k-cliques
are a 1 − o(1) fraction of the k-graphlets of G. However, if the random walk on Gk starts from any

graphlet containing node a, with high probability it will require Ω(nk−1) steps to reach any k-clique.

Proof. The number ofk-cliques inside the clique of cardinality ℓ is equal to
(
ℓ
k

)
= Θ(ℓk ) = Θ(nk ).

The number of graphlets that contain some node of the clique, and some node outside the clique

is Θ(nk−1). The number of k-graphlets that contain a is no more than O (nk−1). There are Θ(n)
graphlets that do not contain nodes of the clique and a. Therefore the number of k-clique graphlets
is a 1 −O (1/n) = 1 − o(1) fraction of the total number of graphlets.

We now show that, if we start the random walk on Gk from any graphlet containing a, with high

probability we will require Ω(nk−1) steps to reach any graphlet that does not contain a, and thus

to reach any k-clique. Let us partition the set of graphlets that contain a into k zones P1, . . . , Pk ,
where a graphlet belongs to zone Pi if the maximum distance between one of its nodes and a is

i . The starting graphlet is therefore in P1. We aim to show that it takes Ω(nk−1) steps to reach Pk .
Clearly, reaching some graphlet in Pk is necessary if we are to reach some k-clique. Consider now
the walk between the Pi ’s. Observe that, if we are in Pi we can either remain there, or move to Pi+1
(if i < k), or move back to Pi−1 (if i > 1). However, the probability of moving to Pi+1 is no more

than
k2

ℓ = O (n−1). Moreover, if i > 1, then the probability of reaching, in O (k ) steps, Pi−1 from Pi
is at least 1 −O (1/n). The time required to reach Pk , then, is Ω(nk−1). □
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4.3 Other random walk techniques
We conclude by briefly discussing the random-walk algorithms of [8] and [11]. The algorithm of [8]

performs a simple random walk onG, and then samples (with appropriate weights) all k-graphlets
containing the last k − 1 nodes visited by the walk if those are distinct. The idea is that the random

walk on G mixes faster than that on Gk , but the drawback is that we can only observe k-graphlets
that contain a simple path of length k − 1: for example we can count cliques or cycles, but not

stars. For k ≤ 5 this is not a problem, as the stars are the only unobservable graphlets and their

frequency can be estimated from the frequencies of other graphlets [8]. However, the number of

unobservable graphlets grows to 4 for k = 6 and to 33 for k = 7; moreover, those graphlets are

among the top frequent ones in practice (see Section 6). The algorithm in [11] aims at overcoming

both the high mixing time and the unobservability of graphlets. This is done by allowing the simple

random walk on G to “waddle” so that it can visit the spanning tree of a graphlet H even if that

spanning tree is not a path. Such an approach, however, requires to devise a “waddling strategy”

for each graphlet that does not contain a spanning path and only for k = 4 such a strategy has been

shown. Furthermore the formal guarantees of such an approach, and in particular a bound on the

variance of the estimator, seem difficult to pin down.

5 GRAPHLETS VIA COLOR CODING
In this section we present two algorithms for graphlet counting that are based on color coding

(CC), a powerful algorithmic technique introduced by Alon, Yuster, and Zwick [2]. Given the input

graph G = (V ,E) and k , coloring coding first assigns uniformly and independently to each node of

G a random label in [k] := {1, . . . ,k }, referred to as a color. The goal now is to count the number

of non-induced trees of k nodes in G—called treelets—that are colorful, i.e., whose labels have no

repetitions. This can be done efficiently by dynamic programming, thanks to the fact that treelets

with disjoint set of labels must lie on disjoint set of nodes. Since a treelet is colorful with relatively

low probability, one needs to repeat the coloring sufficiently many times in order to “hit” any given

treelet.

In its original version, color coding requires timeO (ck · |E |) and spaceO (ck · |V |) for some c > 1,

which has made it possible to push the task of estimating subgraph counts in the realm of graphs

with millions of nodes. However, existing algorithms only count subgraphs occurrences that are

not induced, and that are either trees or “tree-like” in the sense of having small treewidth. We

show that treelet counting can be extended to graphlet counting based on the observation that by

counting treelets we have counted (with high probability if repeated many times) all the spanning

trees of every graphlet. To summarize, a good estimate of treelets can be translated into a good

estimate of graphlets.

In this section we first describe the two algorithms that are based on color coding. The first

algorithm is an extension of the algorithm of Alon et al. [2], and the second is a modification

that uses less space at the expense of sampling speed. The latter algorithm is the one we use

in our experiments, where we are limited by the amount of available memory. We then prove

concentration on the number of colorful treelets produced by one run of (either of these) algorithms.

We will use this to prove concentration on the number of colorful graphlets.

5.1 Algorithms
Here we describe two algorithms based on color coding that can count and sample colorful non-

induced treelets uniformly at random. We then show how that suffices to sample colorful induced

graphlets, as well. Both algorithms consist of a building phase and a sampling phase, and start with
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a coloring phase where each node v ∈ V of G is assigned a color c (v ) chosen independently and

uniform at random from [k].

5.1.1 The first algorithm (CC1). Our first algorithm, CC1, is as follows. In the building phase

(see Algorithm 1), which is essentially the algorithm of Alon et al. [2], we start by creating for each

node v ∈ G a counter C (T , S,v ) = 1 where T is the trivial graphlet on 1 node and S is the set of

colors {c (v )} containing just the color of v . This is the counter of the number of (non-induced)

treelets isomorphic to T with color labels spanning S and rooted at v . Then we perform a dynamic

programming to count treelets of size h = 2, . . . ,k . For each h in turn, we consider each possible

rooted treeT on h ≤ k nodes and each possible set S ⊆ [k] with |S | = h. Then, for each node v ∈ V ,

we can compute the numberC (T , S,v ) of occurrences of (non-induced) treelets rooted at v that are

isomorphic toT and whose colors span the set S , as follows. Split ideallyT into two rooted subtrees

T1 and T2 by removing any edge e incident to the root of T (the endpoints of the edge become the

roots of the subtrees); it is easy to see that C (T , S,v ) satisfies the following relationship:

C (T , S,v ) =
1

d

∑
(v,u )∈E

∑
S1,S2⊂S
S1∩S2=∅

C (T1, S1,v ) ·C (T2, S2,u), (1)

where d is a normalization constant that is equal to the number of rooted trees isomorphic to T2
among the subtrees rooted in the children of the rootT . To computeC (T , S,v ) one then just sweeps

over all edges uv of G, combining the counters of u and v . The correctness and complexity of this

construction are proved in [2].

Algorithm 1: CC1-Build
input : graph G, graphlet size k

1 for v in G do
2 c (v ) = color drawn u.a.r. from [k]

3 C (({v}, ∅), {c (v )},v ) = 1

4 for h = 2 to k do
5 for v in G do
6 for each T : |T | = h do
7 for each S ∈

(
[k]
h

)
do

8 C (T , S,v ) = d−1
∑

(v,u )∈E
∑

S1,S2⊂S
S1∩S2=∅

C (T1, S1,v ) ·C (T2, S2,u)

9 for v in G do
10 build rng() with Pr[T ,v] ∝ C (T , [k],v ) for each T : |T | = h do
11 for each S ∈

(
[k]
h

)
do

12 for each S1 ⊂ S do
13 build rng(T1,T2, S,v ) with Pr[S1, S2] ∝ C (T1, S1,v )

∑
u :uv ∈E C (T2, S2,u)

14 build rng(T2, S2,v ) with Pr[u] ∝ C (T2, S2,u)

In the sampling phase (see Algorithm 2) we use the countersC (T , S,v ) to sample a colorful treelet

uniformly at random. First, we randomly choose a node v of G and a treelet T on k nodes with

probability proportional to the overall number of occurrences of treelets isomorphic to T rooted at

v , i.e. toC (T , [k],v ). We then choose one of theC (T , S,v ) treelets rooted atv that are isomorphic to

T and are colored with the colors in S (in this first step, S = [k]). To this aim we split T into T1 and
T2 as described above. Then we select a pair of color subsets S1 and S2 = S \ S1, with size |S1 | = |T1 |
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and |S2 | = |T2 |, with probability proportional the number of T ’s rooted at v that are formed by

T1 and T2 colored with S1 and S2; that is, proportional to C (T1, S1,v ) ·
∑
u :(u,v )∈E C (T2, S2,u). Next,

we choose the neighbor u where to root T2 with probability proportional to C (T2, S2,u). Then we

recursively sample one of the C (T1, S1,v ) (resp. C (T2, S2,v )) treelets isomorphic to T1 (resp. T2) and
colored with the colors in S1 (resp. S2) from v (resp. u). It is immediate to verify that this procedure

yields a colorful treelet occurrence chosen u.a.r. among all those in G.
To reduce the complexity of the sampling phase, in CC2 we pre-build the random number

generators (lines 9–14), as follows. First, for any possible treelet on k nodes and any v ∈ G, we
build a generator returning the pair (T ,v ) with probability proportional to C (T , [k],v ). Then, for
each node v ∈ G, we build O (ck ) generators to draw the pairs of label sets and to draw a neighbor

of u. Such generators can be built in time and space linear in the size of the alphabet, and produce

a sample in O (1) time [25]. Thus in our case they take overall O (ck |E |) time and space.

Algorithm 2: CC1-Sample

input : (T , S,v ) or Null
output : colorful k-treelet chosen uar from those isomorphic to T with labels S rooted at v

1 if input = Null then
2 (T ,v ) = rng()

3 S = [k]

4 if |T | = 1 then
5 return ({v}, ∅), {c (v )}

6 decompose T into T1 + e +T2
7 (S1, S2) = rng(T1,T2, S,v )

8 u = rng(T2, S2,v )

9 H1 = CC1-Sample(T1, S1,v )

10 H2 = CC1-Sample(T2, S2,u)

11 return H1 +vu + H2

From the algorithms one can immediately obtain the following complexity bounds:

Theorem 5.1. CC1-Build takes time and space O (ck |E |) for some c > 0. CC1-Sample takes time

O (k ).

5.1.2 The second algorithm (CC2). Our second algorithm, CC2, is a simple variant of CC1 that

saves memory at the expense of sampling speed. In CC2, we do not precompute the random number

generators that allow to (recursively) select the subtrees T1,T2 and the subsets of labels S1, S2 in
time O (1). Instead, we create the distributions of T1,T2 and S1, S2 at sampling time starting from

the countersC (· · · ). This requires to sum the countersC (· · · ) over all neighbors of v , but since the
degrees of the graphs we deal with are not too large, the impact on the sampling time is hopefully

small. The advantage is that the space complexity of CC2 becomes O (ck |V |). This allows us to
reduce the overall memory footprint of the algorithm — a determining factor in practice, since CC

is typically limited by memory. Formally, one can prove:

Theorem 5.2. CC2-Build takes time O (ck |E |) and space O (ck |V |). CC2-Sample generates a treelet

sample T in time O (ck
∑
v ∈T dv ).

Finally, in CC2 we store only the positive counters C (· · · ). In this way, the amount of memory

required by CC2 is actually dictated by the number of different colored treelets that are in the
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graph. This can be much smaller than ck |V |. For this reason, in practice the memory footprint of

CC2 is not strictly proportional to the size of the graph, and on some larger graphs we could reach

larger values of k (see Section 6).

5.1.3 From treelets to graphlets. Once we can sample an occurrence of a colorful treelet on k
nodes uniformly at random from the set of all colorful treelet occurrences inG , it is possible to also
sample a colorful graphlet H by noticing that a graphlet contributes kσ (H ) to the treelet count,

where σ (H ) is the number of spanning trees of H (the factor k comes from the fact that a single

colorful tree contributes k to the count). Hence, to sample a colorful graphlet uniformly at random

one can proceed as follows:

(i) sample an occurrence T of a treelet on k nodes from G
(ii) consider the graphlet H induced by the nodes of T , and
(iii) reject H with probability 1 − 1

σ (H )

If the goal is to obtain an unbiased estimate of the graphlets frequency, at step (iii) instead of

rejection sampling we can simply add to the graphlet count the quantity
1

σ (H ) . This never increases

the variance of the resulting estimator and, depending on the distribution, can significantly decrease

it. We use this approach in our implementation. The value σ (H ) can be (pre)computed for any given

H in time O (kω ) where ω is the matrix multiplication exponent, e.g. via Kirchhoff’s Matrix-Tree

Theorem [? ]. In our case we compute σ (H ) the first time H is sampled, caching it for later reuse.

5.2 Concentration of colored graphlets
In this section we prove concentration bounds on the number of colorful graphlets produced by

CC1 and CC2 and, in fact, by any random uniform coloring of the nodes ofG . We assume k ≥ 3 and

we denote by д = |Vk (G ) | the total number of k-graphlets inG . Our goal is to show that, with high

probability, the coloring preserves the distribution of graphlets. More formally, consider a subset

S ⊆ Vk (G ) of the k-graphlets ofG; for instance, the set of all k-cliques ofG . The expected number

of such graphlets that are colorful is

∑
H ∈S Pr[H is colorful] = |S| k !kk ; so we could recover |S| from

an accurate estimate of such a number. Unfortunately, the actual number of colorful graphlets can

fall far from |S| k !kk . Indeed, there may be strong correlations between the colorings of different

graphlets in S; for instance, there can be Θ(nk−2) graphlets sharing two nodes v,v ′ of G, and if v
and v ′ have the same color then all those Θ(nk−2) will be simultaneously uncolorful. However we

can show that, if S is large enough, then there is concentration. Our main result is the following:

Theorem 5.3. Consider any S ⊆ Vk (G ), and let ZS be the random variable counting the number

of H ∈ S that are made colorful by a coloring of G. Let s = |S| and µS = E[ZS]. Then for any ϵ > 0:

Pr

[
|ZS − µS | > ϵ µS

]
≤ e−Ω(ϵ 2s1−1/k /д1−2/k )

(2)

where the Ω(·) notation hides factors that depend on k but not on д and s .

The exponent of the bound is in Ω(1) as long as s ∈ Ω(д1−
1

k−1 ), i.e., as long as S is relatively

large w.r.t. the total number of graphlets of G. For instance, when counting the most frequent

graphlets (say, those appearing at least a 1% of the times) we are looking at s ∈ Ω(д), which is in

that range. The proof of Theorem 5.3 is rather technical and can be skipped without impairing the

understanding of the rest of the paper; the interested reader can find it in Subsection 5.3.

We next prove that the bound of Theorem 5.3 is tight. Formally:

Theorem 5.4. There exist arbitrarily large graphs G with a subset of k-graphlets S such that

|S| = Ω(д1−
1

k−1 ) and Pr[ZS = 0] ≥ 1

k = Ω(1).
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Proof. Consider G formed by a star on n − 1 nodes and an additional node u ′ attached to a leaf

node u of the star. There are

(
n−1
k−1

)
= Ω(nk−1) graphlets isomorphic to stars, thus д = Ω(nk−1). The

set S of graphlets not spanned by stars contains all and only those graphlets containing both u and

u ′, which are

(
n−2
k−2

)
= Ω(nk−2) = Ω(д1−

1

k−1 ). The probability that all such graphlets are not colorful,

and thus that ZS = 0, is at least Pr[u and u ′ have the same color] ≥ 1

k . □

By Theorem 5.3, the distribution of colorful graphlets (which can be sampled via our algorithms

CC1 and CC2) closely matches the overall distribution of graphlets, at least for graphlets that occur

often enough. A formal statement is the following:

Corollary 5.5. Let µH ∈ [0, 1] be the fraction of graphlet occurrences of G that are isomorphic to

H , and let S be a graphlet drawn uniformly at random from the set of colorful graphlets ofG . Then for

any ϵ > 0, with probability 1 − e−Ω(ϵ 2д1/k )
:

Pr [S is an occurrence of H ] ∈
[
µH −

2ϵ

1 + ϵ
, µH +

2ϵ

1 − ϵ

]
. (3)

Proof. Let ZS be the number of colorful elements of S = SH , the set of graphlets isomorphic to

H . LetZ be the total number of colorful graphlets inG . What we are bounding is the probability that

ZS/Z is too far from E[ZS]/E[Z ] = µH . Suppose that E[ZS] ≥
1

2
E[Z ]. Then E[ZS],E[Z ] ∈ Θ(д)

and by the bounds of Theorem 5.3 with probability 1 − e−Ω(ϵ 2д1/k )
we have ZS ∈ E[ZS](1 ± ϵ ) and

Z ∈ E[ZS](1 ± ϵ ). By standard calculations it follows that E[ZS]/E[Z ] ∈
[
µH −

2ϵ
1+ϵ , µH +

2ϵ
1−ϵ

]
. If

E[ZS] <
1

2
E[Z ] then one can obtain the bound by applying the argument above to Z − ZS . □

Finally, if one creates λ ≥ 1 random colorings ofG and takes the average counts of each graphlet,

one gets the following improved concentration bound.

Corollary 5.6. If we consider λ independent colorings ofG and let ZS = λ−1
∑λ

i=1 Z
i
S
where Z i

S

counts the number of colorful graphlets of S in the ith coloring, then the bound of Theorem 5.3 becomes:

Pr

[
|ZS − µS | > ϵ · µS

]
≤ e−Ω(λϵ 2s1−1/k /д1−2/k ) .

Proof. It is sufficient to modify slightly the proof of Theorem 5.3 (see below). Consider λ
martingale sequences, each one like the one used in the proof, associated to λ independent colorings
of G. Juxtapose them to obtain a single martingale sequence of length λn, whose expectation is

µ ′
S
= λµS . We can then apply the Azuma-Hoeffding inequality to this martingale sequence. The

denominator of the bound’s exponent becomes 2λ
∑n

i=1 c
2

i where the ci ’s are the same of the proof

of Theorem 5.3. Into the numerator of the exponent now we plug t = ϵµ ′
S
= ϵλµS . Since t is

squared at the numerator, one can check that the bound gains a factor λ at the exponent. □

5.3 Proof of Theorem 5.3
The key steps are as follows. We assume the nodes of G are colored in nonincreasing order of

number of graphlets they appear in (clearly any order is equivalent). We then consider the (Doob)

martingale that counts the expected number of colorful graphlets in S given the colors assigned

to the first i nodes, for each i = 1, . . . ,n. By applying the method of bounded differences, we

get a concentration inequality whose exponent’s denominator has one term for each node of G,
telling how much the martingale can oscillate when we color that node. Thanks to the ordering

of the nodes, bounding the vast majority of terms due to nodes that appear in few graphlets is

relatively easy; less so for the other terms, that also depend on how many graphlets can be shared

by two nodes. This requires us to prove that two nodes cannot simultaneously appear in too many

graphlets (one of the two must appear in asymptotically more).
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Let us start with some notation. For i = 1, . . . ,n, letXi ∈ [k] be the random variable denoting the

color of node i . For j = 1, . . . , s let Yj ∈ {0, 1} be the indicator random variable of the event that the

j-th graphlet of S is colorful, and let Z = ZS =
∑s

j=1 Yj be the total number of colorful graphlets

of S. Finally, for i = 1, . . . ,n let Zi = E[Z |X1, . . . ,Xi ] be the expectation of Z as a function of the

colors assigned to the first i nodes, and let Z0 = E[Z ]. The sequence Z0, . . . ,Zn is a Doob martingale

with respect to X1, . . . ,Xn , and Azuma’s inequality implies

Pr

[
|Z − E[Z ]| > t

]
< 2e

− t2

2

∑n
i=1 c

2

i , (4)

whenever |Zi − Zi−1 | ≤ ci .
Let now дS (u) = |{H ∈ S : u ∈ H }| be the number of graphlets of S in which u appears. The

rest of the proof is devoted to showing that, if the nodes of G are sorted in nonincreasing order

of дS (i ), then
∑n

i=1 c
2

i = O (s1+
1

k /д1−
2

k ). Together with Equation 4, and since µS =
k !
kk s = Θ(s ), this

implies the theorem’s claim for t = ϵµS . Start by breaking

∑n
i=1 c

2

i in two parts:

n∑
i=1

c2i =
ℓ∑
i=1

c2i +
n∑

i=ℓ+1

c2i , (5)

for some ℓ to be chosen later. Note that ci ≤ дS (i ): the conditioning on Xi can alter, by at most 1,

the expectation of only those Yj associated to graphlets containing i . Also, дS (i ) ≤
1

i
∑n
u=1 дS (u)

by the ordering of the nodes. Finally,

∑n
u=1 дS (u) = ks = O (s ), and thus дS (i ) = O ( si ). Hence the

second term in Equation 5 can be bounded as

n∑
i=ℓ+1

c2i ≤
n∑

i=ℓ+1

дS (i )
2 =

n∑
i=ℓ+1

O
(s
i

)
2

= O
(s2
ℓ

)
. (6)

The rest of the proof focuses on bounding

∑ℓ
i=1 c

2

i . First of all notice, that if the graphlet associ-

ated to Y does not contain i or does not contain one among 1, . . . , i − 1, then E[Y |X1, . . . ,Xi ] =

E[Y |X1, . . . ,Xi−1]. Therefore, ci is bounded by the number of graphlets of S that contain both i
and at least one of 1, . . . , i − 1. Let then дS (i, j ) = |{H ∈ S : i, j ∈ H }| and let д(i, j ) = дGk (i, j ).
Clearly, дS (i, j ) ≤ д(i, j ). Thus we have:

ci ≤
i−1∑
j=1

дS (i, j ) ≤
i−1∑
j=1

д(i, j ). (7)

Assume now thatд(i, j ) = O ((д(i )+д(j ))
k−2
k−1 ), which we indeed prove later. Therefore the right-hand

side of the equation above is

∑i−1
j=1 д(i, j ) = O (

∑i−1
j=1 (д(i ) + д(j ))

k−2
k−1 ). Now by the ordering of nodes

д(i ) + д(j ) ≤ 2д(j ) = O (д/j ), hence

ci ≤ O *.
,

i−1∑
j=1

(д(i ) + д(j ))
k−2
k−1

+/
-
= O *.

,

i−1∑
j=1

(д/j )
k−2
k−1

+/
-
= O

(
д1−

1

k−1 i
1

k−1
)

(8)

with the last equality following from standard analysis. By using this bound in

∑ℓ
i=1 c

2

i we get:

ℓ∑
i=1

c2i = O
*
,

ℓ∑
i=1

д2−
2

k−1 i
2

k−1 +
-
= O

(
д2−

2

k−1 ℓ1+
2

k−1
)

(9)

Finally, by setting ℓ = s1−
1

k д
2

k −1 in both Equation 6 and 9, we obtain

∑n
i=1 c

2

i = O
(
s1+

1

k д1−
2

k
)
as

desired.

It only remains to prove:
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Lemma 5.7. For any u,v ∈ G it holds д(u,v ) = O
(
(д(u) + д(v ))

k−2
k−1

)
.

Proof. For any k ≥ 1 let Hk (u) denote the set of graphlets of size k of G that contain u (so

H1 (u) contains only the trivial graphlet formed by u alone). For any graphlet occurrence H , let dH
be the sum of the degrees of its nodes inG; i.e., if u1, . . . ,uk are the nodes of H then dH =

∑k
i=1 dui .

To avoid ambiguities w.r.t. k , we use дk (u) instead of д(u) to denote |Hk (u) |. Note that дk (u) > 0

for all k since G is connected by hypothesis, so we can safely employ Landau notation.

We start by proving that дk (u) is proportional to the sum of the degrees of the graphlets of size

k − 1 containing u: ∑
Hk−1 (u )

1

k

⌈
1

k − 1

(
dH − 2

(
k−1
2

))⌉
≤ дk (u) ≤

∑
Hk−1 (u )

dH .

The upper bound follows immediately by noting that any element ofHk (u) can be obtained by

adding to some H ∈ Hk−1 (u) one of the neighbors of its nodes, and those neighbors are at most

dH . Consider now any H ∈ Hk−1 (u). Since the arcs within H are at most

(
k−1
2

)
, and since G is

connected, there must be at least dH − 2
(
k−1
2

)
> 0 arcs between H and G \ H . These arcs then lead

to at least ⌈ 1

k−1 (dH − 2
(
k−1
2

)
)⌉ distinct nodes, each of which can be added to obtain an element of

Hk (u). Any element ofHk (u) can be obtained in this way, and from at most k elements ofHk−1 (u).

The lower bound then follows by summing ⌈ 1

k−1 (dH − 2
(
k−1
2

)
)⌉ over all H ∈ Hk−1 (u) and dividing

by k .
We can now prove the following crucial fact:

дk (u) = Ω
(
дk−1 (u)

k−1
k−2

)
. (10)

The proof is by induction on k . The claim holds trivially for k = 2. Let us assume it holds for

some k ≥ 2 and focus on proving it for k + 1. Since дk+1 (u) = Ω(
∑

H ′∈Hk (u ) dH ′ ), we will show the

right-hand side is in Ω(дk (u)
k
k−1 ). Recall that from any H ∈ Hk−1 (u) and its neighbors in G one

can create ⌈ 1

k−1 (dH − 2
(
k−1
2

)
)⌉ = Ω(dH ) graphlets ofHk (u); each such graphlet H ′ includes all the

nodes of H , hence has degree dH ′ ≥ dH , and may be obtained from at most k distinct graphlets H .

Therefore: ∑
Hk (u )

dH ′ ≥
1

k

∑
Hk−1 (u )

Ω(dH ) · dH = Ω
( ∑
Hk−1 (u )

d2H

)
. (11)

Now, ∑
Hk−1 (u )

d2H ≥
1

дk−1 (u)

( ∑
Hk−1 (u )

dH

)
2

= Ω

(
дk (u)

2

дk−1 (u)

)
(12)

where the first inequality follows from convexity and the second from

∑
Hk−1 (u ) dH = Ω(дk (u)).

Now by the inductive hypothesis дk−1 (u) = O (дk (u)
k−2
k−1 ), which used in the denominator of the

right-hand side proves Equation 10.

We can now conclude the proof of Lemma 5.7. First of all note that any graphlet of size k
containing both u and v is the union of (the sets of nodes of) two smaller graphlets: one of size h
containing u (but possibly not v), and one of size k − h containing v (but possibly not u), for some

h ∈ {1, . . . ,k − 1}. It follows that:

д(u,v ) ≤
k−1∑
h=1

дh (u)дk−h (v ) (13)

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: March 2018.



Motif Counting Beyond Five Nodes 1:15

Since k is a constant, we can thus choose h ∈ {1, . . . ,k − 1} such that дh (u)дk−h (v ) ≥ Ω(д(u,v )).

If h = 1, since д1 (u) = 1 then дk−1 (v ) = Ω(д(u,v )), and дk (v ) = Ω((д(u,v ))
k−1
k−2 ) by Equation 10.

Similarly, if h = k − 1 we obtain дk (u) = Ω((д(u,v ))
k−1
k−2 ).

Assume then h ∈ {2, . . . ,k − 2}. If дh (u) = Ω(д(u,v )
h−1
k−2 ), by Equation 10 дk (u) = Ω(дh (u)

k−1
h−1 ) =

Ω(д(u,v )
k−1
k−2 ). Otherwise дk−h (v ) = Ω(д(u,v )/дh (u)) = Ω(д(u,v )

k−h−1
k−2 ), but then Equation 10

implies дk (v ) = Ω(дk−h (v )
k−1

k−h−1 ) = Ω(д(u,v )
k−1
k−2 ). In any case д(u) + д(v ) = дk (u) + дk (v ) =

Ω(д(u,v )
k−1
k−2 ), which concludes the proof. □

6 EXPERIMENTS
In this section we compare the practical performance of CC2 and of its main competitor, the

Pairwise Subgraph Random walk (PSRW) of [26] – as discussed in Subsection 4.3, this is the only

random-walk technique available that can be employed for k > 5. We note that PSRW (like other

similar random walk techniques) has been developed with the primary goal of minimising the

number of nodes of G visited by the walk; in the present paper, however, we investigate it in terms

of samples taken, running time, and accuracy.

6.1 Setup
We implemented CC2 and PSRW in a multi-threading fashion. For CC2, in the building phase at

each level of the dynamic program each thread takes care of merging a subset of counters, while

in the sampling phase each thread executes the sampling algorithm independently. For PSRW,

each thread runs a single random walk independently. We note that PSRW’s running time is

dominated by enumerating the possible transitions from the current graphlet occurrence H . We

implemented this routine by intersecting, for each u ∈ H , the set of neighbors of the connected

components left in H by removing u; this reduced the running time by as much as 100× w.r.t.

the naive implementation. Our code is written in Java and based on the WebGraph library
2
. It

is publicly accessible at https://github.com/Steven--/graphlets. Our platform was a commodity

machine equipped with 64GiB of main memory and 32 Intel Xeon CPU cores at 2.5GHz with 30

MB of L3 cache, using Oracle’s Java Virtual Machine (version 1.8.0).

Experiments were executed on 15 graphs that appeared as largest instances in previous work;

Table 1 shows the graphs and the largest k for which CC2 ran successfully i.e. within the available

memory limits. Each graph was made undirected, and only the largest connected component was

kept, to ensure the correctness of PSRW (as the walk cannot reach one component from another).

For Twitter and Road-US, just loading the graph exceeded the available main memory, and we

could not run either PSRW or CC2; as a sanity check, we tried a high-end machine with 240GiB

memory, and we could run CC2 on Twitter for k = 4 and on Road-US for k = 7. Those two graphs

are therefore omitted from now on.

Concerning the ground-truth graphlet frequencies, we operated as follows. For k = 5, for all

graphs except Hollywood we could successfully run the exact algorithm of [18] and obtain the

precise count of all graphlets. In each other case we took the average of 50 independent runs of CC2,

for a total of 5 million samples; the empirical low variance of the estimates (see below) strongly

suggests that such an average is indeed very close to the true distribution.

6.2 Color coding versus random walks
We measured the accuracy of CC2 and PSRW as a function of the number of samples and of the

running time. For PSRW, we performed 25 independent runs; each execution picks a random initial

2
http://webgraph.di.unimi.it/
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name nodes edges k source dataset
WordAssoc 10, 6K 63, 8K 8 LAW, wordassociation-2011

Facebook 63, 4K 0, 8M 8 MPI-SWS, Facebook New Orleans

Amazon 0, 3M 0, 9M 8 SNAP, com-amazon.ungraph

DBLP 0, 3M 1, 0M 7 SNAP, com-dblp.ungraph

Yelp 0, 2M 1, 3M 7 YLP, Yelp

Road-PA 1, 1M 1, 5M 6 SNAP, roadnet-PA

Road-CA 2, 0M 2, 8M 7 SNAP, roadnet-CA

BerkStan 0, 7M 6, 6M 5 SNAP, web-BerkStan

Skitter 1, 7M 11, 1M 5 SNAP, as-skitter

Patents 3, 8M 16, 5M 6 SNAP, cit-Patents

Road-US 24, 9M 28, 9M see note NDR, inf-road-usa

LiveJournal 5, 4M 49, 5M 6 LAW, ljournal-2008

Hollywood 1, 9M 114, 3M 6 LAW, hollywood-2009

Twitter 41, 7M 117, 2M see note LAW, twitter-2010

Orkut 3, 1M 223, 5M 5 MPI-SWS, orkut-2007

Table 1. The graph datasets used in our experiments (largest connected component only). Here k is the largest
graphlet size for which we could successfully run algorithm CC2 within the memory resource limits of our
machines. LAW: http://law.di.unimi.it/, [4, 5]. MPI-SWS: http://socialnetworks.mpi-sws.org/data-wosn2009.

html, [24]. SNAP: https://snap.stanford.edu/, [15, 30]. YLP: https://www.yelp.com/dataset_challenge/.

node in the graph, then simulates 32 random walks in parallel from that node (each walk using a

different number generator seed). For CC2, we took the 50 independent runs used to compute the

ground truth. In both cases we stopped at 100k graphlet samples, and along the way we measured

the elapsed wall-clock time returned by the operating system, excluding the time to load the graph.

Note that running times shall be taken with caution; our is a specific implementation, and times

may change as a result of optimizations or hardware modifications
3
. Moreover, small times are

affected by artefacts such as the warm-up of the Java Virtual Machine.

Accuracy versus sample size. Let us start with the accuracy versus the number of samples.

For each single execution we computed the accuracy of the estimates, meant as the 1-norm of the

residual between the ground truth and the distribution estimated by the algorithm. Then, for each

instance (graph, k , number of samples taken) we computed the average the distance over all the

executions. For each k , for each input graph, we computed the mean and standard deviation of

this 1-norm accuracy over all runs, for both PSRW and CC2. This procedure was repeated after 1k

samples, 10k samples, and 100k samples taken by the algorithms. Figure 1 summarises the results.

CC2 appears always at least as accurate as PSRW, and in fact on many instances its accuracy is

better by orders of magnitude. Note that, while for k > 5 the ground truth is the average of all CC2

runs, which may be in favour of CC2, for k = 5 we are using the exact graphlet count.

Figure 2 shows the accuracy of PSRW and CC2 as a function of the number of samples. We

observe that CC2 starts converging immediately, while PSRW often exhibits a “bootstrap” phase

where the distance from the ground truth remains virtually unchanged. This makes sense: CC2

immediately starts sampling from the distribution of colorful graphlets (hopefully close to the

ground truth), while PSRW needs to reach mixing time first. It also suggests that our worst-case

lower bounds on the mixing time (Section 4.2) might be not so far from reality after all.

3
For instance because CC2 accesses vast memory regions in a random fashion, while PSRW exploits more the CPU and its

data cache.
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Fig. 1. Accuracy of CC2 and PSRW: average distance from ground truth, ± one standard deviation, after 1k
samples (top), 10k samples (middle), 100k samples (bottom).

Single-graphlet accuracy. Next, we measured the accuracy of PSRW and CC2 in estimating

the frequencies of single graphlets. Note that any sampling-based method has an intrinsically

poor accuracy for graphlets that occur very rarely; if we take s samples, a reasonable threshold

is to consider only graphlets with ground-truth frequency at least 1/s . Furthermore, since the

number of k-graphlets is already in the hundreds for k = 6, we need an aggregate measure of

accuracy. Consistently with past work, we used the normalised root-mean-square error (NRMSE).

Denote by fH (G ) the ground-truth relative frequency of H in G. Denote by ˆf iH (д) the frequency
estimated obtained from the i-th run of the algorithm. Then the normalised mean-square error is

NMSE (H ,G ) = r−1
∑

r

i=1 (
ˆf iH (д)/fH (G )−1)2. The normalised root-mean-square errorNRMSE (H ,G )

is simply the square root of NMSE (H ,G ). Table 2 shows the average NRMSE of PSRW and CC2

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: March 2018.
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Fig. 2. Convergence of PSRW (left) and CC2 (right) to the ground truth distribution.
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over all runs, all graphs, and all graphlets, for s = 1k, 10k, and 100k. The NRMSE of CC2 is always

1k samples 10k samples 100k samples

k=5 k=6 k=7 k=8 k=5 k=6 k=7 k=8 k=5 k=6 k=7 k=8

PSRW 3.84 1.93 1.61 1.23 5.52 2.11 1.98 3.11 5.74 2.61 2.25 3.76

CC2 0.19 0.27 0.44 0.47 0.11 0.15 0.26 0.29 0.07 0.09 0.15 0.17

Table 2. Accuracy of individual graphlet estimates: average NRMSE of PSRW and CC2.

significantly lower than that of PSRW – and the gap increases with the number of samples. Note

that NRMSE penalises large errors, so these results confirm that CC2 is reliably accurate on all

graphs. Observe also that, while the NRMSE of CC2 increases monotonically with s , the NRMSE of

PSRW decreases with s . This looks counterintuitive, but can be again be explained by high mixing

time – if the walk gets “stuck” in a part of the graph where a graphlet is particularly scarce, then

the estimates will progressively worsen.

Accuracy versus time. Finally, we look at the accuracy versus the running time. Note that

there are some subtleties in this comparison. On the one hand, PSRW starts sampling immediately,

while CC2 first performs an (expensive) building phase. On the other hand, when sampling, CC2

immediately produces unbiased samples, while PSRW must wait until the walk mixes. Keeping

this in mind, it makes sense to compare the accuracy of the two algorithms after the same elapsed

running time. Figure 3 shows the average distance from ground truth, ± one standard deviation,

measured after 10 seconds (top), 100 seconds (middle), and 1000 seconds (bottom). For CC2, the

time includes the building phase. Missing data means no run of the algorithm had produced at least

1000 samples at that time. As we expected, in many cases CC2 takes longer than PSRW to produce

samples. However, when it does so, it consistently provides higher accuracy. In fact, it seems that

the instances where CC2 takes longer are those where PSRW yields more inaccurate estimates.

6.3 Performance analysis of CC2
We analyse the performance of CC2 in terms of running time, memory footprint, and sampling speed.

Running time was measured as described above, separately for the building phase and the sampling

phase. The sampling speed is simply the ratio of the total number of samples, 100k, to the sampling

time. For memory, we report the value returned by Runtime.getRuntime().totalMemory() just

after drawing the last sample; this is the JVM heap size used in that moment by our process. We

note that the memory footprint depends on the behaviour of JVM’s Garbage Collector, and that

one can reduce it at the expense of time. The measurements are summarised in Figure 4, 5 and 6.

Two observations are in order. First, consistently with the complexity of CC2, the build time

grows with the number of edges in the graph. Similarly, memory grows with the size of the graph,

but in a more complex way (recall that the memory used by CC2 actually depends on the number

of colorful graphlets). Furthermore, for the instances on which it ran successfully, CC2 managed

to take 100k samples in a matter of minutes; and this includes instances with tens or hundreds

of millions of edges, like LiveJournal or Orkut, for k = 5 and k = 6, and many others for k > 6.

Even a non-optimised implementation of CC2, then, allows us to scale graphlet counting to a larger

k than it was possible before, and on just a commodity machine; and an optimised rewriting in a

memory-efficient language (e.g. C++) could lead to significantly better performance. Second, the

performance of CC2 appears very stable. The relative standard deviation of the building phase

time was below 0.1 for all instances except WordAssoc on k = 5 and k = 6, for which however the

average building time was below 1.5s and thus inevitably noisy. The relative standard deviation

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: March 2018.
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Fig. 3. Accuracy of CC2 and PSRW: average distance from ground truth, ± one standard deviation, after
running for 10s (top), 100s (middle), 1000s (bottom). For CC2 the time includes the building phase.

of the memory footprint was less than 0.1 in all cases except Facebook for k = 5. The relative

standard deviation of the sampling time was below 0.3 save for 5 instances.
Finally, a fact that may look surprising is the large variation in the sampling speed across different

graphs, even for the same k (Figure 6). We believe this has to do with how we sample colored

treelets in the graphs. Recall that, in our implementation, we sample a treelet by building on-the-fly

the distribution of colorful subtrees over the neighbors of a node. If a graph contains a high-degree

node, thus, sampling treelets containing it will be rather inefficient. In addition, that node will be

likely included in a large fraction of all the graphlets, and therefore we will encounter it often in

the sampling phase. Therefore it is likely that sampling is slower in graphs of higher degree.
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Fig. 4. Running time of CC2 (105 samples, average of 50 runs).
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Fig. 5. Memory footprint of CC2 (105 samples, average ± one standard deviation of 50 runs).
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6.4 Scaling graphlet sampling beyond five nodes
We conclude by showing the distribution of k-graphlets, for k = 5, 6, 7, 8, according to our ground

truth (see above). Figures 7 shows the distributions, graphlets sorted from highest to lowest average

frequency. For readability we include only the 15 most frequent graphlets, and we exclude the

distribution of the road graphs, Road-CA and Road-PA, which are similar and contain mostly trees.

Figure 7 tells some interesting facts. First, the most frequent graphlets on average are Kk−1 (a
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star) and the graphlet K+k−2 obtained by attaching an extra node to a leaf of Kk−2. The three top

5-graphlets, the six top 6-graphlets, the eight top 7-graphlets, and the 14 top 8-graphlets are trees. In

addition, many of these trees have a single branching node, i.e., a single node with degree more than

two, which we conjecture is mapped to a high-degree node (a hub) of the graph. These properties

might be rooted in social phenomena. Take for instance LiveJournal and Amazon; these two graphs
contain many more copies of Kk−1 than of K+k−2. A possible explanation is that the readers of the

most frequently read blogs will tend not to know each other and, since the LiveJournal graph

was made undirected, the neighbors of the high-degree nodes will tend to not induce many edges.

The same can hold for Amazon, which is a co-purchasing network—in some sense, in both graphs

users are buying products. On the other hand, look at the Facebook graph (containing only the

users from the New Orleans area). Facebook imposes an upper bound on the number of friends of

a user. This may increase the likelihood that two neighbors of a node are actually friends, so the

ego-network of most nodes will tend to have a significant number of edges. This clearly decreases

the fraction of induced Kk−1’s that can be found in this graph. Finally, the Hollywood graph is the

union of cliques, since the actors who starred in a movie are pairwise friends; hence this graph

does not contain many induced Kk−1’s.

Second, there seem to be different families of distributions followed by different graphs. This

is especially evident in the 6-graphlets distribution, where on the one side we have Amazon and
LiveJournal, with skewed distributions that are strikingly similar; on the other hand we have

the remaining graphs, with much flatter distributions that are again quite close to each other.

An intriguing question then one can explain this separation in terms of differences between the

processes that have formed the networks.

Third, a surprising fact is that the graphlet distributions of WordAssoc and Facebook are ex-

tremely close for all k = 5, 6, 7, 8; but Facebook is a social graph, while WordAssoc is a graph

resulting from a “free word association” experiment in psychology. Understanding whether such an

almost perfect overlapping is just a casual correlation would be an interesting research direction.

Finally, in relation to the algorithm of [8], we note that 4/15 of the top 6-graphlets, 11/15 of the
top 7-graphlets, and 14/15 of the top 8-graphlets do not contain a simple path on (k − 1) nodes and
therefore would be unobservable with their algorithm (see Section 4.3).

7 CONCLUSIONS
In this paper we compared random walks and color coding as the two most powerful algorithmic

methods available to efficiently count graphlets in massive graphs. Our theoretical mixing time

analysis cautions the blind use of random walks on real graphs, if statistical accuracy is paramount;

on the other hand, we show that color coding can be extended into a graphlet-sampling algorithm

with statistical guarantees. In our experiments color coding appears to outperform the state-of-the-

art random walk methods, yielding accurate counts for graphlets on up to 8 nodes. Investigating

the properties of graphs that lead to high mixing times for random walks is an interesting direction

of future research. For color coding, it will be interesting to see if the dynamic program table can

somehow be compressed without sacrificing statistical guarantees much, which would make the

method applicable for even larger graphlets; however, such an endeavour appears very challenging.
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