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A B S T R A C T

The goal of this paper is to promote the idea that including semantic and goal-oriented aspects in future 6G
networks can produce a significant leap forward in terms of system effectiveness and sustainability. Semantic
communication goes beyond the common Shannon paradigm of guaranteeing the correct reception of each
single transmitted bit, irrespective of the meaning conveyed by the transmitted bits. The idea is that, whenever
communication occurs to convey meaning or to accomplish a goal, what really matters is the impact that the
received bits have on the interpretation of the meaning intended by the transmitter or on the accomplishment
of a common goal. Focusing on semantic and goal-oriented aspects, and possibly combining them, helps to
identify the relevant information, i.e. the information strictly necessary to recover the meaning intended by the
transmitter or to accomplish a goal. Combining knowledge representation and reasoning tools with machine
learning algorithms paves the way to build semantic learning strategies enabling current machine learning
algorithms to achieve better interpretation capabilities and contrast adversarial attacks. 6G semantic networks
can bring semantic learning mechanisms at the edge of the network and, at the same time, semantic learning
can help 6G networks to improve their efficiency and sustainability.
1. Introduction

Even though 5G networks are still at an early deployment stage,
they already represent a breakthrough in the design of communication
networks, shaped around their ability to provide a single platform
enabling a variety of different services, ranging from enhanced Mobile
BroadBand (eMBB) communications to virtual reality, automated driv-
ing, Internet-of-Things, etc. Nevertheless, looking at future new uses
of technologies, applications, and services, as well as at the recent
predictions for the development of new technologies expected for 2030,
it is already possible to foresee the need to move Beyond 5G (B5G)
and to design new technological enablers for B5G connect-compute
networks [1], incorporating new technologies to satisfy future needs at
both individual and societal levels. While some near future technolog-
ical solutions will be included in the long-term evolution of 5G, others
will require a radical change, leading to the standardization of the new
6th Generation (6G).

This paper is a vision paper whose goal is to motivate a paradigm
shift from the mainstream research, which basically builds on Shan-
non’s framework, towards semantic and goal-oriented communications.
In 1948, Shannon established the basis for a mathematical theory of
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communication, deriving the conditions ensuring the reliable transmis-
sion of a sequence of symbols over a noisy channel. In the following
past 70 years, building on Shannon’s theory, the research on com-
munications has produced a number of significant advancements, in-
cluding multiple-input multiple-output (MIMO) communications, new
waveform design, mitigation of multiuser interference in both uplink
and downlink channels, etc. In parallel, a remarkable progress has
been achieved in the network architecture, leading to network traffic
engineering, network function virtualization (NFV), software defined
networking (SDN) and network slicing, which represent some of the
key 5G network technologies.

Today, while deploying the fifth generations (5G) of wireless com-
munication systems and kicking-off research on beyond 5G (B5G)
future networks [1], the need for a paradigm shift from Shannon’s
legacy begins to take shape. The motivation is dictated by the ob-
servation of the current trend witnessing the demand for wider and
wider bandwidths to cope with the ever increasing request of higher
data rates to accommodate for the incoming new services, like virtual
reality or autonomous driving. Looking at already present trends, we
can foresee, within a decade from now, scenarios where virtual and real
worlds will be blended seamlessly. But the challenges arising from this
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never ending request are doomed to face, at some point, a bottleneck
represented by the scarcity of resources, like spectrum and energy. One
example is the increase of carrier frequencies: As frequency increases,
there is more room for wider bandwidth, but several undesired phe-
nomena appear, like blocking, atmospheric absorption, power amplifier
efficiency drop [2], etc.

The inspiration on how to handle the challenge represented by
this never ending race comes again from Shannon and Weaver, who
identified three levels of communication [3]: (i) transmission of sym-
bols (the technical problem); (ii) semantic exchange of transmitted
symbols (the semantic problem); (iii) effect of semantic information
exchange (the effectiveness problem). Shannon deliberately focused on
the technical problem. At that time, this was indeed a very intelligent
move, as it enabled him to derive a rigorous mathematical theory of
communication based on probabilistic models. However, nowadays, the
vision of the network as an enabler of pervasive intelligent services,
with a strong emphasis on its effectiveness and sustainability, suggests
that assuming semantics as irrelevant is no longer justified. Besides
thinking about ‘‘how’’ to transmit, we need to focus on ‘‘what’’ to
transmit. Or, quoting John von Neumann, ‘‘there’s no sense in being
precise when you don’t even know what you’re talking about’’.

In this paper, starting precisely from the initial Shannon and
eaver’s categorization, we propose a vision of 6G networks that incor-

orates semantics and effectiveness aspects, as recently suggested also
n [4]. The new vision takes inspiration from another visionary giant,
ikola Tesla, who stated, in 1926: ‘‘When wireless is perfectly applied,

he whole Earth will be converted into a huge brain’’. Following this idea,
e believe that the network design can receive significant hints by
bserving how the human brain processes the signals perceived from
he environment by its senses. The brain in fact learns from past actions
and from the culture accumulated by the humankind in its history),
nd takes complex decisions, in a short time, with a sustainable energy
onsumption. Mimicking this excellent example provided by nature,
e believe that 6G networks should take semantics and effectiveness
spects as central aspects of network design. In this context, focusing on
emantics and clearly identifying the goal of communication, helps us
o distil the data that are strictly relevant to conveying the information
ntended by the source or to fulfilling a predefined goal. Disregarding
rrelevant data becomes then a key strategy to significantly reduce
he amount of data to be transmitted and recovered, thus saving in
andwidth, delay and energy. According to this view, goal-oriented
nd semantic communications will be a keystone for exploring the
eaning behind the bits and enabling brain-like cognition and effec-

ive task execution among distributed network nodes. This change of
erspective represents a fundamental paradigm shift where success
f task execution at destination (effectiveness problem) is the core
oncern rather than achieving error-free communications at symbol
evel (technical problem). In this context, information has no value
nless it has an exploitable and explainable meaning [5]. Explainability
s an aspect that is gaining more and more importance because of
he widespread use of deep neural networks (DNN). DNN’s represent
very powerful computational tool that finds important applications

n a variety of fields including, in particular, the design and effective
ontrol and management of new generation networks. But often it is
ot evident how an input of the DNN generates the corresponding
utput. More specifically, even if the relation between input and output
s clear, the weights of the network are the result of a training phase
nvolving a highly nonlinear optimization, whose final output does not
ome with theoretical guarantees. In most cases, deep neural networks
ork pretty well, but it is not always clear why. A central tenet

n explainable machine learning is that the algorithms must provide
nformation allowing a user to relate characteristics of input features
ith its output. Going into an in-depth presentation of explainable deep
eural networks goes beyond the scope of our paper. However, the
nterested reader can refer to [5] for an in-depth review of the methods
2

sed to introduce explainability features in neural networks. i
The paper is organized as follows. In Section 2, we highlight the
ew use cases, report some important Key Performance Indicators (KPI)
nd illustrate some new services aimed to support the new use cases. In
ection 3, we motivate the need to incorporate the so called semantic
nd effectiveness levels, in Shannon’s sense, thus suggesting a new
rchitecture that facilitates an efficient cross-layer design capitalizing
n the new levels. In Sections 4 and 5 , we focus on semantic and
oal-oriented communications, respectively. Section 6 is then devoted
o illustrate the importance of learning-based approaches in the design
f the new networks, an aspect that is already assuming more and
ore importance in 5G networks as well. Finally, some conclusions are
rawn in Section 7.

. 6G use cases, KPIs and new services

The design and engineering of a new generation of wireless commu-
ication systems is motivated by the ambition to meet new societal
hallenges and to enable radically new use cases targeting new value
reation. A new generation builds upon the evolution of technologies
lready adopted and on a few new technological break-troughs and
ew network architectures that enable revolutionary new services.

fundamental question when starting research on the design of a
ew generation is whether the new generation should be backward
ompatible or clean slate. This is a never ending debate. Mechanics
f economics and past experience encourage the view that the next
eneration should be as much as possible backward compatible, to avoid
uge CAPEX investments for renewing hardware in the network and
erminals. The downside is that some possible breakthrough advantages
hat a totally revolutionary technology might put forward might be
ither not supported by the new standard or not fully exploited.

From the one hand, the evolution toward Beyond-5G (B5G) networks
s shaped following the ‘‘classical problem of wireless communica-
ions’’, which is focused on achieving reliable and cost effective data
ommunication over noisy channels. On the other hand, societal and
nvironmental needs are stimulating radical changes into today eco-
omical approach to business and value creation. The societal accep-
ance of a new technology is already at a critical stage and future
G networks are required to address societal and environmental issues
ather than just creating new business opportunities and added value
or operators, industry and IT companies. To this end, multiple tech-
ological enablers for beyond 5G networks are currently investigated
ollowing roadmaps to enable 6G services by 2030 [1,6,7]. Some of the
se cases in 6G will evolve from the emerging 5G applications, others
ill rise from new societal and economical needs. In the following

ections, we will first highlight some of the emergent new use cases,
escribe some of the relevant KPIs and then identify the new services
imed to provide an efficient deployment of the new use cases.

.1. 6G use cases and KPIs

Already today, we are experiencing how society and industry are
ecoming increasingly data-centric and automated. This phenomenon
s expected to intensify in the next decade and beyond. The fusion of
igital and real worlds and the support of networked intelligence and
utomation are driving the next technological revolution. The boundary
etween computer science, artificial intelligence and telecommunica-
ions is disappearing, creating the momentum for a plethora of new
pplications and challenging the future 6G networks with the ongoing
ace between cost and complexity of delivering new services. The ITU
030 group published a first speculative vision on future 6G services
nd use cases [8], identifying the evolution of virtual reality (VR) and
ixed reality (MR) services as a main driver for future 6G services. A

ist of possible new use cases motivating the move toward 6G networks

s listed in Table 1.
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Table 1
6G Use cases and associated services: 1 MMTCCxDI, 2 GeMBB, 3 URLLCCC, 4 Semantic.

Use Case Service

Internet of nano-bio things [9] 1

Connected living 1,2

Precision and personalized digital health [10] 1,3

Remote areas connectivity [11] 2

Space connectivity & 3D AI support [12] 2

Smart railway mobility [11] 2

Extreme capacity Xhaul [11] 2

Precision agriculture [13] 1,2,3

Unmanned mobility 1,2,3

Autonomous vehicle mobility [11] 1,2,3

Integrated super smart cities [14] 1,2,3

Space travel [9] 1,2,3

Multi-sense Services [15] 3,4

Multi-sensory and mobile immersive eXtended reality (XR) [11] 3,4

Multi-sensory holographic teleportation 3,4

Multi-sensory haptic communications for Virtual and Augmented Reality 3,4

Multi-sensory affective computing 3,4

Holographic communication [16] & telepresence [1] 3,4

Remote XR education 3,4

Consumption of digital experiences over physical products 3,4

Human centric AI support 3,4

Brain-to-computer interactions [1] [17] 3, 4

Wireless robotics [17] 1,3,4

Sustainable connectivity & AI support 1,2,3,4

Society 5.0 [18] 1,2,3,4

High precision manufacturing, remove monitoring & control [1] 1,2,3,4

Intelligent disaster prediction [10] 1,2,3,4

Smart digital-twin environments 1,2,3,4

Bidirectional intelligence intertwining (natural and/or artificial) 4
Table 2
Comparison of 5G and 6G KPIs being discussed; NS= Not Specified: TBD= To Be Defined case-by-case.

KPI 5G 6G

Traffic capacity 10 Mbps/m2 ∼ 1-10 Gbps/m3

Data rate DL 20 Gbps 1 Tbps

Data rate UL 10 Gbps 1 Tbps

Uniform user experience 50 Mbps 2D everywhere 10 Gbps 3D everywhere

Mobility 500 Km/h 1000 Km/h

Latency (radio interface) 1 ms 0.1 ms

Jitter NS 1 μs

Communication reliability 1 − 10−5 1 − 10−9

Inference reliability NS TBD

Energy/bit NS 1 pJ/bit

Energy/goal NS TBD

Localization precision 10 cm on 2D 1 cm on 3D
While the vision on what 6G should be is still evolving, academia,
ndustry and standardization bodies are already working on identify-
ng candidate KPIs for future 6G services, use cases [1] and applica-
ions [19] [20]. Some tentative numbers are reported in Table 2.
3

There will be two families of 6G KPIs: (i) the set of KPIs already
envisaged in 5G networks, such as peak data rate, area traffic capac-
ity, connections density, communication reliability, end-to-end latency,
spectrum efficiency, energy efficiency, etc., marking the conceptual
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continuity with 5G; (ii) an entirely new class of KPIs that will support
the vision toward a computation-oriented communication network,
where distributed artificial intelligence will play a prominent role. The
new KPIs will need to take into account, for example, the reliability
of the decisions taken by intelligent agents present in the network, the
time needed to take decisions, etc.

A broad class of new use cases will need to support extended reality
(XR) applications, realizing an entire reality–virtuality continuum, where
both reality and virtuality may be augmented. Augmented reality (AR)
will support applications where human perception is augmented by
computer-generated information. Conversely, virtual reality replaces
the real-world environment with a simulated one. Within such a con-
text, augmented virtuality (AV) includes applications where a real
world object is inserted into a computer-generated environment [21].
This may be helpful, for example, for an engineer checking the intro-
duction of a new manufacturing tool within a smart factory controlled,
from remote, through a VR application.

Holographic communications [16] and multi-sense [15], including
aptic, communication services are also expected to take place in a
ot-so-distant future. Such applications will dominate services not only
n the realm of entertainment, teleconferencing, smart working and
ourism, but they will also enable more life-impacting and industrial
roductivity applications. Those futuristic services will be for instance
ey to the Japanese Society 5.0 vision [18] or for remote holographic
resence [22], industrial maintenance in hostile operational environ-
ents and intelligent production at broad. Such family of new use

ases will impose stringent requirements in terms of per-link capacity.
or instance, holographic communications employing multiple-view
ameras are expected to require several terabits per second (Tb/s) per
ink in both uplink and downlink [23,24] (a requirement not supported
y 5G) and a stringent end-to-end (E2E) latency to ensure real-enough
irtual and seamless remote experience. 6G targets also services, such
s industrial automation, autonomous system, and massive networks
f sensors, in which machines, and not humans, are the endpoints.
hese communicate-and-compute services will require new stringent
equirements in terms of latency and its jitter, in order to ensure a
eemingly deterministic performance of the network [25]. Furthermore,
xtremely high reliability will be required to improve performance not
nly at the physical to networking layer but also on inference-based
ntelligent mechanisms supporting them. Clearly, the specific targets
n both communication [24] and inference reliability will depend on
he specific use case. With 6G, new applications will not be limited to
he realm of entertainment and teleconferencing, but more disruptive
pplications begin to emerge, some of which are life-impacting while
thers provide alternative solutions for intelligent production and smart
obility with multi-dimensional transportation network consisting of

ll ground–sea–air–space vehicles with peak mobility up to 1000 km/h
see, for instance, the hyperloop transportation system [26]). This
ulti-dimension mobility vision opens also the opportunity for Three-
imensional (3D) native services, enabling end users and machines
oving in the 3D space to perceive seamless 6G service support and

eleport cloud functionalities on demand, where and when the intelli-
ence support is needed in the 3D space [12]. To this end, KPIs such
s localization precision and uniform user experience will be defined
n both Two-Dimensional (2D) and 3D space.

Of course, not all the KPIs shown in Table 2 will have to be achieved
imultaneously, all the time, everywhere, in every possible condition.
nly a selected subset of KPIs should be attained locally in space and

ime, depending on future 6G application and service needs, with a high
egree of flexibility and adaptivity. The targeted 6G performance im-
rovement in terms of data rate, latency at radio interface and network
nergy efficiency, etc. follows the well established performance driven
PIs mechanics: a technology intense evolution across generations. This

ranslates in imposing a factor 10 to 100 of KPIs’ improvement between
uccessive wireless networks generations. The rational is to deal with
4

he expected exponential traffic growth [27] and more immersive t
nd interactive foreseen services. The most representative trend in
oday wireless communications is the unrelenting increase in signal
andwidths to achieve higher link capacity, increasing the network
apacity and improve the user’s QoE. This is also a major well accepted
ega-trend for 6G: for example, one goal is to achieve a factor of
00 increase in capacity by accessing the huge available bandwidth
ither in the sub-THz D-band (above 90 GHz) or in the visible light
pectrum [1,7,28].

Up to now, generations of wireless systems have been designed to
ccommodate the exponential growth of downlink traffic. Nevertheless,
tarting from 4G, we experience a reduction and sometime inversion of
he asymmetry between uplink and downlink traffic [29]. Even though
here are no precise forecasts on uplink traffic evolution, the traffic
attern change is inevitable. The uplink traffic is exploding at much
aster rate than the downlink traffic. Already with 4G networks, a study
y Nokia Simens Networks showed how the overall usage ratio between
plink and downlink reached already approximately 1:2.5 [30] for
ervices like pear-to-pear TV, pear-to-pear sharing, massive IoT and
loud support. This is due to the introduction of the cloud support and
he rising use of content sharing platforms. A larger share of data is
rossing the network, conveyed on the uplink between a huge number
f connected devices, collecting large amounts of data and requiring a
ervasive support of offloading services to the cloud (computation and
torage). In 5G, the increasing support of machine learning algorithms
s causing a further explosion of the uplink traffic. 5G uplink capacity
as not been sized to meet such exploding demand for the next decade.
o accommodate for the rising share of uplink traffic, similar capacity
equirements are foreseen for uplink and downlink channels in 6G.
n addition, device-to-device (D2D) communication will consume an
ncreasing share of the network capacity, defining a novel layer of
ommunication.

A major leap kicked off with 5G is the increasing interplay between
ommunications and computation. With 6G, this trend will be further
ntensified through the introduction of an increasingly number of dis-
ributed intelligent nodes collecting, processing, and storing data. Some
dentified use cases, such as Industrial IoT or virtual reality, already
mpose new KPIs requirements such as stringent latency bounds, packet
elivery jitter, reliability or achievable throughput, but also regarding
he systems dependability, i.e. the ability to make guarantees for a
etwork deterministic behavior [25]. An example of application is re-
otely controlled high-precision manufacturing, requiring jitter delays

n the order of a microsecond [24]. These requirements are typically
uite distinct from those that have traditionally guided the design and
eployment of public 5G networks.

Nevertheless, in our view, the most remarkable feature of 6G will
e not only the performance improvement in terms of typical KPIs.
G will need to produce a paradigm shift reflecting a degrowth-by-
esign principle, leading to the introduction of a new class of KPIs. The
ew perspective reshapes the network as a truly pervasive computing
ystem enabling new interactions among humans and machines and
ntelligent services with sustainable costs, in economical and ecological
erms. 5G already represents a significant step forward in this direc-
ion; 6G will take this perspective as its driving principle. Within this
erspective, new KPIs will come into play, such as learning reliability
r energy consumption associated to goal accomplishment, depending
n the specific services. Furthermore, with 6G, energy-related KPIs
ill have to deal not only with network energy consumption [31] or

erminal battery life extension. The ambition is to achieve, wherever
ossible, battery-free communications, targeting, in some applications,
ommunication efficiency on the order of 1 pJ/b [32]. Moreover, since
G operation will be intensively supported by machine learning and
rtificial intelligence, specific energy constraints will be defined across

he whole generation-to-processing data chain.
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2.2. 6G new services

6G services are foreseen to be operational starting from 2030, and
for the next ten to five-teen years. Some of those services will be first
offered with 5G technologies, or its long term evolution; others will
require disruptive technologies and completely new network operations
to meet their stringent requirements, following the usual never-ending
technology growth model. In our view, besides the services already
supported by 5G networks, to accommodate for the plethora of new
use cases, 6G will incorporate the following services:

• Massive Machine Type Communications supporting Distributed
Intelligence (MMTCxDI) services - Following the paradigm shift
initiated with 5G, future 6G Machine-Type Communications
(MTC) will enlarge the capabilities of massive MTC already
foreseen in 5G to include pervasive distributed computation
algorithms supporting the distributed intelligence of 6G networks.
Criticality, effectiveness and scalability will be intrinsic features
of this new service. Typical applications will include intelligent
transportation systems, connected living, super smart cities, etc.

• Globally-enhanced Mobile BroadBand (GeMBB) services - This
service will expand the computation-oriented communication en-
vironment to support rate-hungry applications, such as extended
reality services, also in remote locations, such as rural areas [33],
oceans, and the sky [12], on demand, i.e. when and where needed.

• Ultra-Reliable, Low Latency Computation, Communication and
Control (URLLCCC) - This service will extend the capabilities
of URLLC services already supported by 5G networks, in order
to incorporate the computation services running at the edge of
the network and E2E (remote or automated) control. In this new
service, reliability and latency refer not only to the communica-
tion aspect, but also to the computation side, like, e.g., learning
accuracy or correct classification probability. The use cases sup-
ported by this new service will include factory automation, multi-
sensory XR [17], connected and autonomous terrestrial and flying
vehicles, etc.

• Semantic Services - These services will support all applications
involving a share of knowledge between the interacting par-
ties. The applications will not be bounded to human to hu-
man (H2H) interactions, but will involve also human to ma-
chine (H2M) and machine to machine interactions (M2M). Goal
of this service will be the seamless connection and intertwin-
ing of different kinds of intelligence, both natural and artifi-
cial. Empathic and haptic communications, affective computing,
autonomous and bi-directional collaboration between different
Cyber–Physical-Spaces (CPS), etc., will be supported. This new
type of service will offer intelligence as a service, bringing a rad-
ical paradigm shift that will revolutionize wireless services from
connected things to connected intelligences.

Although related to the Semantic Web paradigm [34], semantic commu-
nications differs substantially from the semantic web. The semantic web
is that ‘‘version’’ of the web that associates to each document (a file,
an image, a text, etc.) information and metadata which, by providing
a semantic context, facilitates the automatic query and interpretation
by a search engine. Certainly, semantic communications will benefit
from some of the technologies developed for the semantic web, such
as ontologies for example, but the scope of semantic communication
is to set-up a more efficient communication system, exploiting the
knowledge shared a priori between transmitter and receiver, such as
a shared language or shared models.

3. Beyond Shannon? A new architecture

Until the 5G era, communication has been the basic commodity of
5

every wireless generation. The key challenge has been the reduction
of the uncertainty associated to the correct reception of exchanged
data, while targeting higher capacity and reliability and lower la-
tency. Such legacy of Shannon’s model has pushed a never-stopping
race for broader bandwidths, thus exploring higher frequency bands.
Since the deployment of 4G, the energy consumption of network and
wireless devices has limited the practical services’ operation, pushing
research to approach the theoretical communication limits, established
by Shannon, while optimizing the use of available resources.

With 5G, the communication network has evolved towards a
communicate-and-compute system, where the support of the
(edge) cloud has fed the cybernetic vision of Norbert Wiener, where
communicate-compute-control tasks generate a continuous loop involv-
ing sensing, computing, controlling and actuating, laying the foun-
dations for the birth of intelligent machines. 6G services will induce
a further drastic change on the conventional notions of knowing
and learning, guessing and discovering. This will require significant
advances on the communicate-and-compute infrastructure, paving the
way to making knowledge and decision a commodity of next generation
networks. In such a futuristic context, information accumulates at a rate
faster than what can be filtered, transmitted and processed by some
kind of intelligence, either natural or artificial.

Keeping in mind the inevitable limitedness of available resources,
the challenge is to design the new network, while respecting a degrowth
principle. The key question is: Can we deliver more intelligent mobile
services without necessarily requesting for more capacity, more in-
frastructure (communication, computation, storage), more energy? We
believe that this challenge cannot be handled efficiently only resorting
to higher data rates, possibly exploiting wider bandwidths. Most likely,
6G will still rely on millimeter-wave technologies and will complement
them with sub-Terahertz and Visible Light Communications. But our
vision is to make the communication networks qualitatively more effi-
cient, without necessarily running an endless race towards increasing
resources, but rather inventing a more intelligent use of them. The
hint on how to proceed comes again from Shannon’s ideas. In their
seminal work, Shannon and Weaver suggested that the broad subject
of communication can be organized into three levels [35]:

Level A. How accurately can the symbols of communication be transmit-
ted? (The technical problem.)

Level B. How precisely do the transmitted symbols convey the desired
meaning? (The semantic problem.)

Level C. How effectively does the received meaning affect conduct in the
desired way? (The effectiveness problem.)

Shannon [3] provided a rigorous and formal solution to the technical
problem, lying the foundations of what is known today as information
theory. Shannon left deliberately aside all aspects related to semantic
and effectiveness. However, now that communication is becoming a
commodity enabling a variety of new services, interconnecting humans
and machines possessing various degrees of intelligence (either natural
or artificial), the semantic and effectiveness aspects become preeminent
actors that can no longer be left aside. In our view, 6G networks will
have to evolve to incorporate all the three levels foreseen by Shannon
and Weaver, as also recently suggested in [4].

The proposed new three-levels architecture for 6G is represented
schematically in Fig. 1. Fig. 1 has five columns. From left to right:
the three-levels architecture and communication protocol stack, the
seamless blending of physical, digital and application spaces, and the
machinery enabling this view, based on artificial intelligence tools,
including knowledge representation and machine learning, running on
the data collected across the network, and closing the loop with the
control and actuation functionalities.

On the left side, the new protocol stack includes the three levels
foreseen by Shannon and Weaver. At the bottom level, there is the

technical level incorporating the typical protocol stack of nowadays
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Fig. 1. Interaction of the physical-semantic-effectiveness three-levels architecture and communication protocol stack (left) with physical, digital and application spaces (right).
communication networks. Taking advantage of the 5G experience, the
technical level builds heavily on virtualization techniques, NFV and
SDN. However, besides the virtualization of network functionalities,
the new computation-oriented communication network includes now
also the virtualization of many application-layer functionalities. Virtu-
alization is expected to play a key role in 6G, even bigger than in 5G,
as it will include not only network functionalities, but also functions
associated to the semantic and effectiveness levels. This additional
virtualization is fundamental to distribute computation and communi-
cation tasks across densely distributed virtual machines (or containers)
properly orchestrated from the semantic and effectiveness level.

On top of the technical level, there is the semantic level, at least
for all services where semantics has a well defined role. On top of the
semantic level, there is the effectiveness level that orchestrates the lower
levels in order to optimize the use of resources and meet the service
KPIs. Since not all use cases include a semantic aspect, the effectiveness
level is also allowed to interact directly with the technical level. As
will be explored in the next sections, the semantic and effectiveness
levels allow also the proper cross-layer interaction between the layers
composing the technical level. This is indeed a key aspect required for
an intelligent allocation of network and computation resources.

We briefly illustrate now the main research directions motivating
the need to move beyond Shannon.

• Semantic communications: Communication among humans
involves the exchange of information, where the word informa-
tion is associated to meaning; in conveying a concept from source
to destination, the relevant aspect is what is communicated,
i.e. the information content, not how the message is brought to
the destination. A correct semantic communication occurs if the
concept associated to the message sent by the source is correctly
interpreted at the destination, which does not necessarily imply
that the whole sequence of bits used to transmit the message
be decoded without errors. Intuitively speaking, one of the key
reasons why the semantic level offers a significant performance
improvement with respect to the pure technical level is because
it exploits the share of a priori knowledge between source and
destination. This knowledge may be the human language or, at
a more general level, a formal language consisting of entities
and a set of logical rules that allow the receiver to correct errors
occurring at the symbolic level. An interesting aspect of semantic
communication is the interplay between different languages and
the intertwining of natural and artificial intelligence.
6

• Goal-oriented communications: Communication among interacting
entities is often carried out to enable the involved entities to
accomplish a joint goal. The fundamental system specification is
then associated to the goal, its correct accomplishment, within
a given time constraint, using a given amount of resources (en-
ergy, computation, etc.). The communication system enabling the
interactions among the entities involved in the goal should be
then defined in order to focus on the goal-related specifications
and constraints. This means for example, that all information not
strictly relevant to the fulfillment of the goal can be neglected.
The effectiveness level is the level responsible for the efficient
management of goal-oriented communications. It will exploit se-
mantic aspects, whenever appropriate and relevant, and it will act
by properly orchestrating the resources available at the technical
level, including the network nodes, the computation, control and
actuation devices.

• Online learning-based communication and control: The increasing
pervasive introduction of machine learning tools in all the lay-
ers of the computation-oriented network yields a further break-
through in the network design. On the one hand, online machine
learning algorithms provide the possibility to reshape traffic,
change coding and decoding strategies, scheduling, etc., as a
function of an online monitoring of the network, thus enabling
an efficient use of resources. On the other hand, the communica-
tion network enables the capillary distribution of machine learn-
ing tools, to accommodate for stringent delay constraints. This
overall scenario calls for a joint orchestration of computation,
communication, storage and control resources.

In the following sections, we will dig into the fundamental chal-
lenges and opportunities associated to the above topics.

4. Semantic communications

The goal of this section is to explore the potentials offered by the
introduction of the semantic level, as shown in Fig. 1. Several schools
of thought have proposed different alternative approaches to generalize
Shannon’s information theory, each aimed at emphasizing different per-
spectives: philosophy of information [36], logic and information [37],
information algebra [38], information flow [39], quantum information
theory [40], algorithmic information theory [41,42].
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Building on a more general information theory, there are also
various proposals concerning the design of a semantic communication
system [43–49]. In [43], it was proposed a method to perform se-
mantic lossless data compression, as a way to produce a significant
compression with respect to entropy-based encoders. Semantic data
compression and the capacity of a semantic channel have been stud-
ied in [45]. An end-to-end (E2E) semantic communication framework
incorporating semantic inference and physical layer communication
problems has been proposed and analyzed in [48], where semantic was
exploited by considering similarities between single words. A further
significant extension was given in the recent work [50], where the au-
thors, building on recent natural language processing (NLP) tools, use a
deep neural network to learn, jointly, a semantic/channel encoder, con-
sidering similarities between whole sentences. The key aspect of [50]
is to recover the meaning of the transmitted message, rather than
avoiding bit- or symbol-errors, as in conventional communications.

Before delving into the technical problems associated to the defi-
nition of a semantic communication system, it is necessary to clarify
what do we mean by semantics. In linguistics, semantics is the study
of meaning in human languages. On its turn, meaning is a relationship
between two sorts of things: signs and the kinds of things they intend,
express, or signify. A human language is the ensemble of signs associ-
ated to things in real world or to abstract thoughts and the rules used to
compose these signs. Each language has a structure, given by the set of
rules used to compose its signs to create sentences that are meaningful.
This definition of meaning and language can be extended to artificial
languages, like for example a computer programming language, after
proper identification of symbols and rules.

A genuine theory of semantic information should be a theory about
the information content, or meaning, of a message, rather than a theory
about the symbols used to encode the messages. To distinguish between
the different interpretation of the word information, in the following
we will use the term semantic information, to refer to information as
associated to a meaning, and the term syntactic information, in the
Shannon’s sense, which is associated to the probabilistic model of the
symbols used to encode information.

As a very simple example, pressing the keys of a computer keyboard
at random generates a message that has a high syntactic information,
because the generated symbols are approximately independent and
uniformly distributed, so that their entropy (average information in
Shannon’s sense) is maximum. However, most likely, the generated
message carries zero semantic information, as it does not carry any
meaningful content.

4.1. Semantics and knowledge representation systems

Semantic information is associated to the level of knowledge avail-
able at the source and destination sides. In general terms, quoting
Dretske [51], ‘‘information is that commodity capable of yielding knowl-
edge, and what information a signal carries is what we can learn from
it.’’ From this perspective, a semantic communication from source to
destination occurs correctly, or with a high degree of fidelity, under
the following circumstances:

1. the destination is able to recover from the received message
a content (meaning) that is equivalent to that of the message
emitted by the source;

2. the destination is able to increase its level of knowledge thanks
to the received message.

Semantic equivalence means that the meaning intended by the source
of the message is equivalent to the meaning understood by its des-
tination. There might be several sets of symbols, which convey the
same meaning, even though they have a completely different structure.
This way of looking at information marks a significant departure with
respect to the way information is used in Shannon’s information theory,
7

in at least three respects:
1. the amount of information conveyed by a message is associated
to its semantic content, and it is not necessarily related to the
probability with which the symbols used to encode the message
are generated;

2. in semantic communication, what matters is the specific content
of each message, and not the average information associated to
all possible messages that can be emitted by a source;

3. the amount of information conveyed by a message depends not
only on the message itself, but also on the level of knowledge
available at source and destination, at the time of communica-
tion.

Since semantics (meaning) is associated to a knowledge system, dealing
with the semantic of a message requires first a formal way to represent
knowledge. Knowledge Representation (KR) and reasoning is indeed
one of the cornerstones of artificial intelligence [52]. The goal of KR is
the study of computational models to represent knowledge by symbols
and by defining the relations between symbols, in a way that makes
possible the production of new knowledge. Among the many alternative
ways to represent knowledge, graph-based knowledge representation
plays a key role [53]. An example of graph-based representation is
given by a conceptual graph, whose nodes are associated to entities,
whereas the edges represent relations among entities [53]. Given the
vastness of knowledge, it is unthinkable to represent all knowledge
within a single framework. The only viable approach is to build knowl-
edge base (KB) systems associated to specific application domains. For
each application domain, a KB is typically composed by a compu-
tational ontology, facts, rules and constraints [53]. A computational
ontology provides a symbolic representation of the objects belonging
to the application domain, together with their properties and their
relations. Furthermore, besides the ontology, a KB system includes a
reasoning engine, built on the rules and the constraints associated to the
given application domain. The goal of the reasoning engine is to answer
questions posed within the application domain.

A key aspect of a KB system worth pointing out is that a KB cannot
be assumed to be able to provide a complete picture of the application
domain it refers to. This happens because, even in a restricted domain,
each object might have relations with a huge number of other facts or
objects, so that it would not be possible to encompass all these relations.
As a consequence, the incompleteness of the description is a central
feature of a knowledge-based system [53], and it represents a key
distinction with respect to a database. Furthermore, incompleteness of a
KB comes also from computational constraints as a complete reasoning
might be very time-consuming. As a consequence of its incompleteness,
a KB system might not be able to answer, for example, to the question if
a statement is true or false, within a given time interval. Conversely, the
need to provide an answer, while respecting a time constraint, typically
results in an answer that is correct but only within a certain degree of
reliability.

It is worth to point out that, in general, the KB available at the
source, say KB𝑆 , may differ from the KB available at destination, say
KB𝐷. We say that a message is correctly interpreted at the destination
node, according to KB𝐷, if its interpretation is equivalent to that given
at the source node, according to KB𝑆 , or if it induces a valuable
modification of the destination KB, either in its ontology or in the
definition of the reasoning rules. In the case of graph-based KRs, the
change of the KB is reflected into a change of the graph. This change
becomes then a possible way to measure the increase of knowledge
carried by a message.

A key feature of a KB system is that the inference made on a
message should depend only on the semantic, i.e. meaning, of the
message and not on its syntactical form. This means that there could
be alternative ways to encode the same concept into formally different
sequences of symbols, all of which should give rise to the same semantic
representation. As a simple example, the answer to the question ‘‘how
much is two plus two’’ could be the sound ‘‘four’’ or it could be the
symbol 4 written on a piece of paper. The encoding mechanism and the
number of bits necessary to encode the two messages would be totally

different, but the semantic information would be exactly the same.
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Fig. 2. Multi-level communication system.
4.2. Semantic source and channel coding

A communication system incorporating the three levels of commu-
nication mentioned by Shannon and Weaver can be represented as in
Fig. 2. The block diagram shown in Fig. 2 depicts three layers, as
associated to the three levels of communication: technical, semantic
and effectiveness. At the effectiveness level, there are two entities, a
source 𝑆 and a destination 𝐷, that interact with each other through an
environment. Source and destination nodes could be humans, machines
or, in rather general terms, agents, where, in AI terminology, an agent is
something that can ‘‘operate autonomously, perceive the environment,
persist over a prolonged time period, adapt to changes, create and
pursue goals’’ [52]. In particular, we consider rational agents, i.e. agents
that act so as to achieve the best outcome of their acts. An agent could
be a human, a machine, or a software. The scope of the interaction can
be very broad in nature: sensing, controlling, extracting information
from the environment, exchanging information, etc. To interact, the
source 𝑆 generates a message 𝑚 ∈ 𝑠, belonging to a source alphabet
𝑠, conveying the semantic information that 𝑆 wishes to share with
𝐷. This message 𝑚 is generated according to the ontology and the
rules given by the knowledge system KB𝑆 available at the source. For
instance, a concept could be represented, equivalently, by a speech
signal or a by a text, produced using a given language. To be physically
conveyed to destination through a physical medium, the message 𝑚 is
first translated into a sequence 𝑥 ∈  of symbols, where  represents
the symbols’ alphabet, and then transformed into a physical signal
suitable for propagation through the channel.

As depicted in Fig. 3, the mapping from 𝑠 to  , denoted as
𝑥 = 𝑓 (𝑚), is not always one-to-one. Sometimes, the mapping is one-
to-many. This happens when a message can be represented by multiple
symbols, all conveying the same meaning. As an example, the symbol
‘‘4’’ is semantically equivalent to the English word ‘‘four’’ or to the
speech signal of a speaker pronouncing the same word in English.
Sometimes, the mapping is many-to-one. This is the ambiguity problem
that natural languages suffer from. For example, literally speaking,
‘‘putting money in the bank’’ could mean depositing money in a finan-
cial institution or burying it by the riverside. Usually, it is the context
that helps to solve the ambiguity. Not surprisingly, disambiguation,
dealing with teaching machines to solve the ambiguities of natural
languages, is one of the key challenges of NLP.

According to Shannon’s information theory, the translation from
𝑚 to 𝑥 typically includes a source encoder, to reduce the redundancy
8

contained in the message, followed by a channel encoder, introducing
structured redundancy to increase the communication reliability. Rules
and properties of source and channel encoders follow the principles of
Shannon information theory. The combination of source and channel
encoder is denoted as a syntactic encoder, as it affects only the form
of the message, but not its semantic content. The sequence 𝑥 is then
transformed into a physical signal, like an electromagnetic wave or
an acoustic wave, to make it well suited to pass through the physical
channel available for communication.

Let us consider now a semantic encoder. Let us assume that the
source is random and emits messages with probability 𝑝𝑠

(𝑚), 𝑚 ∈ 𝑠.
The source has then a message entropy (in Shannon’s sense)

𝐻 (𝑀) = −
∑

𝑚∈𝑠

𝑝𝑠
(𝑚) log2 𝑝𝑠

(𝑚). (1)

Proceeding as in [45], denoting by 𝑝𝑠
(𝑚) the probability that the

source emits the message 𝑚, we can define the logical probability that
the source emits the symbol 𝑥 as

𝑝𝑆 (𝑥) =
∑

𝑚∶𝑥=𝑓 (𝑚);
𝑚∈𝑠

𝑝𝑠
(𝑚). (2)

The semantic information of symbol 𝑥𝑖 can be then defined as [45]:

𝐻 (𝑥𝑖) = − log2 𝑝 (𝑥𝑖) (3)

The semantic entropy associated to the symbols emitted by the source
is [45]

𝐻 (𝑋) = −
∑

𝑥𝑖∈
𝑝(𝑥𝑖) log2 𝑝 (𝑥𝑖). (4)

In general, the two entropies 𝐻 (𝑀) and 𝐻 (𝑋) differ from each other.
Using basic information theory tools, we can always write

𝐻 (𝑋) = 𝐻 (𝑀) +𝐻 (𝑋∕𝑀) −𝐻 (𝑀∕𝑋), (5)

where 𝐻 (𝑋∕𝑀) denotes the entropy of 𝑋 conditioned to 𝑀 and
𝐻 (𝑀∕𝑋) denotes the entropy of 𝑀 conditioned to 𝑋: 𝐻 (𝑋∕𝑀)
represents semantic redundancy, as it differs from zero only when there
are multiple symbols associated to the same message, while 𝐻 (𝑀∕𝑋)
denotes semantic ambiguity, as it differs from zero only when there are
multiple messages (meanings) associated to the same symbol. Based on
the above definitions, the goal of source (semantic) coding is not to
preserve the sequence of symbols generated from the source, but its
semantics, i.e. the meaning associated to the emitted messages. To this
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Fig. 3. Message-to-symbol mapping.
nd, it was shown in [47] that there exists a semantic block encoder
hat only needs, on average, 𝐼(𝑀 ;𝑋) bits to encode the messages

emitted by the source, where

𝐼(𝑀 ;𝑋) = 𝐻 (𝑀) −𝐻 (𝑀∕𝑋) = 𝐻 (𝑋) −𝐻 (𝑋∕𝑀) (6)

is the mutual information between source messages and source sym-
bols. Some practical semantic source encoders were proposed in [47],
exploiting shared knowledge between source and destination.

At the destination side, the received signal 𝑦 is syntactically decoded
to produce a sequence of symbols 𝑥′, which is then interpreted, based
on the knowledge system KB𝐷 available at destination, to provide a

essage 𝑚′. In principle, the two operations can be mixed, so that
he goal of the semantic decoder is to recover, from 𝑦, a message
′ that is equivalent to 𝑚. We say that two messages are equivalent

f they convey the same meaning. Equivalence does not necessarily
mply that the structure of the message 𝑚′ associated to the concept
s identical to the structure of 𝑚. What is necessary is only that, once
nterpreted according to the knowledge base system KB𝐷 available at
estination, the concept extracted from 𝑚′ be semantically equivalent
o that represented by 𝑚.

In a semantic communication system, there might be errors at
he syntactic level as well as errors at the semantic level: an error
t syntactic level occurs if 𝑥′ differs from 𝑥; an error at semantic
evel means that 𝑚′ is not equivalent to 𝑚. Errors at syntactic level
ay occur because of the presence of random noise or interference

ntroduced during the transfer through the channel, or because of
npredictable channel fluctuations. Errors at semantic level could be
ue to differences between the KB systems available at source and
estination nodes, or because of misinterpretation.

Clearly, the semantic level relies upon the syntactic level: too many
rrors in the decoding of the received sequence 𝑦 may preclude the
ecovery of the source message 𝑤. However, and this is the interesting
ew aspect brought forward by the inclusion of the semantic level,
n error at the syntactic layer does not necessarily induce an error at the
emantic layer. The message interpreter can in fact recover the right
ontent even if there are a few errors in decoding the received sequence
f symbols. In other words, the semantic interpreter can correct a
umber of errors occurring at syntactic level exploiting the rules (logic)
f the language subsuming the exchange of information.

Conversely, there could be errors at semantic level, even if there
s no error at the syntactic level. This may happen, for example,
hen there are differences between the KB’s available at source and
estination, so that a message that has been correctly decoded at the
yntactical level gets misinterpreted at the semantic level.

Let us assume that the channel is modeled through the conditional
robability 𝑝(𝑦∕𝑥) of receiving a symbol 𝑦, once the symbol 𝑥 has been
ransmitted. If what matters is the recovery of the semantic message
meaning), rather than the corresponding symbol 𝑥, we can use a
emantic decoder that chooses the message 𝑚′ that maximizes the

posterior probability conditioned to the received symbol:

𝑚′ = argmax
𝑚∶𝑥=𝑓 (𝑚)

𝑝(𝑚∕𝑦) = argmax
𝑚∶𝑥=𝑓 (𝑚)

∑

𝑥
𝑝(𝑚, 𝑥, 𝑦). (7)

Using the Markov property that 𝑝(𝑦∕𝑚, 𝑥) = 𝑝(𝑦∕𝑥), the decoding
strategy can be rewritten as [45]

𝑚′ = argmax
∑

𝑝(𝑦∕𝑥)𝑝(𝑥∕𝑚)𝑝(𝑚). (8)
9

𝑚∶𝑥=𝑓 (𝑚) 𝑥
Since 𝑝(𝑚) and 𝑝(𝑦∕𝑥) are given, this formula says that the optimiza-
tion of the overall system performance involves the search of the
function 𝑝(𝑥∕𝑚) that minimizes the semantic error probability, given
the constraints at the physical layer. The function 𝑝(𝑥∕𝑚) plays the
role of a semantic encoder. Intuitively speaking, if there are not too
many errors at syntactic level, we can expect a significant performance
improvement resulting from semantic decoding because many received
sentences can be corrected by exploiting the knowledge of the language
(either human or artificial) used to communicate. As a trivial example,
a simple spell checker that exploits the knowledge of the vocabulary
and grammar used in the language adopted for text transmission can
correct many misspelled words or sentences. In more abstract terms,
with reference to Fig. 3, what happens is that there could be many
sentences, i.e. multiple points in the set  , which correspond to a single
point (e.g., sequence 𝑚), in 𝑑 , associated to a semantically correct
sentence.

Example of application to text transmission
In general, finding the optimal semantic encoder 𝑝(𝑥∕𝑚) is not an

easy task. However, simpler yet effective alternatives are available.
One example is given by the semantic communication scheme proposed
in [50], where the authors propose a deep learning based semantic
method for text transmission, named DeepSC. The goal of DeepSC is
to maximize the system capacity, while minimizing the semantic error
by recovering the meaning of the sentences, rather than the bit-by-bit
sequence of the transmitted signal. The DeepSC method is based on a
deep neural network, which is trained with sentences of variable length
to obtain a combined semantic/channel encoder. The objective of
training is to minimize the semantic error, while reducing the number
of symbols to be transmitted. Some numerical results, obtained in [50],
are reported in Fig. 4(a) and (b), referring, respectively, to an additive
white Gaussian noise (AWGN) channel and to a Rayleigh fading chan-
nel. The performance is evaluated in terms of the similarity between
the sentence emitted by the source and the sentence reconstructed by
the semantic decoder at the receive side. The performance of DeepSC
is compared with the following alternative methods: Huffman coding
with RS (30,42) in 64-QAM; 5-bit coding with RS (42, 54) in 64-QAM;
Huffman coding with Turbo coding in 64-QAM; 5-bit coding with Turbo
coding in 128-QAM; an E2E DNN trained over the AWGN channels and
Rayleigh fading channels, proposed in [54]. As we can see from Fig. 4,
at low SNR values, where conventional schemes suffer from many er-
rors at bit-level, the semantic decoder DeepSC significantly outperforms
the alternative methods, exploiting the structure of a natural language.
The method outperforms also the deep learning based method of [54],
thanks to the exploitation of the semantic aspect. In this example,
the reason why the semantic scheme outperforms all other methods
is because it exploits the shared knowledge of the language used to
communicate. This is an a priori knowledge, shared by source and
destination, which does not need to be transmitted, but that imposes
a structure on the interpreted words or sentences that helps to correct
a lot of errors occurring at the physical layer.

4.3. Feedback and cross-layer interaction in semantic communications

Besides improving forward error correction, semantic decoding can
also help significantly if employed in an Automatic Repeat reQuest
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Fig. 4. Semantic similarity vs. SNR (dB); courtesy of [50].
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ARQ) scheme, using only error detection at the receiver. In fact,
hile a conventional receiver would require the retransmission of
rroneous packets, at syntactic level, a semantic decoder would require
retransmission only if there is an error at the semantic level. The

hallenge, in this case, is to devise mechanisms to detect errors oc-
urring at semantic levels. In principle, the interpreter will require a
etransmission only when the recovered message The further possibility
ade possible by the new semantic framework is that the feedback

rom receiver to transmitter may now involve not only the sequence
f transmitted symbols (syntactic level), but also the semantic aspect of
he transmitted message, as depicted in Fig. 2. A semantic feedback can
e sent whenever the meaning of the message provided by the semantic
nterpreter is unclear. The message interpreter at destination can in fact
end a feedback to the semantic message generator at the source side,
o require the retransmission of the message 𝑤, or maybe a different
ersion of 𝑤 that facilitates its interpretation at the receiver side.
n additional feature of the semantic communication system is also

he interaction between semantic and syntactic levels. The semantic
nterpreter at the destination can in fact send a feedback to the syntactic
ncoder as well, as shown in Fig. 2. For example, the semantic decoder
an tell the source encoder to reduce the data rate because the message
hat is being received can be easily decoded and predicted (up to a
ertain time interval), at the semantic level, so that it is not necessary
o transmit all the fine details that are currently sent. In this way, the
hole system might achieve the same accuracy in the recovery of the

ransmitted information, but saving important physical resources such
s energy or bandwidth.

In summary, the interaction between different communication lev-
ls paves the way to a new way to design communication systems.
owadays, communications are designed to ensure that there are no
rrors at syntactic level, which means that the sequence of symbols
sed to encode the message emitted by the source should be correctly
eceived at destination, irrespective of what is being transmitted, i.e. of
he information content encoded in the transmitted message. In a
emantic communication system, what matters is that the receiver be
ble to recover the content of the information sent by the source. There
ould be errors at syntactic level that could be easily corrected at the se-
antic level, without requiring the retransmission of the corresponding
ackets. Going even further, there may be parts of the message that may
ot be able to reach the destination, perhaps due to blocking effects
t the physical level, such as in millimeter wave communications, but
he interpreter may still be able to reconstruct the semantic message,
ased on a well tuned prediction model. Where do these advantages of
emantic communications come from ? In a nutshell, the fundamental
ain comes from the fact that, typically, source and destination share
lot of common knowledge. This shared knowledge is what makes

ossible to correct many errors or to avoid sending details that can be
asily recovered from the context. The price paid for these advantages
s additional receiver complexity.
10

h

.4. Examples of applications of semantic communications

The example shown before on text transmission is helpful to intro-
uce the concept of semantic communication, but it involves a low
ata rate application for which there is no urgent need to improve
erformance. In this section, we highlight three representative exam-
les of applications of increasing challenge and difficulty, which could
ignificantly benefit from the introduction of semantic aspects.

.4.1. Speech signals
The transmission of speech signals can benefit from the incorpora-

ion of NLP tools and the incorporation of a speech recognition step
hat translates speech into text. The automatic correction of words, or
entences, can in fact lower the pressure on forward error correction
odes because more errors at bit-level can be compensated by the
ord/sentence correction mechanisms. Alternatively, pieces of speech

hat get lost because of a deep channel fade can be reconstructed from
he context, without requiring their retransmission.

.4.2. Video streaming
Video streaming is already consuming most network resources, so

his is a use-case where an improvement is more expected. The question
s how to extend the semantic framework to deal with video signals as
ell. In our view, this is possible by incorporating an interpretation
f what is going on in the video. Suppose, for example, that the
ideo is capturing the scene of a walking person and that, at some
oints, a number of frames are lost because of a deep channel fade. An
nterpreter, at the receive side, could segment the video and distinguish
he walking person from the background. Building on previous frames,
he interpreter can predict the next frames, using a properly trained
rediction model. Recent examples of video coding incorporating frame
rediction based on deep neural networks are presented in [55]. If no
ajor unexpected change occurs during the channel fade, the overall

low of events captured by the video could be reconstructed, with
pparently no harm at semantic level. In such a case, the message inter-
reter would be able to reproduce a video that is not necessarily equal
o the transmitted video, but it is semantically equivalent. Clearly, this
pproach can produce a significant saving in terms of transmit power
nd/or bandwidth.

.4.3. Holographic communications
A challenging new use cases foreseen for 6G is holographic commu-

ications, where multiple views of a scene are transmitted to enable
he creation of a hologram at the receiver side. In this case, significant
dvances can be expected from the incorporation of semantic features,
henever source and destination share some common knowledge back-
round. As an example, suppose there is a speaker delivering a talk at a
emote side, where she is represented as a hologram. The receiver could

ave a digital model of the speaker. Exploiting the model, the receiver
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could reconstruct some of the multiple views necessary to reconstruct
the hologram in real time, with evident benefits in terms of data rate
strictly necessary to provide the desired quality of experience.

Further semantic communication based applications are possible to
serve future challenging use cases such as brain-to-computer interac-
tion, multi-sense and multi-sensory XR, affective computing, intertwin-
ing (natural and/or artificial) intelligence, etc. (see Table 1).

The price paid for the advantages offered by the inclusion of seman-
tic aspects is the additional computational complexity at the receive
side and, in turn, a further delay, which could represent, in some ap-
plications, a serious bottleneck. To reduce the additional delay, in our
vision, future communication systems could take valuable suggestions
from the observation of how human brains operate. Among the many
theories of human mind, there is a beautiful theory denoted as predictive

ind, supported by experimental evidence [56,57]. According to this
heory, the brain is a bundle of cells that support perception and action
y constantly attempting to match incoming sensory inputs with top-
own expectations or predictions, learning from prediction errors. A
triking example is vision [58]. The brain is continuously creating an
mage of the outside world, based on what already knows and on what
t observes, using a hierarchical generative model that aims to minimize
rediction error within a bidirectional cascade of cortical processing.
ccording to this theory, it is the brain that selects a small subset
f the multitude of signals coming from the retina, as a function of
hat it is expecting. In this way, most signals produced in the retina
o not travel through the optical nerve. There is a significant flow of
nformation from the retina to the brain only when the observation
eviates significantly from the prediction. This represents indeed a very
fficient way of working, as it saves a lot of energy, and it could be
ranslated into next generation artificial visual systems.

. Goal-oriented communication

In this section, we explore some of the possibilities offered by the
nclusion of the effectiveness level in the protocol stack, as shown in
ig. 1. We focus on the case in which effectiveness is achieved by
pecifying a clear goal of the communication. In such a case, the idea
s to transmit not all the information, but only the information that
s strictly relevant to the effective fulfillment of the goal, optimizing
he system performance while satisfying the constraints dictated by
he application. We denote this framework as goal-oriented commu-
ication. Earlier works on goal-oriented communications are [44,59]
nd its extension [46]. In those works, the authors addressed the
roblem of potential ‘‘misunderstanding’’ among parties involved in
communication, where the misunderstanding arises from lack of

nitial agreement on what protocol and/or language is being used in
ommunication. In this section, we propose a different view, starting
rom the basic assumption that the communication occurs to fulfill a
oal. As a consequence, the performance of the system is specified
y the degree of fulfillment of the given goal or, more precisely, on
he effectiveness achievable in the fulfillment of the goal given the
mount of resources used to do it. Let us consider, for the sake of
larity, the case in which the goal of the communication is to estimate
he parameters of a function modeling the data collected by a set of
ensors. The problem is to evaluate the minimum number of bits to be
ransmitted strictly necessary to enable the fusion center to estimate
he set of parameters with the required accuracy. This problem has been
ddressed in several works. In particular, the problem is relevant in the
merging field of edge learning, where learning tools are brought closer
nd closer to the end user to meet stringent delay constraints [60]. In
he edge learning framework, having in mind the goal of learning and
he resources dedicated to that goal, several trade-offs are possible,
ike the trade-off between power consumption and delay, between
ccuracy and delay, etc. The authors of [61] consider an edge machine
earning system, where an edge processor runs an algorithm based
n stochastic gradient descent (SGD), to reach a trade-off between
11
latency and accuracy, by optimizing the packet payload size, given
the overhead of each data packet transmission and the ratio between
the computation and the communication rates. In [62], the authors
proposed an algorithm to maximize the learning accuracy under latency
constraints. In [63], it was proposed a distributed machine learning
algorithm at the edge, where wireless devices collaboratively minimize
an empirical loss function with the help of a remote server.

In this section, we propose a general framework to address the
problem. The system can be sketched as in Fig. 5, where the novelty
is represented by the feedback from the decision maker to the source
encoder. To present the general idea, let us suppose that the goal of the
communication system is either to perform classification or to learn a
set of parameters 𝜽 from a set of observations 𝐱𝑖, 𝑖 = 1,… , 𝑁 . Let us
denote with 𝐗 ∶= {𝐱𝑖}𝑁𝑖=1 the set of measurements. The goal is to send
the data to a fusion center that takes a decision. Let us denote by 𝐙
the data sent to the fusion center. The question is how to encode the
data, i.e. how to map 𝐗 into 𝐙, to satisfy the service requirements,
e.g. service delay and decision accuracy, while possibly minimizing
energy consumption. Typically, the data are source encoded to remove
redundancy, still allowing perfect reconstruction (lossless compression)
or to reach a satisfactory compromise between distortion and encoding
rate (lossy compression) [64]. We propose a different strategy. The idea
is that, if communication occurs to fulfill a goal, for example parameter
estimation or classification, the source encoder should be designed in
order to achieve the desired accuracy on the parameter estimation
or classification, while minimizing the use of physical resources or
to minimize the time needed to take a decision. The source encoder
should then be tuned according to the performance on the learner
operating at the fusion center, rather than minimizing distortion in the
reconstruction of the observed data. Let us suppose that the parameter
vector to be estimated is itself a vector random variable, denoted as
Θ. We can cast the problem in a formal way, as the search of the
mapping 𝐙 = 𝐟 (𝐗) such that 𝐙 is maximally compressed, but there is
no information loss when passing from 𝐗 to 𝐙, as far as the recovery
of Θ is concerned, i.e.

𝐼(𝐗;Θ) = 𝐼(𝐙;Θ), (9)

where 𝐼(𝐗;𝐘) denotes the mutual information from 𝐗 to 𝐘 [64]. The
solution to this problem is given by the minimal sufficient statistics of
𝐗 [64]. From basic statistical signal processing, we know that 𝐟 (𝐱) is a
sufficient statistics for 𝜽, given 𝐱, if the joint pdf 𝑝(𝐱;𝜽) can be factorized
as [64]:

𝑝(𝐱;𝜽) = 𝑔𝜽[𝐟 (𝐱)]ℎ(𝐱). (10)

n general, there might exist more than one sufficient statistic. What
s important in our setting is to identify the minimal sufficient statis-
ics. A sufficient statistic 𝐟 (𝐱) is minimal, relative to 𝑝(𝐱;𝜽), if it is a
unction of every other sufficient statistic [64]. In words, a minimal
ufficient statistic maximally compresses the information about the
ector parameter 𝜽 in the observed samples.

The above formulation means that, if the goal of communication is
stimating the parameter vector 𝜽 from the data-set 𝐗, there is no loss
f information in sending 𝐟 (𝐗) instead of 𝐗. What is the advantage?
he advantage is that the entropy of 𝐟 (𝐗) could be much smaller than
he entropy of 𝐗. This means that the number of bits necessary to
ncode 𝐟 (𝐗) may be much smaller than the number of bits necessary
o encode 𝐗. As a consequence, the number of bits to be transmitted
an be significantly decreased, with no losses in terms of inference.

The formulation given above exploits the sufficient statistic of the
ata. In some cases, it may be difficult, or even impossible, to find a
inimal sufficient statistics. To overcome these difficulties, we pro-
ose a very general approach, based on the information bottleneck
rinciple [65]. The approach can be formulated as follows: Search
or the encoding function 𝐙 = 𝐟 (𝐗) that achieves the best trade-off
etween the loss of information about the estimation of Θ, resulting
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Fig. 5. Goal-oriented communication.
Fig. 6. Optimal energy-delay trade-off necessary to achieve a desired classification
ccuracy.

rom compressing the input 𝐗, and the number of bits necessary to
ncode 𝐟 (𝐗). The problem can be formulated as

in
𝐟 (𝐗)

𝐼(𝐗;𝐙) − 𝛽𝐼(𝐙;Θ), (11)

where 𝛽 is a positive real number used to assign different weights to the
two terms in (11): A small value of 𝛽 privileges maximum compression
of the source data, at the expense of learning accuracy, whereas large
values of 𝛽 privilege the learning accuracy, at the expense of source
compression. Even though the above problem looks prohibitive, if the
involved probability density functions are given, its solution can be
achieved through an iterative algorithm, known as the information
bottleneck method [65]. More recently, the method has been used to
explain the learning and generalization capabilities of deep neural
networks, thus showing its deep impact in learning problems [66].
Finding the optimal encoder according to the information bottleneck
may be difficult in the general case, where the statistics of the data are
unknown. However, learning structures like auto-encoders can provide
a viable good approximation. In our formulation, the parameter 𝛽
present in (11) can be adapted online, depending on the channel state
and on the level of accuracy achieved by the learner, in order to find,
dynamically, the best compromise between energy consumption, E2E
delay and learning accuracy.

Example of application: Edge online learning
We show now a simple example of application of a goal-oriented

system that takes into account the goal of the specific goal of commu-
nications. In this example, we consider the case of an automated image
classification problem. The set-up consists of a sensor that collects data
and sends it to an edge server that trains a classifier. The proposed
method minimizes a weighted sum of energy consumption and clas-
sification accuracy, under constraints on the average E2E delay. In
12
particular, the method dynamically adjusts the number of quantization
bits, the transmit power, and the CPU scheduling at the edge server.
The method has been tested on the MNIST dataset [67] and on the
Hydraulic System Monitoring (HSM) dataset [68]. To increase the
reliability of the classifier, an ensemble method is adopted, combining
multiple classifiers (learners) that are trained in parallel on the same set
of data. The decision is then taken from the learner that yields the most
reliable output. In this specific example, there are two learners running
in parallel on the same data: a Support Vector Machine (SVMs) [69] and
a standard MultiLayer Perceptron (MLP). The data are sent through a
wireless channel affected by fading. The method adjusts dynamically
the number of bits used to encode the images, in order to satisfy a
constraint on the E2E delay and strike the best tradeoff between classifi-
cation accuracy and energy consumption of the sensor. The adaptation
of the source encoders exploits the feedback from the decision maker
at the receiver side, evaluated in terms of classification accuracy, to the
source encoder at the transmitter side. Since the correct classification
cannot be really evaluated in practice, we use as a heuristic the entropy
computed on the outputs of the SVM or the MLP, properly normalized
to represent the a posteriori probabilities of a class, conditioned to the
observation. Low values of entropy correspond to the case in which
the classifier shows a strong preference for one class; large values of
entropy represent a total confusion of the classifier. The running value
of the entropy is also exploited to switch, online, from one classifier
to the other. The performance is shown in Fig. 6, representing the best
trade-off between energy spent by the transmitting nodes and the delay
necessary to achieve the desired learning accuracy. From the figure, we
can also observe the gain achieved combining multiple learners trained
in parallel. The two sets of curves refer to two different cases where the
objective function to be minimized represents a different combination
of energy and E2E delay. For each case, we report the probability of
correct classification. In each case, we consider the ensemble learning,
combining two learners (w/ensemble) and a single learner (w/o en-
semble). Comparing the figures we can see how, properly setting the
parameters of the system, we can get a substantial improvement in the
overall trade-off between energy, E2E delay and learning accuracy. In
particular, we may notice how, passing from a high level of accuracy
(94% - blue curves) to a slightly lower value (91% - red curves), we can
achieve a substantial energy saving, for the same value of E2E delay.

In the above simple example, the source encoder is adjusted acting
on the number of quantization bits. Clearly, more sophisticated tech-
niques are possible. A powerful general purpose approach is offered by
deep neural networks (DNN), used to make inference on the observed
data. In such a case, we can measure the mutual information between
the input and each internal layer of the network. Experimental results
reveal that the first layers of a DNN operate some kind of compression
over the course of training [70]. This reduction is driven by progressive
geometric clustering. Building on such a behavior, we can think of
splitting the DNN in a certain number of layers, putting the initial
layers, involved in some kind of compression or feature extraction, at
the source and the remaining layers at the destination, so as to reduce
the number of bits to be transmitted from source to destination, still
maintaining roughly the same overall performance.
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A use case that is gaining increasing attention in edge computing
is the extraction of video analytics, possibly in real time. In such a
case, the definition of a goal can help to reduce the data rate from
peripheral video camera and the edge server where the video analytics
are extracted. One possibility is, for example, to perform a preliminary
filtering to remove all frames that are not relevant for the ensuing video
analysis. As an example, FFS-VA is a pipelined system for multistage
video analytics, based on three stages [71]: an initial stage used to
remove the frames only containing a background; a stream-specialized
network model used to identify target-object frames; a model to remove
the frames whose target objects are fewer than a threshold.

The last example suggests that, if we merge semantic and goal-
oriented communications, we may find methods to send only the
semantic information that is strictly relevant to the achievement of
the goal. In this way, we have a further way to reduce the amount of
data to be sent, without affecting the accuracy/reliability in the goal
accomplishment.

6. Online learning-based communication and control

The grand vision beyond 6G is that, whereas all previous network
generations have been designed by humans, the design of next gen-
eration networks will see a significant contribution from machines,
driven by a pervasive introduction of artificial intelligence at the edge
of the network, as close as possible to the end-users [72,73]. Bringing
intelligence at the edge of the network meets a twofold request [60]:
Machine Learning for Communication, Computation, Caching, and
Control, aimed to optimize the utilization of network resources, dis-
tributed contents and implement the appropriate control actions, by
learning network-related parameters, content popularity and predicting
future events; and Communication for Machine Learning, aimed
to exploit communication to enable the distributed implementation
of machine learning algorithms enabling context-aware delay critical
services. To support this view, 6G will have to be an AI-native net-
work, meaning that the network will be designed to facilitate the
introduction of learning tools that will reshape the network according
to requirements and constraints [74].

In this paper, we support this vision while stressing, at the same
time, that a true leap forward can be achieved by merging machine
learning, which builds on data-driven inductive strategies, with seman-
tics, which is based on model-based deductive strategies. The interplay
between learning and semantics will produce a twofold advantage:
(i) semantic communications, with its widespread use of knowledge
representation systems, will facilitate the development of machine
learning algorithms that exploit semantic features to improve their
learning capabilities, facilitate disambiguation exploiting context infor-
mation, and increase robustness against adversarial attacks; (ii) ma-
chine learning will help semantic communications algorithms to better
understand which is the relevant information, thus further improving
effectiveness/efficiency. In the following sections, we will elaborate on
the above ideas.

6.1. Holistic orchestration of 𝐶4 resources

Introducing intelligence to enable new services, like for example
intelligent manufacturing, autonomous driving, or virtual reality, to
cite a few, requires taking smart decisions within tight delay constraints
and to respect the jitter bound to enforce a deterministic chain decision
process. To meet this demand, edge computing represents an emerging
paradigm that pushes computing tasks and services from the (possibly
distant) cloud to the edge of the network. An efficient design of edge
computing should enable the end users, either humans or machines,
to access computational and storage resources with very low service
delays.

The service delay, i.e. the time elapsed between the instantiation
of a request and its fulfillment, typically involves a communication
13
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delay between the involved parties, a computation delay, and possi-
bly the time needed to access storage units containing relevant data.
Furthermore, if the goal of communication is the control and actuation
of delay-critical procedures, it is also necessary to include a further
delay associated to control and actuation. As a consequence, imposing
a service delay induces a coupling between communication, computa-
tion, caching, and control (𝐶4) resources. This coupling motivates a
joint 𝐶4 design, to achieve an effective resource orchestration [75].
n this 𝐶4 context, service placement and request routing plays a
ey role in distributing computational resources across the networks.

further key service is computation offloading, which plays a key
ole in extending the capabilities of peripheral devices to take smart
ecisions, by offloading their computational requests to nearby mobile
dge hosts (MEH). In [76,77] the authors propose a joint 𝐶4 model
or collaborative MEC, while in [78] the authors propose an edge
ontroller that implements an optimal control strategy for connected
ruise control in advanced driver assistance systems, relying on the
oint optimization of communication, computation, and caching re-
ources. In the above mentioned examples, the delay-criticality and the
onsequent associated energy consumption of received and processed
ata represents a still unresolved bottleneck.

To satisfy economy of scale issues, the network design must keep
nto account that edge resources, like computing and storage capabil-
ties, will be necessarily limited, so that it is imperative to optimize
heir usage. For example, in computation offloading the service delay
ncludes a communication delay and a computation delay. Hence, it
akes sense to optimize the use of computation and communication

esources jointly, as suggested for example in [79], in a static multi-
ser setup, where multiple small cells are served by a single edge
omputing host. A dynamic joint optimization algorithm that sched-
les the communication and computational resources optimally was
uggested in [80,81]. A further extension to the case where, in each
lot, the optimizer may not know exactly the state of the system and
hen of the objective function to be optimized, one may resort to online
onvex optimization (OCO) algorithms, as suggested in [82]. Besides
ommunication and computation, a further coupling in the 𝐶4 frame-
ork is between communication and caching. In many applications,

t is necessary to cache the desired contents on demand and, possibly,
n a proactive way, to meet delay constraints. Proactive caching will
e considered in Section 6.4. The additional novelty is that, in the
4 context, caching will involve not only popular content, but also

oftware needed to run user applications remotely, but as close as
ossible to the end-user.

.2. Machine learning for wireless networks

Proactive mechanisms require the availability of prediction mecha-
isms and then, more generally, sophisticated machine learning strate-
ies, possibly running at the edge of the network. In the last decade, in
he field of supervised learning, deep neural networks (DNN) have been
hown to provide performance even better than human capabilities,
n some general purpose applications, like sound recognition or image
lassification [83]. In particular, convolutional neural networks (CNN)
re a key actor, for their intrinsic sparsification of the number of
dges from one layer to the next, achieved exploiting the structure of
onvolutional operators, well suited for images and sound, i.e. signals
esiding over regular grids. More recently, the objective has been the
xtension of DNN architectures to work on data that do not reside over
regular grid, but rather on graphs, whose topology captures some of

he intrinsic (pairwise) relations among the observed signals. Mixing
raph-based input representation with learning is a problem addressed
n [84].

When applying supervised learning methods to communication net-
orks, there is the great opportunity to train the learner using a

imulator that generates input data, channels, and corresponding out-
uts, using consolidated statistical models. In this way, the learner can
e trained using a huge number of labeled examples.
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In supervised learning, there is typically a clear separation between
the learning and testing phases. However, in a wireless context where
the channel is going to vary over time, it is more interesting to look for
online learning mechanisms, where the learning and testing phases are
intertwined and evolve over time. Among online algorithms, we may
distinguish between reinforcement learning methods, where an agent
learns by acting and observing the results of its action, without assum-
ing an a priori model of the observation, and stochastic optimization
methods, where a dynamic procedure is enforced to adapts its online
actions, derived from an online optimization that, step-by-step, exploits
whatever knowledge is available at the moment about the involved
variables.

In general, when using supervised learning, the price for achieving
a high performance level is the need of a huge number of labeled
data. This means that, typically, in supervised learning, humans are
still playing a fundamental role in providing the labeled examples.
Conversely, in unsupervised learning, there are no labeled examples to
use. In such a case, the goal of the learner is to find patterns in the data,
like for examples clusters, and then classify the observation according
to the features of the detected patterns. Graph-based representation
methods are a fundamental tool for clustering, as evidenced in spectral
clustering methods. However, graph-based approaches only capture
pairwise relations among entities, like e.g., time series. However, in
many applications, pairwise relations are not able to extract all the
information. A further advancement towards the incorporation of mul-
tiway relations has been carried out in [85], introducing topological
signal processing (TSP). TSP can be especially valuable when the obser-
vations are associated to the edges of a graph, like for example traffic
data. In [85], it was shown how the use of higher order topological
models (simplicial complexes) yield advantages over graphical models
in predicting traffic maps from sparse measurements . Merging TSP
with DNN has the potential to unravel important information from
complex data sets.

Examples of application of machine learning tools to the physical
layer of a communication system have been already studied, under
unknown channels, using an autoencoder (AE) [86,87], a recurrent
neural network (RNN) [88], and a generative adversarial network
(GAN) [89]. Extensions to higher layers, including network slicing and
orchestration are presented in [90], where the authors propose an AI
framework for cross-slice admission and congestion control considers
communication, computing, and storage resources simultaneously to
maximize resources utilization and operator revenue.

6.3. Federated learning

The pervasive introduction of learning tools at the edge of the
network poses a number of challenges. In a framework where multiple
devices produce a wealth of data to be used to extract analytics, it is
clear that some sort of collaborative learning can boost the performance
of learning algorithms. Collaborative learning typically requires the
exchange of data, but this approach raises critical issues because of
privacy concerns to share data among users. A viable approach that
has recently received a significant interest is federated learning [91,92],
where learning the model parameters is performed over a central unit,
either a data center or an edge host, while the data are kept in the
peripheral nodes. In centralized federated learning, the devices do not
send their data to any remote server. They only share local estimates
of the parameters to be learned. Under quite broad assumptions, each
device can boost its performance also without exchanging data, thus
preserving privacy. A possible formulation of the objective function to
be minimized in federated learning is the following

min
𝐰

𝑁
∑

𝑖=1
𝑝𝑖 𝑓𝑖(𝐱𝐢;𝐰) (12)

where 𝑓𝑖(𝐱𝐢;𝐰) is the empirical loss function of device 𝑖, 𝐰 is the (global)
14

parameter vector to be learnt (e.g., a regressor or the wights of a DNN
or the result of a classification), 𝐱𝑖 are the data collected by device 𝑖,
and 𝑝𝑖, with 𝑝𝑖 ≥ 0 and ∑𝑁

𝑖=1 𝑝𝑖 = 1, is a coefficient that weights the
importance of the data collected by user 𝑖 in the estimation of 𝐰. In
the simplest setting, the weights 𝑝𝑖 can be chosen as 𝑝𝑖 = 𝑛𝑖∕(

∑𝑁
𝑖=1 𝑛𝑖),

here 𝑛𝑖 is the number of examples observed by the 𝑖th machine. In
ederated learning, an iterative procedure is implemented where, at
ach iteration 𝑛, instead of sending the local data 𝐱𝐢, each device sends
ts local estimate 𝐰̂𝑖[𝑛] (or a gradient of its local empirical loss with
espect to the parameter vector) to a fusion center, which sends back
n updating term that takes into account the information received by all
ooperating nodes. Under convexity conditions about the optimization
roblem, this strategy converges to the global optimum [92].

The above setting is amenable for its simplicity, but it also faces a
umber of challenges, namely heterogeneity in communication chan-
els, local devices’ behaviors, and models. More specifically, in a
ractical setting, the communication channels between the local de-
ices and the fusion center may vary significantly across devices, in
erms of data rates, latency and blocking probability. This heterogene-
ty alters the updating rule at the fusion center and then it can impact
he final accuracy and the convergence time. Similarly, some devices
an be faulty or provide data with high delays that again impact the
onvergence time. Finally, there is a model heterogeneity implying that
here is no single globally optimal estimate 𝐰 fitting all local needs,

but there are rather different devices, or groups of devices, for which
there is a better estimate 𝐰𝑘, which does not necessarily coincide with
the best estimate of another group of devices. In such a case, a valid
improvement is represented by multi-task federated learning [93].

6.4. Intelligent content delivery at the edge

Dynamic caching is expected to play a key role to reduce the
time elapsed between the instantiation of a request and the content
delivery. In edge-caching-based networks, a large amount of popular
content can be pre-fetched and stored by the edge facilities, such as
access points or mobile edge hosts, making a substantial portion of
the data visible, ubiquitous and very close to the UEs. In particular,
proactive caching policies, populating local storage disks based on
estimated demand, is a key enabler. The optimization variables in
dynamic caching are [94]: cache deployment, deciding where to deploy
the caches; content caching, deciding which files are put in each cache;
and content routing, deciding which paths will be employed to carry
the right content to the right place. Clearly, the goodness of a proactive
caching policy relies upon the accuracy of the prediction algorithms,
which need to incorporate the variability of content requests over
space ad time. So far, caching policies have been fundamentally ad-
dressed to move contents throughout the network. In the semantic
communication framework highlighted in this work, what is necessary
to move is not only content but also knowledge base systems and
virtual machines, able to run applications on demand, as close to the
end user as possible. Migrating virtual machines is a topic that has
received significant attention, but a big leap forward is still needed
to reduce the migration times. This involves, for example, the use of
light virtual machines, like containers, to reduce the amount of data to
be migrated. In general, proactive caching of virtual machines poses
an interesting and challenging problem in terms of computation and
caching, especially for delay-sensitive applications. More generally, the
distributed implementation of machine learning algorithms accessing
distributed contents poses a number of challenges, like, e.g., namely
communication bandwidth, straggler’s (i.e., slow or failing nodes) de-
lay, privacy and security bottlenecks. A new concept that can alleviate
some of the above bottlenecks in large-scale distributed computing
is coded computing, which utilizes coding theory to effectively inject
and leverage data/computation redundancy [95]. More specifically, a
method called Coded Distributed Computing (CDC) has been recently
proposed in [95], which injects redundant computations across the

network in a structured manner.
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6.5. Semantic machine learning

Machine learning is a data-driven approach that learns and uncovers
patterns from examples. Typically, learning is the result of an inductive
(bottom-up) process. Conversely, humans learn (abstract) models from
experience and from the culture accumulated through time from human
kind. They use these abstract models to interpret what they perceive,
to plan actions, build further models, check their validity, and so on.
Being purely inductive, machine learning tools are apparently unbi-
ased. However, the patterns learned by machines sometimes are only
brittle surface-level observational visual characteristics of the observed
data. In object recognition, for example, typically the learner segments
the image to better interpret it. However, sometimes it is precisely
this act of segmenting that, taking things out of context, may induce
ambiguities. This is one of the reasons why current deep learning
systems may sometimes be so brittle and easy to fool despite their
uncanny power [96]: They search for correlations in data, rather than
meaning, but meaning is much more than correlation.

Conversely, humans put their observations into context, thus con-
necting their observations to previously accumulated knowledge and
properly reasoning about what they are sensing, always struggling to
make sense, i.e. extract meaning, from their perception.

We believe that machine learning will make a significant leap
forward when it will incorporate external world knowledge and context
into its decision-making processes. For instance, an auto-encoder, if
properly trained, can be very useful to compress the input and still
capture relevant information from the data. But auto-encoders work
in a purely data-driven (inductive) fashion. However, whenever the
observation is the product of a language, meant in a very broad sense
as a set of entities and logical rules to combine them, one can introduce
the logic of the language inside the mechanisms of an auto-encoder, to
drive its learning phase towards solutions that are coherent with the
underlying language.

6G networks can facilitate the merge between machine learning
and knowledge representation systems. Semantic communication will
in fact push for the introduction of knowledge base systems across the
nodes of the network, to enable semantic interpretation. Within this
semantically-enriched context, new machine learning algorithms can
benefit from the inclusion of knowledge representation and reasoning
schemes. At the same time, semantic learning offers more capabilities
to further optimize the use of network resources, focusing on seman-
tic and goal-oriented aspects. In this context, transfer learning and
knowledge sharing mechanisms will play a key role in making semantic
communication and machine learning algorithms more efficient and
reliable.

7. Conclusions

In this paper, we have proposed a new vision of 6G wireless net-
works, where semantic and goal-oriented communications are the key
actors of a paradigm shift, with respect to the common Shannon’s
framework, that has the potential of bringing enormous benefits. In-
creased effectiveness and reliability can be attained without necessarily
increasing bandwidth or energy, but actually identifying the relevant
information, i.e. the information strictly necessary to enable the re-
ceiver to extract the intended meaning correctly or to actuate the
right procedures for achieving a predefined goal in the most efficient
way. This approach capitalizes on the largely untapped capabilities of
communication, computation and caching systems, on one side, and on
knowledge representation tools on the other side, to distil the relevant
information from the rest, selectively transmitting, processing, inferring
and remembering only information relevant to goals defined by the
interacting parties.

The new philosophy breaks the usual trend aimed to provide more
15

and more resources, like, e.g., energy or bandwidth, to enable more and
more sophisticated services. This breakdown is at the core of a vision
that looks at sustainability as the key property of future networks.

The challenge brought by the new approach is the implementation
of distributed computing mechanisms able to learn and extract meaning
from data, exploiting proper knowledge representation systems, and to
identify and exploit the strictly relevant information in goal-oriented
communications. In this new framework, learning can greatly benefit
from the introduction of semantic aspects, in order to pass from a
purely inductive strategy to the interplay of inductive and deductive
mechanism, learning from examples, but also building abstract models
guiding next learning and so, similarly to the way the human brain
works.
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