
International Journal of Programming Languages and Applications (IJPLA) Vol.1, No.1, October 2011

1

SELFLESS INHERITANCE
John C. Lusth

Department of Computer Science, University of Alabama, Tuscaloosa AL, USA
lusth@cs.ua.edu

ABSTRACT

Formal treatments of inheritance are rather scarce and those that do exist are often more suited for
analysis of existing systems than as guides to language designers. One problem that adds complexity to
previous efforts is the need to pass a reference to the original invoking object throughout the method call
tree. In this paper, a novel specification of inheritance semantics is given. The approach dispenses with
self-reference, instead using static and dynamic scope to accomplish similar behaviour. The result is a
methodology that is simpler than previous specification attempts, easy to understand, and sufficiently
expressive. Moreover, an inheritance system based on this approach can be implemented with relatively
few lines of code in environment-passing interpreters.

KEYWORDS

Inheritance, delegation, extension, reification, variation, manipulating scopes

1. INTRODUCTION

It seems to be a much harder task to define inheritance than to decide if a programming language
provides a sufficient inheritance mechanism or not. This can be seen from papers themed
“Inheritance is...” or “Inheritance is not...” [1-4]. Even as late as 1996, inheritance has been
described as a “controversial mechanism” [5]. Such a lack of consensus has been the impetus to
describe inheritance formally. Formal descriptions range from Touretzky's [6] work on multiple
inheritance in AI systems (but with applications to programming languages), to Cardelli's
description of the subtyping relation [7], to Cook's [8] or Reddy's [9] denotational semantics
approach.

One aspect to Cook's approach, in common with other formal descriptions of the semantics of
inheritance, is the prominence of the self-reference. Indeed, Cook goes so far as to say
“manipulation of self-reference is an essential feature of inheritance”, meaning the passing of a
self-reference to the original invoking object (either as a hidden or formal parameter) to all object
methods is a requirement. Taivalsaari, in [5], concurs. As will be shown, this requirement is
sufficient, but not necessary. Manipulation of static scopes is sufficient for providing an
inheritance mechanism that conforms to common intuition and does so without the need of self-
references. This “selfless” inheritance greatly simplifies a formal and pragmatic treatment of the
behaviour of an inheritance hierarchy. Moreover, unlike a denotational approach, the new
approach can be directly and easily implemented in a language processor to provide a reasonable
inheritance mechanism. A clue as to the simplicity of selfless inheritance can be found in the use
of concatenation to provide inheritance in Javascript [10]. Concatenation inheritance is closely
related to selfless inheritance (but still requires the passing of object references). Selfless
inheritance simplifies the task of adding inheritance even further.

mailto:lusth@cs.ua

International Journal of Programming Languages and Applications (IJPLA) Vol.1, No.1, October 2011

2

Any specification of inheritance semantics must be (relatively) consistent with the afore-
mentioned intuition about inheritance. With regards to the pragmatics of inheritance, there seems
to be three forms of inheritance that make up this intuition. Taking the names given by Meyer
[11], the three are extension, reification, and variation. In extension inheritance, the heir simply
adds features in addition to the features of the ancestor; the heir is indistinguishable from the
ancestor, modulo the original features. In reification inheritance, the heir completes, at least
partially, an incompletely specified ancestor. An example of reification inheritance is the idea of
an abstract base class in Java. In variation inheritance, the heir adds no new features but
overrides some of the ancestor's features. Unlike extension inheritance, the heir is distinguishable
from the ancestor, modulo the original features. The three inheritance types are not mutually
exclusive; as a practical matter, all three types of inheritance could be exhibited in a single
instance of general inheritance. Any definition of inheritance should capture the intent of these
forms.

In the following sections, a description of how environments in an environment-passing
interpreter can be used as the foundation of an object system is given. The next section describes
how scopes can be manipulated to provide the aforementioned forms of inheritance. The next two
sections cover a possible implementation of two forms of single inheritance, followed by a
discussion of the semantic difference between selfless inheritance and the form found in Java.
The paper then concludes with commentary on the advantages of selfless inheritance.

It should be noted that this paper focuses solely on the runtime behaviour of inheritance
hierarchies and does not delve into the (mainly static) issues of polymorphism. Moreover,
although the backdrop of this paper is environment-passing interpreters, the results presented
herein are relevant to other types of languages. This is because objects are implemented as
environments and environments are simply records (with links to other like records). However,
environment-passing interpreters are especially suited for this treatment since environments and
functions for manipulating them often pre-exist; much of the implementation can be readily
reused to implement objects with inheritance.

2. SIMPLE ENCAPSULATION

The three hallmarks of object-orientation are encapsulation, inheritance, and polymorphism.
Before we tackle inheritance, we first need the ability to encapsulate data, that is, to make simple,
general purpose objects.

A notion that simplifies our definition of inheritance is to use environments themselves as
objects. Since an environment can be thought of as a table of the variable names currently in
scope, along with their values, and an object can be thought of as a table of instance variables and
method names, along with their values, the association of these two entities is not unreasonable.

Thus, to create an object, we need only cause a new scope to come into being. A convenient way
to do this is to make a function call. The call causes a new environment to be created, in which
the arguments to the call are bound to the formal parameters and under which the function body is
evaluated. Our function need only return a pointer to the current execution environment to create
an object. Under such a scenario, we can view the function definition as a class definition with
the formal parameters and local variables serving as instance variables and locally defined
functions serving as instance methods. Note that this view differs from Reddy [9] in that the local
state and the method environments are considered one and the same. The combination of the two
serve as a foundation for removing the need for self-reference. Another difference is that Reddy
views closures (function records) more akin to objects.

The Scam language [12], which incorporates earlier ideas [13,14] allows the current execution
environment to be referenced and returned. Scam code superficially resembles Scheme and

International Journal of Programming Languages and Applications (IJPLA) Vol.1, No.1, October 2011

3

anyone familiar with Scheme or other Lisp-like languages should readily understand the code
fragments presented herein. Here is an example of object creation in Scam:

(define (bundle a b)
(define (total base) (+ base a b))
(define (toString) (string+ "a:" a ", b:" b))
this) ;return the execution environment

(define obj (bundle 3 4))
(inspect ((dot obj display))) ;call the display method
(inspect ((dot obj total) 1)) ;call the total method

The variable this is always bound to the current execution environment or scope. Since, in Scam,
objects and environments the same, this can be roughly thought of as a self reference to an object.
The dot function (equivalent to the dot operator in Java) is used to retrieve the values of the given
instance variable from the given object. The inspect function prints the unevaluated argument
followed by its evaluation.

Running the above program yields the following output:

((dot obj display)) is "a:3, b:4"
((dot obj total) 1) is 8

It can be seen from the code and resulting output that encapsulation via this method produces
objects that can be manipulated in an intuitive manner.

It should be stated that encapsulation is considered merely a device for holding related data
together; whether the capsule is transparent or not is not considered important for the purposes of
this paper. Thus, in the above example, all components are publicly visible. To make
encapsulation semi-transparent, keywords such as private can be used to customize encapsulation
(with a price of syntactic and implementation complexity) or, as in the case of Scam,
environments can be manipulated in way to provide opacity [14].

3. SELFLESS INHERITANCE

In this section, we give demonstrations on how the three aforementioned forms of
inheritance can be implemented by resetting the enclosing scopes of the entities making
up objects.

3.1 Extension Inheritance

In order to provide inheritance by manipulating scope, it must be possible to both get and set the
static scope, at runtime, of objects and function closures. We will postulate two functions for
these tasks: getEnclosingScope and setEnclosingScope. While at first glance it may seem odd to
change a static scope at runtime, in environment-passing interpreters, these functions translate
into getting and setting a single pointer, respectively.

Recall that in extension inheritance, the subclass strictly adds new features to a superclass and
that a subclass object and a superclass object are indistinguishable, behaviour-wise, with regards
to the features provided by the superclass. Delegation is clearly a simple (if not the simplest) way
to provide this type of inheritance [15,16]. When a subclass object receives a message it cannot
handle, it simply forwards the message to the delegate. However, roughly the same effect can be
achieved via manipulation of scope. Consider two objects, child and parent. The extension
inheritance of child from parent can be implemented with the following pseudocode:

setEnclosingScope(parent,getEnclosingScope(child));
setEnclosingScope(child,parent);

International Journal of Programming Languages and Applications (IJPLA) Vol.1, No.1, October 2011

4

As a concrete example, consider the following Scam program:

(define (c) "happy")
(define (parent)

(define (b) "slap")
this)

(define (child)
(define (a) "jacks")
(define temp (parent))
(setEnclosingScope temp (getEnclosingScope this))
(setEnclosingScope this temp)
this)

(define obj (child))
(inspect ((dot obj a)))
(inspect ((dot obj b)))
(inspect ((dot obj c)))

Running this program yields the following output:

((dot obj a)) is jacks
((dot obj b)) is slap
((dot obj c)) is happy

The call to a immediately finds the child's method. The call to b results in a search of the child.
Failing to find a binding for b in child, the enclosing scope of child is searched. Since the
enclosing scope of child has been reset to parent, parent is searched for b and a binding is found.
In the final call to c, a binding is not found in either the child or the parent, so the enclosing scope
of parent is searched. That scope has been reset to child's enclosing scope. There a binding is
found. So even if the parent object is created in a scope different from the child, the correct
behaviour ensues.

For an arbitrarily long inheritance chain, p1 inherits from p2, which inherits from p3 and so on,
the most distant ancestor of the child object receives the child's enclosing scope:

setEnclosingScope(pN,getEnclosingScope(p1))
setEnclosingScope(p1,p2);
setEnclosingScope(p2,p3);
...
setEnclosingScope(pN-1,pN);

It should be noted that the code examples in this and the next sections hard-wire the inheritance
manipulations. As will be seen further on, Scam automates these tasks.

3.2 Reification Inheritance

As stated earlier, reification inheritance concerns a subclass fleshing out a partially completed
implementation by the superclass. A consequence of this finishing aspect is that, unlike extension
inheritance, the superclass must have access to subclass methods. A typical approach to handling
this problem is rather inelegant, passing a reference to the original object as hidden parameter to
all methods. Within method bodies, method calls are routed through this reference. This
approach is a prime example of what Anders Hejlsberg, architect of C#, calls “simplexity”,
whereby a simpler interface hides the complexity underneath. Simplexity generally makes things
easier to use, if one's usage corresponds with anticipated uses. In novel circumstances, however,
resulting behaviour can be very difficult to comprehend and/or explain [5,17].

International Journal of Programming Languages and Applications (IJPLA) Vol.1, No.1, October 2011

5

The approach, as given in the previous section, for extension inheritance does not work for
reification inheritance. Suppose a parent method references a method provided by the child. In an
environment-passing interpreter, when a function definition is encountered, a closure is created
and this closure holds a pointer to the definition environment. It is this pointer that implements
static scoping in such interpreters.

For parent methods, then, the enclosing scope is the parent. When the function body of the
method is being evaluated, the reference to the method supplied by the child goes unresolved,
since it is not found in the parent method. The enclosing scope of the parent method, the parent
itself, is searched next. The reference remains unresolved. Next the enclosing scope of the parent
is searched, which has been reset to the enclosing scope of the child. Again, the reference goes
unresolved (or resolved by happenstance should a binding appear in some enclosing scope of the
child).

The solution to this problem is to reset the enclosing scopes of the parent methods to the child. In
pseudocode:

setEnclosingScope(parent,getEnclosingScope(child));
setEnclosingScope(child,parent);
for each method m of parent:

setEnclosingScope(m,child)

Now, reification inheritance works as expected. Here is an example:

(define (parent)
(define (ba) (string+ (b) (a)))
(define (b) "slap")
this)

(define (child)
(define (a) "jacks")
(define temp (parent))
(setEnclosingScope temp (getEnclosingScope this))
(setEnclosingScope this temp)
(setEnclosingScope (dot temp ba) this)
this)

(define obj (child))

(inspect ((dot obj ba)))

In the example, the function ba references a function a that the parent does not provide, but the
child does. The output of this program is:

((dot obj ba)) is "slapjacks"

As can be seen, the reference to a in the function ba is resolved correctly, due to the resetting of
ba's enclosing scope to child.

For longer inheritance chains, the pseudocode of the previous section is modified accordingly:

setEnclosingScope(pN,getEnclosingScope(p1))
setEnclosingScope(p1,p2);
for each method m of p2: setEnclosingScope(m,p1)
setEnclosingScope(p2,p3);
for each method m of p3: setEnclosingScope(m,p1)
...

setEnclosingScope(pN-1,pN)
for each method m of pN: setEnclosingScope(m,p1)

All ancestors of the child have the enclosing scopes of their methods reset.

International Journal of Programming Languages and Applications (IJPLA) Vol.1, No.1, October 2011

6

3.3 Variation inheritance

Variation inheritance captures the idea of a subclass overriding a superclass method. If functions
are naturally virtual (as in Java), then the overriding function is always called preferentially over
the overridden function.

If child is redefined as follows:

(define (child)
(define (b) "jumping")
(define (a) "jacks")
(define temp (parent))
(setEnclosingScope temp (getEnclosingScope this))
(setEnclosingScope this temp)
(setEnclosingScope (dot temp ab) this)
this)

with parent defined as before, then the new version of b overrides the parent version. The output
now becomes:

((dot obj ba)) is "jumpingjacks"

This demonstrates that both reification and variation inheritance can be implemented using the
same mechanism. Another benefit is that instance variables and instance methods are treated
uniformly. Unlike virtual functions in Java and C++, instance variables in those languages
shadow superclass instance variables of the same name, but only for subclass methods. For
superclass methods, the superclass version of the instance variable is visible, while the subclass
version is shadowed. With this approach, both instance variables and instance methods are
virtual, eliminating the potential error of shadowing a superclass instance variable. Here is an
example:

(define (parent)
(define x 0)
(define (toString) (string+ "x:" x))
this)

(define (child)
(define x 1)
(define temp (parent))
(setEnclosingScope temp (getEnclosingScope this))
(setEnclosingScope this temp)
(setEnclosingScope (dot temp toString) this)
this)

(define p-obj (parent))
(define c-obj (child))

(inspect ((dot p-obj toString)))
(inspect ((dot c-obj toString)))

Note that p-obj points to a pure parent object and c-obj points to a child object that inherits from
parent. The output:

((dot p-obj toString)) is "x:0"
((dot c-obj toString)) is "x:1"

demonstrates the virtuality of the instance variable x. Even though the program, in the last line,
calls the superclass version of toString, the subclass version of x is referenced.

International Journal of Programming Languages and Applications (IJPLA) Vol.1, No.1, October 2011

7

4. IMPLEMENTING SELFLESS INHERITANCE

Since environments are objects in Scam, implementing the getEnclosingScope and
setEnclosingScope functions are trivial:

(define (setEnclosingScope a b) (assign (dot a __context) b))
(define (getEnclosingScope a) (dot a __context))

The enclosing scopes of environments and closures are stored in the field __context. Moreover,
the task of resetting the enclosing scopes of the parties involved can be automated. Scam provides
a library, written in Scam that provides a number of inheritance mechanisms. The first (and
simplest) is ad hoc inheritance. Suppose we have objects a, b, and c and we wish to inherit from b
and c (and if both b and c provide the same functionality, we prefer b's implementation). To do
so, we call the mixin function:

(mixin a b c)

A definition of mixin could be:

(define (mixin child @) ; @ points to a list of remaining args
(define outer (getEnclosingScope child))
(define spot child)
(while (not (null? (cdr @)))

(define current (car @))
(resetClosures current child)
(setEnclosingScope spot current)
(assign spot current)
(assign @ (cdr @))

(setEnclosingScope (car @) outer)
(resetClosures (car @) child))

where resetClosures is tasked to set the enclosing scopes of the methods of current object to the
child. Another supported type of inheritance emulates the extends operation in Java. For this type
of inheritance, the convention is that an object must declare a parent. In the constructor for an
object, the parent instance variable is set to the parent object, usually obtained via the parent
constructor. Here is an example:

(define (b)
(define parent nil)
...
this)

(define (a)
(define parent (b)) ;setting the parent
...
this)

Now, to instantiate an object, the new function is called:

(define obj (new (a)))

The new function follows the parent pointers to reset the enclosing scopes appropriately. Here is a
possible implementation of new, which follows the definition of mixin closely:

(define (new child)
(define outer (getEnclosingScope child))
(define spot child)
(define current (dot spot parent))
(while (not (null? current))

(resetClosures current child)
(setEnclosingScope spot current)
(assign spot current)

International Journal of Programming Languages and Applications (IJPLA) Vol.1, No.1, October 2011

8

(define current (dot spot parent)))
(setEnclosingScope spot outer)
(resetClosures spot child))

The actual implementation of new allows the most distant ancestor to forgo a parent instance
variable. Other forms of inheritance are possible as well. Thus, the flexibility of selfless
inheritance does not require inheritance to be built into the language.

5. A NOTE ON DARWINIAN VS. LAMARCKIAN INHERITANCE

The behaviour of the inheritance scheme implemented in this paper differs from the inheritance
schemes of the major industrial-strength languages in one important way. In Java, for example, if
a superclass method references a variable defined in an outer scope (this can happen with nested
classes), those references are resolved the same way, whether or not an object of that class was
instantiated as a stand-alone object or as part of an instantiation of a subclass object. This is
reminiscent of the inheritance theory of Jean-Baptiste Lamarck, who postulated that the
environment influences inheritance. In Java, the superclass retains traces of its environment
which can influence the behaviour of a subclass object.

With selfless inheritance, the static scopes of the superclass objects are ultimately replaced with
the static scope of the subclass object, a purely Darwinian outcome. The superclass objects
contribute methods and instance variables, but none of the environmental influences. Thus, the
subclass object must provide bindings for the non-local references either through its own
definitions or in its definition environment.

An argument can be made, in either case, as to which is the proper way to inherit. However,
consider the situation where a superclass references the decidedly non-local plus operator (in
Scam and Scheme, '+' is simply a variable bound to the addition function). Suppose you wish to
instrument '+'; you wish to count the number of additions by overloading '+' in the environment of
the subclass. Under Lamarckian inheritance, only additions performed by the subclass will be
counted; additions by the superclass will not contribute to the total. Under Darwinian inheritance,
additions in the subclass and superclass will both be counted.

For Scam, it is possible, when resetting the enclosing scopes of closures, to also precompile all
non-local references, forcing Lamarckian inheritance.

6. CONCLUSIONS

Selfless inheritance, whereby object references are not passed to subclass and superclass methods,
either explicitly or implicitly, is shown to be possible. Selflessness can be achieved by
manipulating static scopes dynamically in an environment passing interpreter and is consistent
with the notions of how extension, reification, and variation inheritance should behave. In terms
of Reddy’s [9] hierarchy of object-oriented languages, the simplest of the four languages,
ObjectTalk, when augmented as above, is equivalent to the most complex of the four, SmallTalk,
but without a great deal of SmallTalk’s syntactic and semantic burden. Indeed, recently there has
been some push back on traditional implementations of inheritance, substituting delegation to
accomplish similar goals [18]. Selfless inheritance seems to combine the best of traditional
inheritance and delegation.

This simple approach to inheritance semantics yields many benefits. Among them are a small,
expressive, yet easily understood inheritance sub-language, both in terms of syntax and
semantics. Another benefit is ease of implementation, especially in the amount of overhead in the
language processor to support inheritance. A third benefit is a consistent treatment of instance
variables and instance methods; since both are virtual, a single explanation of virtuality suffices
to cover both. Finally, although selfless inheritance naturally implements Darwinian-style
inheritance, it does not preclude Lamarckian forms.

International Journal of Programming Languages and Applications (IJPLA) Vol.1, No.1, October 2011

9

REFERENCES

[1] H. Geffner and T. Verna, “Inheritance = chaining + defeat,” in Proceedings of the Fourth
International Symposium on Methodologies for Intelligent Systems (Z. Raz, ed.), (Amsterdam),
pp. 411–418, North-Holland, 1989.

[2] A. Taivalsaari, “Cloning is inheritance,” Computer Science Report WP-18, University of
Jyvaskyla, Finland, 1991.

[3] L. A. Stein, “Delegation is inheritance,” in Conference proceedings on Object-oriented
programming systems, languages and applications, pp. 138–146, ACM Press, 1987.

[4] W. R. Cook, W. L. Hill, and P. S. Canning, “Inheritance is not subtyping,” Information and
Computation, vol. 114, no. 2, pp. 329–350, 1994.

[5] A. Taivalsaari, “On the notion of inheritance,” Comp. Surveys, vol. 28, pp. 438–479, Sept. 1996.

[6] D. S. Touretzky, The mathematics of inheritance systems. PhD thesis, Carnegie-Mellon
University, 1984.

[7] L. Cardelli, “A semantics of multiple inheritance,” Lecture Notes in CS, no. 173, p. 51, 1984.

[8] W. R. Cook and J. Palsberg, “A denotational semantics of inheritance and correctness,”
Information and Computation, vol. 114, no. 2, pp. 329–350, 1994.

[9] U. S. Reddy, “Objects as closures: Abstract semantics of object oriented languages,” in
Proceedings of the 1988 ACM Conference on Lisp and Functional Programming, pp. 289–297,
ACM, ACM, July 1988.

[10] A. Taivalsaari, “Simplifying javascript with concatenation-based prototype inheritance,” tech.
rep., Tampere University of Technology, 2009.

[11] B. Meyer, “The many faces of inheritance: A taxonomy of taxonomy,” IEEE Computer, vol. 29,
pp. 105–110, May 1996.

[12] J. C. Lusth, “The Scam Programming Language,” , http://beastie.cs.ua.edu/scam/, 2011.

[13] J. C. Lusth, “Unified selection from lists, arrays, and objects,” Computer Languages, Systems and
Structures, vol. 28, pp. 289–305, 2002.

[14] J. C. Lusth and R. S. Bowman, “A minimalist approach to objects,” Computer Languages,
Systems and Structures, vol. (in press), 2004.

[15] H. Lieberman, “Using prototypical objects to implement shared behavior in object oriented
systems,” in OOPSLA ’86 Conference Proceedings, pp. 214–223, 1986.

[16] D. Ungar and R. Smith, “Self: the power of simplicity,” in OOPSLA ’87 Conference Proceedings,
pp. 227–242, 1987.

[17] P. H. Frohlich, “Inheritance decomposed,” Position Paper, July 11 2002.

[18] H. Kegel and F. Steimann, “Systematically refactoring inheritance to delegation in java,” in
Proceedings of the 30th international conference on Software engineering, ICSE ’08, (New York,
NY, USA), pp. 431–440, ACM, 2008.

http://beastie.cs.ua.edu/scam/

