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Energy Yield Calculator (EYCALC) 

Introduction 

This software aims to simulate the energy yield of single-junction and multi-junction solar cells. In 
contrast to the power conversion efficiency (PCE), the energy yield (EY) accounts for environmental 
conditions, such as constantly changing irradiation conditions or the ambient temperature. 

This software allows a rapid simulation of complex architectures and was developed with the aim to 
handle textured perovskite-based multi-junction devices. However, it is possible to simulate any 
combination of thin-film architecture with incoherent photovoltaic materials (e.g., crystalline silicon). 

By making use of pre-simulated textures (e.g., inverted pyramids, regular upright pyramids, random 
pyramids) by geometrical ray tracing, any incoherent interface within the architecture can also be 
textured. 

The software is available as source code and as a simple to use graphical user interface (GUI), which 
requires either a MATLAB (>R2017a and >R2020b, respectively) installation or the MATLAB runtime. 

Basic Features 

The basic features of the EYcalc are: 

• Spectral and angular-resolved realistic irradiance data (from 1020 locations in the USA) is used 

• A simple cloud model is used to adjust the diffuse irradiation 

• Fast optical simulations, by combining the transfer matrix method and geometric ray tracing 

• Optics can handle arbitrary combinations of thin (coherent) and thick (incoherent) layers, which 
also can be textured 

• Single- and multi-junction solar cells can be simulated 

• No limitation on the number of absorbers 

• Energy yield is computed for different electrical interconnection schemes (e.g., 2T, 3T, 4T) 

• Energy yield can be derived for constant tilt (and constant rotation) angle 

• Energy yield can be derived for various tracking algorithms (e.g., 1-axis, 2-axis) 

• Bifacial solar cells can be simulated 

• Albedo can be considered by choosing one out of 3400 spectra of natural and man-made 
materials from the ECOSTRESS spectral library 

Modular framework 

The software is divided into individual modules, which handle the irradiation, optics, electrics and 
energy yield simulations. Those modules can also be operated independently (e.g., calculate the 
reflectance, transmittance, absorptance of a solar cell architecture). 

• The Irradiation Module calculates the spectral and angular-resolved irradiance over the course 
of one year with a temporal resolution of one hour by applying SMARTS to typical 
meteorological year (TMY3) data of locations in various climatic zones. A simple model is 
employed to account for cloud coverage such that realistic direct and diffuse irradiance are 
derived. 

• The Optics Module rapidly calculates the spectral and angular-resolved absorptance of the non-
simplified architecture of multi-junction solar cells. It is able to handle multiple planar and 
textured interfaces with coherent and incoherent light propagation by combining transfer 
matrix method (TMM) and geometrical ray-tracing. 

https://speclib.jpl.nasa.gov/
https://github.com/PerovskitePV/EnergyYield/wiki/Irradiance-Module
https://www.nrel.gov/grid/solar-resource/smarts-register.html
https://nsrdb.nrel.gov/data-sets/archives.html
https://github.com/PerovskitePV/EnergyYield/wiki/Optics-Module
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• The Electrical Module determines the temperature-dependent current density-voltage (J-V) 
characteristics accounting for series and shunt resistances for a given short-circuit current 
density (JSC) of the sub-cells forming the multi-junction in either a 2T-, 3T- or 4T-configuration. 
Furthermore, the maximum power point is determined to calculate the power output of the 
multi-junction solar module. 

• The Energy Yield Core Module calculates the EY over the course of one year of the sub-cells 
depending on their orientation (rotation and/or tilt of the module) and location. The EY is 
computed by combining the spectral and angular resolved solar irradiation (with or without 
albedo), the absorptance of the multi-junction solar cell and the electrical properties. 

Credits 

This software project was initiated by Ulrich W. Paetzold. The code development was driven by: 

• Raphael Schmager (energy yield core, irradiance module, optics module, electrics module, GUI) 

• Malte Langenhorst (optics module, irradiance module) 

• Jonathan Lehr (electrics module, albedo) 

• Fabrizio Gota (numerical modelling on 3T interconnection, optics module) 

The financial support by the following projects and grants is gratefully acknowledged: 

• PERCISTAND (funding code: 850937), European Union's Horizon 2020 research and innovation 
programme 

• Helmholtz Young Investigator Group of U. W. Paetzold (funding code: VH-NG-1148), Helmholtz 
Association 

• PEROSEED (funding code: ZT-0024), Helmholtz Association 

• CAPITANO (funding code: 03EE1038B), Federal Ministry for Economic Affairs and Energy 

• 27Plus6 (funding code: 03EE1056B), Federal Ministry for Economic Affairs and Energy 

This software uses codes and data from other programmers and resources: 

• Parts of the transfer matrix code is taken from Steven Byrnes 

• Matlab implementation of the NREL solar position algorithm by Vincent Roy 

• Logarithmic Lambert W function from Michael 

• The SMARTS from Dr. Christian A. Gueymard see also 

• The TMY3 data from the National Solar Radiation Database 

• Reference Air Mass 1.5 Spectra 

• ECOSTRESS spectral library for albedo 

Getting started 

To use all features of the EYcalc software, you need to download and add some external files, like the 
SMARTS code and the TMY3 data. Please see our setup guide for help in setting up the required 
external files! On our wiki page you can also find a detailed description for each of the modules as 
well as a quick start guide. 

Contributing 

If you want to contribute to this project and make it better, your help is very welcome! 

https://github.com/PerovskitePV/EnergyYield/wiki/Electrics-Module
https://github.com/PerovskitePV/EnergyYield/wiki/Energy-Yield-Module
mailto:ulrich.paetzold@kit.edu?subject=[GitHub]%20Question%20on%20Energy%20Yield%20Software
https://percistand.eu/en
https://www.helmholtz.de/
https://www.helmholtz.de/
https://www.helmholtz-berlin.de/projects/peroseed/index_en.html
https://www.helmholtz.de/
https://www.bmwi.de/
https://www.bmwi.de/
https://github.com/sbyrnes321/
https://doi.org/10.1016/j.solener.2003.12.003
https://de.mathworks.com/matlabcentral/fileexchange/5430-sun-azimuth-data
https://www.mathworks.com/matlabcentral/fileexchange/57239-lambert-w-function-logarithmic-input
https://www.nrel.gov/grid/solar-resource/smarts-register.html
https://www.solarconsultingservices.com/smarts.php
https://nsrdb.nrel.gov/data-sets/archives.html
https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
https://speclib.jpl.nasa.gov/
https://www.nrel.gov/grid/solar-resource/smarts-register.html
https://nsrdb.nrel.gov/data-sets/archives.html
https://github.com/PerovskitePV/EYcalc/wiki/Setup
https://github.com/PerovskitePV/EYcalc/wiki
https://github.com/PerovskitePV/EYcalc/wiki/Quick%20Start%20Guide
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Contact 

For any questions regarding the software, please contact Ulrich W. Paetzold.  

Citing 

If you use our software or parts of it in the current or a modified version, you are obliged to provide 
proper attribution. This can be to our paper describing the software: 

• R. Schmager and M. Langenhorst et al., Methodology of energy yield modelling of perovskite-
based multi-junction photovoltaics, Opt. Express. (2019). doi:10.1364/oe.27.00a507. 

or to this code directly: 

• EYcalc - Energy yield calculator for multi-junction solar modules with realistic irradiance data 
and textured interfaces. (2021). doi.org/10.5281/zenodo.4696257. 

License 

This software is licensed under the GPLv3 license. © 2021 EYcalc - Ulrich W. Paetzold, Raphael 
Schmager, Malte Langenhorst, Jonathan Lehr, Fabrizio Gota 

Interested in a sublicense agreement to use EYcalc in a non-free/restrictive environment? Contact 

Ulrich W. Paetzold! 

Further reading 

This energy yield software has been used in the following publications: 

• M. De Bastiani et al., Efficient bifacial monolithic perovskite/silicon tandem solar cells via 
bandgap engineering, Nature Energy. (2021). doi.org/10.1038/s41560-020-00756-8. 

• J. Lehr et al., Numerical study on the angular light trapping of the energy yield of organic 
solar cells with an optical cavity, Opt. Express. (2020) doi.org/10.1364/OE.404969. 

• F. Gota et al., Energy Yield Advantages of Three-Terminal Perovskite-Silicon Tandem 
Photovoltaics, Joule, (2020). doi.org/10.1016/j.joule.2020.08.021. 

• J. Lehr et al., Energy yield of bifacial textured perovskite/silicon tandem photovoltaic 
modules, Sol. Energy Mater. Sol. Cells. (2020). doi:10.1016/j.solmat.2019.110367. 

• R. Schmager et al., Methodology of energy yield modelling of perovskite-based multi-
junction photovoltaics, Opt. Express. (2019). doi:10.1364/oe.27.00a507. 

• M. Langenhorst et al., Energy yield of all thin-film perovskite/CIGS tandem solar modules, 
Prog. Photovoltaics Res. Appl. (2019). doi:10.1002/pip.3091.  

• J. Lehr et al., Energy yield modelling of perovskite/silicon two-terminal tandem PV modules 
with flat and textured interfaces, Sustain. Energy Fuels. (2018). doi:10.1039/c8se00465j. 

mailto:ulrich.paetzold@kit.edu?subject=[GitHub]%20Question%20on%20Energy%20Yield%20Software
https://doi.org/10.1364/OE.27.00A507
https://doi.org/10.5281/zenodo.4696257
https://www.gnu.org/licenses/gpl-3.0.html
mailto:ulrich.paetzold@kit.edu?subject=[GitHub]%20Question%20on%20Energy%20Yield%20Software
https://doi.org/10.1038/s41560-020-00756-8
https://doi.org/10.1364/OE.404969
https://doi.org/10.1016/j.joule.2020.08.021
https://doi.org/10.1016/j.solmat.2019.110367
https://doi.org/10.1364/OE.27.00A507
https://doi.org/10.1002/pip.3091
https://doi.org/10.1039/C8SE00465J
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Setup 
In order to calculate the spectral and hourly resolved irradiance data for the different locations, you 
need to download the SMARTS (Simple Model of the Atmospheric Radiative Transfer of Sunshine) 
and the TMY3 (Typical Meteorological Year) dataset! 

You can also download the pre-calculated irradiance data for Miami in our first release. Extract the 
files to Irradiance\Spectra_722020TYA_Miami\ (see below for the exact folder structure). In this case 
you can skip (1) downloading the SMARTS code and the TMY3 dataset and (2) the calculation of the 
irradiance data, which takes (once) ~30 min for each location. However, if you want to work with 
different locations, you have to follow the guide below! 

SMARTS 

In order to download the SMARTS code, you need to register and agree their license requirements! 

Download the files and extract them under: 

Irradiance\Code_SMARTS_295_PC\ 
|--- Albedo 
|--- CIE_data 
|--- Documentation 
|--- Examples 
     ... 
|--- smarts.295.exe 
|--- smarts295.xls 
|--- smarts295bat.exe 

TMY3 

You can find the TMY3 datasets on their website. Download the National Solar Radiation Database 
1991-2005 and extract the files here: 

Irradiance\Dataset_TMY3\ 
|--- 690150TYA.CSV 
|--- 690190TYA.CSV 
|--- 690230TYA.CSV 
     ... 
|--- 912850TYA.CSV 
|--- User Manual TMY3.pdf 

Calculate the irradiance files 

Now everything should be there and you can start to simulate the spectral and hourly resolved 
realistic irradiance files. 

You can do this by the example code provided in the main.m. First select a location from the User 
Manual TMY3.pdf (p 23) and define the code and alias: 

CodeLocation  = '722020TYA'; 
AliasLocation = 'Miami'; 

https://www.nrel.gov/grid/solar-resource/smarts.html
https://nsrdb.nrel.gov/about/tmy.html
https://github.com/PerovskitePV/EYcalc/releases/download/v1.0/Spectra_722020TYA_Miami.zip
https://github.com/PerovskitePV/EYcalc/releases/tag/v1.0
https://www.nrel.gov/grid/solar-resource/smarts-register.html
https://nsrdb.nrel.gov/data-sets/archives.html
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Next, simulate the irradiance data by calling the irradiance function: 

Irradiance(CodeLocation, AliasLocation); 

 

The irradiance function then calls three sub functions, which 

1. loads the TMY3 dataset for the specified location 

2. calculates the clear sky irradiance 

3. enhances the irradiance by a simple cloud model 

% Extract the data from the TMY3 datasets 
extractTMY3(Code_location,Alias_location) 
 
% Calculate the irradiance spectra with help of the SMARTS code 
calcSMARTS(Code_location,Alias_location) 
 
% Enhance irradiance by a simply clouds model 
simpleclouds(Code_location,Alias_location) 

Note: Step 2, calcSMARTS() might fail on slower systems! In this case, you can increase some delays. 

See the debugging details below! 

Once everything is done, the data is stored in the irradiance folder and will look like: 

Irradiance\ 
|--- Spectra_722020TYA_Miami 
     |--- Irr_spectra_clear_sky.mat 
     |--- Irr_spectra_clouds.mat 
     |--- TMY3_722020TYA_Miami.mat 
|--- Spectra_722780TYA_Phoenix 
     ... 
|--- Spectra_726060TYA_Portland 
     .... 

ECOSTRESS spectral library 

In order to use albedo, you need to download and extract the ECOSTRESS spectral data to the 
following folder: 

EnergyYield\LibraryEcospec\ 
|--- artificialblack.txt 
|--- artificialwhite.txt 
|--- manmade.concrete.constructionconcrete.solid.all.0598uuucnc.jhu.becknic.spectrum.txt 
|--- rock.sedimentary.sandstone.coarse.all.greywacke_1.jhu.becknic.spectrum.txt 
|--- rock2.sedimentary.sandstone.fine.all.sandstone_1.jhu.becknic.spectrum.txt 
     .... 

Initially, only artificial black and artificial white are included. If you like add other or define your own 
grounds, search in the ECOSTRESS library or consult the ECOSTRESS documentation. 

https://speclib.jpl.nasa.gov/
https://speclib.jpl.nasa.gov/library
https://speclib.jpl.nasa.gov/documents
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Debugging 

On slower systems, the calculation of the irradiance data might fail due to a too short delay! You can 
simply increase the delay pause(xx) in the calcSMARTS() function: 

[...] 
while exist([location_SmartS,'\smarts295.out.txt'], 'file') ~= 2 
    pause(0.02);  % you might need to increase this value a bit 
end 
while true 
    pause(0.02);  % you might need to increase this value a bit 
    try 
        Data_import = importdata([location_SmartS,'\smarts295.ext.txt'],' ',1); 
        break 
    catch 
        continue 
    end 
end 
[...] 
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Quick Start Guide 
Download and extract the EYcalc project. Open the main.m, which contains all definitions and 

settings to calculate the energy yield (EY) of an exemplary perovskite/c-Si multi-junction solar cell. 

Note: The EYcalc software will not run without additional files. You either need to add pre-calculated 
irradiance data or calculate the irradiance data for locations of your choice. Before you continue, see 
the setup guide for details. 

General settings 

First, we add all sub folders to the current working path. Nest, you need to set the paths to store 
data. If StoreInDatabase is true, the Optics and Energy Yield core module auto-saves the results and 
loads them in case the data exists. 

Note: you need to define valid paths, even if you use StoreInDatabase = false. 

% ### PATH ### 
addpath(genpath(pwd));   
 
% ### DATABASE ### 
% Use database to store simulations and load already simulated data 
StoreInDatabase = false; 
PathOpticsResults = 'path/to/optics/data'; 
PathEYResults = 'path/to/ey/data'; 

Next, we need to specify the complex refractive indices for all layers of interest. This is done by 
loading them from e.g., an Excel (*.xlsx) database: 

[IndRefr.nkdata,IndRefr.names]=xlsread('_RefractiveIndexLib.xlsx'); 

Note: the refractive index data is defined in 1 nm steps. The first column contains the wavelengths, 
the next columns contain the real and imaginary part of the complex refractive indices. If you add 
new data, use the same unique name to identify the material and add the suffix: _n and _k. 

Irradiance 

The energy yield will be calculated for a specific location, covered by the TMY3 dataset. The code you 
downloaded does not contain this dataset (~1.7GB). However, it can be obtained for free here. 
Please check out the setup guide for this! 

Note: If you want to skip the (first) calculation, you can download the pre-calculated irradiance data 
for Miami in our first release. Extract the files to Irradiance\Spectra_722020TYA_Miami\ (see the 
setup guide for details). 

In the main.m, we first define the location alias and the corresponding location code. You'll find the 
alias and code in the TMY3 user manual (p23). 

AliasLocation = 'Miami';          % To be specified 
CodeLocation = '722020TYA';     % Code to be looked up from User Manual TMY3.pdf 

Next, the Irradiance data is calculated and saved e.g., in Irradiance\Spectra_722020TYA_Miami\. 

https://github.com/PerovskitePV/EYcalc/wiki/Setup
https://nsrdb.nrel.gov/data-sets/archives.html
https://github.com/PerovskitePV/EYcalc/wiki/Setup
https://github.com/PerovskitePV/EYcalc/releases/tag/v1.0
https://github.com/PerovskitePV/EYcalc/wiki/Setup
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Irradiance(CodeLocation, AliasLocation); 

The calculation might take some time (~20 min) for one location. However, once performed for any 
of the possible locations, the stored data is simply loaded. 

Note: it is also possible to load the AM1.5G reference spectrum for testing. For this, you need to use: 

AliasLocation = 'Spectra_AM1.5G'; 
CodeLocation = 'spectrum'; 

Optics 

To calculate the absorptance in the absorber layers, the optics module is called. Here, we first define 
the stack by the names specified in the refractive index database, its layer thicknesses, and its 
morphology. 

Note: the boundary layers need to be incoherent and their thicknesses should be Infinite. 

For each incoherent layer (except the first one) a morphology needs to be defined. The morphology 
works upwards. In this example the cSi layer is double-sided textured - the front air/glass interface is 
Flat. 

Stack = {'Air','MgF2','Glass1.5','ITOfront','SnO2','Pero1.62','SpiroOMeTAD',... 
    'ITOfront','aSi(n)','aSi(i)','cSi','aSi(i)','aSi(p)','ITOfront','Air'}; 
LayerThickness = [inf,100,1E4,100,10,450,20,25,5,5,250E3,5,5,100,inf]; 
Morphology = {'Flat','RandomUpright','RandomUpright'}; 
Polarization   = 'mixed'; 
lambdaTMM      = 300:5:1200;   
AngleResolution = 5; 
IncoherentLayers = {'Air','Glass','EVA','Encapsulation','PDMS','cSi'}; 
bifacial = false; 
Absorbers = {'Perovskite','cSi'}; 

In addition, the polarization for the transfer matrix simulations can be defined. The wavelengths 
(lambdaTMM) for the transfer matrix simulations needs to be provided in nanometers. The 
AngleResolution defines the spacing for the angular depended transfer matrix calculations and 
should not be larger than 5°. 

It is possible to define which layers should be treated as incoherent. If not specified, the optics code 
automatically treats layers with thicknesses > 5µm incoherent. This threshold could be modified in 
OpticsModule.m. 

If the EY of a bifacial solar module should be calculated, the bifacial option needs to be true. Then, 
the optics code simulates the stack from both sides. 

For proper indexing, it's best to define the absorbers by their names in the stack. Then the energy 
yield core module takes the right layers to calculate the short-circuit current densities. If the 
absorbers are not defined Absorbers = {}, the optics code auto-detects them. Usually, this works fine 
as well. 

Finally, we call the OpticsModule() : 



10 
 

optics = OpticsModule(IndRefr, Stack, LayerThickness, AngleResolution, Morphology, bifacia
l, Polarization, lambdaTMM, PathOpticsResults, StoreInDatabase, IncoherentLayers, Absorbe
rs); 

Electrics 

The electrics module is called by the energy yield core module. However, we need to predefine all 
the electrical parameters. For each absorber within the stack, one needs to define the properties 
below. This means, for n absorbers, the properties need to be [ 1 x n ] in size. 

electrics.configuration = '2T';        % 2T, 3T, 4T, 2T exp, 3T exp, 4T exp 
electrics.shunt = 'with';              % with, without 
electrics.RshTandem = 1000;             % shunt resistance of tandem device 
electrics.RsTandem = 3;             % serial resistance of tandem device 
electrics.Rsh = [1300, 800];           % shunt resistance of n-th cell 
electrics.Rs = [2, 1];                 % serial resistance of n-th cell 
electrics.CE = [1, 1];                 % collection efficiency of n-th cell 
electrics.[2.7e-18, 1e-12];            % reverse-blocking current of n-th cell 
electrics.n = [1.1, 1];                 % ideality factor of n-th cell 
electrics.Temp = [25, 25];             % temperature of cells (can also be n vectors) 
electrics.NOCT = [48, 48];             % nominal temperature of n-th cell, if a number, Temp is o
verwritten 
electrics.tcJsc = [0.0002, 0.00032];   % temperature coefficient of Jsc in K^-1 of n-th cell 
electrics.tcVoc = [-0.002, -0.0041];   % temperature coefficient of Voc in K^-1 of n-th cell 

Energy Yield 

The energy yield calculations rely on the previous calculations and definitions. Further, we need to 
define the tilt and rotation angle of the solar module. They can both be 0, which means that the solar 
panel is lying flat on the ground. 

Note: Tilting the module facing the southern hemisphere can be achieved by a rotation angle of 180° 
and a tilt angle >0°. If the rotation angle is 0°, a tilt angle >0°, tilts the module facing north. 

SolarCellRotationAngle = 180; 
SolarCellTiltAngle = 20; 

Next, we define, if we would like to use one of the tracking methods (see main.m for details) and, if 
albedo should be taken into account. The albedo string needs to match an existing file in the 
EnergyYield\LibraryEcospec\ folder, whereas the *.txt file extension is missing in the string. By 
default, only artificial black and artificial white are included. If you like add other or define your own 
grounds, check out the ECOSTRESS library or consult the ECOSTRESS documentation. 

Note: In a tilted module configuration, the albedo can also reach the front of a solar module. In case 
of a bifacial simulation, additional contributions from the semi-transparent rear due to albedo and 
due to direct and diffuse irradiation is used. 

tracking = 0; 
groundtype = 'artificialblack'; 

Finally, the energy yield is calculated by calling the EnergyYield() function: 

https://speclib.jpl.nasa.gov/library
https://speclib.jpl.nasa.gov/documents
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EY = EnergyYield(irradiance, optics, electrics, SolarCellRotationAngle, SolarCellTiltAngle, tra
cking, albedo, groundtype, PathEYResults, StoreInDatabase);  

An example output of the EY struct, is documented here. 

 

  

https://github.com/PerovskitePV/EYcalc/wiki/Energy%20Yield%20Module
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Irradiance Module 
This module calculates realistic irradiation data, which is used as input for the energy yield 
calculations. For this the TMY3 data sets, available from the National Renewable Energy Laboratory 
(NREL), are used. They contain statistically representative and hourly resolved meteorological / 
irradiation data of many locations spread over the USA, representing all relevant climatic zones. For 
each location, they contain measured atmospheric properties like dry-bulb temperature, pressure, 
precipitable water, aerosol optical depth and albedo. Based on all these properties, the irradiance 
and the sun’s position, the spectrally resolved (280 nm - 4000 nm) clear sky irradiance is calculated 
with SMARTS. In SMARTS, we use the Shettle and Fenn’s urban aerosol model and the US standard 
reference atmosphere. 

The obtained clear sky irradiance is further enhanced by a simple cloud model. For this, the cloud 
cover, which is available in the TMY3 dataset is used. This simple cloud model assumes no spectral 
change for the direct irradiation. The diffuse irradiation however, is assumed to be composed by the 
direct and diffuse clear sky irradiance weighted by the cloud cover. The normalized spectral data is 
finally scaled to the measured diffuse irradiance of the TMY3 data. 

𝐼clouds,dir(𝜆)  =  
𝐼clear,dir(𝜆)  

∫ 𝐼clear,dir(𝜆)𝑑𝜆  
⋅ 𝐼meas,dir .   

Iclouds,diff(λ) =
Iclear,diff(λ) ⋅ (1 − CC) + Iclear,dir(λ) ⋅ CC

∫[Iclear,diff(λ) ⋅ (1 − CC) + Iclear,dir(λ) ⋅ CC]dλ
⋅ Imeas,diff  .   

Usage 

Loading the irradiance data according to the example in the main.m file, we can analyze the spectral 
and hourly resolved data. 

CodeLocation  = '722020TYA'; 
AliasLocation = 'Miami'; 
 
load(['Irradiance/Spectra_',num2str(CodeLocation),'_',num2str(AliasLocation),'/TMY3_',nu
m2str(CodeLocation),'_',num2str(AliasLocation),'.mat']); 

For example, the direct and diffuse horizontal irradiance can be plotted. To show the irradiance for 
the full exemplary year for each hour of the day, we take for simplicity the sum over the spectral 
data. 

t = 1:8760; 
lambda = irradiance.Irr_spectra_clouds_wavelength; 
Idir = irradiance.Irr_spectra_clouds_direct_horizontal; 
Idiff = irradiance.Irr_spectra_clouds_diffuse_horizontal; 
 
figure; 
plot(t,sum(Idir,2),'DisplayName','direct horizontal'); hold on 
plot(t,sum(Idiff,2),'DisplayName','diffuse horizontal'); hold off 
xlim([0 8760]) 
xlabel('Hour of year'); ylabel('Sum of spectral irradiance'); 
legend('show') 

 

This brings us: 
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Next, we have a look to the spectral shape of the direct and diffuse irradiance for 3 different hours 
on an exemplary day. Here we choose 12. May, at 7:00, 12:00 and 17:00. These hours are indexed as 
follows: 3151:5:3161. 

figure; 
ax = axes; 
plot(lambda,Idir(3151:5:3161,:)); hold on 
plot(lambda,Idiff(3151:5:3161,:)); hold off 
ax.ColorOrder = [ 0.0667 0.2980 0.4824; 0.0745 0.5216 0.7098; 0.1725 0.7647 0.9176;... 
    0.6588 0.1843 0.1804; 0.8235 0.3176 0.3216; 0.9843 0.4510 0.4784]; 
xlim([300 1300]) 
legend({'direct 7:00', 'direct 12:00', 'direct 17:00',... 
    'diffuse 7:00', 'diffuse 12:00', 'diffuse 17:00'}) 
xlabel('Wavelength (nm)'); ylabel('Irradiance (Wh m^{-2}nm^{-1})'); 
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The influence of time and clouds can be clearly observed. 

A more detailed analysis is also possible. Using again the sum over the spectral data, we can display 
the sun's azimuth and zenith angles together with the diffuse and direct horizontal irradiance over 
the course of one day. 

thetasun = irradiance.Data_TMY3(:,7); 
phisun = irradiance.Data_TMY3(:,8); 
  
figure; 
ax = axes; 
plot(1:23,sum(Idir(3145:3167,:),2),'DisplayName','direct horizontal'); hold on 
plot(1:23,sum(Idiff(3145:3167,:),2),'DisplayName','diffuse horizontal'); 
ylabel('Sum of spectral irradiance'); 
yyaxis right 
plot(1:23, thetasun(3145:3167),'DisplayName','zenith angle') 
plot(1:23, phisun(3145:3167),'DisplayName','azimuth angle'); hold off 
xlabel('Hour'); ylabel('Sun angles'); legend('show') 
xlim([1 23]) 
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Optics Module 
The optics module calculates the spectrally and angular-resolved absorptance for a variety of 
different architectures of single or multi-junction solar cells. It is able to handle multiple planar and 
textured interfaces with coherent and incoherent light propagation by combining the transfer matrix 
method (TMM) and geometrical ray-tracing. 

First, the defined architecture is analyzed and divided into optically thin (coherent) partial stacks and 
optically thick (incoherent) layers. In this regard, a coherent layer stack is defined by two incoherent 
boundary layers. The light propagation and absorption in any incoherent layer separating two of such 
partial stacks is treated with the Beer-Lambert law, with which the absorption is calculated. For 
multiple adjacent incoherent layers, the transmittance and reflectance at their interfaces are 
calculated with the Fresnel equations. 

For each partial stack and for each incoherent layer the reflectance, transmittance and absorption in 
forward and in backward direction are determined. All these quantities are spectrally resolved. 

In order to calculate the total reflectance, transmittance and the absorptance in each layer, these 
quantities are connected by subsequently adding partial stacks or incoherent layers. A simple 
example is illustrated in the figure. Here, two partial stacks consisting of 3 and 4 coherent layers are 
connected. The properties: reflectance R and transmittance T for the coherent layers and the 
absorptance A for the coherent layers for light propagating in forward and backward direction are 
shown. In addition, the absorptance Ainc in the incoherent layer is shown, at which the stacks are 
merged. 

 

 

First, reflectance is derived by following the ray interactions (see above figure) within the joined 
stack. The total reflectance is then the sum over the individual paths: 

𝑅𝑓 = 𝑅𝑓1 + 𝑇𝑓1[… ]𝑇𝑏1 + ∑ 𝑇𝑓1([… ]𝑅𝑏1)𝑗([… ]𝑇𝑏1)
𝑗

 

Where we use the following abbreviation: 

[… ] = (1 − 𝐴𝑖𝑛𝑐 )𝑅𝑓2(1 − 𝐴𝑖𝑛𝑐 ) 

Next, the transmittance is derived in an analogous way, which leads to: 
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𝑇𝑓 = 𝑇𝑓1(1 − 𝐴𝑖𝑛𝑐)𝑇𝑓2 + ∑ 𝑇𝑓1 ⋅ ([… ]𝑅𝑏1)𝑗(1 − 𝐴𝑖𝑛𝑐)𝑇𝑓2
𝑗

 

 

Finally, the absorptance is calculated. Here, three cases need to be distinguished. The absorptance in 
the coherent layers of the first partial stack (=top): 

𝐴𝑓(𝑓1, 1. . 𝑛) = 𝐴𝑓1 + 𝑇𝑓1[… ]𝐴𝑏1 + ∑ 𝑇𝑓1([… ]𝑅𝑏1)𝑗([… ]𝐴𝑏1),
𝑗

 

the absorptance of the incoherent layer connecting the two partial stacks: 

𝐴𝑓(𝑖) = 𝑇𝑓1𝐴𝑖𝑛𝑐 + 𝑇𝑓1(1 − 𝐴𝑖𝑛𝑐)𝑅𝑓2𝐴𝑖𝑛𝑐  

+ ∑ 𝑇𝑓1([… ]𝑅𝑏1)𝑗𝐴𝑖𝑛𝑐 + 𝑇𝑓1([… ]𝑅𝑏1)𝑗(1 − 𝐴𝑖𝑛𝑐)𝑅𝑓2𝐴𝑖𝑛𝑐
𝑗

, 

and the absorptance in the coherent layers of the second partial stack (=bottom): 

𝐴𝑓(𝑓2, 1. . 𝑛) = 𝑇𝑓1(1 − 𝐴𝑖𝑛𝑐 )𝐴𝑓2 + ∑ 𝑇𝑓1([… ]𝑅𝑏1)𝑗(1 − 𝐴𝑖𝑛𝑐)𝐴𝑓2 .
𝑗

 

The advantage of this approach is, that for each of the incoherent layers, defined within the full 
stack, it is possible to add a texture. The texturing can be done by setting the morphology for each 
incoherent layer. The texturing then is added at the interface between this incoherent layer and the 
above layer(s) / layer stack. In the above architecture with 3 incoherent layers, texturing the last (3) 
incoherent layer will lead to the following scenario: 

 

Note: since texturing of the first (1) incoherent layer facing upwards makes no sense, the input of the 
morphologies start at the second (2) layer: e.g. {‘Flat’, ‘Texture‘}. 
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In order to use a specific texture, either the redistribution matrices for R, A and T need to be a known 
property. Or they will be calculated by the use of path data extracted from OPAL2. 

The geometrical ray-tracing as described by Baker-Finch and McIntosh is an elegant approach that 
allows fast calculation of the characteristic paths for textures (e.g., pyramids). This gives us a limited 
set of paths with its probabilities and their intersection angles. 

Usage 

First, we define the input parameters and call the optics analogous to the description in the quick 
start guide. 

Stack = {'Air','MgF2','Glass1.5','ITOfront','SnO2','Pero1.62','SpiroOMeTAD',... 
    'ITOfront','aSi(n)','aSi(i)','cSi','aSi(i)','aSi(p)','ITOfront','Air'}; 
LayerThickness = [inf,100,1E4,100,10,450,20,25,5,5,250E3,5,5,100,inf]; 
Morphology = {'Flat','RandomUpright','RandomUpright'}; 
Polarization = 'mixed'; 
lambdaTMM = 300:5:1200;   
AngleResolution = 5; 
IncoherentLayers = {'Air','Glass','cSi'}; 
bifacial = false; 
Absorbers = {'Perovskite','cSi'}; 
 
optics = OpticsModule(IndRefr, Stack, LayerThickness, AngleResolution, Morphology, bifacia
l, Polarization, lambdaTMM, PathOpticsResults, StoreInDatabase, IncoherentLayers, Absorbe
rs); 

This gives us a struct called optics, which contains the interesting quantities: 

>> optics 
 
optics =  
 
  struct with fields: 
 
          Reflectance: [90×90×181 single] 
        Absorptance: [13×90×181 single] 
    Transmittance: [90×181 single] 
                  lambda: [1×181 double] 
   AbsorberIndex: [5 10] 
                             A: [181×2 single] 
                             R: [181×1 single] 
                             T: [181×1 single] 
                      hash: "DCCC4EDAAA22C57CFDEA5578ADA460A744DBE13F" 

Reflectance and Transmittance are given as tensors of dimension: [angle of incidence x angle of 
escape x wavelength]. The dimension of the Absorptance matrix is [number of layer x angle of 
incidence x wavelength]. In addition, those quantities are also provided for normal incidence only 
and summed up for all escape angles: A, R, and T. Moreover, the absorption is only given for the 
absorbers. 

We can plot this: 

Aall = squeeze(sum(optics.Absorptance(:,1,:))); % get total absorptance 
 

https://www2.pvlighthouse.com.au/calculators/OPAL%202/OPAL%202.aspx
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figure;  
plot(lambdaTMM, optics.A ); hold on 
plot(lambdaTMM, optics.R ); 
plot(lambdaTMM, optics.T );  
plot(lambdaTMM, Aall,'--');hold off 
xlabel('Wavelength (nm)');  
ylabel('R, A, T') 

 

A = squeeze(optics.Absorptance(optics.AbsorberIndex,1,:))'; 
Aparasitic = squeeze(optics.Absorptance(setdiff(1:size(optics.Absorptance,1), optics.Absorb
erIndex),1,:))'; 

figure; 
area(lambdaTMM, [A, Aparasitic, optics.R, optics.T] ); 
xlabel('Wavelength (nm)'); ylabel('R, A, T') 
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Electrics Module 
The electrics module calculates the power output of the single junctions and of the multi-junction 
solar cell. For this, the Shockley diode equation including series RS and shunt RSH resistance is used: 

𝐽(𝑉) = 𝐽SC − 𝐽0 (𝑒
𝑉+𝐽𝑅s

𝑛𝑘𝑇module − 1) −
𝑉 + 𝐽𝑅s

𝑅sh
 

Where J0 is the dark saturation current density, n the ideality factor, k the Boltzmann constant, and 
Tmodule the module temperature. 

For each hour of the year the J-V characteristics is calculated. In this regard, each point in time is 
characterized by the short-circuit current density (see Energy Yield Core Module) and the module 
temperature. The module temperature is derived by a simple empirical model based on the nominal 
operating cell temperature (NOCT), which can be set in the configuration. The ambient temperature 
is then scaled depending on the insolation S heating up the solar module. 

𝑇module = 𝑇ambient +
NOCT − 20∘𝐶

800W/m2
⋅ 𝑆. 

Different temperatures also influence the VOC and JSC of the solar cell. This influence is modelled by 
temperature coefficients (expressed in ppm K-1) for each parameter: 

𝑉OC = 𝑉OC,0 (1 +
𝑡𝑉OC

106
(𝑇 − 𝑇0)) 

𝐽SC = 𝐽SC,0 (1 +
𝑡𝐽SC

106
(𝑇 − 𝑇0)) 

Solving the transcendental one-diode equation for the open-circuit voltage VOC, one can use the 
Lambert W function: 

𝑉OC,0 = (𝐽SC + 𝐽0)𝑅sh − 𝑛𝑉th𝑊 (
𝐽0𝑅sh

𝑛𝑉th
exp (

(𝐽SC + 𝐽0)𝑅sh

𝑛𝑉th
)) 

With the same approach, the voltage can be expressed depend on the current as follows: 

𝑉(𝐽) = −𝐽𝑅s + (𝐽SC + 𝐽0 − 𝐽)𝑅sh − 𝑛𝑉th𝑊 (
𝐽0𝑅sh

𝑛𝑉th
exp (

(𝐽SC + 𝐽0 − 𝐽)𝑅sh

𝑛𝑉th
)) − 𝑉OC

RT + 𝑉OC  . 

Usage 

The electrics module is called by the energy yield core module. Once the total short-circuit current 
density is calculated, the electrics module can be called. We can define the electrical parameters as 
described in the main.m example. 

electrics.configuration = '2T';        % 2T, 3T, 4T, 2T exp, 3T exp, 4T exp 
electrics.shunt = 'with';              % with, without 
electrics.RshTandem = 1300;            % shunt resistance of tandem device 
electrics.RsTandem = 3;                % serial resistance of tandem device 
electrics.Rsh = [1300, 1000];          % shunt resistance of n-th cell 
electrics.Rs = [2, 1];                  % serial resistance of n-th cell 
electrics.CE = [1, 1];                 % collection efficiency of n-th cell 
electrics.j0 = [2.7e-18, 1e-12];       % reverse-blocking current of n-th cell 
electrics.n = [1.1, 1];                 % ideality factor of n-th cell 
electrics.Temp = [25, 25];             % temperature of cells (can also be n vectors) 
electrics.NOCT = [48, 48];             % nominal temperature of n-th cell, if a number, Temp is o
verwritten 
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electrics.tcJsc = [0.0002, 0.00032];   % temperature coefficient of Jsc in K^-1 of n-th cell 
electrics.tcVoc = [-0.002, -0.0041];   % temperature coefficient of Voc in K^-1 of n-th cell 

For testing, we define the short-circuit current densities for the top peroskite and bottom silicon 
solar cell as follows: 

Jsc_top = 19.5; % mAcm-2 
Jsc_bot = 18.2; % mAcm-2 

And then we call the electrics module: 

[el.Voc_Tandem, el.FF_Tandem, el.Power_Tandem, el.JMPP_Tandem, el.VMPP_Tandem] = ... 
        calctandemelectrics(electrics, min(Jsc_top,Jsc_bot) ); 

el =  
 
  struct with fields: 
 
         Voc_Tandem: 2.0072 
           FF_Tandem: 0.7728 
   Power_Tandem: 282.3224 
     JMPP_Tandem: 16.9000 
    VMPP_Tandem: 1.6705 
      

We can also illustrate the single junction IV curves, by calling calcsingleelectrics(). 

shunt = 'with'; 
RshTandem = 1000; 
RsTandem = 3; 
Rsh = [1300, 1000]; 
Rs = [2, 1]; 
CE = [1, 1]; 
j0 = [2.7e-18, 1e-12]; 
n = [1.1, 1];  
Temp = [25, 25]; 
NOCT = [48, 48]; 
tcJsc = [0.0002, 0.00032]; 
tcVoc = [-0.002, -0.0041]; 
 
jsc_RT = [19.5, 18.2];    
 
[~, ~, ~, ~, ~, j_top, V_top] = calcsingleelectrics(jsc_RT(1), Rs(1), Rsh(1), j0(1), n(1), tcJsc(1), 
tcVoc(1), Temp(1), shunt); 
[~, ~, ~, ~, ~, j_bot, V_bot] = calcsingleelectrics(jsc_RT(2), Rs(2), Rsh(2), j0(2), n(2), tcJsc(2), 
tcVoc(2), Temp(2), shunt); 
 
plot(V_top,j_top,'o-'); hold on 
plot(V_bot,j_bot,'x-'); 
xlabel('Voltage (V)'); 
ylabel('Current density (mA/cm²)') 
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Energy Yield Core Module 
The energy yield core module calculates the energy yield (EY) over the course of one year of the sub-
cells depending on their orientation (rotation and/or tilt of the module) and location. The EY is 
computed by combining the spectral and angular resolved solar irradiation (with or without albedo), 
the absorptance of the multi-junction solar cell and the electrical properties. 

First, the spectral and temporal resolved irradiance data is extracted from the irradiance module. 
Furthermore, the ambient temperature, the sun’s azimuth and elevation angles are loaded from the 
TMY3 data within the irradiance dataset. 

Next, a matrix is defined, covering the allowed angles of incidence (spherical coordinates: theta, phi) 
on the solar cell in its local coordinate system. In a non-rotated solar module, which is lying flat on 
the ground, all elements in this matrix describing the upper hemisphere are one. Once the solar 
module is titled and/or rotated, distinct angles become zero. For example, a tilt angle of 0°, 20° and 
60° is shown in the following figure: 

 

Besides a static tilt, there is also the option to use different tracking algorithms. In case of tracking, 
the above matrix is calculated for each hour of the year dependent on the corresponding tilt and 
rotation angles. These angles are calculated by the various tracking algorithms (options: see below). 

For each hour of the year, the short-circuit current-density is calculated for each absorber within the 
defined stack. The short-circuit current density is calculated separately for the direct and diffuse 
irradiance. 

𝐽SC
dir =  

𝑞

ℎ𝑐
∫ 𝜒(𝜆)A(𝜆, 𝜃sun

′ )𝐼dir(𝜆)𝜆 cos(𝜃sun
′ ) 𝑑𝜆

with   𝜃sun
′ < 90°,  Γ(𝜃sun

′ , 𝜑sun
′ ) = 1

 

𝐽SC
diff =  

𝑞

ℎ𝑐
∭ 𝜒(𝜆)A(𝜆, 𝜃sun

′ )𝐼diff(𝜆)cos(𝜃′)𝜆Γ(𝜃′, 𝜑′) sin(𝜃′) 𝑑𝜑′ 𝑑𝜃′𝑑𝜆. 

In case of a bifacial simulation and/or if albedo is enabled further contributions are taken into 
account. The total short-circuit current density is then given by the sum of all individual 
contributions: 

𝐽SC
tot = 𝐽SC

dir + 𝐽SC
diff + 𝐽SC

diff,albedo-front + 𝐽SC
diff,albedo-back + 𝐽SC

dir,back + 𝐽SC
diff,back  . 
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Usage 

In order to use the energy yield core module, you need to load the irradiance data, calculate the 
optics of your stack and define the electrics. An example you can find in the main.m and in the Quick 
start guide. 

Assuming everything is loaded and simulated, you can define the tilt and rotation angle of the solar 
cell. 

SolarCellRotationAngle = 180; 
SolarCellTiltAngle = 20; 

Next, you define, if you want to use a tracking algorithm and if albedo should be considered. 

%  0:  disable tracking 
%  1:  1-axis non-tilted east-west 
%  2:  2-axis tracking 
%  3:  1-axis latitude-titled zenith rotation 
%  4:  1-axis latitude-tiled seesaw rotation; limitation: rotation needs to be = 180° 
tracking = 0;  

albedo = 0; 
groundtype = 'artificialblack'; 

Finally, you can call the energy yield core module: 

EY = EnergyYield(irradiance, optics, electrics, SolarCellRotationAngle, SolarCellTiltAngle, tra
cking, albedo, groundtype, PathEYResults, StoreInDatabase);  

Note: irradiance, optics, and electrics are structures containing the results/definitions of/for the 
other modules. 

The output of the calculation is another structure, here called EY. It contains the hourly resolved 
results for both absorbers, and some additional useful data! This includes the individual (JscDirect, 
JscDiffuse, JscAlbedo ) and total (Jsc) short-circuit current densities. Next, it includes the electrical 
properties like open circuit voltage (Voc), fill factor (FF), current and voltage at the maximum power 
point (JMPP,VMPP), and the power. These quantities are calculated: 

• for the multi-junction solar cell in the tandem configuration (*_Tandem), 

• for each sub cell considered as a single cell (*_SJ), 

• and for the sub cells in the tandem configuration (no appendix) 

Moreover, the power conversion efficiency is calculated, which only makes sense, when the AM1.5G 
spectrum is loaded as irradiance data. 

CodeLocation = 'AM1.5G';  
AliasLocation = 'spectrum'); 

 

Finally, the irradiance data of the current location, the absorptance of the absorbers in the stack, the 
total power of the tandem are provided. The total power equals to the annual energy yield given in 
kWhm-2a-1. 

https://github.com/PerovskitePV/EYcalc/wiki/Quick-Start-Guide
https://github.com/PerovskitePV/EYcalc/wiki/Quick-Start-Guide


24 
 

>> EY 
 
EY =  
 
  struct with fields: 
 
          JscDirect: [8760×2 double] 
           JscDiffuse: [8760×2 double] 
            JscAlbedo: [8760×2 double] 
                  Jsc: [8760×2 double] 
               Voc_SJ: [8760×2 double] 
                FF_SJ: [8760×2 double] 
              JMPP_SJ: [8760×2 double] 
              VMPP_SJ: [8760×2 double] 
             Power_SJ: [8760×2 double] 
                  Voc: [8760×2 double] 
                   FF: [8760×2 double] 
                 JMPP: [8760×2 double] 
                 VMPP: [8760×2 double] 
                Power: [8760×2 double] 
           Voc_Tandem: [8760×1 double] 
            FF_Tandem: [8760×1 double] 
          JMPP_Tandem: [8760×1 double] 
          VMPP_Tandem: [8760×1 double] 
         Power_Tandem: [8760×1 double] 
          TempAmbient: [8760×1 double] 
           TempModule: [8760×2 double] 
            TandemPCE: [8760×1 double] 
                  PCE: [8760×2 double] 
       IrradianceDifH: [8760×1 double] 
       IrradianceDifN: [8760×1 double] 
       IrradianceDirH: [8760×1 double] 
       IrradianceDirN: [8760×1 double] 
                                       A: {2×1 cell} 
    TandemPowerTotal: 426.4966 
        TandemPCEmean: 0.0806 
                             albedo: 0 

We can illustrate and compare some of the results: 

figure;  
subplot(3,2,1); plot(EY.Power_Tandem); hold on; plot(EY.Power); 
subplot(3,2,2); plot(100*EY.FF_Tandem); hold on; plot(100*EY.FF);  
subplot(3,2,3); plot(EY.Voc_Tandem); hold on; plot(EY.Voc);  
subplot(3,2,4); plot(EY.Jsc); 
subplot(3,2,5); plot(EY.VMPP_Tandem); hold on; plot(EY.VMPP);  
subplot(3,2,6); plot(EY.TempModule(:,1)); hold on; plot(EY.TempAmbient); 

 



25 
 

 

Note: the data is available in hourly resolution. Summing up the tandem power over all 8760 h of the 
representative year, will lead to the annual energy yield. In this example, we get ~ 425.17 kWhm-2a-1. 

In order to increase this energy yield, an obvious improvement would be to improve current 
matching between the two sub cells. 
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We can also search the optimal tilt angle for this architecture and location (Miami): 

SolarCellRotationAngle = 180; 
SolarCellTiltAngle = 0:5:50; 
[EYaoi, TandemPowerTotal] = sweepEY(irradiance, optics, electrics, SolarCellRotationAngle, 
SolarCellTiltAngle, tracking, albedo, groundtype, PathEYResults, StoreInDatabase); 
 
figure; 
plot(SolarCellTiltAngle,TandemPowerTotal); 
xlabel('Tilt angle (°)') 
ylabel('Anual Energy Yield (kWhm^{-2}a^{-1})') 

 

 

 


