N. V. Makarova

SOLS and SODLS

Chapter 1. Basic concepts

I learned about SOLS (10) and SODLS (10) in the discussion group "Magic and Latin squares" (in my home mail).
I will quote two letters.
The first letter was received in March 2017.
"Dear friends,
A self-orthogonal diagonal Latin square of order 10 (SODLS(10)) was found by Bennett, Du, and Zhang by an exhaustive search using a computer [1].
SODLS(10) : orthogonal to its transpose

0769324851
9106875342
4827139560
6583092174
8951467023
1340758296
7438216905
5294601738
2015943687
3672580419
transpose
0946817523
7185934206
6028543917
9673108452
3810472695
2739651048
4592786130
8351029764
5467290381
1204365879
[1] Frank E. Bennett, Beiliang Du, Hantao Zhang, Existence of self-orthogonal diagonal Latin squares with a missing subsquare,
Discrete Mathematics 261 (2003) 69-86.
Best regards,
Mitsutoshi"
In the letter you see the decoding of the abbreviation SODLS(10). SOLS(10) is the same, only for non-diagonal Latin squares of the 10th order.
In addition, the letter contains a link to the article from which the above example is taken. It seems to be from 2003.

From the letter, the definition of SODLS is also clear - it is such a DLS that is orthogonal to its transposed one.
The definition of SOSL is similar, only for LS.
Since the discussion in this paper is only about 10th order SOLS and SODLS (except for Chapter 3), I will write simply SOLS and SODLS, omitting the reference to order 10.

This was the first SODLS example that I found out about.
Illustration of the SODLS pair in the letter

0	7	6	9	3	2	4	8	5	1
9	1	0	6	8	7	5	3	4	2
4	8	2	7	1	3	9	5	6	0
6	5	8	3	0	9	2	1	7	4
8	9	5	1	4	6	7	0	2	3
1	3	4	0	7	5	8	2	9	6
7	4	3	8	2	1	6	9	0	5
5	2	9	4	6	0	1	7	3	8
2	0	1	5	9	4	3	6	8	7
3	6	7	2	5	8	0	4	1	9
0	9	4	6	8	1	7	5	2	3
7	1	8	5	9	3	4	2	0	6
6	0	2	8	5	4	3	9	1	7
9	6	7	3	1	0	8	4	5	2
3	8	1	0	4	7	2	6	9	5
2	7	3	9	6	5	1	0	4	8
4	5	9	2	7	8	6	1	3	0
8	3	5	1	0	2	9	7	6	4
5	4	6	7	2	9	0	3	8	1
1	2	0	4	3	6	5	8	7	9

Fig. 1

The second letter was the answer to the first, I quote:
"Dear Mitsutoshi,
Many thanks by that reference with an example of SODLS of order 10. I had an example obtained by Hedayat (1971) by using the sum composition technique, but it is not diagonal. The SODLS of order 10 seem to be very rare \ldots in a reasonable time by using a backtracking program ... none!"

Attached to the letter is an illustration of the SOLS pair in question. This seems to be from 1971! Showing illustration

Carry similar operations on the entries of Y and denote the resulting square by L_{2}. These squares are exhibited below:

$L_{2}=$| 0 | 3 | 9 | 7 | 8 | 1 | 2 | 5 | 6 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 6 | 0 | 9 | 2 | 3 | 5 | 4 | 7 | 8 |
| 2 | 5 | 1 | 6 | 9 | 4 | 0 | 7 | 8 | 3 |
| 3 | 4 | 7 | 5 | 1 | 9 | 8 | 6 | 2 | 0 |
| 4 | 0 | 8 | 2 | 7 | 5 | 9 | 3 | 1 | 6 |
| 5 | 8 | 6 | 3 | 4 | 2 | 7 | 9 | 0 | 1 |
| 6 | 7 | 3 | 1 | 0 | 8 | 4 | 2 | 9 | 5 |
| 9 | 1 | 2 | 0 | 5 | 6 | 3 | 8 | 4 | 7 |
| 8 | 9 | 5 | 4 | 6 | 7 | 1 | 0 | 3 | 2 |
| 7 | 2 | 4 | 8 | 3 | 0 | 6 | 1 | 5 | 9 |

The reader can verify for himself that L_{1} and I_{2} are both latin squares of order 10 with the desired properties viz, $\mathrm{L}_{1} \dot{\mathrm{j}} \mathrm{L}_{2}$ and $\mathrm{L}_{2}=\mathrm{L}_{1}^{\mathrm{t}}$.

Fig. 2
I have written in my working file a small study of the LS shown on the left in Fig. 2, with Belyshev's program.
Investigated LS
0123456987
3654087192
9017863254
7965231048
8291740563
1349528670
2508974316
5476392801
6782109435
4830615729
This LS has 10 orthogonal squares and gives a pseudo-triple with a maximal orthogonality characteristic of $\mathbf{8 2}$.
«Name:a33.txt
1 - only the diagonal
Max=2000
1
76707490608076667066 :728
sq=10 6467707382
$\mathrm{cm}=82 \mathrm{cmm}=82$
END»
So, we continue to watch the story. It is really very interesting.

On the boinc.ru forum (this forum was lost; on the restored boinc.ru forum, of course, this message is not present; this applies to all the following links to the boinc.ru forum) in the message
http://forum.boinc.ru/default.aspx?g=posts\&m=87053\#post87053
Belyshev gave a link to the SOLS list that he found on the Web:
"Here is http://www.vuuren.co.za/data/SOLS Repository/SOLSNonRCParatopic10x10.txt all 121642 representative classes of RC-paratopism SOLS10 are listed (caution, almost 12 MB). Not so much, but SODLS can be several orders of magnitude more (or less :)"

121642 SOLS were found, these are representatives of some "classes of RC-paratopism SOLS10".
I don't know what classes of RC-paratopism there are; possibly equivalence classes with respect to the isomorphism of LS. Well, the main thing is that these are SOLS, and, apparently, are significantly different, that is, not isomorphic.
At first Vatutin saw among these 121642 SOLS 71 DLS.
Well, it's easy to see.
I'll show you how the utility GetType by Harry White handles these SOLS
«Saturday 2018-12-01 09:28:29
Order? 10
Enter the name of the squares file: input
.. writing type information to file inputTypeDetail.txt

```
Counts
    121571 Latin
        7 1 \text { diagonal Latin}
        121642 natural \diagonal
        121642 self-orthogonal»
```

In the report we see: 71 diagonal Latin, 121642 self-orthogonal.
Thus, we immediately have 71 SODLS.
Next it was more interesting!
Belyshev answered here
http://forum.boinc.ru/default.aspx?g=posts\&m=87070\#post87070
"These are only those that lie on the surface. Need to dig deeper. :)
We have 121642 SOLS equivalence classes, each class includes up to 2 * (10!)^2 = 26336378880000 SOLS, of them up to 2 * $10!=7257600$ normalized (with the main diagonal of the type 0123456789) SOLS. As the representative of each class, the smallest lexicographically normalized SOLS was chosen.

It so happened that in 71 equivalence classes the smallest SOLS turned out to be DLS (and therefore SODLS). But every SODLS is SOLS, and therefore belongs to some SOLS equivalence class. And to find all the SODLS, you just need to find all the DLSs included in all these SOLS equivalence classes. To do this, you do not need to perform 7257600 transformations for each equivalence class, it will be enough to perform only 945. ."

And here
http://forum.boinc.ru/default.aspx?g=posts\&m=87090\#post87090 amazing finale!
Belyshev said:
"I wrote a program. 30534 SODLS were found (https://yadi.sk/d//4Fus2cp3GTqe2), of which (https://yadi.sk/d/OiKwfw2b3Gan9x) were significantly different 30502. The operation time is 4 seconds."

30502 CF SODLS were found in 4 seconds!
Well, plus more time for writing the program. I do not think this time is very long.
I note that by that time the DB CF ODLS of the manual project for the search for ODLS contained only about 10,000 CF ODLS (plus or minus), and the search was performed for more than a year.

Chapter 2. Properties of 30502 CF SODLS

Let's see how the 30502 CF SODLS found by Belyshev is handled by the utility GetType by Harry White
«Saturday 2018-12-01 10:23:31
Order? 10
Enter the name of the squares file: input
.. writing type information to file inputTypeDetail.txt
Counts

30502 diagonal Latin
30502 nfr
161 self-orthogonal»
nfr - normalized on the first line (the first line is naturally ordered).
Why are only $\mathbf{1 6 1}$ self-orthogonal left? It's very simple: not all CFs are orthogonal to their transposed variant.
There are only 161 such CFs that are orthogonal to their transposed variant.
Harry's utility helped me quickly find an example of CF that is orthogonal to its transposed variant.

This is CF SODLS

0123456789
2301548976
7819063425
5476290813
6745832190
9234175608
1582609347
3057984261
4698317052
8960721534
this is its transposed variant

$$
\begin{aligned}
& 0275691348 \\
& 1384725069 \\
& 2017438596 \\
& 3196542780 \\
& 4502816937 \\
& 5469370812 \\
& 6830259471 \\
& 7948163205 \\
& 8721904653 \\
& 96553087124
\end{aligned}
$$

I check with my program the orthogonality of these DLSs, the program gives
«ORTHOGONAL SQUARES!!!

0	12	27	35	46	59	61	73	84	98
21	33	8	14	57	42	85	90	76	69
72	80	11	97	4	63	38	45	29	56
53	41	79	66	25	94	2	87	18	30
64	75	40	52	88	31	26	19	93	7
95	24	36	49	13	77	50	68	1	82
16	58	83	20	62	5	99	34	47	71
37	9	54	78	91	86	43	22	60	15
48	67	92	81	39	10	74	6	55	23
89	96	65	3	70	28	17	51	32	$44 »$

Checking 30502 CF SODLS for symmetry with Belyshev's program
«Поиск симметрий ЛК10 версия 3.0
Обработано ЛК: 30502
Время работы : 2.823 сек
Введите код симметрии: all
Квадратов с симметрией $(27,27,27)$ найдено: 16 они записаны в файл symm_27_27_27.txt>

This means that these SODLS produced 16 standards with symmetry ($27,27,27$)!
Showing all these standards
0123456789
1234567890
2015839476
3947285061
4691073528
5708642913
6879124305
7560398142
8452901637
9386710254

0123456789
1234567890
2017935648
3975840261
4892603175
5641398027
6758124903
7389012456
8560279314
9406781532
0123456789
1234567890
2019685473
3458790621
4872931506
5690842317
6947218035
7581023964
8765309142
9306174258
0123456789
1234567890
2048175936
3469780125
4381029657
5896243071
6705392418
7912608543
8657931204
9570814362
0123456789
1234567890
2049681537
3481709625 4652018973 5896374012 6375892401 7908135246 8517920364 9760243158

0123456789 1234567890 2051683947 3709841256 4687295103 5396708412 6418970325 7542019638 8960324571 9875132064

0123456789
1234567890
2056879341
3960248517
4378905126
5792681403
6549712038
7801394265
8615023974
9487130652
0123456789
1234567890
2061938457
3876041925
4592370168
5780219346
6918705234
7359824601
8645193072
9407682513

0123456789
1234567890
2065794138
3657182904
4806975321
5718629043
6971308452
7549830216
8390241567
9482013675

0123456789
1234567890
2067981354
3948025671
4581709236
5670893142
6895170423
7359214068
8716342905
9402638517

0123456789
1234567890
2086193457
3507841926
4358629071
5749082163 6412970538
7961308245
8695714302
9870235614

0123456789
1234567890
2091678453
3485920176
4358709261
5902184637
6870295314
7649013528
8716342905
9567831042
0123456789
1234567890 2091783456
3709128564
4860395217
5648972301
6912834075
7385019642
8457601923
9576240138

0123456789
1234567890
2096874135
3768091542
4587629301
5801732964
6375910428
7940285613
8459103276
9612348057

0123456789
1234567890
2358794106
3479628015
4860173952
5916802347
6785039421
7092381564
8601945273
9547210638

0123456789
1234567890
2469781503
3615970248
4057829316
5908143672
6780214935
7592308461
8371692054
9846035127

In the topic "Symmetry $(27,27,27)$ " I laid out 19 standards for symmetry $(27,27,27)$ https://boinc.progger.info/odlk/forum thread.php?id=96\&postid=2661\#2661

Utility by V. Chirkov compares previously laid out 19 standards and found from SODLS 16 standards for symmetry (27,27,27):
«Имя входного файла ИСТОЧНИК (без расширения):symm_27_27_27
Имя входного файла ВЫЧИТАЕМОЕ (без расширения):input
symm_27_27_27.txt
Всего 16 квадратов (вход) в symm_27_27_27.txt
input.txt
Всего 19 квадратов (вход) в input.txt
Уникальных 0 квадратов (выход)»
All 16 standards from among the 19 standards found earlier!

Chapter 3. Doubly SODLS

I'll start with the illustration (this is from the Harry White website http://budshaw.ca/addenda/SODLSnotes.html)

For order 9, some SODLS are doubly self-orthogonal and some are not. Of the $224,832 \mathrm{nfr}$, natural orde 196,224 are singly SODLS. These numbers are confirmed by Francis Gaspalou, (June, 2016). Example:

doubly SODL 5									singly SODLS								
0	1	2	3	4	5	6	7	8	0	1	2	3	4	5	6	7	8
7	2	3	4	5	8	1	0	6	3	2	7	5	8	0	4	1	6
4	6	1	8	0	7	5	3	2	6	5	1	8	2	7	0	3	4
1	8	7	5	2	4	3	6	0	8	0	6	4	7	2	3	5	1
6	4	8	0	7	3	2	1	5	2	7	0	1	3	4	8	6	5
3	5	0	1	8	6	7	2	4	1	8	3	7	5	6	2	4	0
8	0	6	7	3	2	4	5	1	7	3	4	6	1	8	5	0	2
5	3	4	2	6	1	0	8	7	4	6	5	2	0	1	7	8	3
2	7	5	6	1	0	8	4	3	5	4	8	0	6	3	1	2	7

Fig. 3
In the illustration you see doubly SODLS (left) and singly SODLS (right) 9th order. This link also has a doubly SODLS definition: Doubly Self-Orthogonal Diagonal Latin Square (orthogonal to its transpose and its antitranspose).

I will publish a letter from the Frenchman Francis Gaspalou dated December 5, 2017.
"Self Orthogonal Diagonal Latin Squares of order 9
Когда: 05 декабря 2017 в 16:10
Dear friends,
I have already announced the number of 470 essentially different SODLS of order 9 (cf email hereafter).
Today I inform you that the Russian Alex Belyshev found recently the same number. This number of 470 , found by two different programs, can then be considered as
established.
I remind that the 224,832 SODLS of order 9 are coming from a limited number of "essentially different SODLS" when applying the group of the 1,536 geometric transformations and the group of the 9 ! permutations.
For the low orders, we have
Order Nb of SODLS Nb of ess. diff. SODLS

421
541
600
7642
81,1528
9224,832470
You will find in attachment a list of these 470 SODLS.
I can give also a list of the 382 singly and a list of the 88 doubly to anyone who is interested (these lists were found also in June 2016)

Best regards
Francis
BTW: Alex confirmed also the number of 8 ess. diff. SODLS of order 8 I found in October 2010"

This letter was written to a community of researchers of magic and Latin squares.
Here we see that Francis Gaspalou found 470 substantially different SODLS 9th order. This result was confirmed by A. Belyshev.
And then Francis Gaspalou wrote
"You will find in attachment a list of these 470 SODLS.
I can give also a list of the 382 singly and a list of the 88 doubly to anyone who is interested (these lists were found also in June 2016)"

This is an interesting result. Thus, among 470 SODLS of order 9 , there are 88 doubly SODLS and 382 singly SODLS.

Now let's see the sequence in OEIS https://oeis.org/A287761

A287761 Number of self-orthogonal diagonal Latin squares of order \mathbf{n} with ordered first string.

$1,0,0,2,4,0,64,1152,224832,234255360$
The sequence indicates the number of normalized SODLS for orders 1 to 10 . The letter from Francis Gaspalou just says "224,832 SODLS of order 9". We see the same result on the Harry White website http://budshaw.ca/SODLS.html

As I understand from the OEIS sequence, for order 10 there are $234,255,360$ normalized SODLS.
I have not seen confirmation of this result in other sources.
In the OEIS sequence https://oeis.org/A329685

A329685 Number of main classes of self-orthogonal diagonal Latin squares of order \mathbf{n}.

 $1,0,0,1,1,0,2,8,470,30502$the numbers of the main SODLS classes of orders 1 to 10 are shown.
For order 9, we see the number of main classes 470. This is a confirmed result; Francis Gaspalou and Alexey Belyshev got the same result.
Belyshev received 30,502 main SODLS classes of order 10; he posted the representatives of these main classes (CF) (see the link at the end of the article).

Now about doubly SODLS of order 10.
As Francis Gaspalou told me, it's proven that doubly SODLS, as well as doubly SOLS, of the order of 10 do not exist.
I quote his letter
"Yes it is proven. See
Runming Lu, Sheng Liu and Jian Zhang
"Searching for Doubly Self-orthogonal Latin Squares", 2011
http://link.springer.com/chapter/10.1007\%2F978-3-642-23786-7_41\#page-1"
By the specified link we see

(4) Springer Link

Searching for Doubly Self-orthogonal Latir

Authors

Runming Lu, Sheng Liu, Jian Zhang

Conference paper
1.1 k

Downloads

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6876)

Fig. 4
Abstract

A Doubly Self Orthogonal Latin Square (DSOLS) is a Latin square which is orthogonal to its transpose to the diagonal and its transpose to the back diagonal. It is challenging to find a non-trivial DSOLS. For the orders $n=2(\bmod 4)$, the existence of $\operatorname{DSOLS}(n)$ is unknown except for $n=2,6$. We propose an efficient approach and data structure based on a set system and exact cover, with which we obtained a new result, i.e., the non-existence of DSOLS(10).

As I understand it, this is from the next book «Principles and Practice of Constraint Programming - CP 2011» https://link.springer.com/book/10.1007/978-3-642-23786-7

Chapter 4. Quasi-SODLS

A complete closure from 121642 SOLS of the 10th order, performed by the Belyshev script zamyk.bat, yielded 33753 CF ODLS, including 79 groups of two pairs of ODLS.
Comparison with 30502 CF SODLS, previously laid out by Belyshev, using the utility by V. Chirkov
«Имя входного файла ИСТОЧНИК (без расширения):input
Имя входного файла ВЫЧИТАЕМОЕ (без расширения):kf_sodls
input.txt
Всего 33753 квадратов (вход) в input.txt
kf_sodls.txt
Всего 30502 квадратов (вход) в kf_sodls.txt
Уникальных 3251 квадратов (выход).»
Thus, an additional 3251 CF ODLS was obtained.
Then I found another 22 CF ODLS by post-processing (with my programs) all the solutions received.
The result was 33775 CF ODLS; among them are not only SODLS in the classical sense, also there are no SODLS at all.
Let's look at some examples.

Example 1

This example was shown above, I repeat it.
CF SODLS from received Belyshev
0123456789
2301548976
7819063425
5476290813
6745832190
9234175608
1582609347
3057984261
4698317052
8960721534
a transposed version of this DLS

```
0275691348
1384725069
2017438596
3196542780
4502816937
5469370812
6830259471
7948163205
8721904653
9653087124
```

Here, everything is accurate by definition: the original DLS is orthogonal to its transposed variant, that is, we have SODLS in the classical sense.

Example 2

Often the conversion of SODLS to canonical form (CF) violates the classical definition, that is, the obtained DLS is no longer orthogonal to its transpose variant, but it is orthogonal to its isomorph.
We look at an example
[DLK(1)]
0294367851
3157698402
9821740365
1983024576
5672489130
7436951028
4315806297
8069532714
6740215983
2508173649
[mate\#1]
3452678109
5693042871
8320791456
4108935762
2947160538
9016357284
6731804925
7589426013
1274583690
0865219347
Original DLK(1) in the form of CF (format 2: the main diagonal is naturally ordered), it is not orthogonal to its transpose variant

6942850317
7804916253
8435102796
5067329184
1256087439
However, the orthogonal DLS (mate \#1) is isomorphic to the original DLK(1) with the following isomorphism (determined by the Belyshev program avtoizor_lk)
*T 987654321098765432107904518263
This isomorphism means the following combination of transformations:
a) transpose;
b) permutation of rows according to the scheme 9876543210 ;
c) column permutation according to the same scheme;
d) re-designation of elements according to the scheme 7904518263 .

Pay attention to the specific scheme of permutation of rows and columns: the permutation is performed in the reverse order (in other words, reflection).
Applying all these transformations to the original DLS, you will get mate \#1, orthogonal to it.
I did the following check for this orthogonal pair.
Using the Belyshev program izomorfDLK10A I found all 15360 DLSs of this class of isomorphism (to which the shown ODLSs belong).
Program protocol:
«Программа поиска нормализованых изоморфов данного ДЛК10:
0294367851
3157698402
9821740365
1983024576
5672489130
7436951028
4315806297
8069532714
6740215983
2508173649
Уникальных изоморфов: 15360
Они записаны в файл out_EXKFMD.txt»
Then I checked the received 15360 DLS with the Harry White GetType utility, here is the result of the check
«Thursday 2020-04-02 08:44:44
Order? 10
Enter the name of the squares file: input
.. writing type information to file inputTypeDetail_7.txt
Counts

```
15360 diagonal Latin
15360 nfr
7680 self-orthogonal»
```

There is no doubt that this is the SODLS equivalence class (as defined by SODLS).

Example 3

[DLK(1)]
0234567891
2176835904
5429108376
8603294517
7590423168
1862759043
4715986230
9381640752
3947012685
6058371429
[mate\#1]
1425603789
2386517940
0761438592
3170942865
6239874051
7948150236
4053269178
5802796413
9617085324
8594321607
In this example, the original DLS is orthogonal to its isomorph, with the isomorphism as follows:
*T 042318675904231867591860329457
Here, rows and columns are rearranged in the same pattern, but (!) this scheme is not the same as in the previous example.
The row/column permutation scheme 0423186759 is not a reflection.
And now we will check for the main DLS of this orthogonal pair (DLK(1)), as in the previous example.
IzomorfDLK10A program gives
«Программа поиска нормализованых изоморфов данного ДЛК10:
0234567891
2176835904
5429108376
8603294517
7590423168
1862759043
4715986230
9381640752

3947012685
6058371429
Уникальных изоморфов: 15360
Они записаны в файл out_ODUJMD.txt»
Checking with the utility by Harry White gives
«Friday 2020-04-03 05:50:17
Order? 10
Enter the name of the squares file: input
.. writing type information to file inputTypeDetail_7.txt
Counts
15360 diagonal Latin
15360 nfr»
As you can see, there is no self-orthogonal in the classical sense. However, the original DLS is orthogonal to its isomorph.

I will give working definitions (for use in this study of 10th-order SODLS).
The isomorphisms of type
*T 987654321098765432107904518263
where the rows/columns are rearranged according to the same scheme and this reflection (that is, the rearrangement of rows/columns in the reverse order) is called isomorphism of type \mathbf{A}.
All type A isomorphisms are inherent in SODLS in the classical sense.
This conclusion is drawn from an analysis of empirical data.
The isomorphisms of type
*T 042318675904231867591860329457
where the rows and columns are rearranged in the same way, but this is not a reflection, we will call isomorphisms of type B.

Definition of quasi-SODLS: DLSs that are isomorphic to their orthogonal square with type B isomorphism (or with several isomorphisms including type B isomorphism but not including type A isomorphisms or just transpose), we call quasi-SODLS.

An example for parentheses is shown below.
For SOLS, this definition can be extended. Chapter 6 shows examples of such an extension. I note that there are also isomorphisms: transpose with a re-designation of elements that are equivalent only to transpose.
An example of such an isomorphism:
*T 012345678901234567890412963578.
Such isomorphisms are also excluded in the definition of quasi-SODLS, since they are inherent in classical SODLS.

I analyzed all the orthogonal pairs obtained from the classic SODLS with Belyshev's zamyk.bat script.
For example, isomorphisms similar to those shown in Example 3 (type B):
*T 042318675904231867591860329457
*T 042318675904231867598210364975
*T 042318675904231867598254617903
*T 042318675904231867594739815026
*T 042318675904231867594763928150
*T 042318675904231867592374810659
*T 042318675904231867591628590473
*T 042318675904231867594368072915
*T 042318675904231867593627510498
*T 042318675904231867594170562389
*T 042318675904231867594128035796
*T 042318675904231867595413068927
*T 042318675904231867591857369024
*T 042318675904231867593205749618
*T 042318675904231867593754128906
*T 042318675904231867595136407928
*T 042318675904231867593748610295
*T 042318675904231867594705618392
*T 042318675904231867593147809256
*T 042318675904231867592130758694
*T 042318675904231867595690437821
*T 042318675904231867594520196738
*T 042318675904231867595240687391
*T 042318675904231867594290615378
Each isomorphism corresponds to a unique orthogonal pair of quasi-SODLS.
Isomorphisms differ only in the re-designation of elements.
A very interesting question is: are there other orthogonal quasi-SODLS pairs besides those obtained from classical SODLS closures?
My hypothesis: such quasi-SODLS do not exist.
The hypothesis needs to be proved or refuted.
To refute it is enough to find one counterexample.
That is: we need to find a DLS that is orthogonal to its isomorph (with any isomorphism!), And the canonical form (CF) of this DLS is not contained in the closure of all known SODLS.
All known CFs of SODLS and CFs of quasi-SODLS are contained in the set 33775 CFs of the ODLS, which is attached to the article.

Exploring quasi-SODLS, I discovered another case where there are three isomorphisms connecting isomorphic orthogonal squares.

Example 4

[DLK(1)]
0367598241
7189642503
6820975314
1953824076
3712469850
8034751692
9548306127
2495013768
4276130985
5601287439

```
[mate#1]
4351627890
0927813456
2069581734
8405396271
1640239587
6183472905
3578960142
7812054369
5294708613
9736145028
```

Here, the main DLS is also orthogonal to its isomorph.
The program for determining isomorphism yields three isomorphisms at once:

```
*T 1306897425 2081793645 0153682947
*T 469708352149860713522531467980
*T 5783906124 57839061247315840962
```

The third isomorphism is a type B isomorphism already known to us, when rows and columns are rearranged according to the same scheme, but this is not a reflection.
And in the first two isomorphisms, rows and columns are rearranged according to different schemes.
It is interesting to note that both ODLS in this example have symmetry $(27,27,27)$.
I will show two more similar quasi-SODLS pairs

Example 5

[DLK(1)]
0234678591
7190543628
6428709315
1503297846
9781460253
3867952104
4975186032
2349815760
5016324987
8652031479
[mate\#1]
4123560789
8637091425
2784139506
1259307648
6475218930
7802456391
0598723164
5361984072
9046875213
3910642857

Here the orthogonal square mate \#1 can be obtained from the main DLS by the following isomorphisms

```
*T 2587619430 97643815025698147230
*T }86943721509508714326 186970543
*T 9321548760 9321548760 7986521034
```

Example 6
[DLK(1)]
0674392851
3105984627
1920578364
6783120945
5032469178
8249753016
7318046592
2496815730
9561207483
4857631209
[mate\#1]
3651702489
4509816273
6347029158
9068135742
5936284017
2195670834
7283451690
8720543961
1472968305
0814397526

Here the orthogonal square mate $\# \mathbf{1}$ can be obtained from the main DLS by the following isomorphisms

```
*T 0853726419 08537264193078941256
*T 5089423176 2459813706 7421956308
*T }85061297431756409823253690874
```

All ODLS in examples 5-6 also have symmetry ($27,27,27$).
There are a couple more of these quasi-SODLS pairs.
The isomorphisms of type
*T 130689742520817936450153682947
when rows and columns are rearranged according to different schemes, we will call
isomorphisms of type C.
Finally, the last example, also three isomorphisms connect ODLS in an orthogonal pair

```
*T 0321548769 03215487692603795814
*T 05748639120574863912 2541637098
*T 089631524708963152472789516430
```

but in each of these isomorphisms, the rows and columns are rearranged in the same way (type B isomorphisms).
Unfortunately, I did not write down the ODLS of this pair when I was looking for isomorphisms.

Chapter 5. Groups of two ODLS pairs containing SODLS and quasi-SODLS

In the previous chapters, only orthogonal ODLS pairs were considered, which are SODLS and quasi-SODLS, the so-called "odnushki".
There are also groups of two pairs of ODLS containing SODLS and quasi-SODLS, the so-called "dvushki".
Moreover, among the two orthogonal squares only one is isomorphic to the main DLS.
I will show examples.

1. A group of two pairs of ODLS with SODLS

[DLK(2)]

0346729851
2179538604
8625091347
1563974028
9832465170
6710852493
4907386512
3498210765
7254103986
5081647239
[mate\#1]
3452067819
8069512743
7146803295
6298431570
1930758426
4821695037
2507946381
5683279104
9374120658
0715384962
[mate\#2]
4567083921
9781620354
3258974016
8019542637
2140369578
5902816743
0673158492
6894731205
1435207869
7326495180
The main DLK(2) - of the "dvushka" and the orthogonal square mate \#2 are isomorphic with the following isomorphism
*T 012345678901234567894759318260
I converted the orthogonal squares so that self-orthogonal became obvious (the designations of the squares are preserved, as in Belyshev)

DLK(2)
0346729851
2179538604
8625091347
1563974028
9832465170
6710852493
4907386512
3498210765
7254103986
5081647239
mate\#1
4027981653
6983257104
1508694732
8736045219
5349126078
0675832941
7291308465
2864713590
3410579826
9152460387
mate\#2
0281964375
3165879420
4726310958
6953207841
7509483216
2397658104
9814526037
8630145792
5042791683
1478032569
We look at an illustration in this format

Fig. 5
By the way, the isomorphism connecting the main DLS and orthogonal square mate \#2 is as follows

*T 012345678901234567890123456789

This is understandable: only transpose - as defined by SODLS.
And one more interesting point: this "dvushka" produces a second "dvushka", which also belongs to SODLS, when the Belyshev script closes
[DLK(2)]
0346729851
2179538604
8625091347
9563174028
1832465970
6710852493
4907386512
3498210765
7254903186
5081647239
[mate\#1]
5468910327
3817629045

0241385976
1973452608
2759063481
4392176850
9680741532
6135807294
7504298163
8026534719
[mate\#2]
5468910327
3917628045
0241395876
1873452609
2759063481
4382176950
8690741532
6135807294
7504289163
9026534718
as well as "odnushka", also SODLS (to be shown later).
In this "dvushka", the main DLS is isomorphic to the orthogonal square mate \#2 with such an isomorphism
*T 012345678901234567895943071268
In this case, a complete closure gives only 3 CF ODLS also belongs to SODLS
«Найдено марьяжных КФ:
count[1] = 1
count[2] $=2$
Всего: 3
Найдено соквадратов: 5
КФ соквадратов: 3»
The most interesting: these two "dvushki" are relatives :)
Each "dvushka" separately gives 2 CF ODLS. It would seem that together they should give 4 CF .
But no! Together they give only 2 CF .
It turns out that mate \#1 of the first "dvushka" is isomorphic to the main DLS of the second "dvushka", and mate \#1 of the second "dvushka" is isomorphic to the main DLS of the first "dvushka".
And unique only main DLSs of "dvushka".
We look at the illustration of both "dvushka" in a format with obvious self-orthogonality

Fig. 6
Well, not without reason these two "dvushki" are relatives, because the second "dvushka" is generated by the first in the closure.
To these two "dvushki", relatives should also add a "odnushka", which is also generated by the first "dvushka" in the closure.
"Odnushka" also belongs to SODLS and adds one CF ODLS to this family of relatives.
Illustration with obvious self-orthogonality

Fig. 7

Thus, we can talk about a family of ODLS configurations obtained in the closure from the first "dvushka". All three configurations contain a pair of SODLS.
Together, all three configurations give 3 CF ODLS.
If there were not relatives and not SODLS, but full-fledged "dvushki" and "odnushka", then there would be 8 CF ODLS.

2. Groups of two pairs of ODLS containing quasi-SODLS

Only three groups of ODLS pairs (quads) containing quasi-SODLS were found.
I will show them all in a format from the Belyshev program; isomorphism is indicated, which connects the main DLS of the "dvushka" and the orthogonal square isomorphic to it.
1.
[DLK(2)]
0234578691
9146837205
1820965347
7693204158
3518429076
8362750914
4705196832
5489012763
2971643580

6057381429
[mate\#1]
8029513674
6351742890
0215398746
3780426519
1674259308
5936870421
7563904182
4802167953
9148035267
2497681035
[mate\#2]
8029513674
6351742890
0215389746
3790426518
1674258309
5936870421
7563904182
4802167953
9148035267
2487691035
*T 042318675904231867598210364975
2.
[DLK(2)]
0234578691
9146837205
1827965340
7693204158
3518429076
8362750914
4075196832
5489012763
2901643587
6750381429
[mate\#1]
8429356107
1635072894
4253698071
6084721359
5107239648
3961804725
0316947582
7842510936
9578463210
2790185463
[mate\#2]
8429356107
1635072894
4253689071
6094721358
5107238649
3961804725
0316947582
7842510936
9578463210
2780195463
*T 042318675904231867598254617903
3.
[DLK(2)]
0782349561
4138972605
9826507314
8563124970
2390468157
6917853042
5409716238
1654280793
3271095486
7045631829
[mate\#1]
3245618970
9632571084
2108346597
6597823401
8479260315
5013789246
0861954723
7320495168
1984037652
4756102839
[mate\#2]
3245618970
8632571094
2109346587
6587923401
9478260315
5013789246
0961854723
7320495168
1894037652
4756102839
*T 067854123906785412393415826079

In all three examples, an isomorphism of type B.

Chapter 6. Quasi-SOLS

First, consider the LS shown in Fig. 2 left

0123456987
3654087192
9017863254
7965231048
8291740563
1349528670
2508974316
5476392801
6782109435
4830615729
This LS has 10 orthogonal squares, of which only 5 are unique (substantially different).
One of the orthogonal square we see in Fig. 2, this is a transposed variant of the original LS

0397812564
1609235478
2516940783
3475198620
4082759316
5863427901
6731084295
9120563847
8954671032
7248306159
The original LS and its transposed variant have the following symmetries (Belyshev's program find_symm_3.0)
«Поиск симметрий ЛК10 версия 3.0
Обработано ЛК: 2
Время работы : 0 сек
Введите код симметрии: all
Квадратов с симметрией ($27,27,27$) найдено: 1 они записаны в файл symm_27_27_27.txt Квадратов с симметрией $(30,30,30)$ найдено: 1 они записаны в файл symm_30_30_30.txt»

Let's look at the isomorphisms connecting the original LS and its transposed variant, there 9 of them:
*T 012345678901234567890123456789
*T 123456780912345678093678210549
*T 234567801923456780198054763129
*T 345678012934567801294312508679
*T 456780123945678012392867134059
*T 567801234956780123497405682319
*T 678012345967801234595231047869
*T 780123456978012345691786325409
*T 801234567980123456796540871239
The first isomorphism in the list is only transposition, all other isomorphisms are of type B. Thus, the first orthogonal pair is SOLS in the classical sense.
And now let's look at the remaining orthogonal squares of the original LS, here are shown only significantly different (not isomorphic):

0397812564
8402935176
3679450281
1236098457
2584761903
6140389725
4725103698
5961247830
9813576042
7058624319

0397812564
1405738296
3681290457
7136029845
8724561903
6510384729
2859403671
4268975130
5973146082
9042657318

0397812564
5961403278
4715389620
2843760159
7208645931
6429058713
3582197046
8670231495
1054926387
9136574802
0397812564
3756149280
4518390627
2089456731
5274608319
9821037456
8642975103
7430261895
6105723948
1963584072

All these orthogonal squares are not isomorphic to the original LS.
Among the remaining 5 orthogonal co-squares (isomorphic to those shown), there is also one orthogonal square that is isomorphic to the original LS

0397812564
4153986702
1260538497
3674105829
7549261083
8902374615
6831759240
2485690371
9728043156
5016427938
with the following isomorphisms
*T 012345678978012345699567403128
*T 123456780980123456797312659048
*T 234567801901234567892904137568
*T 345678012912345678094756092318
*T 456780123923456780196231574908
*T 567801234934567801291490326758
*T 678012345945678012390675941238
*T 780123456956780123495123760498
*T 801234567967801234593049215678
All these isomorphisms are of type C.
Thus, we have a group of 10 pairs of OLS; the main LS is isomorphic to two of the orthogonal squares; one of the orthogonal pairs is SOLS, the second is quasi-SOLS, in an expanded sense than the definition of quasi-SODLS given above.

Now let's look at Lyamzin's LS, I found it on the Internet a long time ago, when I was just starting to work on 10th-order LS

0	1	2	3	4	5	6	7	8	9
1	0	5	8	3	2	7	9	6	4
2	5	0	6	9	4	3	8	1	7
3	8	6	0	7	1	5	4	9	2
4	3	9	7	0	8	2	6	5	1
5	2	4	1	8	0	9	3	7	6
6	7	3	5	2	9	0	1	4	8
7	9	8	4	6	3	1	0	2	5
8	6	1	9	5	7	4	2	0	3
9	4	7	2	1	6	8	5	3	0

Fig. 8
This is a search for pseudo-triple from LS Lyamzin by Belyshev's program

$$
(1-0,2-142 \operatorname{tr}=872) \mathrm{cm}=82 \mathrm{sq}=2
$$

0112233445566778899
1255086392473986147
2358660974135841972
3483697701852469521
4532947188029635716
5627431582990317468
6779385426931104285
7896814965371422053
8964179251764825330
9140752813628759364

0112233445566778899
1945782312678956340
2150568934237891674
3285606791453489127
4338967078125645912
5423491780892367561
6572345128909134786
7697834562391012458
8769189456734120235
9846712915678452303

Here, we see that Lyamzin's LS has two orthogonal squares ($s q=2$).
I will show this OLS group in another format

> LS
> 0123456789
> 1058327964
> 2506943817
> 3860715492
> 4397082651
> 5241809376
> 6735290148
> 7984631025
> 8619574203
> 9472168530
sq1
0123456789
2506943817
3860715492
4397082651
5241809376
6735290148
7984631025
8619574203
9472168530
1058327964
sq2
0123456789
9472168530
1058327964
2506943817

3860715492
4397082651
5241809376
6735290148
7984631025
8619574203
Here, both orthogonal squares are isomorphic to the main LS and are isomorphic to each other; it is obvious that they are obtained from the main LS (as well as from each other) by rearranging the rows. But not just rows swapping!
The isomorphisms connecting the main LS with the orthogonal squadron sq1 are as follows:

```
** 012345678909123456780234567891
** 023456789101234567890123456789
** 034567891202345678910912345678
** 045678912303456789120891234567
** 056789123404567891230789123456
** 067891234505678912340678912345
** 078912345606789123450567891234
** 089123456707891234560456789123
** 0912345678 08912345670345678912
*T 01234567890912345678 0234567891
*T 023456789101234567890123456789
*T 034567891202345678910912345678
*T 045678912303456789120891234567
*T 056789123404567891230789123456
*T 067891234505678912340678912345
*T 078912345606789123450567891234
*T 089123456707891234560456789123
*T 091234567808912345670345678912
```

The isomorphisms connecting the main LS with the orthogonal squadron sq2 are as follows:

```
** 012345678902345678910912345678
** 023456789103456789120891234567
** 034567891204567891230789123456
** 045678912305678912340678912345
** 056789123406789123450567891234
** 067891234507891234560456789123
** 078912345608912345670345678912
** 089123456709123456780234567891
** 0912345678 01234567890123456789
*T 012345678902345678910912345678
*T 023456789103456789120891234567
*T 034567891204567891230789123456
*T 045678912305678912340678912345
*T 05678912340678912345 0567891234
*T 067891234507891234560456789123
*T 078912345608912345670345678912
*T 089123456709123456780234567891
*T 091234567801234567890123456789
```

The isomorphisms connecting the orthogonal squares sq1 and sq2 are as follows:

```
** 0123456789 03456789120891234567
```

** 023456789104567891230789123456
** 034567891205678912340678912345
** 045678912306789123450567891234
** 056789123407891234560456789123
** 067891234508912345670345678912
** 078912345609123456780234567891
** 089123456701234567890123456789
** 091234567802345678910912345678
*T 012345678901234567890912345678
*T 023456789102345678910891234567
*T 034567891203456789120789123456
*T 045678912304567891230678912345
*T 056789123405678912340567891234
*T 067891234506789123450456789123
*T 078912345607891234560345678912
*T 089123456708912345670234567891
*T 091234567809123456780123456789
This LS expands the concept of quasi-SOLS: here we have not only isomorphisms with transpose, permutation of rows/columns and re-designation of elements, but also isomorphisms without transpose - only permutation of rows/columns and re-designation of elements.
There is even a case of only line swapping:
between the main LS and sq1
** 023456789101234567890123456789
between the main LS and sq2
** 091234567801234567890123456789
Unfortunately, sq1 and sq2 are not orthogonal (orthogonality is only in $\mathbf{8 2}$ cells out of 100). The Lyamzin's square until did not reach a little to the MOLS triple.
But this is a good approximation to the three MOLS. The next approximation to the MOLS triple is my pseudo-triple with orthogonality characteristic $\mathbf{8 8}$ (shown above).
Finally, the last known approximation is the pseudo-triple with orthogonality characteristic 91 (the author of this pseudo-triple J. Wanless).

We look at the symmetries that the Lyamzin square has
«Поиск симметрий ЛК10 версия 3.0
Обработано ЛК: 1
Время работы: 0.015 сек
Введите код симметрии: all
Квадратов с симметрией $(27,27,27)$ найдено: 1 они записаны в файл symm_27_27_27.txt Квадратов с симметрией $(30,30,30)$ найдено: 1 они записаны в файл symm_30_30_30.txt Квадратов с симметрией ($1,1,1$)+ найдено: 1 они записаны в файл symm_1_1_1p.txt Квадратов с симметрией ($1,27,27$)+ найдено: 1 они записаны в файл symm_1_27_27p.txt Квадратов с симметрией ($1,30,30$)+ найдено: 1 они записаны в файл symm_1_30_30p.txt»

And these are the symmetries of the orthogonal squares sq1 and sq2
«Поиск симметрий ЛК10 версия 3.0

Обработано ЛК: 1

Время работы: 0.015 сек
Введите код симметрии: all
Квадратов с симметрией ($27,27,27$) найдено: 1 они записаны в файл symm_27_27_27.txt Квадратов с симметрией $(30,30,30)$ найдено: 1 они записаны в файл symm_30_30_30.txt Квадратов с симметрией ($1,1,1$)+ найдено: 1 они записаны в файл symm_1_1_1p.txt Квадратов с симметрией ($1,27,27$)+ найдено: 1 они записаны в файл symm_1_27_27p.txt Квадратов с симметрией ($1,30,30$)+ найдено: 1 они записаны в файл
symm_1_30_30p.txt»
The same list of symmetries is as for the main LS, which is not surprising, since sq1 and sq2 are isomorphic to the main LS.

Finally, check LS Lyamzin by Harry White's utility GetType
«Tuesday 2020-04-07 13:04:15
Order? 10
Enter the name of the squares file: input .. writing type information to file inputTypeDetail_8.txt

Counts
1 Latin
1 nfr
1 nfc
1 nfr nfc
1 self-transpose»
nfr means normalized LS (the first row is naturally ordered); nfc means the first column is naturally ordered;
self-transpose means the coincidence of the LS with its transposed variant (i.e., the LS is diagonally symmetric).
I assume that nfr nfc means reduced LS, that is, with normalized (naturally ordered) first row and first column.

Conclusion

This article attempts to classify SOLS and SODLS 10th order.
Classification is done using empirical data.
Perhaps, using a theoretical approach, a more perfect classification can be made. I think that such a classification will appear over time.
The main essence of the article is the hypothesis that there are no other quasi-SODLS of the 10th order other than those obtained by closing classical SODLS.
It is clear that the hypothesis must be proved or disproved. To refute the hypothesis, it is enough to find one counterexample.
The article uses some elements of Belyshev's theory of LS without a detailed explanation, which may complicate the reading of the article.

Unfortunately, I do not know Belyshev's articles describing these elements of the theory so that I can send the reader these articles.
All this was described on the boinc.ru forum, but it also disappeared when the forum disappeared.
The newly created boinc.ru forum has not these descriptions.
Belyshev's theory of LS is large, a lot has been created for symmetry.
Not without reason did I advise him not to confine himself to a forum description (where torn pieces were obtained, difficult to understand), but to write complete articles on each topic. I have 224832 normalized SODLS of order 9, as well as 470 main classes of this order; they were sent to me by Francis Gaspalou when we discussed with him the search for the main classes.
If you are interested in these SODLS, write to me.

References

Latin Square Articles
https://boinc.progger.info/odlk/forum thread.php?id=54
http://web.archive.org/web/20191225122419/https://boinc.progger.info/odlk/forum_thread.php?i $\mathrm{d}=54$
About pseudo-triples
https://boinc.progger.info/odlk/forum_thread.php?id=101
http://web.archive.org/web/20200213111643/https://boinc.progger.info/odlk/forum thread.php?i $\mathrm{d}=101$
The symmetry $(27,27,27)$
https://boinc.progger.info/odlk/forum thread.php?id=96
http://web.archive.org/web/20200204080544/https://boinc.progger.info/odlk/forum thread.php?i
$\mathrm{d}=96$
SOLS(10) and SODLS(10)
https://boinc.progger.info/odlk/forum thread.php?id=97
http://web.archive.org/web/20200212035451/https://boinc.progger.info/odlk/forum thread.php?i $\mathrm{d}=97$
Harry White. Doubly Self-Orthogonal
http://budshaw.ca/addenda/SODLSnotes.html
Harry White. Self-orthogonal Diagonal Latin Squares
http://budshaw.ca/SODLS.html
121642 representatives of RC-paratopism class SOLS of order 10
http://www.vuuren.co.za/data/SOLS Repository/SOLSNonRCParatopic 10x10.txt
30534 SODLS of the 10th order, found by A. Belyshev from 121642 SOLS of the 10th order https://yadi.sk/d/14Fus2cp3GTqe2
30502 CF SODLS 10th order found by A. Belyshev from 121642 SOLS 10th order https://yadi.sk/d/OiKwfw2b3Gan9x
Number of self-orthogonal diagonal Latin squares of order n with ordered first string https://oeis.org/A287761
Number of main classes of self-orthogonal diagonal Latin squares of order n
https://oeis.org/A329685
Number of main classes of doubly self-orthogonal diagonal Latin squares of order n https://oeis.org/A333366

Note: links to the forum of the ODLK BOINC project are given in two variant
a) to the forum;
b) to the web archive.

Translated by Natalia Makarova, edited by Franz-Xaver Harvanek.
May 16, 2020

Contact
natalimak1@yandex.ru

