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Group on Climate Change (IIGCC) 

Foreword 

Imagine if a power system operator could contract for energy efficiency savings in buildings that 

could help accelerate retirement of fossil fuel power generation and avoid or delay expensive 

power grid upgrades.  

Imagine if a heating supply company could write a contract for deep thermal building retrofits as 

an alternative to importing fossil gas.  

Imagine if the paradigm could be flipped from retrofits only being about energy cost savings to 

include new sources of revenue, helping create compelling propositions for consumers and energy 

service companies (ESCOs). 

Imagine if the energy carbon reduction from government building retrofit programs could be more 

accurately measured instead of estimated or ‘deemed’.  

In fact, you don’t have to imagine this future – just look across the Atlantic Ocean where multiple 

jurisdictions in the United States and in Canada are implementing these ideas.   

From my personal perspective, I commend the work of the Horizon 2020 funded project SENSEI 

which aims to enable this vision to become a reality in Europe: Paying for Performance for energy 

efficiency.  
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SENSEI has already produced a report1 analysing how ten (10) US and Canadian jurisdictions are 

implementing pay for performance, as well as a report on how power supply companies and 

system operators might place a financial value on different types of energy efficiency retrofits, 

based on when and where different retrofits create value in the energy market.  

DWS Group wrote a report2 on the EU’s Renovation Wave strategy which recommended that 

Europe develop a pay for performance strategy. As well, the private sector steering committee 

members of the Energy Efficiency Financial Institutions Group3 also provided a similar 

recommendation to the European Commission. Better measurement is a foundation for linking 

energy markets with building renovation. Therefore, the SENSEI report that you have in your 

(virtual) hands, sets out methods for dynamic measurement and verification of energy savings. 

Although standards for measurement and verification (M&V) of energy savings already exist, they 

focus on high-level processes rather than specific tools and quantitative techniques. The energy 

efficiency meter developed in this report, named eensight, advances the state of play in M&V in 

terms of methods and toolkits using Machine Learning algorithms.  

eensight is very relevant to the Renovation Wave Communication4 which stated that the 

Commission will “establish a trusted scheme for certifying energy efficiency meters in buildings 

that can measure actual energy performance improvements”. 

Supporters of energy efficiency and stronger building renovations could examine how the new 

SENSEI tool could be piloted in Europe..  

Important information – EMEA 

DWS is the brand name of DWS Group GmbH & Co. KGaA and its subsidiaries under which they operate their business activities. The 
respective legal entities offering products or services under the DWS brand are specified in the respective contracts, sales materials and 
other product information documents. DWS, through DWS Group GmbH & Co. KGaA, its affiliated companies and its officers a nd 
employees (collectively “DWS”) are communicating this document in good faith and on the following basis.  

This document has been prepared without consideration of the investment needs, objectives or financial circumstances of any investor. 
Before making an investment decision, investors need to consider, with or without the assistance of an investment adviser, whether the 
investments and strategies described or provided by DWS Group, are appropriate, in light of their particular investment needs, 
objectives and financial circumstances. Furthermore, this document is for information/discussion purposes only and does not constitute 
an offer, recommendation or solicitation to conclude a transaction and should not be treated as giving investment advice.  

The document was not produced, reviewed or edited by any research department within DWS and is not investment research. Therefore, 
laws and regulations relating to investment research do not apply to it. Any opinions expressed herein may differ from the opinions 
expressed by other legal entities of DWS or their departments including research departments.  

 
1SENSEI June 2020 “Experience and lessons learned from pay-for-performance (P4P) pilots for energy 
efficiency” and SENSEI December 2020 “The Boundary Cases for the P4P Rates” 
https://senseih2020.eu/publicdeliverables/ 
2 DWS May 2020 www.dws.com/insights/global-research-institute/green-healthy-buildings-as-economic-
stimulus/ 
3www.eefig.eu 
4https://ec.europa.eu/energy/sites/ener/files/eu_renovation_wave_strategy.pdf 

https://senseih2020.eu/publicdeliverables/
http://www.dws.com/insights/global-research-institute/green-healthy-buildings-as-economic-stimulus/
http://www.dws.com/insights/global-research-institute/green-healthy-buildings-as-economic-stimulus/
http://www.eefig.eu/
https://ec.europa.eu/energy/sites/ener/files/eu_renovation_wave_strategy.pdf
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The information contained in this document does not constitute a financial analysis but qualifies as marketing communication. This 
marketing communication is neither subject to all legal provisions ensuring the impartiality of financial analysis nor to any prohibition 
on trading prior to the publication of financial analyses. 

This document contains forward looking statements. Forward looking statements include, but are not limited to assumptions, 
estimates, projections, opinions, models and hypothetical performance analysis. The forward looking statements expressed constitute 
the author‘s judgment as of the date of this document. Forward looking statements involve significant elements of subjective 
judgments and analyses and changes thereto and/ or consideration of different or additional factors could have a material impact on 
the results indicated. Therefore, actual results may vary, perhaps materially, from the results contained herein. No representation or 
warranty is made by DWS as to the reasonableness or completeness of such forward looking statements or to any other financial 
information contained in this document. Past performance is not guarantee of future results. 

We have gathered the information contained in this document from sources we believe to be reliable; but we do not guarantee the 
accuracy, completeness or fairness of such information. All third party data are copyrighted by and proprietary to the provider. DWS 
has no obligation to update, modify or amend this document or to otherwise notify the recipient in the event that any matter stated 
herein, or any opinion, projection, forecast or estimate set forth herein, changes or subsequently becomes inaccurate. 

Investments are subject to various risks, including market fluctuations, regulatory change, possible delays in repayment and loss of 
income and principal invested. The value of investments can fall as well as rise and you might not get back the amount originally 
invested at any point in time. Furthermore, substantial fluctuations of the value of any investment are possible even over short periods 
of time. The terms of any investment will be exclusively subject to the detailed provisions, including risk considerations, contained in 
the offering documents. When making an investment decision, you should rely on the final documentation relating to any transaction.  

No liability for any error or omission is accepted by DWS. Opinions and estimates may be changed without notice and involve a number 
of assumptions which may not prove valid. DWS or persons associated with it may (i) maintain a long or short position in securities 
referred to herein, or in related futures or options, and (ii) purchase or sell, make a market in, or engage in any other transaction 
involving such securities, and earn brokerage or other compensation. 

DWS does not give taxation or legal advice. Prospective investors should seek advice from their own taxation agents and lawyers 
regarding the tax consequences on the purchase, ownership, disposal, redemption or transfer of the investments and strategies 
suggested by DWS. The relevant tax laws or regulations of the tax authorities may change at any time. DWS is not responsible for and 
has no obligation with respect to any tax implications on the investment suggested. 

This document may not be reproduced or circulated without DWS written authority. The manner of circulation and distribution of this 
document may be restricted by law or regulation in certain countries, including the United States. 

This document is not directed to, or intended for distribution to or use by, any person or entity who is a citizen or resident of or located 
in any locality, state, country or other jurisdiction, including the United States, where such distribution, publication, availability or use 
would be contrary to law or regulation or which would subject DWS to any registration or licensing requirement within such jurisdiction 
not currently met within such jurisdiction. Persons into whose possession this document may come are required to inform themselves 
of, and to observe, such restrictions.DWS Investment GmbH. As of: 14.04.2021 

Issued in the UK by DWS Investments UK Limited which is authorised and regulated by the Financial Conduct Authority (Reference 
number 429806).© 2021 DWS Investments UK Limited. CRC 082561_1.0(04/2021) 
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Executive summary 

This deliverable aims at contributing to the advancement of the automated measurement and 

verification (M&V) methods for energy efficiency. Automated M&V combines real-time data and 

predictive modelling methods so that to produce tools to understand the characteristics of a 

building’s energy consumption, and provide continuous feedback on the most probable impact of 

an energy efficiency intervention. 

The deliverable consists of two (2) parts. The first part summarizes the main aspects of an M&V 

process, including the data requirements, the metrics against which to evaluate a baseline energy 

consumption model, and the methods for the quantification of uncertainty commonly suggested 

by the relevant M&V standards. Then, it presents the state-of-play in terms of M&V 2.0 methods 

and reviews existing models for predictive baseline modelling. 

The review carried out showed that there are only a very limited number of M&V frameworks that 

are ready to be tested and adopted by practitioners. Although the literature on M&V methods is 

extensive, the gap between: (a) presenting a methodology and its results and (b) offering the tools 

for practitioners to experiment with this methodology and integrate the parts that they find 

valuable is most often significant. 

Furthermore, no M&V tool can be considered the best one a priori. The interaction between any 

tool and a specific building – as described by the dataset of its energy consumption – determines 

whether the tool is suitable for this building or, from the opposite point of view, whether the 

building is adequately predictable given the selected tool for M&V. Understanding the 

aforementioned interrelation requires:  

▪ Access to a diverse set of M&V models and workflows,  

▪ Tools that automate the implementation and evaluation of experiments with different 

combinations of buildings and M&V model specifications, and 

▪ Methods and indicators for categorizing buildings according to the characteristics of their 

energy consumption data. 

This deliverable contributes to the abovementioned requirements by developing new methods 

and tools to better understand the characteristics of a building’s energy consumption and 

estimate the energy savings from an intervention, as well as providing all of its methods and tools 

as a reproducible open source project for practitioners to experiment and test on different 

datasets. SENSEI aspires to fuel more testing and more experimentation with the fundamental 

calculations of M&V. 
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The second part of the deliverable presents the details of the proposed M&V methodology, which 

comprises four (4) main components: 

1. Data exploration and visualization workflow. It consists of a series of exploratory analysis steps 

that can be carried out so that a given dataset is better understood, as well as expectations for the 

corresponding building’s consumption can be formed and, later, used for evaluating the patterns 

that the baseline energy consumption model uncovered. This part of the methodology is meant to 

guide the implementation of dashboards and interactive visualizations for communicating insights 

regarding a building energy consumption dataset.  

The main concept behind this step of the methodology is the interactive categorization of a 

building’s energy consumption into similar shapes, and the exploration of the calendar distribution 

of the identified categories: 

 

 

2. Data preprocessing workflow. SENSEI proposes a replicable workflow for M&V data 

preprocessing. The goal of the preprocessing stage is to validate the available data about a 

building, as well as to identify potential outliers. The outlier detection methodology is structured 

around the concept of identifying global and local indications of outlier existence in the data: 
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3. Day typing workflow. Instead of developing a methodology for the sake of developing a new 

methodology, we started from the widely heard argument that only simple M&V methodologies 

can gain acceptance for P4P applications. This requirement reflects the fact that no standard exists 

so that a model can be trusted as long as it adheres to it, irrespectively of whether the model is 

open source or based on a linear regression formulation that makes it possible to recreate in a 

spreadsheet.  

Based on the aforementioned, we worked backwards from devising a possible way of testing and 

validating a black box model to building an M&V methodology around it. To this end, we started 

from the concept of prototypes. Prototypes are a selection of representative instances from the 

data, such that a small set of them can describe adequately well the whole dataset.  

In the case of energy consumption data, the prototypes can be found in the frequently recurring 

consumption profiles that define our expectations about the way a building’s energy consumption 

varies according to the hour of the day, the day of the week, or the outdoor temperature. The use 

of prototypes brings forth two benefits: 

(a) They provide a reference to judge any prediction and/or (possibly black box) model. One 

can use the prototype – from the set of prototypes – that is closest to a given observation, 

as a reference explanation for a prediction and monitor its difference with an audited 

model. The audited model may perform better or worse, but it should differ from the 

reference in a similar way both for historical data and for the counterfactual predictions. 
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(b) We can avoid making a priori assumptions regarding the daily, weekly and yearly 

similarities between the different observations in a building’s energy consumption data. 

Instead, similarity to a prototype is an indicator of an opportunity to categorize different 

observations together,  hence allowing predictive strength to be shared among the 

observations in each category – rather than just in each month or each month and its 

previous and subsequent months. 

In practical terms, the day typing method aims at categorizing similar consumption profiles as long 

as it is possible to explain the association of each observation in the dataset with its category given 

only features that can be constructed without access to the actual consumption data.  

 

4. Workflow for baseline model application. This step concerns training a predictive baseline 

model, evaluating its fitness and quantifying the uncertainty in its predictions. We have not carried 

out an extensive comparative test between different models and methodologies. Instead, we 

aimed at showcasing that the proposed methodology can deal well with buildings of different 

levels of predictability.  

Every plot and result in this deliverable is completely reproducible. The relevant notebooks, as 

well as all the open source functionality that accompanies this deliverable can be found in the 

GitHub repository at https://github.com/hebes-io/eensight.   

https://github.com/hebes-io/eensight
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1 Introduction 

1.1 The context for the deliverable 

Renewable energy generation assets are financed based on the value of the energy they will 

produce. Typically, the owner of a generation asset secures a Power Purchase Agreement (PPA) or 

an Energy Supply Contract (ESC) for selling the generated energy, and this agreement can be used 

for attracting investment capital to purchase and install the necessary equipment. Based on this 

clear value proposition, a series of business model innovations have come to exist and offer 

solutions for the financing and deployment of renewable energy generation assets, the 

aggregation of the produced energy, and the securitization of the expected revenues. 

In contrast, the energy efficiency services sector is lagging behind renewable energy generation in 

terms of demand for investments and business models for large-scale deployment. While a lot of 

work has taken place on measuring energy savings and formally covering risks and uncertainties at 

the individual project level, scaling energy efficiency up to project portfolio or programme level still 

faces challenges. One of the main barriers to market growth has been the uncertainty about the 

magnitude and persistence of the achieved efficiency improvements; renewable energy 

generation assets produce a measurable outcome, while energy efficiency can only be estimated 

through counterfactual analysis, which leads to increased uncertainty and potential for disputes. 

The heterogeneity in building structures, operating schedules and implemented energy efficiency 

measures (EEMs) only amplifies this uncertainty. 

While there is no way of overcoming the need for counterfactual analysis, uncertainty can be 

mitigated when all the parties involved in the process of up-scaling energy efficiency can agree on 

the way this counterfactual analysis will be carried out. A main argument of the SENSEI project is 

that advanced measurement and verification (M&V), sometimes called M&V 2.0, can lay the 

foundation for energy efficiency project aggregation schemes and/or energy efficiency support 

programs by providing the insights that are necessary for all parties involved in up-scaling energy 

efficiency to correctly evaluate risks and expected benefits. M&V 2.0 combines real-time data and 

predictive modelling methods so that to produce: (a) tools to understand the characteristics of a 

building’s energy consumption, and (b) continuous feedback on the most probable impact of an 

energy efficiency intervention.  

Up-scaling energy efficiency to project portfolio or programme level would create an additional 

opportunity: the opportunity to valorise energy efficiency when it contributes to offsetting the 

need for new power generation plants or transmission network upgrades. In this framework, 

energy efficiency would be regarded as a load modifier. Load-modifiers are those resources that 

are not necessarily seen or optimized by the power or capacity market, but they modify the power 
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system’s load shape in ways that harmonize with the system operator’s grid operations. To this 

end, the SENSEI project aims at preparing the ground for pilots that will act as a workbench for 

demonstrating that M&V 2.0 can indeed support the treatment of energy efficiency as a reliable 

load modifier. The pay-for-performance (P4P) concept has been adopted by SENSEI as a way to 

structure these pilots and steer the EEM selecting process towards measures that are beneficial 

for both building owners and the power system. As a consequence, all the transactions envisioned 

by SENSEI are defined by three (3) components: 

1. Performance indicators. The transactions are structured around performance-based 

agreements that reward improved energy efficiency, while transparently allocating the costs and 

risks. When treating energy efficiency as a load-modifying resource, these indicators reflect the 

fact that the value of energy efficiency may vary according to the hour of the day and the season 

of the year. 

2. Compensation agreements. The rules that dictate the proposed transactions aim at promoting 

the optimization and maintenance of the installed EEMs. In addition, the contractual 

arrangements aim at allocating the risks according to each party’s ability to control or mitigate 

them, and at compensating for the uptake of the risks.    

3. Measurement and verification methods. The role of the M&V process is to quantify and 

monitor the performance indicators. This deliverable contributes to the advancement of the 

existing M&V methods by developing and open sourcing tools to better understand the 

characteristics of a building’s energy consumption and estimate the efficiency gains from an 

intervention. 

The aforementioned components are summarized in the following diagram: 

 

Figure 1.1: The components defining the SENSEI transactions 
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2 Background to Measurement and Verification 

2.1 The concept of measurement and verification of energy savings 

Measurement and verification (M&V) of energy savings is fundamentally an impact assessment 

problem, where the goal is to estimate the counterfactual – i.e. what would the energy 

consumption of a building have been had an energy efficiency intervention not occurred – using 

two sources of information. The first source is the past behaviour of the building’s energy 

consumption. Energy consumption reflects events and operations that take place inside the 

building and, as a result, recurrent events and routine operations lead to daily, weekly and yearly 

seasonality in the consumption that can be exploited for estimating the counterfactual – to the 

extent that the seasonality remains unaffected by the intervention. The second source is the 

behaviour of other time series that were predictive of the building’s energy consumption prior to 

the intervention. The most often utilized time series is the outdoor air temperature. 

The relationship for the quantification of the energy savings from a retrofit project is commonly 

defined as: 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 =  𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑑𝑎𝑡𝑎 

                      − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑  

                                                    ± 𝑅𝑜𝑢𝑡𝑖𝑛𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠    

                                                    ±𝑁𝑜𝑛-𝑟𝑜𝑢𝑡𝑖𝑛𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠 

(2.1) 

where: 

Baseline period: The period of time prior to the intervention during which data is gathered so 

as to determine the relationship between energy consumption and the 

different independent variables that can predict it.  

Reporting period: The period of time following the intervention during which data is gathered 

so as to calculate energy savings (avoided energy use). 

Routine 

adjustments: 

Routine adjustments account for any energy-governing  factors  expected  to  

change  routinely  during  the  reporting  period, such as weather, operating 

hours or service levels (e.g. a new tenant requires different indoor 

conditions). The characterization “expected” means that the predictive model 

developed during the baseline period is able to adjust to such changes. 

Non-routine Non-routine adjustments account for unexpected changes in energy use. The 
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adjustments: fact that the changes are “unexpected” means that the driving factors of 

these changes were not included as independent variables in the baseline 

predictive model. By definition, they render the predictive model less 

relevant and require adjustments either to the model or to the baseline 

period energy data so as to reflect the same set of conditions as the ones 

observed during the post-intervention period.   

The diagram below summarizes the concept of energy savings metering: the estimation of the 

energy savings by comparing the energy consumption after the implementation of an EEM (i.e. 

during the reporting period) to a baseline that represents what the consumption would have been 

without this measure (counterfactual). 

 

Figure 2.1: Estimation of energy savings from an energy efficiency measure 

(Adapted from IPMVP Generally Accepted M&V Principles, 2018) 

2.2 The scope of M&V in SENSEI 

2.2.1 Excepted data availability 

It is assumed that energy consumption and outdoor air temperature is the only data that is 

available for M&V, since this data corresponds to the minimum set of data that may be available 

across all buildings in a portfolio and that would allow for a consistent analysis.  

2.2.2 Relevant levels of energy savings estimation and monitoring 

There are three (3) levels of M&V that are relevant for the SENSEI project: 

1. Single project monitoring. Since the SENSEI project assumes that an energy retrofit project 

portfolio is derived by aggregating many projects that are designed and implemented by different 

ESCOs and through different energy performance contracts, it is necessary to have access to M&V 

services that can track the contribution of each individual project with respect to the performance 

of the overall portfolio.  
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2. Project portfolio monitoring. SENSEI is concerned with up-scaling energy efficiency to a project 

portfolio level. Accordingly, it is necessary to have access to M&V services that can track the 

performance of a portfolio as a whole. 

3. Program evaluation. SENSEI promotes a paradigm where the evaluation of an energy efficiency 

program (from the perspective of the entity that compensates the projects) takes place in parallel 

with its implementation rather than after its completion.   

2.2.3 Relevant IPMVP options 

To quantify the impact from an efficiency upgrade intervention, the International Performance 

Measurement and Verification Protocol (IPMVP) proposes four (4) options: 

Option A – Retrofit Isolation: Key Parameter Measurement. This option makes sense when the 

EEMs involve some parameters that are known with a high degree of certainty and other 

parameters that can be measured cost-effectively. An example is the case where the EEMs 

concern the building’s HVAC systems and relevant data can be collected directly from a Building 

Management System (BMS). 

Option B – Retrofit Isolation: All Parameter Measurement. This option is relevant when a given 

EEM’s parameters are uncertain but can be measured in a cost effective way. Similarly to Option 

A, data can be collected either through the BMS or by using temporary meters. 

Option C – Whole Facility: This option is applicable if the estimated project-level savings are large 

compared to the random or unexplained energy variations that occur at the whole-facility level, 

and if savings fluctuate over a seasonal or annual cycle. Option C may be the best approach if the 

EEMs cause complex, significant interactive effects.  

Option D – Calibrated Simulation: For EEMs where it is prohibitive to meter all required 

parameters, one can utilize a simulation model that is calibrated to the actual pre-intervention 

data. 

In a SENSEI pilot, it is expected that the actual EEMs to be implemented are selected by the 

respective ESCOs, and the M&V process does not require access to specific parts of the buildings’ 

technical systems. As a consequence, Option C is predominantly the relevant M&V option. The 

viability of Option C is dependent on finding a predictive model that is able to explain a sufficient 

part of the metered energy consumption’s variability.  

2.3 Data requirements 

Sufficient historical data is necessary for the development of reliable baseline predictive models. 

One indicator for data sufficiency is the coverage factor. The coverage factor refers to the range in 

the observed values of the model’s independent variables during the baseline period. The 
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collected data should cover the full range of the operating conditions of the building, and, ideally, 

predictions should concern operating conditions that the model has already seen (interpolation). 

Extrapolation refers to the case when the model predicts the energy consumption for values of the 

independent variables that are outside of the range used to train it.  

ASHRAE Guideline 14 allows extrapolation for 10% above and 10% below of the baseline period 

outdoor air temperature range for models that use temperature as an independent variable. There 

are no definite criteria for dealing with seasonality, but when seasonal variations are significant, 

the data used for training the baseline model must provide enough information to capture these 

variations. 

In any case, the available historical data must allow the analyst to identify the most frequent 

energy consumption patterns and answer at least the following questions: 

▪ How does energy consumption vary across different hours of the day and days of the week? 

▪ Are there specific hours and/or days when the building is probably not used? 

▪ What part of the energy consumption is directly linked to the outdoor air temperature? 

▪ Is there a start-up period for the building’s operation (typically early in the morning) and is the 

sensitivity of the energy consumption to the outdoor air temperature during this period 

different than the one for the consumption during the rest of the day?   

▪ Are there timing differences between weather changes and the associated energy use in the 

building?  

2.4 Baseline model evaluation 

Given adequate historical data, the next step is the development of the baseline predictive model. 

While the following chapters will discuss this step in much more detail, it is useful to note at this 

point that the functionality and modelling approach of an M&V predictive model generally aims at: 

▪ Capturing both the daily and weekly patterns of energy consumption, as well as how these 

patterns change during the year; 

▪ Estimating a flexible relationship between outdoor air temperature and energy consumption 

that reflects the impact of temperature on the demand for heating and cooling; 

▪ Using historical energy usage data to screen buildings by determining if a building is a good fit 

for M&V analysis given the particular model at hand. This is done by calculating what level of 

energy savings would be required so that the model is able to distinguish them from the 

random or unexplained energy variations that occur at the whole-facility level.  

The ASHRAE Guideline 14 proposes the use of the following quantitative metrics to evaluate the 

fitness of a baseline predictive model: 
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(1) The coefficient of variation of the root mean squared error (𝐶𝑉(𝑅𝑀𝑆𝐸)); 

(2) The normalized mean bias error (𝑁𝑀𝐵𝐸). 

The 𝑪𝑽(𝑹𝑴𝑺𝑬) provides a quantification of the typical size of the error relative to the mean of 

the observations. The root mean squared error (RMSE) is calculated by: 

RMSE = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
 (2.2) 

where: 

𝑛 The number of observations 

𝑦𝑖 The consumption of the 𝑖th observation (𝑖 = 1,2, … , 𝑛) 

�̂�𝑖 The estimation for the 𝑖th observation’s consumption. 

The 𝐶𝑉(𝑅𝑀𝑆𝐸) is calculated by: 

CV(RMSE) =
1

�̅�
× RMSE × 100(%) (2.3) 

where: 

�̅� The mean value of the observed consumption data. 

The minimum ASHRAE Guideline 14 requirements for a baseline model’s 𝐶𝑉(𝑅𝑀𝑆𝐸) are: 

▪ For estimations in a reporting period that lasts less than 12 months:     

▪ For estimations in a reporting period that lasts from 12 to 60 months:         

▪ For estimations in a reporting period that lasts more than 60 months:          

CV(RMSE) < 20% 

CV(RMSE) < 25% 

CV(RMSE) < 30% 

The 𝑁𝑀𝐵𝐸 is computed by: 

𝑁𝑀𝐵𝐸 =
1

�̅�
×

∑ (𝑦𝑖 − 𝑦�̂�)
𝑛
𝑖=1

𝑛
× 100(%) (2.4) 

The ASHRAE Guideline 14 requires that |𝑁𝑀𝐵𝐸| ≤ 0.5%. 

A general rule is that the quantification of both 𝐶𝑉(𝑅𝑀𝑆𝐸) and 𝑁𝑀𝐵𝐸 should utilize data that the 

baseline predictive model has not seen before. This is the typical application for cross-validation: a 

re-sampling procedure used to estimate how a predictive model’s performance will generalize 

when applied on new data.  
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The most common method for cross-validation is the K-fold cross-validation. In K-fold cross-

validation, the dataset is split into 𝐾 smaller subsets (folds). For each of these subsets of data, the 

predictive model is trained using the remaining 𝐾 − 1 subsets, and is evaluated on the subset that 

was left out. The predictive performance is computed by averaging over the results of all the 

subsets used for evaluation. This process is summarized in Figure 2.2. 

 

Figure 2.2: The standard K-fold cross-validation method 

The fundamental assumptions behind the use of the K-fold cross-validation are that all 

observations come from the same generative process and that this generative process has no 

memory of past generated observations. However, M&V models operate on time-series data. 

Bergmeir, Hyndman and Bonsoo (2018)5 have shown that although there are theoretical problems 

that invalidate the fundamental assumptions of the K-fold cross-validation when applied to time-

series data, it can still be applied when the utilised predictive model leads to uncorrelated errors. 

This is achieved mainly when the predictors include lagged values of the response variable (energy 

consumption). In most cases, this is not aligned with the way baseline energy consumption models 

are constructed. 

When the assumptions for the applicability of the K-fold cross-validation to time-series data do not 

hold, a rolling origin approach (sometimes referred to as the walk-forward cross-validation 

method) can be employed. In this case, the training set consists each time only of observations 

that occurred prior to the observations that form the test set. Thus, no future observations are 

used in constructing the forecast.  

The following diagram illustrates this process: 

 
5 Bergmeir C., Hyndman R. J., Bonsoo Koo B. (2018) “A note on the validity of cross-validation for evaluating 
autoregressive time series prediction,” Computational Statistics & Data Analysis, Vol. 120, pp. 70-83 
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Figure 2.3: The walk-forward cross-validation method 

2.5 Quantification of uncertainty 

The expected savings must be greater than the uncertainty in the baseline model’s predictions. 

ASHRAE Guideline 14 refers to the ratio of the uncertainty to the savings (i.e. the savings 

uncertainty as a percentage of the estimated savings) as the fractional savings uncertainty (FSU), 

and requires that 𝐹𝑆𝑈 < 0.5 at a confidence level of 68%.  

In addition, ASHRAE Guideline 14 provides a closed-form equation to quantify the FSU when the 

only input variable that is considered for the baseline model is the outside air temperature and the 

baseline consumption is estimated by a linear regression model using the ordinary least squares 

method: 

𝐹𝑆𝑈 = 1.26 ∙ 𝑡
1− 

𝑎
2

,𝑑𝑜𝑓
∙

𝐶𝑉(𝑅𝑀𝑆𝐸) ∙ √(1 +
2
𝑛

)
1
𝑚

𝐹
 

(2.5) 

where: 

𝑡
1− 

𝑎
2

,𝑑𝑜𝑓
 The t-statistic for confidence level 𝑎 and degrees of freedom 𝑑𝑜𝑓 (the degrees of 

freedom of the baseline model is the total number of observations in the baseline 

period minus the number of explanatory variables in the model not including the 

intercept); 

𝑛 The number of observations in the baseline period (used to estimate the baseline 

model); 

𝑚 The number of observations in the reporting period; 

𝐹 The savings fraction defined as the energy savings during the reporting period divided by 

the predicted consumption during that same period. 
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The relationship in (2.5) implies that the greater the 𝐶𝑉(𝑅𝑀𝑆𝐸), the greater the savings fraction 

𝐹 needs to be so as to adhere to the ASHRAE guidance. 

When high resolution data is used (15-min, hourly or daily) the model’s prediction residuals will be 

autocorrelated. For this case, ASHRAE Guideline 14 suggests the formula: 

𝐹𝑆𝑈 = 1.26 ∙ 𝑡
1− 

𝑎
2

,𝑑𝑜𝑓
∙

𝐶𝑉(𝑅𝑀𝑆𝐸)√ 𝑛
𝑛′ (1 +

2
𝑛′)

1
𝑚

𝐹
 

(2.6) 

where: 

𝑛′ The effective number of observations in the baseline period after accounting for 

autocorrelation: 

𝑛′ = 𝑛
1 − 𝜌

1 + 𝜌
 

where 𝜌 is the lag 1 autocorrelation coefficient of the baseline model errors. 

However, if we adopt more flexible model representation and fitting approaches, we can no 

longer rely on closed form solutions for uncertainty quantification. Furthermore, existing 

literature6 suggests that the standard methods for estimating the total savings uncertainty over 

the post-installation period tend to underestimate uncertainty. The tendency to underestimate 

the uncertainty is stronger for hourly models than for daily models. 

 

 

  

 
6 Samir Touzani, Jessica Granderson, David Jump, Derrick Rebello (2019) “Evaluation of methods to assess 
the uncertainty in estimated energy savings,” Energy and Buildings, Volume 193, pp. 216-225 
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3 The state-of-play in M&V 2.0 

3.1 Introduction 

This chapter focuses on the state-of-play in terms of M&V 2.0 methods. The Efficiency Valuation 

Organization (EVO) white paper titled “IPMVP’s Snapshot on Advanced Measurement & 

Verification”7 already summarizes the different types of advanced M&V tools and presents five 

freely available M&V tools: ECAM, RMV2.0, OpenEEMeter, UT3 M&V Module and NMECR. We 

provide additional details for RMV2.0 and OpenEEMeter, as we will build on these details in the 

following chapters. Furthermore, we present results from competitions that reward modelling 

approaches for predicting energy consumption with high accuracy. These competitions tend to act 

as a means of crowdsourcing and benchmarking prediction models. 

3.2 The LBNL RMV2.0 model 

The LBNL RMV2.08 is an open-source package for performing M&V for commercial buildings 

developed by the Lawrence Berkeley National Laboratory. It is meant to run locally, and it provides 

a graphical user interface (GUI) that is browser-based (Figure 3.1).  

 

Figure 3.1: The graphical user interface of LBNL RMV2.0 

 
7  https://evo-world.org/en/news-media/evo-news/1175-evo-releases-a-white-paper-on-advanced-
measurement-verification  
8 https://lbnl-eta.github.io/RMV2.0/  

https://evo-world.org/en/news-media/evo-news/1175-evo-releases-a-white-paper-on-advanced-measurement-verification
https://evo-world.org/en/news-media/evo-news/1175-evo-releases-a-white-paper-on-advanced-measurement-verification
https://lbnl-eta.github.io/RMV2.0/
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The user has two (2) options for selecting the type of the baseline predictive model:  

(a) A Time of Week and Temperature (TOWT) model, and  

(b) A Gradient Boosting Machine (GBM) model. 

3.2.1 The TOWT model 

The TOWT model9 is a piecewise linear model where the energy consumption is predicted as a 

combination of two terms, one that relates the energy consumption to the time of the week and 

one that captures the piecewise-continuous effect of the outdoor air temperature.  

The way electricity consumption varies with the outdoor temperature is generally a reliable 

indicator of building occupancy. Accordingly, the temperature effect is estimated separately for 

periods of the day with high and with low energy consumption in order to distinguish between 

occupied and unoccupied building periods. For this, the temperature data is split into up to seven 

(7) binned features. Bins with fewer than 20 hours are combined with the next closest bin by 

dropping the larger bin endpoint, except for the largest bin, where the lower endpoint is dropped. 

Assuming that the bins are created using 𝑁 bin endpoints, the temperature features are 

constructed as follows: 

▪ If the temperature 𝑇 is greater than 𝐵1, the first temperature feature is 𝑇1 = 𝐵1 and the 

algorithm proceeds to the next step. Otherwise, 𝑇1 = 𝑇 and 𝑇𝑖 = 0 for 𝑖 = 2, … , 𝑁. 

▪ For 𝑖 = 2, … , 𝑁, if the temperature 𝑇 is greater than 𝐵𝑖, then 𝑇𝑖 = 𝐵𝑖 − 𝐵𝑖−1 and the algorithm 

proceeds to the next 𝑖. Otherwise, 𝑇𝑖 = 𝑇 − 𝐵𝑖−1 and 𝑇𝑗 = 0 for 𝑗 = 𝑖 + 1, … , 𝑁. 

▪ If the temperature 𝑇 is greater than 𝐵𝑁, then the last temperature feature is equal to 𝑇 − 𝐵𝑁, 

and all other features are equal to zero. 

Conceptually, the temperature model can be represented by the diagram below.  

 
9 J. L. Mathieu, P. N. Price, S. Kiliccote and M. A. Piette (2011) “Quantifying Changes in Building Electricity 
Use, With Application to Demand Response,” in IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 507-518 
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Figure 3.2: The general form of a piecewise-linear temperature model 

Subsequently, each week is divided into 168 hourly time-of-week intervals starting from Monday: 

interval 1 is from midnight to 1 A.M. on Monday morning, interval 2 is from 1 A.M. to 2 A.M. and 

so on. If more than the 65% of the data points that correspond to a specific time-of-week are 

above the fitted curve, the corresponding hour is flagged as “Occupied”, otherwise it is flagged as 

“Unoccupied.”  

Finally, the predicted consumption for the occupied hours is given by: 

�̂�𝑜𝑐𝑐(𝑡) = 𝑎𝑇𝑂𝑊[𝑡]
𝑜𝑐𝑐 + ∑ 𝛽𝑗

𝑜𝑐𝑐𝑇𝑗(𝑡)

𝑗

+ 𝜀𝑡  (3.1) 

where: 

�̂�𝑜𝑐𝑐  The predicted consumption for the occupied hours 

𝑇𝑂𝑊 The time of week index: 𝑇𝑂𝑊 ∈ [1,2, … ,168] 

The notation 𝑇𝑂𝑊[𝑡] means the value of index 𝑇𝑂𝑊 at time 𝑡 

𝑎𝑇𝑂𝑊[𝑡]
𝑜𝑐𝑐  The effect of the time-of-week on the energy consumption during the occupied hours 

𝛽𝑗
𝑜𝑐𝑐  The coefficient for the 𝑗th bin of the temperature when the building is occupied 

𝑇𝑗(𝑡) The transformed temperature feature that corresponds to bin 𝑗 

𝜀𝑡  The noise of the regression model 

In contrast, the predicted consumption for the unoccupied hours is given by: 

�̂�𝑢(𝑡) = 𝑎𝑇𝑂𝑊[𝑡]
𝑢 + 𝛽𝑢𝑇(𝑡) + 𝜀𝑡  (3.2) 

where: 
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�̂�𝑢 The predicted consumption for the unoccupied hours 

𝑎𝑇𝑂𝑊[𝑡]
𝑢  The effect of the time-of-week on the energy consumption during the unoccupied hours 

𝛽𝑢 The coefficient of the linear term for the outdoor temperature 

𝑇(𝑡) The outdoor temperature at time 𝑡 

𝜀𝑡  The noise of the regression model 

The way temperature is treated by the TOWT model implies an expectation that the relationship 

between energy consumption and outdoor temperature is linear when the building is not occupied 

(i.e. the building’s HVAC systems operate at or near the dead-band), whereas it is more flexible 

when the building is occupied (usually U-shaped).   

In addition, a weighting factor can be added to give more statistical weight to days that are nearby 

to the day being predicted. The time scale of the weighting function (i.e., the number of days that 

are nearby to the predicted day) is the only hyper-parameter of the TOWT model. 

3.2.2 The GBM model 

The practical advantage of using a GBM model10, compared to the TOWT model, is that it is 

capable of handling additional independent variables, such as holiday indicators, humidity, or solar 

radiation. The disadvantage of such models, however, is that their structure is hidden. 

Furthermore, the GBM model has several hyper-parameters that need to be tuned in order to 

produce an accurate model (Figure 3.3). 

 

Figure 3.3: Selection of values for the GBM model’s hyper-parameters 

 
10 Touzani, S., Granderson, J. and Fernandes, S., 2018 “Gradient boosting machine for modelling the energy 
consumption of commercial buildings,” Energy and Buildings, 158, pp. 1533-1543 
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Gradient boosting produces a prediction model in the form of an ensemble of many weak 

prediction models, most often decision trees (Figure 3.4). Each model in the ensemble is not very 

accurate, but all of them together create a powerful model. 

 
Figure 3.4: Conceptual representation of gradient boosting 

GBM models support a modelling workflow where first the model is applied on the available data 

and then, based on the results, the most important inputs are highlighted, and the strongest 

interactions are identified. This means that we rely on the models’ predictive capability to identify 

which of the included features are most impactful, as well as how these features interact with 

each other. 

3.3 The OpenEEMeter model 

The OpenEEMeter model11 is an open source implementation of the CalTRACK set of methods12. 

The CalTRACK methods focus specifically on calculating weather-normalized metered energy 

savings for determining payments under pay-for-performance (P4P) programs for residential 

buildings. In terms of its modelling approach, CalTRACK builds on the aforementioned TOWT 

model. It assumes that the energy consumption of a building follows a daily and a weekly pattern, 

as well as that these patterns change from month to month. Accordingly, instead of using a single 

baseline model for estimating the counterfactual energy consumption during all times of the year, 

up to twelve (12) separate models may be used for a particular building – one for predicting the 

counterfactual in each calendar month. In particular, each model is fitted using: 

▪ Data from the same calendar month in the 365 days prior to the intervention date; 

▪ Data from the previous and subsequent calendar months in the 365 days prior to the 

intervention date. These data points are given a weight of 0.5 when fitting the model. 

 
11 http://eemeter.openee.io/  
12 https://www.caltrack.org/  

http://eemeter.openee.io/
https://www.caltrack.org/
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Implicitly, behind CalTRACK’s design decision of building a monthly model by also utilizing data 

from the previous and subsequent calendar months, there is the assumption that: (a) there is 

information in the previous and subsequent months that is relevant for the monthly model (i.e. 

learning something about these months would tell us something about the month under study), 

and (b) only the previous and subsequent months are relevant for the monthly model.  

A CalTRACK model can be summarised as follows: 

Dependent variable: Energy consumption per hour 

Independent variables: ▪ Seven (or fewer) temperature features 

▪ 168 binary dummy variables indicating the time-of-week. Each week 

is divided into 7x24 = 168 hourly time-of-week intervals starting 

from Monday: interval 1 is from midnight to 1 A.M. on Monday 

morning, interval 2 is from 1 A.M. to 2 A.M. and so on.  

▪ An occupancy binary variable interacting with the temperature and 

time-of-week variables. 

3.4 Competitions 

3.4.1 The ASHRAE - Great Energy Predictor III competition 

In 2019, ASHRAE hosted the Great Energy Predictor III machine learning competition on the Kaggle 

platform13. The competitors were provided with over 20 million points of training data from 2,380 

energy meters collected for 1,448 buildings from 16 sources. The competition’s overall objective 

was to find the most accurate modelling solutions for the prediction of over 41 million private and 

public test data points. Miller et al. (2020)14 provide a summary of the competition and its results. 

3.4.2 Power Laws: Forecasting Energy Consumption 

In 2018, Schneider Electric hosted a competition with the objective of forecasting building energy 

consumption from little data: (a) historical building consumption data, (b) historical weather data 

and weather forecast for one or a few places geographically close to the building, (c) calendar 

information, identifying working and off days, and (d) meta-data about the building, e.g., whether 

it is an office space, a restaurant, etc. More than 200 building sites were considered. 

 
13 https://www.kaggle.com/c/ashrae-energy-prediction  
14 Clayton Miller et al. (2020) “The ASHRAE Great Energy Predictor III competition: Overview and results,” 
Science and Technology for the Built Environment, DOI: 10.1080/23744731.2020.1795514 

https://www.kaggle.com/c/ashrae-energy-prediction
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3.4.3 Useful observations from the competition results 

The competitions showcased that: 

▪ Gradient boosted decision tree models have consistently greater predictive capability 

compared to alternative modelling approaches. 

▪ Machine learning models can overfit when the dataset includes outliers and discords. A 

discord is a consumption profile that is very different to all the other profiles in the dataset. In 

some cases, a discord is the result of outliers in metered data. In other cases, the respective 

profiles correspond to national holidays and the dataset does not contain enough instances of 

these holidays. Potential outliers and discords should be removed from the data that is used 

for training the predictive model – but not from the data that is used for evaluating the model. 

▪ The inclusion of smoothed and lagged values for the outdoor temperature improves the 

predictive capability of a model. Buildings have different thermal characteristics (envelope U-

values and heat capacities) that can introduce a delay between outdoor temperature changes 

and the resulting changes in heating and cooling energy loads. 

▪ Creating ensembles of different models improves predictive accuracy. Ensemble methods 

include methods that combine forecasts from different models and methods that combine 

forecasts from models trained with different subsets of the available data. 
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4 Exploratory analysis of the demo datasets 

For the presentation of the different steps that compose the proposed methodology for M&V, we 

have made use of two (2) open datasets for energy building consumption: 

Demo building #1 The building with SiteId = 50 that is found in the open dataset of building 

electricity consumption that Schneider Electric has made available on their 

Data Exchange15 and was used in the forecasting energy consumption 

competition described in Section 3.4.2. The granularity of the data is 15 

minutes. 

Demo building #2 The building with name FOX_OFFICE_ROWENA from the dataset of Building 

Data Genome Project 2, which is an open data set made up of 3,053 energy 

meters from 1,636 buildings16. The granularity of the data is 1 hour. 

Both datasets include data for two (2) consecutive years. For model development, training and 

fine-tuning, we assume that data is available only for the 1st year. The data for the 2nd year is used 

only for evaluating the model’s performance. 

The electricity consumption of the demo building #1 (DB1 hereafter) is presented in Figure 4.1 and 

the electricity consumption of the demo building #2 (DB2 hereafter) in Figure 4.2. 

 
Figure 4.1: The electricity consumption of the demo building #1 

 
15 https://shop.exchange.se.com/apps/54008/forecasting-building-energy-consumption  
16 https://github.com/buds-lab/building-data-genome-project-2  

https://shop.exchange.se.com/apps/54008/forecasting-building-energy-consumption
https://github.com/buds-lab/building-data-genome-project-2
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Figure 4.2: The electricity consumption of the demo building #2 

In this chapter, we present a series of exploratory analysis steps that can be carried out so that a 

given dataset is better understood, as well as expectations for the corresponding building’s 

behaviour are formed and, later, used for evaluating the patterns that the baseline energy 

consumption model uncovered.  

4.1 Profiling the daily consumption of a building 

Ignoring the differences due to the different seasons of the year, Figure 4.3 presents the median 

electricity consumption per hour of the day and day of the week for DB1. The plot indicates that, 

for this building, Sundays are on average different from the other days of the week.   

 
Figure 4.3: The median electricity consumption per hour of day and way of week for building demo #1 

Similarly, the plot of Figure 4.4 presents the median electricity consumption per hour of the day 

and day of the week for DB2. The plot indicates that, for this building, there is a clear difference 

between weekdays and weekends.   



SENSEI                                                                                    H2020 project – Grant agreement nº 847066 
 

Deliverable D7.1 – Methods for the dynamic M&V of energy savings                                                           Page 34 

 

Figure 4.4: The median electricity consumption per hour of day and way of week for building demo #2 

The proposed approach for exploratory analysis of a building’s energy consumption data utilizes 

the symbolic aggregate approximation (SAX)17. The SAX approximation of a time series transforms 

the original data into symbolic words. The algorithm begins by normalizing the data (so that its 

mean is zero and its standard deviation is one), breaks it into equally sized segments, and 

computes the average of each segment. Finally, the algorithm assigns an ordinal value to each 

segment’s average so that all the regions defined by the ordinal values have approximately the 

same probability.  

SAX requires two (2) user-defined parameters: (a) the number of the ordinal values to use, and (b) 

the number of segments. The number of segments determines the amount of information 

retained by the SAX approximation. A small number of segments could lead to a very compact 

representation that may summarize the data too much (filtering out too much information), 

whereas a very large number of segments could fail in filtering out the noise in the data. 

Since there is no effective way to select the SAX parameters in an automated way, SAX is better 

suited for the interactive and visualization-driven part of the proposed workflow. In contrast, the 

day typing approach that is proposed by this deliverable later on is meant to be utilized in an 

automated and parameter-light way. The method can be applied on complete daily profiles or on 

any number of non-overlapping daily intervals, such as for instance: 00:00-08:00, 08:00-16:00 and 

16:00-00:00. 

If we apply a SAX approximation with five (5) ordinal values and three (3) segments, i.e. one 

segment per 8 hours, on all the daily consumption profiles of the DB1, we get the categories and 

the number of days in each one of them as summarized in Figure 4.5 below.  

 
17 Lin J., Keogh E., Wei L., Lonardi S. (2007) “Experiencing SAX: a novel symbolic representation of time 
series,” Data Mining and Knowledge Discovery, vol. 15(107) 
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Figure 4.5: The SAX-based categorization of all the daily consumption profiles in demo building #1 

Having access to the categories of Figure 4.5, we can interactively filter the daily energy 

consumption profiles by selecting a category and visualizing the corresponding daily profile subset 

(Figure 4.6). 

 

Figure 4.6: Daily consumption profiles of building demo #1 according to selected category 

In addition, we can visualize calendars that highlight the days that correspond to each category. 

The plot in Figure 4.7 suggests that the category of Figure 4.6 includes all days but Sundays, during 

the June-August period. 

 
Figure 4.7: Yearly distribution of the selected category 
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As another example, Figure 4.8 depicts the daily consumption profiles and the yearly distribution 

for one of the smaller categories found through the SAX approximation. The plot suggests that the 

consumption profiles in this category correspond predominantly to Sundays, and exclude the May 

–September period too. 

 

 
Figure 4.8: Daily consumption profiles and yearly distribution of another category from building demo #1 

A similar approximation applied on all the daily consumption profiles of the DB2 leads to the 

categories and the number of days in each one of them as presented in Figure 4.9. 

 

Figure 4.9: The SAX-based categorization of all the daily consumption profiles in demo building #2 
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Again, we can visualize the daily consumption profiles and the yearly distribution of any selected 

category (Figure 4.10). 

 

 
Figure 4.10: Daily consumption profiles and yearly distribution of a selected category from building demo #2 

If the selected SAX configuration (number of ordinal values and segments) leads to a large number 

of categories, hierarchical clustering can be applied to dynamically group the categories into a 

user-defined number of aggregated ones. As an example, the dendrogram of Figure 4.11 presents 

the way aggregated categories can be created by merging similar categories together. 

 

Figure 4.11: Dendrogram of aggregated categories for demo building #1 

If we proceed to reduce the number of categories of DB1 to six (6), we get the categories and the 

number of days in each one of them as summarized in Figure 4.12 below. 
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Figure 4.12: Aggregated categorization of all the daily consumption profiles of demo building #1 

Similarly to what was mentioned above, one may filter the daily energy consumption profiles by 

selecting a category and visualizing the corresponding daily profile subset. The plots in Figure 4.13 

suggest that:  

(a) The 1st largest aggregated category includes all days except Sundays and excludes the summer 

period; 

(b) The consumption profiles in the 2nd largest aggregated category correspond mainly to the 

summer period; 

(c) The consumption profiles in the 4th largest aggregated category correspond predominantly to 

Sundays. 
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Figure 4.13: Daily consumption profiles of demo building #1 according to selected aggregated category 
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4.2 Exploring the impact of outdoor air temperature on daily consumption  

The plot of Figure 4.14 presents the outdoor air temperature alongside with the electricity 

consumption of DB1, while the plot in Figure 4.15 presents the outdoor air temperature alongside 

with the electricity consumption of DB2. 

 
Figure 4.14: The outdoor air temperature data for the demo building #1 

 
Figure 4.15: The outdoor air temperature data for the demo building #2 

An alternative, and probably more informative, way to visualize the relationship between outdoor 

temperature and energy consumption is to drop the time information and plot consumption as a 

function of temperature as presented in Figure 4.16 for DB1. 



SENSEI                                                                                    H2020 project – Grant agreement nº 847066 
 

Deliverable D7.1 – Methods for the dynamic M&V of energy savings                                                           Page 41 

 

Figure 4.16: Energy consumption as a function of the outdoor air temperature for demo building #1 

The continuous curve in the plot of Figure 4.16 has been derived by fitting on the data a natural18 

cubic spline model with three (3) degrees of freedom. It can be seen that the curve splits the dataset 

into two subsets. As it was discussed in the Section 3.2.1, the TOWT model utilizes this (or a similar) 

curve to distinguish between hours when the building is (most likely) occupied and hours during 

which the building is (most likely) unoccupied (Figure 4.17). 

 
Figure 4.17: Distinguishing between occupied and unoccupied hours in demo building #1 

Figure 4.18 shows the distribution of the likely unoccupied and likely occupied hours in the dataset. 

The plot indicates that the DB1 is generally occupied or in use from 08:00 to 20:00. 

 
18 The term natural means that the second derivatives of the spline polynomial are set equal to zero at the 
endpoints of the interval of interpolation. This forces the spline to be a straight line outside of the interval. 
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Figure 4.18: The distribution of the high load and low load hours in demo building #1 

A supplementary way to visualize the impact of outdoor air temperature on a building’s energy 

consumption is by selectively fixing both the hour of the day and the day of the week. Indicatively, 

the plot in Figure 4.19 below visualizes the electricity consumption for four (4) specific days of the 

week (Mondays, Wednesdays, Saturdays and Sundays) and for the 14:00 and 22:00 hours each day 

for the case of DB1. 

 

Figure 4.19: The effect of the outdoor air temperature for different hours and days of the week 

The plots of Figure 4.19 can serve as a basis for another way of distinguishing between hours when 

the building is most likely occupied and hours during which the building is most likely unoccupied. In 

particular, we can estimate one temperature-consumption curve for each combination of hour of the 
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day and day of the week and, then, cluster all the curves according to the similarity of their 

coefficients19. The correspondence of the hours of the day and days of the week to their clusters is 

depicted in Figure 4.20. The plot indicates that the relationship between electricity consumption and 

temperature during the hours from 08:00 to 20:00 for all days expect Sundays and from 09:00 to 

13:00 for Sundays is different compared to the relationship during the remaining hours and days, 

which implies differences in occupancy as well.  

 
Figure 4.20: The temperature-consumption clusters per hour of day and day of week (2 clusters) 

If we aim for three (3) instead of two (2) clusters, we get the correspondence between clusters and 

the combinations of hours of the day and days of the week of Figure 4.21. The plot indicates that the 

relationship between electricity consumption and temperature during the start-up and turn-down 

hours (08:00 and 20:00, respectively) is generally different from the relationship during occupied and 

unoccupied hours. 

 
Figure 4.21: The temperature-consumption clusters per hour of day and day of week (3 clusters) 

The same process can be applied on the data of DB2 with less satisfying results. The energy 

consumption as a function of the outdoor air temperature is presented in Figure 4.22. The distinction 

between the likely unoccupied and the likely occupied hours is less clear than for DB1. 

 
19 Abraham, C., P. A. Cornillon, E. Matzner-Løber, and N. Molinari (2003) “Unsupervised Curve Clustering Using 
B-Splines,” Scandinavian Journal of Statistics 30, no. 3, pp. 581-95 
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Figure 4.22: Energy consumption as a function of the outdoor air temperature for demo building #2 

The distinction between the hours when the building is (most likely) occupied and the hours during 

which the building is (most likely) unoccupied are presented in Figure 4.23 and Figure 4.24.  

 

Figure 4.23: Distinguishing between occupied and unoccupied hours in demo building #2 

 
Figure 4.24: The distribution of the high load and low load hours in demo building #2 

Although the results of Figure 4.24 are aligned with the results of Figure 4.4, they do not make it 

easier to distinguish between occupied and unoccupied hours in DB2. Accordingly, and since the 

methodology proposed in this deliverable aims at targeting as many types of buildings as possible, we 

do not make use of this approach for formulating the temperature-related component of the 
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proposed M&V model. Instead we rely on a non-linear (gradient boosted tree model) to capture the 

interactions between the outdoor temperature, the day of the week and the hour of the day. The 

interactions that the model has actually identified can be uncovered through a process that is similar 

to the way the plots of Figure 4.19 were generated: selectively fixing both the hour of the day and 

the day of the week, and summarizing the predictions of the model for different temperature values.  
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5 The SENSEI workflow for data preprocessing 

5.1 The goal of the preprocessing pipeline 

The data preprocessing pipeline that is presented in this chapter assumes that energy consumption 

and outdoor air temperature is the only data that is available for M&V. We consider an energy 

consumption and outdoor air temperature dataset validated if: 

(1) There are no duplicate values in the dataset’s timestamps. Duplicate timestamps are treated 

separately for energy consumption and for temperature data. In both cases, if the range of the 

energy consumption or temperature values that share a timestamp is short – according to a 

user-defined threshold – they are replaced by their average. Otherwise, they are treated as 

missing values. 

(2) There are no missing values in the dataset’s timestamps. If there are missing timestamps, they 

are added and the respective data is treated as missing values. 

(3) Potential outliers are identified and marked. Outlier detection is carried out separately for 

energy consumption and for temperature data.  

(4) There is enough data available for the energy consumption of the building under study. 

Baseline energy consumption data must cover at least one full year before any energy efficiency 

intervention. In addition, and adopting the data requirements of the CalTRACK set of methods, 

data must be available for over 90% of hours in each calendar month – after excluding the 

potential outliers.  

(5) There are no missing values in the outdoor air temperature data. If temperature data is 

missing, the missing values are imputed. The outdoor air temperature changes smoothly from 

one hour to the next, so interpolating over a 6-hour window around a missing observation is a 

sensible approach for imputation. This is in line with CalTRACK’s requirement that temperature 

data may not be missing for more than six (6) consecutive hours. 

(6) There are no missing values in the energy consumption data. Missing values for energy 

consumption data do not pose a problem when training the predictive baseline model but they 

may lead to daily consumption profiles that are mistakenly regarded as unusual when we search 

for common and uncommon patterns in the data. Accordingly, the proposed workflow imputes 

the energy consumption data for the identification of patterns in the daily consumption, but 

does not include the imputed values in the dataset that is used for the predictive model’s 

training. 
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The steps of the preprocessing pipeline are summarized in Figure 5.1 below. 

 

Figure 5.1: The steps for screening and validating the available data 

5.2 Outlier identification 

The proposed approach for outlier identification is outlined next: 

Step 1: Global filter. The first step screens for non-physically plausible values as well as unlikely 

values in the data. For power consumption data, negative and zero values are filtered out. For both 

consumption and temperature data, values that are at least 10 times larger than the median value 
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are also removed. The threshold of ten times the median value aims at removing the most extreme 

outliers. Furthermore, consecutive occurrences of constant values are filtered out as well. 

Step 2: Seasonal filter. The second step captures the seasonal cycle of the data through a trend and 

seasonality decomposition approach that utilizes a Fourier series expansion of the form: 

𝑦(𝑡) = 𝑎 + 𝑏𝑡 + ∑ (𝛼𝑛 cos (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛 sin (

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛=1

 (5.1) 

where: 

𝑎 The offset of the linear trend 

𝑏 The slope of the linear trend 

𝑡 The day since a pre-specified epoch. For hourly data, 𝑡 will take decimal number 

values. 

𝑁 Parameter that controls the flexibility of the expansion. Suggested values are20 𝑁 = 4 

for daily seasonality, 𝑁 = 10 for yearly seasonality 

𝑃 The length of the seasonality: 𝑃 = 1 for daily seasonality, 𝑃 = 365.25 for yearly 

seasonality. For energy consumption data, we fit a different daily seasonality 

component for each day of the week.   

𝛼𝑛, 𝑏𝑛 Regression coefficients for the Fourier series expansion terms. 

The reason for applying seasonal decomposition before outlier identification can be seen in Figure 

5.2. The upper panel shows the multimodal distribution of the power consumption of the DB1, 

alongside with a Normal distribution that has been fitted on the data, while the lower panel 

corresponds to the same aspects of DB2.  

Since seasonality leads to multimodal distributions, methods that rely on the assumption that the 

data follows a Normal distribution – such as simple three-sigma rules, the Grubbs test21 or the 

Extreme Studentized Deviate (ESD) test22 – should be used only after a seasonal filter has been 

applied to the data. 

 
20 Taylor S. J. and Letham B. (2018) “Forecasting at scale,” The American Statistician 72(1), pp. 37-45 
21 Frank E. Grubbs (1969) “Procedures for detecting outlying observations in samples,” Technometrics, 11(1), 
pp. 1-21 
22 Bernard Rosner (1975) “On the detection of many outliers,” Technometrics, 17(2), pp. 221-227 
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Figure 5.2: The multimodal distribution of the power consumption 

The plot in Figure 5.3 shows the actual and the predicted power consumption of the DB1 for the first 

two (2) months of 2016, when applying the aforementioned modelling approach. 

 
Figure 5.3: The actual and predicted power consumption of the demo building #1 

The plot in Figure 5.4 presents the distribution of the residuals when subtracting the actual from the 

predicted power consumption for DB1. The distribution of the residuals resembles a Student’s t 

distribution and, hence, it is easier to work with for detecting outliers. 
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Figure 5.4: The benefit from applying seasonal decomposition before outlier detection 

Step 3: Global outlier detection. The third step of the outlier detection process identifies 

observations in the available dataset as potential outliers if the value of their corresponding residuals 

lies outside the range defined by: 

[𝑚𝑒𝑎𝑛 𝑎𝑙𝑙 − 𝑐 × 𝑠𝑐𝑎𝑙𝑒  𝑎𝑙𝑙 ,   𝑚𝑒𝑎𝑛 𝑎𝑙𝑙 + 𝑐 × 𝑠𝑐𝑎𝑙𝑒  𝑎𝑙𝑙] (5.2) 

where: 

𝑚𝑒𝑎𝑛 𝑎𝑙𝑙  The mean of a Student’s t distribution fitted on all the residual values 

𝑠𝑐𝑎𝑙𝑒  𝑎𝑙𝑙  The scale of a Student’s t distribution fitted on all the residual values 

𝑐 User defined parameter (suggested value is 4). 

The plot in Figure 5.5 shows the potential outliers identified in the seasonal estimation residuals of 

the DB1 using the global outlier detection approach, while the plot in Figure 5.6 shows the potential 

outliers identified in power consumption for January 2016. 

 

Figure 5.5: The potential outliers identified using the global outlier detection approach 



SENSEI                                                                                    H2020 project – Grant agreement nº 847066 
 

Deliverable D7.1 – Methods for the dynamic M&V of energy savings                                                           Page 51 

 
Figure 5.6: The potential outliers identified for January 2016 using the global outlier detection approach 

Step 4: Local outlier detection. The final step of the outlier detection process retains from the 

outliers identified in the previous step only those that can be characterised as outliers when we also 

compare their values with the observations in the same day of the year.  

The rationale for this approach can be explained by looking at the plot in Figure 5.7, which shows the 

actual and the predicted power consumption during the first two (2) weeks of 2016 in the dataset of 

DB1. An important observation from the plot is that the distance from the seasonal model’s 

predictions is not by itself enough for detecting outliers when the whole day is misrepresented by the 

model (here a holiday is treated as a normal day).  

 
Figure 5.7: The actual and predicted power consumption during the first two weeks of 2016 

Accordingly, the observations in the available dataset are marked as potential outliers if the value of 

their corresponding residuals lies outside the range defined by: 

[𝑚𝑒𝑑𝑖𝑎𝑛 𝑑𝑎𝑦 − 𝑐 × 𝑚𝑎𝑑 𝑑𝑎𝑦 ,   𝑚𝑒𝑑𝑖𝑎𝑛 𝑑𝑎𝑦 + 𝑐 × 𝑚𝑎𝑑 𝑑𝑎𝑦] (5.3) 

where: 
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𝑚𝑒𝑑𝑖𝑎𝑛 𝑑𝑎𝑦  The median of all the residual values in the corresponding day 

𝑚𝑎𝑑 𝑑𝑎𝑦  The median absolute deviation of all the residual values in the corresponding day 

𝑐 User defined parameter (suggested value is 4). 

This step is parameterised by the minimum number of observations that must be available for any 

given day so that to take the daily statistics into account. If the number of the available observations 

is lower than this threshold, only the global outlier detection results are considered. 

The plot of Figure 5.8 shows the potential outliers identified in the power consumption dataset of the 

DB1 using the local outlier detection approach. 

 

Figure 5.8: The potential outliers identified using the local outlier detection approach 

For an observation to be marked as an outlier, both global and local results must agree. The plot of 

Figure 5.9 shows the potential outliers for the DB1 when combining the global and local results. 

 

Figure 5.9: The potential outliers identified in the power consumption dataset 
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6 The SENSEI workflow for day typing 

All the predictive models for estimating the baseline energy consumption of a building work by 

exploiting the daily, weekly and yearly seasonality of the consumption data. Some models make the 

assumption that this seasonality can be identified across the whole dataset, whereas others assume 

that each calendar month is so distinct from the others that it should have its own monthly model. In 

contrast, the proposed approach makes no a priori assumptions regarding the daily, weekly and 

yearly similarities between the different observations in the dataset. Instead, it relies on the day 

typing stage to distinguish all the days in the available dataset into different categories according to 

the shape and scale of their energy consumption profiles.  

The goal of the day typing stage is to exploit similarities in the energy consumption profile of a 

building so as to increase the predictive accuracy of the model for the baseline energy consumption 

and decrease risk of overfitting during the baseline consumption estimation.  The day typing method 

categorizes a building’s daily or sub-daily consumption profiles according to their similarity to a small 

number of recurring patterns (prototypes) that can be found in the consumption time series. The key 

idea behind the proposed method is to identify a small number of recurring patterns that are very 

dissimilar to each other and can be used as points of reference for comparing all the remaining 

consumption profiles found in the dataset. 

6.1 Definitions 

The proposed methodology for day typing builds upon the distance and matrix profile data 

structures23. First, some necessary definitions: 

Time series A time series 𝑇 of length 𝑛 is a time-ordered sequence of real 

numbers [𝑥1, 𝑥2, … , 𝑥𝑛]. 

Subsequence A subsequence  𝑇𝑖,𝑚  of the time series 𝑇 is a contiguous subset of 𝑇 starting 

at position 𝑖 with length 𝑚 < 𝑛: 

 𝑇𝑖,𝑚 = [𝑥𝑖 , 𝑥𝑖+1,…,𝑥𝑖+𝑚−1] 

Distance profile A distance profile 𝐷 ∈ ℝ𝑛−𝑚+1 between a time series 𝑇 of length 𝑛 and a 

query time series 𝑇(𝑞) of length 𝑚 is another time series that stores the 

(normalized) Euclidean distance between 𝑇(𝑞) and each possible 

subsequence 𝑇𝑖,𝑚 , 𝑖 ∈ [1,2, … , 𝑛 − 𝑚 + 1]  of 𝑇. By definition, the distance 

 
23 Chin-Chia Michael Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen, and E. Keogh 
(2016) “Matrix profile I: All pairs similarity joins for time series: a unifying view that includes motifs, discords 
and shapelets,” in 2016 IEEE 16th International Conference on Data Mining (ICDM), IEEE, pp. 1317–1322 
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profile takes values close to zero at the location of the subsequences 

𝑇𝑖,𝑚  that are very similar to 𝑇(𝑞). 

Nearest Neighbour The nearest neighbour of a subsequence 𝑇𝑖,𝑚  is the subsequence that has 

the smallest distance from it (the subsequence that is most similar to it). 

Matrix profile A matrix profile 𝑃 ∈ ℝ𝑛−𝑚+1 of a time series 𝑇 is another time series that 

stores at each position 𝑖 the distance between the subsequence 𝑇𝑖,𝑚 and its 

nearest neighbour. If a specific subsequence has a matrix profile value far 

greater than zero, it is unlike any other subsequence in the dataset (a 

discord), whereas if it has a close to zero value, it is a repeated pattern (a 

motif).  

The following plot24 depicts the matrix profile of an example time series. Low 

values correspond to repeated patterns. 

 

Matrix profile index A matrix profile index of a time series 𝑇 is a vector that stores at each 

position 𝑖 the index of the nearest neighbour of the subsequence 𝑇𝑖,𝑚. In 

other words, it stores the starting position of the subsequence that is most 

similar to 𝑇𝑖,𝑚. 

6.2 The matrix profile as a measure of energy consumption predictability 

If we calculate the coefficient of variation (i.e. the standard deviation divided by the mean) of the 

energy consumption of DB1 and DB2, we get similar results: 0.35 and 0.36. In this sense, one could 

argue that these two buildings are equally easy or difficult to predict. However, a different way of 

evaluating the predictability of these two buildings is by looking at the matrix profile values of their 

energy consumption. 

The diagram in Figure 6.1 presents the matrix profile values of all the subsequences in the 

consumption data of DB1 that: (a) have length 𝑚 that corresponds to one day (this means that 𝑚 =

24 for hourly data or 𝑚 = 96 for 15-min data), and (b) start at 00:00 hours, so that to only compare 

subsequences that span a full day’s period. The plot of Figure 6.1 corresponds to the matrix profile of 

 
24 Chin-Chia Michael Yeh, Towards a Near Universal Time Series Data Mining Tool: Introducing the Matrix 
Profile, University of California, Riverside, USA, 2018  
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a very well behaved building. Most values are low and only a few peaks are present. This implies that 

a lot of daily consumption profiles are similar to each other, and only a few of them are very 

different. The coefficient of variation of the matrix profile values is 0.21. 

 

 

Figure 6.1: The daily matrix profile for the demo building #1 

In contrast, the plot of Figure 6.2 indicates a much more challenging building to work with. It is the 

matrix profile values of the consumption data of DB2. The coefficient of variation of the matrix profile 

values is 0.65, which is three time higher than the one for DB2. 

 

Figure 6.2: The daily matrix profile for the demo building #2 

6.3 Categorization of a building’s consumption profiles 

In this subsection, we present a method for the categorization of a building’s consumption profiles 

according to their similarity to a small number of recurring patterns that can be found in the available 

dataset. The key idea behind the proposed method is to identify a small number of recurring patterns 



SENSEI                                                                                    H2020 project – Grant agreement nº 847066 
 

Deliverable D7.1 – Methods for the dynamic M&V of energy savings                                                           Page 56 

that are very dissimilar to each other and can be used as points of reference for comparing all the 

remaining consumption profiles found in the dataset.  

However, categorizing load profiles is useful for exploratory purposes but not for prediction. 

Accordingly, the proposed method aims at finding a way to rearrange the calendar structure of the 

building’s data consumption so that similarity in load profiles can be translated into a similarity 

measure for time-based features that are only available during prediction time, such as the day of the 

week and the month of the year. The quality of the similarity measure can be evaluated, so that if it is 

low – i.e. the method fails to identify consistent rules for mapping recurrent profiles to specific times 

of the year – the practitioners can fall back to a different M&V approach that uses the existing 

calendar structure of the data. 

The method can be applied on complete daily profiles or on any number of non-overlapping daily 

intervals. For demonstration purposes, the electricity consumption of the DB1 is split the into three 

(3) non-overlapping 8-hour intervals: 00:00-08:00, 08:00-16:00 and 16:00-00:00, and then the 

proposed method is applied on each and every interval, while for DB2, the method is applied on the 

complete daily profiles. 

6.3.1 Demo building #1 

Identify a small number of recurring patterns that are very dissimilar to each other 

The daily consumption profiles of the DB1 are presented in the plot of Figure 6.3. It is possible to 

visually spot at least two different daily patterns: one where the high-load period spans from 09:00 to 

20:00, and one where the high-load period spans from 09:00 to 13:00. 

 

Figure 6.3: The consumption profiles of the demo building #1 

The day typing process begins by calculating the matrix profile of the energy consumption data for a 

subsequence length 𝑚 that corresponds to 8 hours, and isolating the matrix profile values of all the 
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subsequences that start at 00:00 hours. Then, the reference patterns are identified through the 

sequence outlined next: 

Step 1: Find the minimum value in the matrix profile. The proposed approach builds on the fact that 

values of the matrix profile that are close to zero indicate a repeated pattern. The subsequence with 

the smallest value in the matrix profile of all the subsequences that start at 00:00 hours is presented 

in Figure 6.4. This is the 1st selected reference pattern (prototype). 

 
Figure 6.4: The 00:00-08:00 subsequence with the lowest matrix profile value 

Step 2: Compute the distance of the selected reference pattern with respect to all the subsequences 

in the time interval under study. The result measures how similar each 00:00-08:00 subsequence in 

the time series is to the currently selected pattern (i.e. the one depicted in Figure 6.4 above). The fact 

that we only care about subsequences that start at 00:00 hours protects us from trivial matching. 

Trivial matching renders pattern detection meaningless25, so when comparing two subsequences 

they should not match if they overlap. We store the distances from the first selected pattern into an 

array (denoted as 𝑑𝑖𝑠𝑡_𝑚𝑝). 

Step 3: Compute a relative matrix profile by dividing the original matrix profile data with 𝑑𝑖𝑠𝑡_𝑚𝑝. 

The intuition is that if a subsequence has a very close nearest neighbour (i.e. a very low matrix profile 

value), but is very different from the selected reference pattern, then its value in the relative matrix 

profile should be also very low since when we compute the relative matrix we divide an already small 

number by a large one (Zhu et al. 2020)26.  

Step 4:  Find the 8-hour subsequence that corresponds to the minimum value in the relative matrix 

profile. This is the 2nd selected pattern.   

 
25 Keogh E. and Lin J. (2005) “Clustering of time-series subsequences is meaningless: implications for previous 
and future research,” Knowledge and Information Systems, vol. 8, no. 2, pp. 154–177 
26 Zhu, Y., Gharghabi, S., Silva, D.F. et al. (2020) “The Swiss army knife of time series data mining: ten useful 
things you can do with the matrix profile and ten lines of code,” Data Mining and Knowledge Discovery 34, pp. 
949-979, https://doi.org/10.1007/s10618-019-00668-6  

https://doi.org/10.1007/s10618-019-00668-6
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Step 5: Compute the distance of the new reference pattern with respect to the consumption time 

series, and update the 𝑑𝑖𝑠𝑡_𝑚𝑝 array with the element-wise minimum between 𝑑𝑖𝑠𝑡_𝑚𝑝 and the 

aforementioned distance. In other words, we use 𝑑𝑖𝑠𝑡_𝑚𝑝 to store the distance between every 

subsequence and its closest match among all the patterns selected so far. 

Step 6: Recalculate the relative matrix profile by dividing the original matrix profile data with the 

updated 𝑑𝑖𝑠𝑡_𝑚𝑝 array, and repeat from Step 4. 

In order to filter out redundant patterns, we want to keep minimizing at every step of this iterative 

process the squared maximum mean discrepancy (MMD) between the distribution of the energy 

consumption in the selected prototypes and the distribution of the energy consumption in all data. 

The closer the squared MMD is to zero, the better the distribution of the prototypes fits the data. 

The squared MMD is calculated as: 

𝑀𝑀𝐷2 =
1

𝑚(𝑚 − 1)
∑ 𝑘(𝑧𝑖 , 𝑧𝑗)

𝑚

𝑖,𝑗=1

−
2

𝑚𝑛
∑ 𝑘(𝑧𝑖 , 𝑥𝑗)

𝑚,𝑛

𝑖,𝑗=1

+
1

𝑛(𝑛 − 1) 
∑ 𝑘(𝑥𝑖 , 𝑥𝑗)

𝑛

𝑖,𝑗=1

 (6.1) 

where: 

𝑚 The number of all prototypes selected after each iteration 

𝑛 The number of all daily profiles 

𝑧 A matrix with all prototypes 

𝑥 A matrix with all daily profiles 

𝑘(∙) A kernel function. We use the radial basis function kernel27. 

The plot in Figure 6.5 shows the progression of the squared MMD as we add more prototypes. The 

first observation of the plot corresponds to two (2) prototypes already selected (we cannot calculate 

the MMD with only one prototype). We stop the prototype selection process the first time the MMD 

drops below 0.2. 

 
Figure 6.5: The progression of the squared MMD as we add more prototypes 

 
27 https://en.wikipedia.org/wiki/Radial_basis_function_kernel  

https://en.wikipedia.org/wiki/Radial_basis_function_kernel
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The reference pattern of Figure 6.4 and the additional patterns selected by the aforementioned 

process are presented in Figure 6.6 below. 

 

Figure 6.6: The selected reference profiles for the 00:00-08:00 interval after each iteration 

Translate profile similarity to temporal proximity 

Since consumption data is only available during the training of the predictive model, our goal is to 

translate the information about consumption profile similarity into information that can be 

constructed using daily-level data that is only available during prediction time: 

▪ Day of the week: An ordinal feature taking values from 0 (Monday) to 6 (Sunday); 

▪ Month of the year: An ordinal feature taking values from 1 to 12. 

This implies that daily profile categories are useful only if they are predictable. In other words, they 

are useful if it is possible to explain the association of each observation in the dataset with its 

category given only features that can be constructed without access to the actual consumption data.  

To this end, the proposed methodology makes use of distance metric learning. Distance metric 

learning aims at automatically constructing task-specific distance metrics from (weakly) supervised 

data. In this case, the derived distance metric is just a function that gets the aforementioned time-

based features as inputs and returns the similarity in the respective load shapes. The underlying 

algorithm28 has access to a set of positive and negative pairs of daily profiles, and its goal is to learn a 

distance metric that puts positive pairs close together and negative pairs far away. The construction 

of these pairs takes place at the same time that the prototypes are selected; positive pairs are 

constructed from profiles that are both similar to a given prototype, whereas negative pairs include 

one profile that is similar to a given prototype and one that is not.   

According to the standard approach for model evaluation, part of the pairs is used for training the 

distance metric learning algorithm and part is used for evaluating its performance on unseen data. 

 
28 Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon (2007) “Information-theoretic 
metric learning,” In Proceedings of the 24th international conference on Machine learning (ICML '07), pp. 209–
216 
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For the evaluation, we test whether given the time information of two observations (day of week and 

month of year), the model can accurately predict whether their load profiles are similar or not. A 

practitioner can treat it as a binary classification problem, and if the accuracy is close or lower than 

0.70, a different than the proposed modelling approach can be pursued. The balanced accuracy score 

for the DB1 was 0.93. 

The learned distance function is utilized for categorizing the daily profiles into different clusters. 

However, clustering is ambiguous; different parameters of a clustering algorithm lead to different 

clusters. Accordingly, the proposed approach identifies the parameters of the clustering algorithm as 

part of the prediction problem. In other words, the clustering parameters are treated as 

hyperparameters to be optimized for optimal prediction accuracy. 

If we manipulate the parameters of the clustering algorithm so that to produce three (3) clusters, we 

get the clusters of Figure 6.7. The red border denotes the interval over which the categorization has 

taken place. 

 

Figure 6.7: Categories into which the profiles of the 00:00-08:00 interval can be distinguished 

In addition, the plot in Figure 6.8 shows how these three (3) categories are distributed throughout 

the year.  
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Figure 6.8: Yearly distribution of the categories of the 00:00-08:00 interval 

From Figure 6.8 it can be seen that the proposed methodology focuses on load shape similarity 

rather than load level similarity. The prediction stage is responsible for capturing how the month, the 

day of the week, the hour of the day and the outdoor temperature can explain the variability of the 

consumption in each category. 

By iteratively applying the prototype selection process already outlined for the 00:00-08:00 case, we 

identify the reference patterns for the 08:00-16:00 interval as presented in Figure 6.9. 

 

Figure 6.9: The selected reference profiles for the 08:00-16:00 interval after each iteration 

If we again aim at three (3) clusters, the categorization of all consumption profiles for the 08:00-

16:00 interval is presented in Figure 6.10 below. 
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Figure 6.10: Categories into which the profiles of the 08:00-16:00 interval can be distinguished 

The plot in Figure 6.11 shows how these three (3) categories are distributed throughout the year.  

 

 

Figure 6.11: Yearly distribution of the categories of the 08:00-16:00 interval 

Finally, if we again aim at four (4) clusters, the categorization of all consumption profiles for the 

16:00-00:00 interval is presented in Figure 6.12 below. 
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Figure 6.12: Categories into which the profiles of the 16:00-00:00 interval can be distinguished 

The plot in Figure 6.13 shows how these four (4) categories are distributed throughout the year.  

 

Figure 6.13: Yearly distribution of the categories of the 16:00-00:00 interval 

6.3.2 Demo building #2 

Identify a small number of recurring patterns that are very dissimilar to each other 

The daily consumption profiles of the DB2 are presented in the plot of Figure 6.14. It is possible to 

visually spot at least two different daily patterns: one where the high-load period spans from 08:00 to 

16:00 and one where the energy consumption is more or less flat. 
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Figure 6.14: The consumption profiles of the demo building #2 

The plot in Figure 6.15 shows the selected prototypes.  

 

Figure 6.15: The selected prototypes for demo building #2 

If we aim at ten (10) clusters, the categorization of all consumption profiles of DB2 is presented in 

Figure 6.16 below. 
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Figure 6.16: Categories into which the profiles of the demo building #2 can be distinguished 

Finally, plot in Figure 6.13 shows how these ten (10) categories are distributed throughout the year.  
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Figure 6.17: Yearly distribution of the categories of demo building #2 
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7 The SENSEI workflow for baseline model development  

7.1 The formulation of the predictive model 

The proposed model for M&V is a composition of two (2) distinct ones: 

▪ A clustering model that associates an observation with a daily profile category given only daily-

level data:  

o Day of the week: An ordinal feature taking values from 0 (Monday) to 6 (Sunday); 

o Month of the year: An ordinal feature taking values from 1 to 12. 

▪ A regression model that aims at predicting the hourly energy consumption given the daily profile 

category and: 

o Day of the week: An ordinal feature taking values from 0 (Monday) to 6 (Sunday); 

o Hour of day: An ordinal feature taking values from 0 to 23; 

o The current temperature. 

The regression model is a gradient boosted decision tree one. The parameters of the clustering 

algorithm are defined in such a way that the regression model minimizes its error on a hold-out / 

testing dataset. In other words, clustering is task-specific and aims at improving predictive capability. 

The distance function that the clustering algorithm employs is the one constructed during the day 

typing stage. 

7.2 The evaluation of the predictive model 

The quantification of the fitness metrics utilizes a cross-validation approach. The following table 

summarizes the results when applying the model of the data of DB1. 

 𝑪𝑽(𝑹𝑴𝑺𝑬) 𝑵𝑴𝑩𝑬 

00:00 - 08:00 12.3% -0.38% 

08:00 - 16:00 13% 0.15% 

16:00 - 00:00 15% 0.06% 

ASHRAE Guideline 14 

requirements 

< 20% < ±0.5% 

 

Moreover, the plot in Figure 7.1 shows the relation between actual and predicted consumption of 

DB1 for the 08:00-16:00 interval. 
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Figure 7.1: The relation between actual and predicted consumption of demo building #1 

The evaluation results for the DB2 are: 

 𝑪𝑽(𝑹𝑴𝑺𝑬) 𝑵𝑴𝑩𝑬 

00:00 - 23:00 22.8% -0.08% 

ASHRAE Guideline 14 

requirements 

< 20% < ±0.5% 

 

The predicted and actual consumption for DB2 is depicted in Figure 7.2.  

 

Figure 7.2: The predicted and actual consumption for demo building #2 for 2016 

Since the results for the DB2 are marginally acceptable, we can evaluate its generalization capability 

by testing it on the dataset for 2017. For what is worth, the results are slightly better: 

 𝑪𝑽(𝑹𝑴𝑺𝑬) 𝑵𝑴𝑩𝑬 

00:00 - 23:00 18% -0.05% 

ASHRAE Guideline 14 

requirements 

< 20% < ±0.5% 
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The plot of Figure 7.3 shows the relation between actual and predicted consumption of DB2 for the 

2017, while Figure 7.4 shows the predicted and actual consumption for the same year.  

 

Figure 7.3: The relation between actual and predicted consumption of demo building #2 

 

Figure 7.4: The predicted and actual consumption for demo building #2 for 2017 

7.3 Constructing uncertainty intervals  

Given a feature matrix 𝑋𝑛+1 for a new test data point, our goal is to construct a prediction interval 

𝐶(𝑋𝑛+1) that is likely to contain the true value of the unknown response 𝑌𝑛+1. If the estimation for 

 𝑌𝑛+1 is �̂�𝑛+1, and the desired miscoverage rate is 𝑎 (or alternatively, the desired confidence level 

is 1 − 𝑎), this goal can be stated as: 

find 𝐶(𝑋𝑛+1):  𝑃{𝑌𝑛+1 ∈ 𝐶(𝑋𝑛+1)} ≥ 1 − 𝑎 (7.1) 

An obvious, but naive, approach for constructing prediction intervals is to assume that the in-sample 

errors (𝑒𝑖 = |𝑌𝑖 − �̂�𝑖| for 𝑖 = 1, . . . , 𝑛) can be treated as a reliable representation of the model’s 

predictive uncertainty. However, using the errors of predictions on data that the model has already 

used for its training is an unreliable approach since the distribution of these errors is often biased 
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downwards, i.e. the errors on the training data points are typically smaller than the errors on 

previously unseen test points. 

An alternative approach for constructing prediction intervals is to split the training dataset into a part 

that is used only for the training of the predictive model (called the proper training dataset) and a 

part that is used for calculating the out-of-sample errors (the calibration dataset). Schematically, this 

approach (commonly referred to as split conformal prediction) is summarized in Figure 7.5 below. 

 

Figure 7.5: Outline of the split conformal prediction approach 

The relevant algorithm includes the following steps29: 

(1) Randomly split the indices of the training dataset {1, … , 𝑛} into two subsets: the proper training 

set 𝐼1 and the calibration set  𝐼2. The size of the calibration set 𝑚 should only correspond to a 

small portion of the training set (i.e. 𝑚 ≪ 𝑛), as in the opposite case the removal of these 

examples will result in a significant reduction to the predictive ability of the underlying model 

and, consequently, to wider prediction intervals. A common choice is 𝑚 = 0.25 × 𝑛.  

(2) Train the predictive model using the proper training dataset and calculate the prediction errors 

using the calibration dataset: 

𝑒𝑖 = |𝑌𝑖 − �̂�𝑖| for 𝑖 ∈ 𝐼2 

These errors represent one of the ways to measure the nonconformity score of each 

 
29 Papadopoulos, H., Proedrou, K., Vovk, V., and Gammerman, A. (2002) “Inductive confidence machines for 
regression,” In Lecture notes in computer science: Vol. 2430, Proceedings of the 13th European conference on 
machine learning, pp. 334–356 
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instance (𝑋𝑖 , 𝑌𝑖), 𝑖 ∈ 𝐼2. The nonconformity score reflects the strangeness of each instance 

compared to the rest of the dataset. 

(3) Construct the prediction intervals as: 

𝐶(𝑋𝑛+1) = [�̂�𝑛+1 − 𝑞𝑒 (
𝑎

2
) ,  �̂�𝑛+1 + 𝑞𝑒 (1 −

𝑎

2
)] (7.2) 

where 𝑞𝑒(𝑖) is the 𝑖% quantile of the errors. 

If the underlying predictive model has a skewed error distribution, using the absolute value of the 

errors for calibration should be avoided since it is possible for one of the boundaries to become 

overly optimistic, while the other becomes overly pessimistic30. To approximate the skewed error 

distribution of the underlying model, one can use a nonconformity measure based on the signed 

error of the model: 

𝑒𝑖 = 𝑌𝑖 − �̂�𝑖   for 𝑖 ∈ 𝐼2 

In this case, we could define the prediction intervals at a given confidence level as: 

𝐶(𝑋𝑛+1) = [�̂�𝑛+1 + 𝑞𝑒 (
𝑎

2
) ,  �̂�𝑛+1 + 𝑞𝑒 (1 −

𝑎

2
)] (7.3) 

The approach that is utilized by the SENSEI model embeds the aforementioned steps into the cross-

validation process. During cross-validation, the model is fitted onto a part of the available dataset 

(the training part) and it is evaluated on another (the evaluation part). All the errors in all the 

evaluation parts are aggregated and an empirical cumulative probability distribution is fitted on 

them. This function provides the quantile values in (7.2) and (7.3).   

The plot of Figure 7.6 shows the actual consumption of DB1 during July of 2016 along with the 

uncertainty intervals for 95% and 99% confidence level. 

 
30 Linusson H., Johansson U., Löfström T. (2014) “Signed-Error Conformal Regression,” In: Tseng V.S., Ho T.B., 
Zhou ZH., Chen A.L.P., Kao HY. (eds) Advances in Knowledge Discovery and Data Mining, PAKDD 2014, Lecture 
Notes in Computer Science, vol 8443, Springer 
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Figure 7.6: Actual consumption and uncertainty intervals for July 2016  
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8 Conclusions 

This deliverable presented a workflow for M&V of energy savings that we believe can be useful to 

practitioners and help advance the state of play in terms of methods and toolkits. The presented 

workflow is modular so that each stage can be integrated with completely different predictive 

models than the one employed here.  

Although standards for M&V of energy savings already exist, they focus on high-level processes 

rather than specific tools and techniques; devising methods and criteria for evaluating concrete M&V 

tool chains is work that still remains to be done. Until then, and even as a way to accelerate the 

emergence of the necessary initiatives, we need to experiment with the fundamental calculations of 

M&V and the ways to understand and deal with its uncertainty. SENSEI aspires to fuel more testing 

and more experimentation in the field.     

Every plot and every result that was presented in this deliverable is completely reproducible. The 

relevant notebooks, as well as all the open source functionality that accompanies this deliverable can 

be found in the GitHub repository at https://github.com/hebes-io/eensight. 

 

https://github.com/hebes-io/eensight

