
Short-Lived Forward-Secure Delegation for TLS∗

Lukas Alber

lukas.alber@iaik.tugraz.at

Graz University of Technology

Graz, Austria

Stefan More

stefan.more@iaik.tugraz.at

Graz University of Technology

Graz, Austria

Sebastian Ramacher

sebastian.ramacher@ait.ac.at

AIT Austrian Institute of Technology

Vienna, Austria

ABSTRACT
On today’s Internet, combining the end-to-end security of TLS with

Content Delivery Networks (CDNs) while ensuring the authenticity

of connections results in a challenging delegation problem. When

CDN servers provide content, they have to authenticate themselves

as the origin server to establish a valid end-to-end TLS connection

with the client. In standard TLS, the latter requires access to the

secret key of the server. To curb this problem, multiple workarounds

exist to realize a delegation of the authentication.

In this paper, we present a solution that renders key sharing

unnecessary and reduces the need for workarounds. By adapt-

ing identity-based signatures to this setting, our solution offers

short-lived delegations. Additionally, by enabling forward-security,

existing delegations remain valid even if the server’s secret key

leaks. We provide an implementation of the scheme and discuss

integration into a TLS stack. In our evaluation, we show that an ef-

ficient implementation incurs less overhead than a typical network

round trip. Thereby, we propose an alternative approach to current

delegation practices on the web.

CCS CONCEPTS
• Security and privacy→Web protocol security; Key manage-
ment.

KEYWORDS
identity-based signatures; delegated credentials

1 INTRODUCTION
Transport Layer Security (TLS) [51] is the primary protocol for end-

to-end secure communication between two parties on untrusted

networks – and most importantly – on the Internet. It provides

confidentiality and authenticity of the transmitted payloads. Au-

thenticity of the endpoints and especially of the server is usually

established via certificates managed by a Public Key Infrastructure

(PKI) in the initial phase of the protocol, the handshake. In the pro-

cess, at least the server presents its certificate to the other party for

authentication.
1
Certificates themselves are digitally signed docu-

ments that bind a public key and validity information to an identity,

e.g., to a hostname. In the PKI deployed on the web, certificates are

signed by trusted third-parties called Certificate Authorities (CAs)

vouching for their validity.

To meet the demand for performance, scalability and security,

Content DeliveryNetworks (CDNs) are nowwidely deployed. CDNs

provide content mirrored from the origin server via surrogate

servers closer to the client. In other words, they are systems of

∗
This is the full version of a paper which appears in 2020 Cloud Computing Security

Workshop (CCSW ’20), November 9, 2020, Virtual Event, USA, ACM. https://doi.org/

10.1145/3411495.3421362

1
Other methods such as pre-shared keys are not of importance for this work.

TLS TLS

Client CDN ccsw.io
Origin Server

pk: 
CN: ccsw.io

Figure 1: Example network architecture of an origin server
using a Content Delivery Network (CDN). All communica-
tion over the Internet is secured usingTLS. The server grants
the right to act in its name to the CDN by sharing the secret
key sk𝑠𝑒𝑟𝑣𝑒𝑟 .

globally distributed servers that deliver content on behalf of web-

servers to users. For popular applications, a CDN reduces the load

on the origin servers, i.e., the webserver of the web application,

and allows applications to scale up to some extent as they grow

popular. A survey performed by Cisco Systems from 2017 until 2018

estimates that the data volume of the global CDN traffic will reach

252 exabytes per month in 2022 [25].

Since security requirements do not change when using a CDN,

CDNs need to serve an origin server’s content over TLS. Further,

as the web client needs to verify the identity of the server using a

certificate, the secret key counterpart of the public key is needed

to sign the TLS handshake for authentication. Thus, for a CDN to

share content on behalf of an origin server, the CDN needs access to

the secret key of the certificate bound to the origin server’s domain.

Since TLS – by design – currently lacks any form of delegation,

the easiest solution is to simply hand over the secret key to the

CDN. However, sharing the secret key constitutes a security loop-

hole as the owner of the domain loses control over the associated

certificate to a CDN. It makes more entities privy to the secret key

of a certificate and consequently increases the possibility of key

leakage. Furthermore, an origin server cannot constrain a CDN to

only respond to specific requests nor constrain a CDN from acting

without permission on its behalf. The delegation can also not be re-

voked without revoking the origin server’s certificate and rotating

keys. Suffice to say, such practices increases security risks in the

TLS ecosystem, as discussed in recent works [20, 45].

The practice of secret key sharing as illustrated in Figure 1 is also

known as Custom Certificate [45]. Together with Cruiseliner Cer-

tificates (or Shared Certificates) [20, 45] these practices are known

as “full delegation” [11, 46] in the literature. Cruiseliner Certificates

allow CDNs to manage the users’ certificates on their behalf. That

is usually done with certificates valid for multiple domains using

the Subject Alternative Name X.509 extension [54]. With these

1

ar
X

iv
:2

00
9.

02
13

7v
2 

 [
cs

.C
R

] 
 1

8 
N

ov
 2

02
0

https://doi.org/10.1145/3411495.3421362
https://doi.org/10.1145/3411495.3421362


Lukas Alber, Stefan More, and Sebastian Ramacher

types of certificates, the domain owners also loose control over

their certificates. Additionally, listing a set of domains in the same

certificate has implication on privacy, e.g., when it reveals internal

hostnames. Furthermore, it can enable customers, served using the

same certificate, to impersonate each other.

To give an estimation on how widespread such practices are

in practice, Cangialosi et al. [20] analyzed their use in 2016 and

reported that 76.5% of all organizations on the web share at least

one private key with third-party organizations such as CDNs. Some

of these third-party organizations are responsible for certificate

management, i.e., revocation and reissuing. Furthermore, ten of

such third-party organizations have the private keys of as much as

45.3% of all the sites on the web.

Delegation in TLS. Alternative approaches to avoid the security

issues of full delegation have been proposed over the years (cf.

[22] for a recent survey of delegation techniques). We will discuss

some approaches in the following. Liang et al. [45] carried out a

systematic study on the interplay between HTTPS and CDNs in

2014. On examination of 20 popular CDN providers and 10,721 of

their customers, they revealed various problems regarding practices

adopted by CDN providers, such as private key sharing, neglected

revocation, and insecure back-end communication. As a remedy,

they proposed a lightweight extension for DANE [35] to tackle the

delegation problem caused by the end-to-end nature of HTTPS

and the man-in-the-middle nature of CDNs. In short, the origin

server adds both its certificate and the CDNs certificate as its TLSA

records to DNS. On receiving the CDN’s certificate, the client rec-

ognizes the delegation if the CDN’s certificate appears in the origin

server’s TLSA record. However, the proposed solution by Liang

et al. requires changes to certificate validation on the client. Be-

sides, the extra roundtrip to retrieve the TLSA records during a TLS

handshake increases connection latency.

Cloudflare deployed Keyless SSL [59] to omit sharing of the

private keys. In short, Keyless SSL splits up the TLS handshake.

It allows to establish a TLS session to the CDN, while the private

key operations are outsourced to a key server (controlled by the

domain owner). Therefore, the domain owner can maintain control

of its private key and avoids full delegation of the key to the CDN

operator. Stebila et al. [58] examined the security and performance

of the approach. They found that performance slightly worsens.

Bhargavan et al. [10] demonstrated several new attacks on Keyless

SSL. They also presented a security definition for authenticated and

confidential channel establishment involving 3 parties to model

the additional key server, dubbed 3(S)ACCE-security, based on 2-

party ACCE security definitions that have been used in several

proofs for TLS [39, 42]. Furthermore, they proposed modifications

to Keyless SSL for TLS 1.2 achieving 3(S)ACCE-security guarantees.

Also, they strongly argued for a new design for Keyless TLS 1.3

which is computational lighter and requires simpler assumptions

than the proposed modifications of TLS 1.2.

Recently, Delegated Credentials (DeC) [5] have been proposed

to replace Keyless SSL. A DeC is a digitally signed data structure

that contains a validity period, and a public key along with the

signature algorithm. By signing the data structure, the origin server

delegates to the included public key. Integration into the TLS pro-

tocol happens via a specific TLS extension. DeC appear to be an

attractive proposition and are currently evaluated by Mozilla [38],

Cloudflare [60], and Facebook [33].

Chuat et al. [23] investigated the potential of proxy certificates

solving the long-standing problems of revocation and delegation

in the web PKI. In this case, holders of a non-CA certificate can

issue proxy certificates. Thereby, holders of a non-CA certificate

are able to delegated signing privileges to other entities in a fine-

grained manner. In case of a key compromise, Chuat et al. claim

that limiting the proxy certificate’s lifetime to an arbitrary short

timespan may curb problems of revocation.

Name Constraints is an extension to X.509 certificates [26] which

defines the namespace for which all subsequent certificates below

the certificate that defines the Name Constraints extension must

reside. Since Name Constraints can only be used in a CA certificate,

a root CA can issue an intermediate CA certificate to the origin

server that allows the origin server to issue child certificates limited

to hostnames in its restricted namespace. However, Liang et al. [45]

showed that name constraints have poor support in browsers, and

when not properly checked, allow the origin server to create and

use certificates that are not restricted to its namespace.

In a different work [22], Chuat et al. proposed a 19-criteria frame-

work for characterizing those revocation and delegation schemes.

Further, they propose that combining short-lived DeC or proxy

certificates with functional revocation may curb several of these

problems in web PKI.

Finally, we want to mention approaches such as STYX [67] which

require the presence of trusted execution environments such as

Intel SGX. Due to wide range of attacks against such systems, e.g.,

[17, 18, 55], we do not consider them as a viable approach.

Delegation and Multi-Entity Communication in Other Protocols.
Various types of delegations are also interesting for other protocols

besides TLS or variants of TLS for special use-cases. Kogan et al.

developed Guardian Angel, a delegation agent, to solve the problem

of delegation in SSH [41]. The system allows a user to choose which

delegate systems can run commands on which servers.

Naylor et al. [49] developed mcTLS, which extends TLS to sup-

port middleboxes. mcTLS allows TLS endpoints (i.e., clients and

webservers) to introduce middleboxes in secure end-to-end con-

nection while restricting what the middleboxes can read or write.

However, Bhargavan et al. [9] show that mcTLS is insecure and

susceptible to a class of attack called middlebox confusion attacks.

They suggested a provable secure alternative to mcTLS avoiding

the middlebox confusion issue. Cho et al. [21] proposed D2TLS, a
mutual authentication agent that helps cloud-based IoT devices

set up secure connections by leveraging the session resumption

in DTLS [52] while keeping the device’s secret key secure. D2TLS
requires a change to the IoT device, and it is only capable of mutual

authentication.

Wagner et al. [65] discuss the application of delegation schemes

in trust management. They propose a scheme similar to DeC, which

uses a XML structure to define generic constraints of the delegation.

Delegation in Cryptography. While standard signature and public-

key encryption schemes are not designed to allow delegation of any

kind, the introduction of identity-based cryptography [31, 34, 56]

started an exciting avenue that enables delegation of signing and en-

cryption rights. While literature usually formulates identity-based

2



Short-Lived Forward-Secure Delegation for TLS

systems without public keys, the public parameters are often inter-

preted as a public key. From this viewpoint, (hierarchical) identity-

based systems enable delegation based on the identities and can be

managed per public key. For encryption, such fine-grained control

is, for example, achieved by attributed-based encryption [32], func-

tional encryption [15], and fully puncturable encryption [29] built

on ideas found in hierarchical identity-based encryption schemes

such as the one of Boneh, Boyen and Goh [12].

Interestingly, there is a close connection between identity-based

encryption and signatures. Naor described and Boneh and Franklin

later sketched [13] a transformation that turns secure identity-

based encryption scheme into an unforgeable signature scheme.

This observation can be generalized to (hierarchical) identity-based

signature schemes: any hierarchical identity-based encryption [31]

scheme with ℓ + 1 levels implies a hierarchical identity-based sig-

nature scheme with ℓ levels (cf. [40]). Alternatively, identity-based

signatures can also be obtained generically from two standard signa-

ture schemes [8, 56]. This paradigm can also be extended to obtain

forward-secure identity-based signatures and identity-based proxy

signatures [30].

The latter, proxy signatures, were introduced by Mambo et

al. [46]. Their goal is also to allow the delegation of signing rights.

There, the verifier checks that the signature was signed by the

proxy and that signing rights were delegated to the proxy. Similar

to identity-based signatures, they can be built from standard sig-

nature schemes [11]. While proxy signatures have a long history,

including paring- and lattice-based constructions [16, 44], they have

not seen much adaption in the context of TLS. As noted before,

Chuat et al. [22] propose them as one approach to fix the delegation

issue in TLS.

1.1 Our Contribution
The goal of our research is to address delegation between the origin

server and the CDN. A good solution to the problem should fulfill

the following requirements: (1) Private keys must be kept private

to the origin server, and the origin server must retain control over

the private key. Thereby, compromise of keys outside of the origin

server’s control is mitigated. (2) The origin server should be able

to delegate signing privileges in a fine-grained manner. That is,

regardless of the possible choices of CDNs, the origin server is able

to delegate keys on a per CDN basis, where one delegation does not

prohibit further delegations. (3) The origin server should be able

to decide the validity period of the delegation. Even if the origin

server prefers short validity periods, the overhead of the delegation

should stay minimal. (4) Furthermore, the origin server’s private

key should be equipped with forward-security features to reduce

the overall risk. Thereby, even if the server’s private key leaks,

delegations that occurred before the leak remain valid. (5) Finally,

support for such a system should not require specific hardware such

as trusted execution environments and Intel SGX to be present.

In this work, we provide a solution following the proposal of

Chuat et al. [22] on a cryptographic level. In contrast to the emerg-

ing paradigm of Delegated Credentials (DeC), our approach does

not delegate to a different key pair, but instead derives constrained

secret keys for the existing key pair. To do so, we investigate vari-

ants of identity-based signatures which we equip with additional

features. Specifically, we extend them with an epoch that fixes

identity-based delegations to a specific time-span, forming a scheme

called time-bound identity-based signatures (TBIBΣ). Thereby, the
origin server delegates signing rights with respect to the origin

server’s public key to the CDN. However, the key is only valid for a

certain time period. If the origin server later decides that the CDN

should no longer be able to establish TLS connections using the

origin server’s certificate, it suffices to no longer provide delegated

keys of forthcoming epochs to the CDN. It is not necessary for the

origin server to entirely revoke keys and obtain fresh certificates.

Short-lived delegations therefore represent an alternative approach

to revocation [50, 62].

Furthermore, we provide a forward-secure version of time-bound

identity-based signatures. Contrary to forward-secure identity-

based signatures, delegated keys stay bound to a specific time period.

In our case, forward-security is provided for the master secret key

kept by the origin server by applying a technique introduced by

Canetti, Halevi and Katz [19].

To underline the practicability of our approach, we provide im-

plementations and benchmarks of the proposed schemes. Specifi-

cally, we show that while usage of the scheme would incur a small

overhead, the runtime overhead of an optimized implementation

is below typical network round trip times. Therefore, the perfor-

mance impact on TLS is small. This observation is confirmed by an

integration of the scheme into a TLS stack. We thereby also show,

that the changes to get the approach implemented in a TLS stack

were limited to typical steps when adding a new signature scheme.

Finally, we note that our scheme is not limited to managing

delegations with CDNs. Without any changes, it can be applied

to scenarios where website providers serve content from multiple

servers themselves. Instead of distributing the private key to every

server, delegating keys to the web servers from a central key server

helps to significantly reduce the risk of leaking the secret key.

2 PRELIMINARIES
In this section, we briefly recall some notions of identity-based

signature schemes.

2.1 Hierarchical Identity-Based Signatures
(Hierarchical) Identity-based signature schemes [31] extend the

standard notion of signature schemes (cf. Appendix A) with an

additional key delegation algorithm Del to support the delegation

of signing rights based on identities. Verify takes the identities as

an additional argument, and verification only succeeds if the key

used during signing was delegated for those particular identities.

We briefly recall the formal definition and adapt them for the multi-

instance setting.

Definition 2.1. A hierarchical identity-based signature scheme

(HIBS) consists of PPT algorithms (Setup,Gen,Del, Sign,Verify)
such that:

Setup(1^ , ℓ) : On input of security parameter ^ and hierarchy pa-

rameter ℓ , outputs public parameters pp.
Gen(pp) : On input of public parameters pp, outputs a master

signing key skY and a verification key pk with message spaceM.

3



Lukas Alber, Stefan More, and Sebastian Ramacher

The experiment has access to the following oracles:

Del′(skY , id) : Stores id in QID and returns Del(skY , id).
Sign′(sk, id,𝑚) : This oracle computes skid ← Del(skY , id),
𝜎 ← Sign(skid ,𝑚), adds𝑚 to Q, and returns 𝜎 .

Experiment Expeuf-cma
HIBS,𝐴 (^, ℓ)

pp← Setup(1^ , ℓ), (pk, sk) ← Gen(pp)
(𝑚∗, id∗, 𝜎∗) ← 𝐴Del′ (skY , ·),Sign′ (skY , ·, ·) (pk)
if Verify(pk, id∗,𝑚∗, 𝜎∗) = 0, return 0

if𝑚∗ ∈ Q, return 0

if ∃id ∈ QID such that id is a prefix of id∗, return 0

return 1

Experiment 1: The EUF-CMA experiment for a hierarchical
identity-base signature scheme HIBS.

Del(skid′, id) : On input of secret key skid′ and id ∈ ID≤ℓ , out-
puts a secret key skid for id iff id ′ is a prefix of id, otherwise
skid′ .

Sign(skid ,𝑚) : On input of a secret key skid and a message𝑚 ∈ M,

outputs a signature 𝜎 .

Verify(pk, id,𝑚, 𝜎) : On input of a public key pk, an identity id ∈
ID≤ℓ , a message𝑚 ∈ M and a signature 𝜎 , outputs a bit 𝑏.

Below, we present the standard existential unforgeability under

adaptively chosen message attacks (EUF-CMA security) notion. It

extends the standard notion of EUF-CMA security for signature

schemes by allowing the adversary to query keys for identities as

long as they are not prefixes of the target identity.

Definition 2.2 (EUF-CMA). For any PPT adversary 𝐴, we define

the advantage in the EUF-CMA experiment Expeuf-cma
HIBS,𝐴 (cf. Experi-

ment 1) as

Adveuf-cma
HIBS,𝐴 (^) := Pr

[
Expeuf-cma

HIBS,𝐴 (^) = 1

]
.

A signature scheme Σ is EUF-CMA-secure, if Adveuf-cma
Σ,𝐴 (^) is a

negligible function in ^ for all PPT adversaries 𝐴.

2.2 Naor Transform: Signatures from
Identity-Based Encryption

Based on transformfirst proposed byNaor [13], hierarchical identity-

based signature can be obtained from hierarchical identity-based en-

cryption (HIBE) [31], a generalization of identity-based encryption

(IBE) [13]. These encryption schemes enable delegation of decryp-

tion rights based on identities in a hierarchical fashion. Identities at

some level can delegate secret keys to its descendant entities, but

cannot decrypt ciphertexts intended for other (hierarchical) identi-

ties. Before we discuss the Naor transform, we recall a definition of

HIBEs supporting multiple instances (cf. [29]) below.

Definition 2.3 (HIBE). An hierarchical identity-based encryption

(HIBE) schemewithmessage spaceM and identity spaceID≤ℓ , for
some ℓ ∈ N, consists of the PPT algorithms (Setup,Gen,Del, Enc,Dec):
Setup(1^ , ℓ) : On input of security parameter ^ and hierarchy pa-

rameter ℓ , outputs public parameters pp.
Gen(pp) : On input of public parameters pp, outputs a keypair

(pk, skY ).

The experiment has access to the following oracles:

Del1 (skY , id) : Stores id in Q and returns Del(skY , id).
Del2 (skY , id) : This oracle checks whether id is a prefix of id∗ and
returns ⊥ if so. Otherwise it returns Del(skY , id).

Experiment Exphibe-ind-cpaHIBE,𝐴 (^, ℓ)
pp← Setup(1^ , ℓ), (pk, skY ) ← Gen(pp), 𝑏←$ {0, 1}
(id∗,𝑚0,𝑚1, st) ← 𝐴Del1 (skY , ·) (pk)
if ∃id ∈ Q such that id is a prefix of id∗, return 0

if𝑚0,𝑚1 ∉M or |𝑀0 | ≠ |𝑀1 |, return 0

𝑏∗ ← 𝐴Del2 (skY , ·) (st, Enc(pk, id∗,𝑚𝑏 ))
if 𝑏 = 𝑏∗ return then 1, else return 0

Experiment 2: The HIBE-IND-CPA experiment for a HIBE
scheme.

Del(skid′, id) : On input secret key skid′ and id ∈ ID≤ℓ , outputs
a secret key skid for id iff id ′ is a prefix of id, otherwise skid′ .

Enc(pk, id,𝑚) : On input of a public key pk, a message 𝑚 ∈ M
and an identity id ∈ ID≤ℓ , outputs a ciphertext 𝑐id for id.

Dec(skid′, 𝑐id ) : On input of a secret key skid′ and a ciphertext 𝑐id ,

outputs𝑚 ∈ M ∪ {⊥}.

For correctness, we require that all secret keys that are delegated

for the identity (or a prefix) associated to a ciphertext, are able to

decrypt it. More formally, we require for all ^, ℓ ∈ N, all pp ←
Setup(1^ , ℓ), all (pk, skY ) ← Gen(pp), all 𝑚 ∈ M, all id, id ′ ∈
ID≤ℓ where id ′ is a prefix of id, all skid ← Del(skid′, id), all
𝑐id ← Enc(pk, id,𝑚), Dec(skid , 𝑐id ) =𝑚 holds.

Next we recall the standard security notion of indistinguishabil-

ity under chosen ciphertext attacks. Here an adversary chooses a

target identity and two messages and may query keys for identi-

ties as long as the queries identities are not a prefix of the target

identity. Then, given the encryption of one of the two messages

under the target identity, the adversary needs to determine which

message was encrypted. The adversary should not be able to win

this experiment better than guessing.

Definition 2.4. For any PPT adversary𝐴, we define the advantage

in theHIBE-IND-CPA experiment Exphibe-ind-cpaHIBE,𝐴 (cf. Experiment 2)

as

Advhibe-ind-cpaHIBE,𝐴 (^, ℓ) :=
����Pr [Exphibe-ind-cpaHIBE,𝐴 (^, ℓ) = 1

]
− 1

2

���� ,
for an integer ℓ ∈ N. AHIBE isHIBE-IND-CPA-secure, ifAdvhibe-ind-cpaHIBE,𝐴
(^, ℓ) is a negligible function in ^ for all PPT adversaries 𝐴.

Subsequently, we provide a concrete HIBE construction on bi-

linear groups and, in particular, present a variant of the Boneh-

Boyen-Goh (BBG) HIBE [12] with an explicit Setup algorithm to

generate shared parameters in Scheme 1. We choose to instantiate

our approach using asymmetric bilinear groups in the type 3 setting

as they represent the state-of-the-art regarding efficiency and simi-

larity of the security levels of the base and target groups. Let BGen
be an algorithm that, on input a security parameter 1

^
, outputs

BG = (𝑝, 𝑒,G1,G2,G𝑇 , 𝑔, 𝑔) ← BGen(1^ ), where G1, G2, G𝑇 are

groups of prime order 𝑝 with bilinear map 𝑒 : G1 × G2 → G𝑇 and

generators 𝑔,𝑔 of G1 and G2, respectively.

4



Short-Lived Forward-Secure Delegation for TLS

Setup(1^ , ℓ) : Generate a bilinear group (𝑝, 𝑒,G1,G2,G𝑇 , 𝑔, 𝑔) ←
BGen(1^ ) and 𝑔2, 𝑔3, ℎ1, . . . , ℎℓ ←$ G1, fix a hash

function 𝐻 : {0, 1}∗ → Z∗𝑝 and return pp ←
(𝐻, 𝑝, 𝑒,G1,G2,G𝑇 , 𝑔, 𝑔, 𝑔2, 𝑔3, ℎ1, . . . , ℎℓ ).

Gen(pp) : Choose 𝛼 ←$ Z𝑝 and return (pk, sk) ← (𝑔𝛼 , 𝑔𝛼
2
).

Del(skid , id) : Parse id as (𝐼1, . . . , 𝐼𝑘 ) with 𝑘 ≤ ℓ ,

- If skid is the master secret 𝑔𝛼
2
, sample 𝑣←$ Z𝑝 and return (𝑔𝛼

2
·

(ℎ𝐻 (𝐼1)
1

· · ·ℎ𝐻 (𝐼𝑘 )
𝑘

· 𝑔3)𝑣, 𝑔𝑣, ℎ𝑣𝑘+1, . . . , ℎ
𝑣
ℓ
),

- else assume that skid is (𝑔𝛼
2
· (ℎ𝐻 (𝐼1)

1
· · ·ℎ𝐻 (𝐼𝑘−1)

𝑘−1 ·
𝑔3)𝑣

′
, 𝑔𝑣

′
, ℎ𝑣

′

𝑘
, . . . , ℎ𝑣

′
ℓ
) = (𝑎0, 𝑎1, 𝑏𝑘 , . . . , 𝑏ℓ ), sample 𝑤 ←$ Z𝑝

and output (𝑎0 ·𝑏𝐻 (𝐼𝑘 )𝑘
· (ℎ𝐻 (𝐼1)

1
· · ·ℎ𝐻 (𝐼𝑘 )

𝑘
·𝑔3)𝑤 , 𝑎1 ·𝑔𝑤 , 𝑏𝑘+1 ·

ℎ𝑤
𝑘+1, . . . , 𝑏ℓ · ℎ

𝑤
ℓ
).

Enc(pk, id,𝑚) : Parse id as (𝐼1, . . . , 𝐼𝑘 ) ∈ (Z∗𝑝 )𝑘 with 𝑘 ≤ ℓ , sample

𝑠←$ Z𝑝 , and return (𝐶1,𝐶2,𝐶3) ← (𝑒 (𝑔2, pk)𝑠 ·𝑚,𝑔𝑠 , (ℎ𝐻 (𝐼1)
1

· . . . ·
ℎ
𝐻 (𝐼𝑘 )
𝑘

· 𝑔3)𝑠 ).
Dec(skid , 𝑐id ) : Consider id = (𝐼1, . . . , 𝐼𝑘 ) with 𝑘 ≤ ℓ , parse

skid as (𝑎0, 𝑎1, 𝑏𝑘+1, . . . , 𝑏ℓ ), 𝑐id as (𝐶1,𝐶2,𝐶3). Return 𝑚 ←
𝐶1 · 𝑒 (𝐶3, 𝑎1) · 𝑒 (𝑎0,𝐶2)−1.

Scheme 1: HIBE-IND-CPA-secure version of the BBG HIBE.

We are now ready to recall the IBE-to-signature transformation

from Naor [13]: a signature on a message 𝑚 under skid is just a

HIBE secret key delegated for id ′ = (id∥𝑚) which is verified by

encrypting a random message for id ′ and then trying to decrypt it

using the key in the signature. More generally, it converts any level

ℓ + 1 HIBE to a level ℓ HIBS (cf. [40]) as depicted in Scheme 2. In

the special case with ℓ = 0, we obtain a signature scheme from an

IBE. Prominent signatures schemes that are based on this technique

includes BLS [14].

Setup(1^ , ℓ) : Let pp← HIBE.Setup(1^ , ℓ + 1) and return pp.
Gen(pp) : Run (pk, sk) ← HIBE.Gen(pp) and return (pk, sk).
Del(skid′, id) : Return skid ← HIBE.Del(skid′, id).
Sign(skid ,𝑚) : Parse id as id1, . . . , id𝑙 and return 𝜎 ←
HIBE.Del(sk, (id1, . . . , idℓ ,𝑚)).

Verify(pk, (id𝑖 )ℓ𝑖=1,𝑚, 𝜎) : Choose 𝑚′←$ HIBE.M and com-

pute 𝑐 ← HIBE.Enc(pk, (id1, . . . , idℓ ,𝑚),𝑚′). Return 1 if

HIBE.Dec(𝜎, 𝑐) =𝑚′, otherwise return 0.

Scheme 2: (Hierarchical identity-based) Signature scheme
obtained by applying Naor-transform to HIBE.

Theorem 2.5 ([27]). If HIBE is HIBE-IND-CPA secure and has a

message space that is exponentially large in the security parameter,

then Scheme 2 is EUF-CMA secure.

3 TBIBΣ: TIME-BOUND IDENTITY-BASED
SIGNATURES

In this section, we introduce a special-case of hierarchical identity-

based signatures: time-bound identity-based signatures. The scheme

keeps the identity-based delegationmechanism provided by identity-

based signatures, but at the same time it is modified to support an

epoch besides an identity. The epoch is designed to be used in a

way that the identity-based delegations are bound to a time period.

Thereby, even if one has received a delegated key, this key is not

useful before or after the corresponding period. Additionally, we

introduce the notion of forward-security for the master secret key

that is used for all delegations at almost no additional cost.

3.1 Syntax and Definitions
First we start with the syntax of time-bound identity-based signa-

tures. Therefore, we extend the definition of identity-based signa-

tures by adding an epoch to the sign and verification algorithms as

well as the delegation algorithm.

Definition 3.1 (Time-bound Identity-Based Signatures). A time-

bound identity-based signatures scheme TBIBΣ with identity-space

ID consists of the PPT algorithms (Gen, Sign,Verify,Del), which
are defined as follows:

Gen(1^ , 𝑛) : On input of a security parameter ^ and maximal num-

ber of epochs 𝑛, outputs a signing key sk and a verification key

pk with associated message spaceM.
2

Sign(sk𝑖,id ,𝑚) : On input of a secret key sk𝑖,id for an identity id ∈
ID and an epoch 𝑖 ∈ [𝑛] and a message 𝑚 ∈ M, outputs a

signature 𝜎 .

Verify(pk, 𝑖, id,𝑚, 𝜎) : On input of a public key pk, an identity id ∈
ID, an epoch 𝑖 ∈ [𝑛], a message 𝑚 ∈ M and a signature 𝜎 ,

outputs a bit 𝑏 ∈ {0, 1}.
Del(sk, 𝑖, id) : On input of a secret key sk, an identity id ∈ ID
and an epoch 𝑖 ∈ [𝑛], outputs a secret key sk𝑖,id .

Such a scheme is considered correct if for all security parameters

^ ∈ N and 𝑛 = 𝑛(^) ∈ N, for all (sk, pk) ← Gen(1^ , 𝑛), for all
id ∈ ID, for all 𝑖 ∈ [𝑛], for all extracted keys sk𝑖,id ← Del(sk, 𝑖, id),
for all𝑚 ∈ M, we have that

Pr

[
Verify(pk, 𝑖, id,𝑚, Sign(sk𝑖,id ,𝑚)) = 1

]
= 1.

For unforgeability, the standard security notion of EUF-CMA se-

curity is extended to cover the epoch for the delegation of keys. The

goal of the adapted notion is to have the adversary select a target

epoch and identity. The scheme is then considered unforgeable as

long as the adversary is unable to forge a signature for the selected

target epoch and identity – even if the adversary has access to keys

for the target identity for other epochs or keys for other identities.

Definition 3.2 (EUF-CMA). For any PPT adversary 𝐴, we define

the advantage in the EUF-CMA experiment Expeuf-cma
TBIBΣ,𝐴 (cf. Experi-

ment 3) as

Adveuf-cma
TBIBΣ,𝐴 (^, 𝑛) := Pr

[
Expeuf-cma

TBIBΣ,𝐴 (^, 𝑛) = 1

]
,

for an integer𝑛 ∈ N. A time-bound identity-based signature scheme

TBIBΣ is EUF-CMA-secure, if Adveuf-cma
TBIBΣ,𝐴 (^, 𝑛) is a negligible func-

tion in ^ for all PPT adversaries 𝐴.

Remark 1. Wenote thatwhile the syntax is very similar to forward-

secure identity-based signatures [30], the goals are different. In such

a signature scheme, the forward-security of keys is considered per

identity, i.e., each user gets a master secret key for their identity.

Hence, users are able to update their own keys to the next epoch.

2
We allow 𝑛 = ∞ to denote an unbounded number of epochs.

5



Lukas Alber, Stefan More, and Sebastian Ramacher

The experiment has access to the following oracles:

Sign′(sk, 𝑖, id,𝑚) : This oracle computes sk𝑖,id ← Del(sk, 𝑖, id),
𝜎 ← Sign(skid,𝑖 ,𝑚), adds𝑚 to Q, and returns 𝜎 .

Del′(sk, 𝑖, id) : Stores (𝑖, id) in QID and returns Del(sk, 𝑖, id).
Experiment Expeuf-cma

TBIBΣ,𝐴 (^, 𝑛)
pp← Setup(1^ , 𝑛), (pk, sk) ← Gen(pp)
(𝑚∗, 𝑖∗, id∗, 𝜎∗) ← 𝐴Del′ (sk, ·),Sign′ (sk, ·, ·, ·) (pk)
if Verify(pk, 𝑖∗, id∗,𝑚∗, 𝜎∗) = 0, return 0

if𝑚∗ ∈ Q, return 0

if (𝑖∗, id∗) ∈ QID , return 0

return 1

Experiment 3: The EUF-CMA experiment for a time-bound
identity-based signature scheme TBIBΣ.

For TBIBΣ, the goal is to prevent any updates, and thus updates of

delegatable keys are not possible.

Henceforth, we also introduce a forward-secure version of time-

bound identity-based signatures:

Definition 3.3. A forward-secure time-bound identity-based sig-

natures scheme fs-TBIBΣ extends Definition 3.1 with a PPT algo-

rithm Update such that:

Update(sk𝑖−1) : On input of a secret key sk𝑖 for epoch 𝑖−1, outputs
a secret key sk𝑖 for epoch 𝑖 .

Del(sk𝑖 , id) : On input of a secret key sk𝑖 for epoch 𝑖 and an iden-

tity id ∈ ID, outputs a secret key sk𝑖,id .

Correctness is defined as before, but the derived keys are ob-

tained via sk𝑖 ← Update(sk𝑖−1) and then sk𝑖,id ← Del(sk𝑖 , id).
Subsequently, we present unforgeability for fs-TBIBΣ. In this case,

the adversary may also query the secret key for an epoch by query-

ing the Update′ oracle. The adversary then has to forge a signature

for an epoch before any epoch queried via Update′ and is also not

allowed to query delegated keys for the target epoch and identity.

The experiment has access to the following oracles:

Sign′(sk0, 𝑖, id,𝑚) : This oracle computes sk𝑖,id ← Del(sk0, 𝑖, id),
𝜎 ← Sign(skid,𝑖 ,𝑚), adds𝑚 to Q, and returns 𝜎 .

Del′(sk0, 𝑖, id) : Stores (𝑖, id) in QID and returns Del(sk0, 𝑖, id).
Update′(sk0, 𝑖) : Stores 𝑖 in Q𝑡 , runs sk𝑗 ← Update(sk𝑗−1) for
𝑗 ∈ [𝑖], and returns sk𝑖

Experiment Expfs−euf-cma
fs-TBIBΣ,𝐴 (^, 𝑛)

pp← Setup(1^ , 𝑛), (pk, sk) ← Gen(pp)
(𝑚∗, 𝑖∗, id∗, 𝜎∗) ← 𝐴Del′ (sk, ·),Sign′ (sk, ·, ·, ·),Update′ (sk0, ·) (pk)
if Verify(pk, 𝑖∗ − 1, id∗,𝑚∗, 𝜎∗) = 0, return 0

if𝑚∗ ∈ Q, return 0

if (𝑖∗ − 1, id∗) ∈ QID , return 0

if {1, . . . , 𝑖∗ − 1} ∩ Q𝑡 ≠ ∅, return 0

return 1

Experiment 4: The EUF-CMA experiment for a forward-
secure time-bound identity-based signature scheme TBIBΣ.

Definition 3.4 (fsEUF-CMA). For any PPT adversary 𝐴, we de-

fine the advantage in the fsEUF-CMA experiment Expfs−euf-cma
TBIBΣ,𝐴 (cf.

Experiment 4) as

Adveuf-cma
TBIBΣ,𝐴 (^, 𝑛) := Pr

[
Expeuf-cma

fs-TBIBΣ,𝐴,𝑛 (^) = 1

]
,

for an integer𝑛 ∈ N. A time-bound identity-based signature scheme

fs-TBIBΣ is fsEUF-CMA-secure, if Advfs−euf-cma
fs-TBIBΣ,𝐴 (^, 𝑛) is a negligi-

ble function in ^ for all PPT adversaries 𝐴.

Before discussing constructions of the scheme, we want to note

that using generic transformation from [30], TBIBΣ and fs-TBIBΣ
can be turned into (forward-secure) identity-based proxy signatures.

Indeed, if the identity for delegation is the delegatee’s public key,

and each signature is extended with a signature by that key, we

obtain a proxy signature scheme.

3.2 Generic TBIBΣ Construction
First, we start with a generic construction of TBIBΣ from identity-

based signatures. Observe that to achieve an EUF-CMA-secure
TBIBΣ scheme, delegation of the keys is relative to both epochs

and identities. So, the idea is to map TBIBΣ’s epoch and identity

to an identity of the underlying identity-based signature scheme.

Without the goal to achieve forward-secrecy, this mapping is simply

a concatenation of epoch and identity. As the epoch is only used to

partition time, it can be viewed as giving a specific meaning to a

part of the identity of an IBS. We present the scheme in Scheme 3.

Setup(1^ , 𝑛) : Let pp ← IBS.Setup(1^ ) with IBS.ID =

{0, 1} ⌈log2 (𝑛) ⌉ × ID and return pp.
Gen(pp) : Return (pk, sk) ← IBS.Gen(pp).
Del(sk, 𝑖, id) : Return sk𝑖,id ← IBS.Del(𝑠𝑘, 𝑖∥id).
Sign(sk𝑖,id ,𝑚) : Return 𝜎 ← IBS.Sign(sk𝑖,id ,𝑚).
Verify(pk, 𝑖, id,𝑚, 𝜎) : Return IBS.Verify(pk, 𝑖∥id,𝑚, 𝜎).

Scheme 3: Generic TBIBΣ scheme from any IBS.

EUF-CMA security follows directly the underlying IBS scheme:

Theorem3.5. If IBS is EUF-CMA-secure, then Scheme 3 is EUF-CMA-
secure, i.e. if there is an EUF-CMA-adversary𝐴 against TBIBΣ, then
there exists an EUF-CMA-adversary against IBS with

Adveuf-cma
TBIBΣ,𝐴 (1

^ , 𝑛) = Adveuf-cma
IBS,𝐵 (1^ ).

Proof. Let 𝐴 be an EUF-CMA-adversary against TBIBΣ. We

build an EUF-CMA-adversary𝐵 against IBSwith IBS.ID = {0, 1}𝑘×
ID. Indeed, if 𝐵 is started on a public key pkIBS, we run 𝐴 with

pkTBIBΣ ← pkIBS and the oracles are simulated honestly using

the corresponding IBS oracles. Once 𝐴 outputs a forgery 𝜎∗ for 𝑖∗,
id∗,𝑚∗ and forwards it as a IBS forgery for 𝑖∗∥id∗ and𝑚∗. A valid

forgery for TBIBΣ is also a valid forgery for IBS, since if (𝑖∗, id∗)
was not queried on the TBIBΣ.Del′ oracle, then neither was 𝑖∗∥𝑖𝑑∗
queried on IBS.Del′. Similarly, the same is true for𝑚∗. □

6



Short-Lived Forward-Secure Delegation for TLS

Setup(1^ , 𝑛) : Let pp ← HIBS.Setup(1^ , 1 + ⌈log
2
(𝑛)⌉) with

HIBS.ID such that {0, 1} ⊂ HIBS.ID and ID ⊂ HIBS.ID.

Return pp
Gen(pp) : Set (pk, sk0) ← HIBS.Gen(pp), push sk0 onto the

empty stack 𝑠 , and return (pk, (sk0, 𝑠)).
Update(sk𝑖 ) : Parse sk𝑖 as (sk𝑖 , 𝑠) and return DFEval(sk(𝑖) , 𝑠).
Del(sk𝑖 , id) : Parse sk𝑖 as (sk(𝑖) , ·) and return sk𝑖,id ←
HIBS.Del(sk(𝑖) , (bin2id(𝑖), id))

Sign(sk𝑖,id ,𝑚) : Return HIBS.Sign(sk𝑖,id , (bin2id(𝑖), id),𝑚).
Verify(pk, 𝑖, id,𝑚, 𝜎) : Return HIBS.Verify(pk, (bin2id(𝑖), id),𝑚).

Scheme 4: Generic fs-TBIBΣ scheme from a HIBS.

3.3 Forward-Secure Construction from HIBS
We now consider a direct construction of fs-TBIBΣ from HIBS. In
contrast to Section 3.2, the main difference is the management of

the master secret key. The key has to be updated from one epoch to

another while still allowing identity-based derivations. Therefore,

we follow a standard approach due to Canetti, Halevi and Katz [19]

to achieve forward-secrecy. The idea is to manage the epochs in

a tree such that the individual epochs are the leaves of the tree,

whereas epoch 0 is placed at the root. Consequently, when mapping

the epochs to keys, we place the master secret key, sk0, at the root.
Once the key is updated to the first epoch, it should no longer be

possible to access sk0, yet deriving keys for all other epochs. Hence,
we remove the root key and keep the keys delegated for the two

child nodes. For the left child node this process is repeated until

the left most leaf node is reached. Later, when updating to the next

epoch, one removes the key for the current epoch and, starting

from the associated leaf node searches for the first non-removed

sibling along to the path to the root node. If this node is not a leaf

node, then as in the first step, the associated key is removed and

those for the child nodes are kept. For the left child the process is

again iterated until a leaf node is reached.

More formally, the key update algorithm traverses the tree in

a depth-first manner. Hence the keys are viewed as stack, and

when visiting a node, the derived secret keys are pushed onto

the stack. We define an algorithm DFEval that performs the stack

manipulation (adapted from [28]). Notation-wise, we denote the

root node with𝑤Y
and all other nodes are encoded as binary strings,

i.e., for a node𝑤 (𝑖) , we denote child nodes as𝑤 (𝑖0) and𝑤 (𝑖1) . For
encoding the epoch as identities, we define bin2id(𝑖) which maps

each bit of 𝑖 (considered as ⌈log
2
𝑛⌉-bit number) to 0 and 1 identities,

i.e. bin2id(𝑏 (1) . . . 𝑏 (𝑛)
2
) = (𝑏 (1) , . . . , 𝑏 (𝑛) ).

DFEval(𝑠) : On input of the stack 𝑠 , perform the following steps:

• Pop the topmost element, (sk(𝑖) ), from the stack 𝑠 .

• Repeat while𝑤𝑖
is an internal node:

– Set sk(𝑖0) ← HIBS.Del(sk(𝑖) , bin2id(𝑖0))
– Set sk(𝑖1) ← HIBS.Del(sk(𝑖) , bin2id(𝑖1))
– Push sk(𝑖1) onto 𝑠 and set 𝑖 ← 𝑖0

• Return sk(𝑖) and the new stack 𝑠

We give the full scheme in Scheme 4.

Next we show that Scheme 4 is in fact fsEUF-CMA-secure.

Theorem 3.6. If HIBS is EUF-CMA-secure, then Scheme 4 is

fsEUF-CMA-secure. For an EUF-CMA-adversary𝐴 against Scheme 4,

there exists an EUF-CMA-adversary against 𝐵 such that

Advfs−euf-cma
fs-TBIBΣ,𝐴 (1

^ , 𝑛) = Adveuf-cma
HIBS,𝐵 (1

^ , ⌈log
2
(𝑛)⌉ + 1).

Proof. The proof follows the same idea as the proof of The-

orem 3.5. We note, that the Update′ oracle cannot be simulated

honestly. However, it is possible to simulate it in the following way:

given an epoch 𝑖 , directly obtain sk𝑖 as HIBS.Del′(sk, bin2id(𝑖))
and build the stack by querying HIBS.Del′ by querying the keys

for all right sibling nodes along the path from the 𝑖-th leave to the

root.

Note that for a valid forgery, we have that for no 𝑖 < 𝑖∗ the
Update′ oracle was queried. Consequently, the Del′ oracle of the
HIBS is never queried on a prefix of bin2id(𝑖∗), and thus the forgery
is also valid for HIBS. □

As for TBIBΣ, EUF-CMA-security of the underlying HIBS im-

plies the EUF-CMA-security of Scheme 4:

Theorem3.7. IfHIBS is EUF-CMA-secure, then Scheme 4 is EUF-CMA-
secure. For an EUF-CMA-adversary𝐴 against Scheme 4, there exists

an EUF-CMA-adversary against 𝐵 such that

Adveuf-cma
fs-TBIBΣ,𝐴 (1

^ , 𝑛) = Adveuf-cma
HIBS,𝐵 (1

^ , ⌈log
2
(𝑛)⌉ + 1).

The proof is the same as for Theorem 3.5 with the simulation of

the Update-oracle as in Theorem 3.6; hence we do not repeat it.

3.4 Practical Considerations
When implementing the TBIBΣ and fs-TBIBΣ schemes from Scheme 3

and Scheme 4, respectively, based on the BBG HIBE from Scheme 1,

some optimizations for efficient signing and verification can be

applied. We discuss them below.

Deterministic Verification. Contrary to verification algorithms of

standard signature schemes (e.g., EdDSA and ECDSA), the verifi-

cation algorithm of Naor-transformed signature schemes is prob-

abilistic. Consequently, the verifier needs access to a good source

of randomness which makes implementations even more complex.

Taking a step back, the goal of the test encryption and decryption

is to decide whether the derived key in the signature is a correctly

derived key for the identity. Depending on the underlying HIBE
it might, however, be possible to check the correctness of the key

with a deterministic method [14, 66].

Theoretically, one could attach a non-interactive zero-knowledge

proof that certifies the correctness of the key derivation. Instead of

the test decryption, the verification of signatures would then verify

the zero-knowledge proof. More practically, aHIBE like BBG allows

one to check the derivation of the keys using pairing equations.

Assuming a derived key for the last level, skid1,...,idℓ = (sk1, sk2)
we have that

𝑒

(
ℎ
𝐻 (id1)
1

· · ·ℎ𝐻 (idℓ )
ℓ

· 𝑔3, sk2
)
· 𝑒 (𝑔2, pk) = 𝑒 (sk1, 𝑔).

Conversely, if we have a key that satisfies the equation, then it is

also able to decrypt any ciphertext. Thereby, we obtain a faster and

deterministic verification algorithm.

7



Lukas Alber, Stefan More, and Sebastian Ramacher

Faster Signing with Precomputation. Given that the IDs id1 to

idℓ−1 are fixed for the signer, signing can be implemented more

efficiently without computing ℎ
𝐻 (id𝑖 )
𝑖

all the time. Given the secret

key sk𝑖,id = (𝑎0, 𝑎1, 𝑏ℓ ), the signature can be computed as(
𝑎0 · 𝑏𝐻 (𝑚)ℓ

·
(
𝑡 · ℎ𝐻 (𝑚)

𝑘

)𝑤
, 𝑎1 · 𝑔𝑤

)
where 𝑡 ← ℎ

𝐻 (id1)
1

· · ·ℎ𝐻 (id2)
ℓ−1 · 𝑔3. This 𝑡 can be either computed

when deserializing the secret key or directly be stored in the seri-

alized key. It can be reused for all subsequent signing operations,

thus saving 𝑂 (ℓ) group operations and rendering signing runtime

complexity independent of ℓ . Similarly, when verifying signatures

this value can also be precomputed when deserializing the public

key. In this case, there is only a benefit if multiple signatures from

the same signer are verified at the same time.

4 INTEGRATION INTO TLS
We integrated our TBIBΣ scheme into TLS 1.3, the newest standard

of the TLS family. Since our implementation does not require any

changes to the TLS handshake or other parts of the protocol, TBIBΣ
could fit older versions of TLS as well.

Status quo: Sharing the Secret Key. The typical CDN setup in-

volves a client, a CDN, and an origin server, as shown in Figure 2.

A client, usually a web browser, initiates the connection and wants

to retrieve some remote server data. To offload work and improve

the connection speed, the origin server delegates some or all of its

work to a CDN. That happens either by uploading data to the CDN

beforehand or using the CDN as a cache between the client and

the origin server. In the latter case, a CDN node retrieves data from

the origin server as soon as a client requests it and keeps it locally,

making it faster available for other clients in the area. Therefore,

the origin server’s DNS entry needs to point to the local CDN node

to ensure the requests are forwarded to the CDN. The CDN can

then serve data on behalf of the origin server, and consequently,

acts in the origin server’s name. All connections between client

and CDN, and between CDN and origin server are secured by TLS

and therefore authenticated.

generate𝐶𝑆𝑅
pk: 𝑝𝑘𝑠𝑒𝑟𝑣𝑒𝑟

CN: ccsw.io

Sign CSR

𝐶𝑆𝑅

𝑐𝑒𝑟𝑡𝑠𝑒𝑟𝑣𝑒𝑟

𝑐𝑒𝑟𝑡𝑠𝑒𝑟𝑣𝑒𝑟

sk𝑠𝑒𝑟𝑣𝑒𝑟

generate

sk𝑠𝑒𝑟𝑣𝑒𝑟
𝑝𝑘𝑠𝑒𝑟𝑣𝑒𝑟

ServerCA

CDN

Figure 2: Typical setup of a PKI involving a CDN. The origin
server shares its secret key sk𝑠𝑒𝑟𝑣𝑒𝑟 with the CDN.

ServerHello

Encrypted Extensions

Server Certificate (𝑐𝑒𝑟𝑡𝑠𝑒𝑟𝑣𝑒𝑟 )

𝑐𝑣 = Sign(sk𝑠𝑒𝑟𝑣𝑒𝑟 , ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒)

Certificate Verify (𝑐𝑣)

Handshake Finished

Verify(𝑝𝑘𝑠𝑒𝑟𝑣𝑒𝑟 , ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒, 𝑐𝑣)

Verify PKI & cert validity

Client Finished

ClientHello

Client CDN

Figure 3: TLS flow of the communication of a client with a
CDN. The CDN uses the origin server secret key sk𝑠𝑒𝑟𝑣𝑒𝑟 to
sign the TLS handshake.

To serve content securely using TLS, a CDN needs to be able

to sign TLS sessions in the name of the origin server, as shown in

Figure 3. Usually, that means a CDN needs access to the secret key

sk𝑠𝑒𝑟𝑣𝑒𝑟 of a certificate, which is valid for the origin server domain.

One way to achieve that is to share the secret key with the CDN,

as shown in Figure 2. Another approach is to allow the CDN to

acquire a valid certificate on its own.

Outsourcing a secret key is often neither easily possible nor de-

sirable. For example, in some industries, there might be regulations

in place which disallow that. Also, the idea of a secret key is for it

to remain secret. Sharing a secret key, or even allowing a CDN to

acquire its own, implicates loss of control, e.g., in case of a CDN

compromise or malicious CDN.

generate𝐶𝑆𝑅
pk: pk𝑠𝑒𝑟𝑣𝑒𝑟
CN: ccsw.io

Sign CSR

𝐶𝑆𝑅

𝑐𝑒𝑟𝑡𝑠𝑒𝑟𝑣𝑒𝑟

sk𝑑𝑒𝑙𝑒𝑔 = Del(sk𝑠𝑒𝑟𝑣𝑒𝑟 , epoch, ccsw.io)

sk𝑑𝑒𝑙𝑒𝑔

𝑐𝑒𝑟𝑡𝑠𝑒𝑟𝑣𝑒𝑟

Mutual Authentication

sk𝑠𝑒𝑟𝑣𝑒𝑟 , pk𝑠𝑒𝑟𝑣𝑒𝑟 = Gen(1𝐾 , 𝑛)

ServerCA

CDN

Figure 4: TLS setup involving TBIBΣ. The origin server cre-
ates a delegated key sk𝑑𝑒𝑙𝑒𝑔 and shares it with the CDN. The
secret key sk𝑠𝑒𝑟𝑣𝑒𝑟 never leaves the origin server.

8



Short-Lived Forward-Secure Delegation for TLS

Server Hello

Encrypted Extentions

Server Certificate (𝑐𝑒𝑟𝑡𝑠𝑒𝑟𝑣𝑒𝑟 )

𝜎 = Sign(sk𝑑𝑒𝑙𝑒𝑔, ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒)

Certificate Verify (𝜎)

Handshake Finished

𝑒𝑝𝑜𝑐ℎ = 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑝𝑜𝑐ℎ ()
Verify(pk𝑠𝑒𝑟𝑣𝑒𝑟 , 𝑒𝑝𝑜𝑐ℎ, ccsw.io, ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒, 𝜎)
Verify PKI & cert validity

Client Finished

ClientHello

Client CDN

Figure 5: TLS handshake utilizing TBIBΣ. The CDN uses the
delegated key sk𝑑𝑒𝑙𝑒𝑔 to sign the handshake, while the client
uses the server’s public key pk𝑠𝑒𝑟𝑣𝑒𝑟 and the Verify function
defined in Scheme 3 to verify the signature.

4.1 Our Approach: Delegating the Secret Key
To solve these issues, we use the TBIBΣ scheme introduced in Sec-

tion 3 to enable an origin server to delegate the capability to sign

on its behalf without sharing the secret key. The setup is shown

in Figure 4. It is done by deriving a delegated key sk𝑑𝑒𝑙𝑒𝑔 from

the secret key sk𝑠𝑒𝑟𝑣𝑒𝑟 by the origin server. The server sends the

delegated key to the CDN, which uses it for signing the TLS hand-

shakes. Clients use the public key from the origin server certificate

to verify this signature, as shown in Figure 5. No changes to the

TLS handshake are required.

A delegation derivation also involves the domain name of the

origin server and a validity epoch. Including the domain name can

be used to limit the validity of the delegation to a subdomain. This

is further described in Section 3.1. The epoch restricts the validity

period of the delegation, thus enabling short-lived delegations. The

origin server periodically derives a new delegation and sends it to

the CDN over a mutually authenticated channel. A CDN server

always uses the delegation that is currently valid, thus signed for

the current epoch. To verify the signature, a client inputs the sub-

domain it connected to and the current epoch, together with the

handshake’s hash. If the signature verification process finds that

those same input parameters produced the derived signature, it will

assure its correctness. The advantages of this approach are: (1) The

CDN only holds a derived key, and the secret key never leaves the

origin server. Therefore, the origin server remains in control of the

private keys. (2) The derived key only lasts for a limited amount of

time, so the epoch limitation works as an inexpensive revocation

alternative. (3) If fs-TBIBΣ is used, the origin server’s private key

additionally enjoys forward-security properties. (4) No changes to

the TLS handshake are needed. Support for an additional signature

algorithm is enough to integrate our approach.

As additional protection of the secret key, the origin server owner

may use a dedicated keyserver, thus moving the key material to

a different server than the data it serves. The delegated key gets

pushed to the CDN, allowing tighter network protection of the

(key) server, since no incoming connections are necessary. Since

that is happening before the delegation becomes valid, there is no

delay due to delegation or transport. Besides, it is always possible to

store the key material on secure hardware like a hardware security

module (HSM). Precomputation of delegated keys is also possible,

allowing even more flexible key storage.

Definition 4.1 (Epoch). We define an epoch as an integer, low-

resolution timestamp, forming the identifier of a time period of

length epochlength. It is easily possible to derive the identifier from
any timestamp or the clock, given by timestamp. This timestamp

represents the number of seconds since some𝑇0, e.g., the Unix epoch
or the certificate’s NotBefore field.

An example of an algorithm is used in the TOTP protocol [48]

and can be formulated as 𝑒𝑝𝑜𝑐ℎ =
⌊
timestampUTC/epochlength

⌋
.

During signature verification, the client itself is deriving the

current epoch from the clock. Thus, since the CDN does not trans-

mit the epoch, a malicious CDN cannot use an old delegation by

convincing the client to use an old timestamp. That ensures only

delegations for the current time are valid.

Considerations on the Length of an Epoch. Since the length of

an epoch is neither part of the derivation itself nor a parameter

part of the TLS handshake, it needs to be agreed on beforehand

(e.g., defined in a corresponding standard document). Similar to the

validity period of an OCSP response, the length of an epoch can

range from a few minutes up to a week [24, Figure 8].

On the one hand, the epoch length should not be too long. While

it is not possible to revoke a delegation after it has been issued

and pushed out, revoking the certificate itself is possible. By doing

so, the delegation loses its trust since the certificate serving as

the delegation’s basis is no longer valid. Since the revocation of a

certificate often comes with some operational cost [24, 57, 68], it

makes sense to set the length of an epoch to a short value.

On the other hand, end-user clients often do not have a precise

clock time available [2]. To counteract that, we propose to consider

the epoch before and after the current one during the delegation’s

validation. Depending on the implementation, the latter proposition

requires up to two additional signature verifications.

Implication on Revocation. While a delegated private key enables

a third party (CDN) to use the corresponding certificate, it does not

remove other PKI mechanisms currently in use. A client is expected

to verify the validity of the used certificate in addition to verifying

the delegation. As a consequence, revocation mechanisms like CRL

and OCSP can still be used. Furthermore, an epoch cannot expand

the validity period of the certificate itself, although it provides an

additional way to further limit the validity period.

4.2 Changes to Existing TLS Implementations
In this section, we describe changes that we had to make for imple-

menting the scheme into an existing TLS library.

Certificate and Certificate Authority. X.509 certificates are flexible
enough to support public keys of new signatures schemes as long

as an algorithm specifier (OID) is assigned, and an ASN.1 encoding

is defined for the keys. Therefore, the library implementing TBIBΣ
9



Lukas Alber, Stefan More, and Sebastian Ramacher

support has to provide the handling of this data. Other specifying

an OID and the encoding, no changes are required to the X.509 spec-

ification. For certificate authorities, the process of signing TBIBΣ
public keys is not different from signing other public keys. For

checking the Certificate Signing Requests (CSR), CAs require a

TBIBΣ implementation to verify the self-signature.

Origin Server. The server uses its secret key sk𝑠𝑒𝑟𝑣𝑒𝑟 and a TBIBΣ
tool to periodically derive a delegated key sk𝑑𝑒𝑙𝑒𝑔 . It then pushes the
delegation to the CDN before the delegation becomes valid. To do

so, it may use a standard HTTP client and a mutually authenticated

TLS connection. Consequently, the latter does not involve changes

to existing layers or software.

Content Delivery Network. During setup and once before every

epoch, the CDN receives a delegation key sk𝑑𝑒𝑙𝑒𝑔 from the origin

server. Also, it retrieves the corresponding certificate, which is valid

for the domain it serves. During each new client connection, the

CDN uses the received delegated key to sign the TLS handshake’s

hash. Sending the resulting signature as CertificateVerify mes-

sage to the client ensures the authentication of the connection. To

enable that, we integrated the TBIBΣ library in the TLS stack. All

protocol operations are part of the standard TLS handshake, and

no additional ones are required outside.

Client. We also extended the crypto library used by the TLS stack

on the client with our TBIBΣ scheme. Furthermore, we extended

the TLS stack to support the handling of TBIBΣ public keys. That

allows the client to use standard X.509 certificates containing a

public key of our scheme to verify the signature issued by the CDN.

Besides, it enabled the client to advertise support for TBIBΣ keys in

the initial ClientHello message. The required changes are limited

to those commonly required to add a new signature algorithm.

In addition, the client carries out standard PKI checks to au-

thenticate the server certificate, namely certificate chain check,

revocation check, hostname validation, validity in time, and check

corresponding to possible TLS extensions. No adaptions to those

checks were required.

Remark 2 (Implementation in TLS Libraries and Major Browsers).
Pairing libraries arewidely available nowadays. For libraries written

in C or any language with C bindings available, relic [3] is a good

choice to implement the TBIBΣ scheme. In particular, since relic

implements optimization for the computation of pairing products.

Hence, integrating the scheme in OpenSSL or any of its forks as

well as GnuTLS is easily possible. Similarly, integration in major

browsers such as Chrome and Firefox is thus also possible. We also

want to note that pairing libraries are also available for modern

programming languages such as Rust.
3
Hence, even with Firefox’s

ongoing transition to Rust, integration of TBIBΣ is possible. We also

want to note the ongoing standardization effort of pairing-friendly

curves to ensure compatibility between implementations [53].

4.3 Other Applications
TLS without CDNs. In Section 4.1, we described the application

of TBIBΣ in the context of a CDN. However, the scheme can also be

used without a CDN. For example, it is possible to use a delegated

3
For example, https://github.com/zkcrypto/pairing, retrieved May 04, 2020.

private key directly on the origin server or respective load balancers.

In that scenario, the same entity is in control of all servers. The

approach still enables extended protection for the private key by

shielding it from the public network and reducing the risk of key

compromise at the endpoints.

A key server can create a new delegation once per epoch and

push it to the origin servers, and therefore does not need to be

reachable from outside or even on all the time. By doing so, not only

the private key gets better protection, but the operator also gains

the benefits of a short-lived certificate. That means the damage

in case of a compromise of the (derived) private key is limited

to the length of the (short) epoch instead of the (longer) validity

period of the certificate itself, even in cases where other revocation

mechanisms are not available.

Restriction of connection types. In our approach, we describe how

time information can be used in an HIBS scheme to limit the valid-

ity period of a signature (and thus derived secret key) for TBIBΣ. It
is also possible to use other information as an identity in a TBIBΣ
scheme. For example, one could put a constraint on the type of con-

nection the TLS session is encapsulating. That enables limiting the

use of the delegation to, e.g., HTTP or SMTP connections. Similar

to the Extended Key Usage extension [26], it is also possible to put

further constraints on the usage of the derived key.

To achieve that, one needs to extend the modifications we de-

scribe in Section 4.1 and add a level that uses a normalized connec-

tion type specifier as identity. For example, a delegation intended

to be used by a webserver would be derived using ‘http‘ as identity.

A web browser would then use the same specifier ‘http‘ to verify

the signature for HTTP connections. Adding additional levels also

allows CDNs to delegate keys on their own, i.e., CDN would re-

ceive a delegated key for a specific domain that can then be further

derived for specific content types, specific servers, data centers, etc.

Other applications. Additionally, we note that the validity dates

in delegation schemes such as DeC or from [65] can be interpreted

as more fine-grained epochs. Hence, if the end date of the validity

period is set to the end of an epoch, DeC and other forms of dele-

gation schemes can be interpreted as TBIBΣ without fsEUF-CMA
security. Conversely, TBIBΣmay find applications beyond the scope

of TLS, e.g., for delegation in trust management.

5 EVALUATION
In this section, we evaluate an instantiation of the TBIBΣ scheme

introduced in Section 3 based on HIBS from BBG and our applica-

tion into TLS described in Section 4. As expected, the cost of pairing

evaluations dominates the performance. Nevertheless, reasonable

fast pairing implementations are available, and the performance

penalty for additional features is below reasonable round trip times.

5.1 Performance Measurements
To understand the performance implications of TBIBΣ, we imple-

mented it in C based on relic [3] for runtime figures. Furthermore,

we implemented the TBIBΣ scheme as Java library based on EC-

Celerate [36] and integrated it in the iSaSiLk [37] stack to verify

10

https://github.com/zkcrypto/pairing


Short-Lived Forward-Secure Delegation for TLS

Table 1: Runtime benchmarks in ms of ECDSA, EdDSA, and
TBIBΣ from Scheme 3. The numbers for Ed25519 and ECDSA
are from OpenSSL 1.1.1 with enabled optimizations.

Algorithm Sign Verify

EdDSA (Ed25519) 0.05 0.14

ECDSA (sepc256r1) 0.02 0.08

TBIBΣ (BLS-381) 0.58 1.94

our claims concerning easy integration into TLS.
4
For the C imple-

mentation, we target 128 bit security. Hence we choose a pairing-

friendly Barreto-Lynn-Scott [6] curve with 381 bits (BLS-381) for

the C implementation. Following the recent security level estima-

tions [4, 47], this curve provides roughly 128 bit security. For the

Java implementation, we chose a variant of Barreto-Naehrig [7]

curve as BLS curves are not implemented in ECCelerate. As BN

curves, we choose both curves with 256 and 461 bits. The latter

provides 128 bits security, whereas the former provides around 100

bits of security, which we deem enough for key material that is

recycled every three months as in the case of Let’s Encrypt [1].

TBIBΣ Evaluation. Runtime-wise, TBIBΣ signing requires two

exponentiations in G1 and one in G2, whereas verification requires

three pairings. In comparison, the standard signature schemes Ed-

DSA and ECDSA require only a small number of operations in Z𝑝
and one exponentiation in G for signing and two exponentiations

inG for verification. We present the performance figures for TBIBΣ
in comparison to OpenSSL’s EdDSA and ECDSA implementation in

Table 1. For OpenSSL, the numbers have been obtained by running

openssl speed, whereas the numbers for TBIBΣ were obtained

by averaging over 10000 runs. We performed all experiments on

a Thinkpad T450s with an Intel Core i7-5600U CPU. While the

numbers suggest that TBIBΣ is significantly slower, we note that

the ECDSA implementation in OpenSSL is heavily optimized for

the specific architecture. If assembler optimizations are disabled,

verification of ECDSA is close to TBIBΣ signing, as expected from

the number of group operations.

Regarding sizes of signatures and public keys, both EdDSA and

ECDSA have signatures with two scalars in Z𝑝 , and the public key

contains a group element. For TBIBΣ, public keys contain an ele-

ment in G2 and signatures contain one element from G1 and G2
each. Therefore, we can approximate its size as 64 bytes, 96 bytes,

and 116 bytes if instantiated with BN-256, BLS-381, and BN-461,

respectively, if point compression is enabled and as 128 bytes, 191

bytes, and 230 bytes, respectively, if not enabled. An EdDSA or

ECDSA public key only uses 32 bytes with point compression en-

abled and 64 bytes without. Furthermore, the signature in the latter

only sums up 64 bytes (two scalars in Z𝑝 ), while the TBIBΣ’s signa-
ture needs one element of both groups G1 and G2, which results in

96, 143, and 173 bytes, respectively, with point compression and 192

bytes, 286 bytes, 345 bytes, respectively without point compression.

TLS Evaluation. Tomeasure the performance of TBIBΣ in the use

case of TLS, we implemented a Java Signature library based on Java

Cryptography Architecture guidelines. The IAIK ECCelerate library

served as a backend for cryptographic elliptic curve operations.

4
Implementations are available at https://github.com/IAIK/TBIBS/.

Table 2: Benchmarks of TLS 1.3 handshakes using RSA,
ECDSA, EdDSA, and TBIBΣ (one operation is a full hand-
shake) and sizes of the packets sent by the client (C) and the
server (S).

Algorithm ops/s s/ops bytes (C) bytes (S)

RSA (2048 bit) 8.942 0.112 643 1773

ECDSA (secp256r1) 9.254 0.108 643 1385

EdDSA (ed25519) 9.198 0.109 643 1330

TBIBΣ (BN-256) 7.703 0.130 645 2769

TBIBΣ (BN-461) 4.598 0.217 645 3915

Furthermore, the iSaSiLk library, supporting the Java Cryptography

Architecture, was adapted to the TBIBΣ signature library. Then, a

demo client and server were implemented with this TLS library.

The measurements for the other algorithms were also performed

using the same Java libraries.

For benchmarking the TBIBΣ algorithm and TLS adaption, we

used OpenJDK’s Java Microbenchmark Harness (JMH) library. Fur-

thermore, we used Linux’s traffic control queueing disciplines for

simulating network latency on our TLS benchmarks. The latency

we introduced amount to 10ms, with a variance of 1ms normal dis-

tributed. That results in a round trip time of 20ms, a typical delay

for a home’s network with Wireless and glass fiber connecting to

Google (c.f. [64]). Since all benchmarks have been performed on a

Thinkpad T450s with an Intel Core i7-5600U, the absolute numbers

may not be comparable with performance on a server CPU.

Table 2 presents benchmarks showing the cost of a TLS hand-

shake using ECDSA, EdDSA, and TBIBΣ. We can see that crypto-

graphic performance plays a much smaller factor in the overall

performance, as the slowdown is smaller than a factor of 2. For

instance, with BN-256, we only experience a factor of 1.2 as a slow-

down. Further optimization, such as precomputation (discussed in

Section 3.4) and assembler implementation, may reduce the perfor-

mance gap even further. Bandwidth-wise, Table 2 shows that, in

principle, TBIBΣ needs twice the amount of bytes than the other

schemes. On the other hand, the size does not exceed any supported

TLS size limits.

Discussion. As depicted in Table 2, applying TBIBΣ to TLS slows

the handshake by a factor of 1.2 with the smaller BN curves and a

factor of 2 with the larger curves. That applies as long as we assume

a reasonable, inter-continental latency. If the latency is higher than

10ms, the performance difference decreases further. Furthermore,

we note that highly optimized assembler code, as it can be found in

OpenSSL for ECDSA, would further reduce the performance gap.

As the relic-based implementation shows, verification performance

can be far beneath typical network latencies. Also, smaller and

embedded devices may benefit from hardware acceleration [63].

Besides, authentication using certificates is only required once.

Every further handshake to the CDN may use session resumption,

thus omitting any TBIBΣ related operations. Since a client may

connect more than once to the CDN until all data is loaded, the

difference becomes imperceptible.

Comparing performance to Keyless SSL, our approach has the

advantage that means for authentication are pushed in prior and

do not have to be pulled just in time for every handshake. Further,

11

https://github.com/IAIK/TBIBS/


Lukas Alber, Stefan More, and Sebastian Ramacher

while the latencies between client and CDN might be subtle, they

can be pretty high on CDN to key server side, as they might, e.g.,

be geographically far apart [64].

5.2 Qualitative Evaluation
The most prominent advantage of our approach is that delegated

keys are bound to a specific epoch. That means if a delegated key

gets compromised, it only affects the security of that epoch. In subse-

quent epochs, the unforgeability guarantees are restored, and thus

proper authentication can be performed without entirely revoking

and recycling the origin server’s key material.

Besides, the origin server’s private key can be equipped with

forward-security features; thereby, the approach also offers miti-

gation against the master key’s compromise. If the origin server

immediately updates its private key to the next epoch after the

delegations for the current epoch, compromise of that key does not

impact the authenticity of connections established in the current

epoch.

Another exciting aspect is the lack of modifications needed to run

the TBIBΣ scheme in TLS. The reason for it is that our short-lived

delegation infrastructure exclusively touches the cryptographic

part of the TLS stack. Because of that, PKI’s mechanisms, such as

revocation, still work without any changes as our proposal does

not touch them. Consequently, there is no need for a new multi-

party security assumption to be proven since no changes to the

TLS protocol per se are introduced. Therefore, the (S)ACCE proof

from Jager et al. [39] on TLS persists.

For the widespread adoption of a new signature scheme like

TBIBΣ, we would need approval by the CA/Browser Forum. Such

would demonstrate a wide acceptance by CAs, browser develop-

ers, and other internet stakeholders. DeC, on the other hand, only

needs an additional TLS extension, which is advantageous when

deploying.

Besides, our approach can offer an advantage for steep delega-

tion hierarchies. Assuming we want to delegate by several levels ℎ:

Most certificate-based solutions would verify a chain of certificates

resulting in ℎ verifications. However, our approach would trans-

parently support the additional levels while only consuming an

additional group operation per delegation level ℎ.

Systematic Analysis. Finally, we characterize our approach by

applying the analysis framework published recently by Chuat et

al. [22]. In Table 3, we recall their characterization of the relevant ap-

proaches but omit the (damage-free) CA revocation criteria, which

are not relevant for delegation approaches and the delegation crite-

rion as it is inherently satisfied by all approaches. We extend their

characterization with our TBIBΣ-based approach (and the STAR

delegation approach). We also discuss the fulfillment of the criteria

below.

Avoids Full Delegation This criterion is fulfilled for any approach

which keeps the origin server in sole control of the private key.

Supports leaf revocation DeC and TBIBΣ technically do not sat-

isfy this benefit directly since revoking a delegation at the chain

of trust’s end is impossible. However, thanks to their short-lived

characteristic, domain owners are able to invalidate a delega-

tion on key compromise or similar eventualities swiftly. Chuat

et al. characterize proxy certificate based approaches as partially

fulfilling this criterion since they can also be short-lived.

Supports autonomous revocation With both, DeC and TBIBΣ
it is possible to perform revocation autonomously, i.e., indepen-

dent from a CA, browser vendor, or log. For both, the domain

owner can decide independently to stop the short-lived delegation

by ending the distribution of credentials, respectively delegated

keys. As before, proxy certificates partially fulfill this criterion if

they are used in a short-lived manner.

Support domain-based policies While name constraints and proxy

certificates can specify such policies in the certificate, DeC and

TBIBΣ partially fulfill this criterion since their semantics are lim-

ited (only a time component is supported in its standard versions).

No trust-on-first-use required None of the approaches requires

trust-on-first-use since the PKI remains unchanged.

Preserves user privacy None of the delegation approaches leaks

domain-related data to a third party. Hence all of them fulfill this

criterion.

No increased page-load delay Chuat et al. consider this crite-

rion fulfilled if none or small processing delays incur. SSL splitting,

KeylessSSL, and the DANE-based approach all require additional

round-trips and therefore do not fulfill it. The TBIBΣ-based ap-

proach only incurs a small overhead, as demonstrated in Table 1.

Low burden on CAs Approaches fulfill this requirement if no or

low operational overhead incurs for Certificate Authorities. Only

STAR delegations do not satisfy this criterion since the CA has

to support the ACME protocol and trust the CDN.

Reasonable logging overhead The approaches putting heavy pres-

sure on certificate transparency (CT) logs [43] are name constraint

certificates and STAR delegations. For name constraint certifi-

cates, every domain owner may issue an arbitrary number of

certificates that are recorded on the CT logs. STAR delegations

produce a growing number of short-lived certificates for each

delegation. Neither DeC nor TBIBΣ require delegations to be

logged.

Non-proprietary All of the approaches are open and neither re-

stricted nor controlled by a third party.

No special hardware is required Although cryptographic oper-

ations may always benefit from specialized hardware, it is not

necessary for deployment. Hence, none of the approaches neces-

sarily need specialized hardware.

No extra CA involvement Chuat et al. characterize DeC as par-

tially satisfying this criterion since the CA needs to include an

extension in the end-entity certificate. For TBIBΣ, the CA needs

to accept TBIBΣ public keys, hence we also consider our approach

as partially fulfilling this criterion. However, name constraint,

Cruiseliner, and STAR delegation certificates do not satisfy this

criterion as a significant part of the delegation process is managed

by the CA.

No browser-vendor involvement None of the approaches needs

active browser-vendor participation.

Server compatibility We consider TBIBΣ as partially satisfying

this criterion since adding support for it on the server side is

mostly a matter of adding the signature scheme implementation

to the TLS stack. Other approaches including DeC and KeylessSSL

need more involved changes in the TLS stack, and hence does

not satisfy this constraint. The same holds for true for STAR

12



Short-Lived Forward-Secure Delegation for TLS

Table 3: Evaluation of schemes with respect to 16 criteria of Chuat et al.’s 19 criteria framework [22]. offers the benefit;
partially offers benefit; does not offer the benefit.

Scheme

A
v
o
i
d
s
F
u
l
l
D
e
l
e
g
a
t
i
o
n

S
u
p
p
o
r
t
s
l
e
a
f
r
e
v
o
c
a
t
i
o
n

S
u
p
p
o
r
t
s
a
u
t
o
n
o
m
o
u
s
l
e
a
f
r
e
v
.

S
u
p
p
o
r
t
s
d
o
m
a
i
n
-
b
a
s
e
d
p
o
l
i
c
i
e
s

N
o
t
r
u
s
t
-
o
n
-
fi
r
s
t
-
u
s
e
r
e
q
u
i
r
e
d

P
r
e
s
e
r
v
e
s
u
s
e
r
p
r
i
v
a
c
y

N
o
i
n
c
r
e
a
s
e
d
p
a
g
e
-
l
o
a
d
d
e
l
a
y

L
o
w
b
u
r
d
e
n
o
n
C
A
s

R
e
a
s
o
n
a
b
l
e
l
o
g
g
i
n
g
o
v
e
r
h
e
a
d

N
o
n
-
p
r
o
p
r
i
e
t
a
r
y

N
o
s
p
e
c
i
a
l
h
a
r
d
w
a
r
e
r
e
q
u
i
r
e
d

N
o
e
x
t
r
a
C
A
i
n
v
o
l
v
e
m
e
n
t

N
o
b
r
o
w
s
e
r
-
v
e
n
d
o
r
i
n
v
o
l
v
e
m
e
n
t

S
e
r
v
e
r
c
o
m
p
a
t
i
b
l
e

B
r
o
w
s
e
r
c
o
m
p
a
t
i
b
l
e

N
o
o
u
t
-
o
f
-
b
a
n
d
c
o
m
m
u
n
i
c
a
t
i
o
n

Private key sharing

Cruiseliner certificates [20, 45]

Name const. certificates [45]

DANE-based [45]

SSL splitting [? ]
Keyless SSL [59]

STAR Delegation [? ]
Proxy certificates [23]

DeC [5]

TBIBΣ

delegations since it requires the origin server to approve and pass

CSR to the ACME CA while authenticating as the domain owner.

Browser compatibility Again, we give partial points to TBIBΣ
since only an implementation of the signature scheme needs to

be added to the TLS stack to ensure support for the approach.

No out-of-band communication None of the approaches uses

a separate channel or communicates with a third party server

that would not otherwise be contacted by the client.

Damage-free CA-certificate revocation Our approach does not

directly satisfy this criterion. However, since we do not touch the

PKI, a combination with measures such as PKISN [61] yields a

generic solution that is applicable to any approach that does not

satisfy this criterion itself.

5.3 Conclusion
In this paper we showed that signature schemes with short-lived

delegation provide an interesting alternative to current delega-

tion practices in the TLS ecosystem. In specific, we presented a

forward-secure alternative to the approach used by Delegated Cre-

dentials. We used TBIBΣ to derive short lived keys that can sign

directly on behalf of the master key. Preservation of standard PKI

infrastructure and forward-security are the main features of the

approach and come with only small performance overheads, which

we demonstrated to be practical.

ACKNOWLEDGMENTS
This work was supported by the European Union’s Horizon 2020 re-

search and innovation programme under grant agreements n
◦
871473

(KRAKEN) and n
◦
783119 (SECREDAS).

REFERENCES
[1] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan

Flores-López, J. Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric

Rescorla, Seth D. Schoen, and Brad Warren. 2019. Let’s Encrypt: An Automated

Certificate Authority to Encrypt the Entire Web. In ACM Conference on Computer
and Communications Security. ACM, 2473–2487.

[2] Mustafa Emre Acer, Emily Stark, Adrienne Porter Felt, Sascha Fahl, Radhika

Bhargava, Bhanu Dev, Matt Braithwaite, Ryan Sleevi, and Parisa Tabriz. 2017.

Where the Wild Warnings Are: Root Causes of Chrome HTTPS Certificate Errors.

In ACM Conference on Computer and Communications Security. ACM, 1407–1420.

[3] D. F. Aranha and C. P. L. Gouvêa. 2020. RELIC is an Efficient LIbrary for Cryptog-
raphy. https://github.com/relic-toolkit/relic

[4] Razvan Barbulescu and Sylvain Duquesne. 2019. Updating Key Size Estimations

for Pairings. J. Cryptology 32, 4 (2019), 1298–1336.

[5] R. Barnes, S. Iyengar, N. Sullivan, and E. Rescorla. 2020. Delegated Credentials for
TLS. https://tools.ietf.org/html/draft-ietf-tls-subcerts-07

[6] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. 2002. Constructing Elliptic

Curves with Prescribed Embedding Degrees. In SCN (Lecture Notes in Computer
Science, Vol. 2576). Springer, 257–267.

[7] Paulo S. L. M. Barreto andMichael Naehrig. 2005. Pairing-Friendly Elliptic Curves

of Prime Order. In Selected Areas in Cryptography (Lecture Notes in Computer
Science, Vol. 3897). Springer, 319–331.

[8] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. 2004. Security Proofs

for Identity-Based Identification and Signature Schemes. In EUROCRYPT (Lecture
Notes in Computer Science, Vol. 3027). Springer, 268–286.

[9] Karthikeyan Bhargavan, Ioana Boureanu, Antoine Delignat-Lavaud, Pierre-Alain

Fouque, and Cristina Onete. 2018. A Formal Treatment of Accountable Proxying

Over TLS. In IEEE Symposium on Security and Privacy. IEEE Computer Society,

799–816.

[10] Karthikeyan Bhargavan, Ioana Boureanu, Pierre-Alain Fouque, Cristina Onete,

and Benjamin Richard. 2017. Content delivery over TLS: a cryptographic analysis

of keyless SSL. In EuroS&P. IEEE, 1–6.
[11] Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. 2012. Secure

Proxy Signature Schemes for Delegation of Signing Rights. J. Cryptology 25, 1

(2012), 57–115.

[12] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005. Hierarchical Identity Based

Encryption with Constant Size Ciphertext. In EUROCRYPT (Lecture Notes in
Computer Science, Vol. 3494). Springer, 440–456.

[13] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from the

Weil Pairing. In CRYPTO (Lecture Notes in Computer Science, Vol. 2139). Springer,
213–229.

[14] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from theWeil

Pairing. In ASIACRYPT (Lecture Notes in Computer Science, Vol. 2248). Springer,

13

https://github.com/relic-toolkit/relic
https://tools.ietf.org/html/draft-ietf-tls-subcerts-07


Lukas Alber, Stefan More, and Sebastian Ramacher

514–532.

[15] Dan Boneh, Amit Sahai, and Brent Waters. 2012. Functional encryption: a new

vision for public-key cryptography. Commun. ACM 55, 11 (2012), 56–64.

[16] Francesco Buccafurri, Rajeev Anand Sahu, and Vishal Saraswat. 2016. Efficient

Proxy Signature Scheme from Pairings. In SECRYPT. SciTePress, 471–476.
[17] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In USENIX Security Symposium. USENIX Association,

991–1008.

[18] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,

Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.

2020. LVI: Hijacking Transient Execution through Microarchitectural Load Value

Injection. In IEEE Symposium on Security and Privacy. IEEE, 54–72.
[19] Ran Canetti, Shai Halevi, and Jonathan Katz. 2003. A Forward-Secure Public-Key

Encryption Scheme. In EUROCRYPT (Lecture Notes in Computer Science, Vol. 2656).
Springer, 255–271.

[20] Frank Cangialosi, Taejoong Chung, David R. Choffnes, Dave Levin, Bruce M.

Maggs, Alan Mislove, and Christo Wilson. 2016. Measurement and Analysis of

Private Key Sharing in the HTTPS Ecosystem. In ACM Conference on Computer
and Communications Security. ACM, 628–640.

[21] Eunsang Cho,Minkyung Park, Hyunwoo Lee, Junhyeok Choi, and Ted Taekyoung

Kwon. 2019. D2TLS: delegation-based DTLS for cloud-based IoT services. In

IoTDI. ACM, 190–201.

[22] Laurent Chuat, AbdelRahman Abdou, Ralf Sasse, Christoph Sprenger, David

Basin, and Adrian Perrig. 2020. SoK: Delegation and Revocation, the Missing

Links in the Web’s Chain of Trust. arXiv:1906.10775v2 (to appear at IEEE

EuroS&P 2020).

[23] Laurent Chuat, A. Abdou, Ralf Sasse, C. Sprenger, David A. Basin, and Adrian

Perrig. 2019. Proxy Certificates: The Missing Link in the Web’s Chain of Trust.

CoRR abs/1906.10775 (2019).

[24] Taejoong Chung, Jay Lok, Balakrishnan Chandrasekaran, David R. Choffnes,

Dave Levin, Bruce M. Maggs, Alan Mislove, John P. Rula, Nick Sullivan, and

Christo Wilson. 2018. Is the Web Ready for OCSP Must-Staple?. In Internet
Measurement Conference. ACM, 105–118.

[25] Cisco Systems. 2019. Data volume of global content delivery network internet traffic
from 2017 to 2022 (in exabytes per month). https://www.statista.com/statistics/

267184/content-delivery-network-internet-traffic-worldwide retrieved March

24, 2020.

[26] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley,

and W. Timothy Polk. 2008. Internet X.509 Public Key Infrastructure Certificate

and Certificate Revocation List (CRL) Profile. RFC 5280 (2008), 1–151.

[27] Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, and Rui Zhang. 2007.

Formal Security Treatments for Signatures from Identity-Based Encryption. In

ProvSec (Lecture Notes in Computer Science, Vol. 4784). Springer, 218–227.
[28] David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher, Daniel

Slamanig, and Christoph Striecks. 2018. Revisiting Proxy Re-encryption: Forward

Secrecy, Improved Security, and Applications. In Public Key Cryptography (1)
(Lecture Notes in Computer Science, Vol. 10769). Springer, 219–250.

[29] David Derler, Sebastian Ramacher, Daniel Slamanig, and Christoph Striecks. 2019.

I Want to Forget: Fine-Grained Encryption with Full Forward Secrecy in the

Distributed Setting. IACR Cryptology ePrint Archive 2019 (2019), 912.
[30] David Galindo, Javier Herranz, and Eike Kiltz. 2006. On the Generic Construction

of Identity-Based Signatures with Additional Properties. In ASIACRYPT (Lecture
Notes in Computer Science, Vol. 4284). Springer, 178–193.

[31] Craig Gentry and Alice Silverberg. 2002. Hierarchical ID-Based Cryptography.

In ASIACRYPT (Lecture Notes in Computer Science, Vol. 2501). Springer, 548–566.
[32] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-

based encryption for fine-grained access control of encrypted data. In ACM
Conference on Computer and Communications Security. ACM, 89–98.

[33] Alex Guzman, Kyle Nekritz, and Subdoh Iyengar. 2019. Delegated credentials:
Improving the security of TLS certificates. https://engineering.fb.com/security/

delegated-credentials/ retrieved April 24, 2020.

[34] Florian Hess. 2002. Efficient Identity Based Signature Schemes Based on Pairings.

In Selected Areas in Cryptography (Lecture Notes in Computer Science, Vol. 2595).
Springer, 310–324.

[35] Paul E. Hoffman and Jakob Schlyter. 2012. The DNS-Based Authentication of

Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698 (2012), 1–37.

[36] IAIK. 2020. ECCelerate. https://jce.iaik.tugraz.at/products/core-crypto-toolkits/

eccelerate/

[37] IAIK. 2020. iSaSiLK. https://jce.iaik.tugraz.at/products/communication-

messaging-security/isasilk/

[38] Kevin Jacobs, J.C. Jones, and Thyla van der Merwe. 2019. Validating Delegated
Credentials for TLS in Firefox. https://blog.mozilla.org/security/2019/11/01/

validating-delegated-credentials-for-tls-in-firefox/ retrived April 24, 2020.

[39] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. 2012. On the Security

of TLS-DHE in the StandardModel. In CRYPTO (Lecture Notes in Computer Science,

Vol. 7417). Springer, 273–293.
[40] Eike Kiltz and Gregory Neven. 2009. Identity-Based Signatures. In Identity-Based

Cryptography. Cryptology and Information Security Series, Vol. 2. IOS Press,

31–44.

[41] Dmitry Kogan, Henri Stern, Ashley Tolbert, David Mazières, and Keith Winstein.

2017. The Case For Secure Delegation. In HotNets. ACM, 15–21.

[42] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. 2013. On the Security

of the TLS Protocol: A Systematic Analysis. In CRYPTO (1) (Lecture Notes in
Computer Science, Vol. 8042). Springer, 429–448.

[43] Ben Laurie. 2014. Certificate Transparency. ACM Queue 12, 8 (2014), 10–19.
[44] Wang Li. 2016. An Identity-Based Proxy Signature Scheme from Lattices in the

Standard Model. In INCoS. IEEE, 167–172.
[45] Jinjin Liang, Jian Jiang, Hai-Xin Duan, Kang Li, Tao Wan, and Jianping Wu. 2014.

When HTTPS Meets CDN: A Case of Authentication in Delegated Service. In

IEEE Symposium on Security and Privacy. IEEE Computer Society, 67–82.

[46] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. 1996. Proxy Signatures for

Delegating Signing Operation. In ACM Conference on Computer and Communica-
tions Security. ACM, 48–57.

[47] Alfred Menezes, Palash Sarkar, and Shashank Singh. 2016. Challenges with

Assessing the Impact of NFS Advances on the Security of Pairing-Based Cryp-

tography. In Mycrypt (Lecture Notes in Computer Science, Vol. 10311). Springer,
83–108.

[48] David M’Raïhi, Salah Machani, Mingliang Pei, and Johan Rydell. 2011. TOTP:

Time-Based One-Time Password Algorithm. RFC 6238 (2011), 1–16.

[49] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,

Diego R. López, Konstantina Papagiannaki, Pablo Rodríguez Rodríguez, and

Peter Steenkiste. 2015. Multi-Context TLS (mcTLS): Enabling Secure In-Network

Functionality in TLS. In SIGCOMM. ACM, 199–212.

[50] Yoav Nir, Thomas Fossati, Yaron Sheffer, and Toerless Eckert. 2018. Considerations
For Using Short Term Certificates. http://www.ietf.org/internet-drafts/draft-nir-

saag-star-01.txt

[51] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

RFC 8446 (2018), 1–160.

[52] Eric Rescorla and Nagendra Modadugu. 2012. Datagram Transport Layer Security

Version 1.2. RFC 6347 (2012), 1–32.

[53] Y. Sakemi, T. Kobayashi, and T. Saito. 2020. Pairing-Friendly Curves. https:

//tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-03

[54] Stefan Santesson. 2007. Internet X.509 Public Key Infrastructure Subject Alterna-

tive Name for Expression of Service Name. RFC 4985 (2007), 1–10.

[55] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-

lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-

Boundary Data Sampling. In ACM Conference on Computer and Communications
Security. ACM, 753–768.

[56] Adi Shamir. 1984. Identity-Based Cryptosystems and Signature Schemes. In

CRYPTO (Lecture Notes in Computer Science, Vol. 196). Springer, 47–53.
[57] Emily Stark, Lin-Shung Huang, Dinesh Israni, Collin Jackson, and Dan Boneh.

2012. The Case for Prefetching and Prevalidating TLS Server Certificates. In

NDSS. The Internet Society.
[58] Douglas Stebila and Nick Sullivan. 2015. An Analysis of TLS Handshake Proxying.

In TrustCom/BigDataSE/ISPA (1). IEEE, 279–286.
[59] Nick Sullivan. 2014. Keyless SSL: The Nitty Gritty Technical Details. https:

//blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/ retrieved

March 31, 2020.

[60] Nick Sullivan and Watson Ladd. 2019. Delegated Credentials for TLS. https:

//blog.cloudflare.com/keyless-delegation/ retrieved April 24, 2020.

[61] Pawel Szalachowski, Laurent Chuat, and Adrian Perrig. 2016. PKI Safety Net

(PKISN): Addressing the Too-Big-to-Be-Revoked Problem of the TLS Ecosystem.

In EuroS&P. IEEE, 407–422.
[62] Emin Topalovic, Brennan Saeta, Lin-Shung Huang, Collin Jackson, and Dan

Boneh. 2012. Towards short-lived certificates. Web 2.0 Security and Privacy
(2012), 1–9.

[63] Thomas Unterluggauer and Erich Wenger. 2014. Efficient Pairings and ECC

for Embedded Systems. In CHES (Lecture Notes in Computer Science, Vol. 8731).
Springer, 298–315.

[64] verizon. 2020. IP Latency Statistics. https://enterprise.verizon.com/terms/latency/

retrieved April 27, 2020.

[65] Georg Wagner, Olamide Omolola, and Stefan More. 2017. Harmonizing Dele-

gation Data Formats. In Open Identity Summit (LNI, Vol. P-277). Gesellschaft für
Informatik, Bonn, 25–34.

[66] BrentWaters. 2005. Efficient Identity-Based EncryptionWithout RandomOracles.

In EUROCRYPT (Lecture Notes in Computer Science, Vol. 3494). Springer, 114–127.
[67] Changzheng Wei, Jian Li, Weigang Li, Ping Yu, and Haibing Guan. 2017. STYX:

a trusted and accelerated hierarchical SSL key management and distribution

system for cloud based CDN application. In SoCC. ACM, 201–213.

[68] Liang Zhu, Johanna Amann, and John S. Heidemann. 2016. Measuring the

Latency and Pervasiveness of TLS Certificate Revocation. In PAM (Lecture Notes
in Computer Science, Vol. 9631). Springer, 16–29.

14

https://arxiv.org/abs/1906.10775v2
https://www.statista.com/statistics/267184/content-delivery-network-internet-traffic-worldwide
https://www.statista.com/statistics/267184/content-delivery-network-internet-traffic-worldwide
https://engineering.fb.com/security/delegated-credentials/
https://engineering.fb.com/security/delegated-credentials/
https://jce.iaik.tugraz.at/products/core-crypto-toolkits/eccelerate/
https://jce.iaik.tugraz.at/products/core-crypto-toolkits/eccelerate/
https://jce.iaik.tugraz.at/products/communication-messaging-security/isasilk/
https://jce.iaik.tugraz.at/products/communication-messaging-security/isasilk/
https://blog.mozilla.org/security/2019/11/01/validating-delegated-credentials-for-tls-in-firefox/
https://blog.mozilla.org/security/2019/11/01/validating-delegated-credentials-for-tls-in-firefox/
http://www.ietf.org/internet-drafts/draft-nir-saag-star-01.txt
http://www.ietf.org/internet-drafts/draft-nir-saag-star-01.txt
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-03
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-03
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/keyless-delegation/
https://blog.cloudflare.com/keyless-delegation/
https://enterprise.verizon.com/terms/latency/


Short-Lived Forward-Secure Delegation for TLS

A SIGNATURE SCHEMES
For completeness, we recall the standard definition of a signature

scheme.

Definition A.1. A signature scheme Σ consists of the PPT algo-

rithms (Gen, Sign,Verify), which are defined as follows:

Gen(1^ ) : On input security parameter ^ outputs a signing key sk
and a verification key pk with associated message spaceM.

Sign(sk,𝑚) : On input, a secret key sk and a message 𝑚 ∈ M,

outputs a signature 𝜎 .

Verify(pk,𝑚, 𝜎) : On input a public key pk, a message𝑚 ∈ M and

a signature 𝜎 , outputs a bit 𝑏.

We note that for a signature scheme many independently gen-

erated public keys may be with respect to the same parameters

pp, e.g., some elliptic curve group parameters. In such a case we

use an additional algorithm Setup, and pp ← Setup(1^ ) is then
given toGen. We assume that a signature scheme satisfies the usual

(perfect) correctness notion, i.e. for all security parameters ^ ∈ N,
for all (pk, sk) ← Gen(1^ ), for all𝑚 ∈ M, we have that

Pr[Verify(pk,𝑚, Sign(sk,𝑚)) = 1] = 1.

Below, we recall the standard existential unforgeability under adap-

tively chosen message attacks (EUF-CMA security) notion, which

requires that even with access to a signing oracle an adversary is

unable to forge signature on message that have not been queried.

The experiment has access to the following oracles:

Sign′(sk,𝑚) : This oracle computes 𝜎 ← Sign(sk,𝑚), adds𝑚 to

Q, and returns 𝜎 .

Experiment Expeuf-cma
Σ,𝐴 (^)

(pk, sk) ← Gen(1^ )
(𝑚∗, 𝜎∗) ← 𝐴Sign′ (sk, ·) (pk)
if Verify(pk,𝑚∗, 𝜎∗) = 0, return 0

if𝑚∗ ∈ Q, return 0

return 1

Experiment 5: The EUF-CMA experiment for a signature
scheme Σ.

Definition A.2 (EUF-CMA). For any PPT adversary 𝐴, we define

the advantage in the EUF-CMA experiment Expeuf-cma
Σ,𝐴 (cf. Experi-

ment 5) as

Adveuf-cma
Σ,𝐴 (^) := Pr

[
Expeuf-cma

Σ,𝐴 (^) = 1

]
.

A signature scheme Σ is EUF-CMA-secure, if Adveuf-cma
Σ,𝐴 (^) is a

negligible function in ^ for all PPT adversaries 𝐴.

15


	Abstract
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Hierarchical Identity-Based Signatures
	2.2 Naor Transform: Signatures from Identity-Based Encryption

	3 TBIB: Time-bound Identity-Based Signatures
	3.1 Syntax and Definitions
	3.2 Generic TBIB Construction
	3.3 Forward-Secure Construction from HIBS
	3.4 Practical Considerations

	4 Integration into TLS
	4.1 Our Approach: Delegating the Secret Key
	4.2 Changes to Existing TLS Implementations
	4.3 Other Applications

	5 Evaluation
	5.1 Performance Measurements
	5.2 Qualitative Evaluation
	5.3 Conclusion

	Acknowledgments
	References
	A Signature Schemes

