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Foreword

In the present competitive and efficiency-oriented economic realm, credit
scoring plays an important role, impacting numerous aspects of economic
activities and driving their successes. From the level of self-employment,
through micro, small, medium size and large companies and institutions,
to even multinational enterprises and institutions up to entire countries.

A profound understanding of credit scoring nowadays has become a must
for every person who is professionally involved in dealing with problems re-
lated to decision making or risk management in financial institutions.

Since its conception, credit scoring has traveled a long way from statis-
tical and probabilistic analyses and decision-analytic approaches that have
characterized earlier traditional methods. In recent years, maybe decades,
the complexity of credit scoring and its related aspects has grown rapidly.
Moreover, the wealth of data that can currently be collected by financial in-
stitutions and their customers, as well as various institutions and agencies,
has changed the landscape by the emergence of the so-called data-driven
technology, better access to a wider variety of data, increased computing
power, etc. All these have initiated a new wave of novel approaches to credit
scoring, as well as a possibility to include in the analyses further aspects
such as the pricing of financial services to reflect the risk profile of the
individual, company or institution, etc.

In general, credit scoring has evolved in recent years — as a result of the
data-driven revolution — from traditional approaches based on statistics,
probability, decision analysis, etc. to new ones built on artificial intelli-
gence, notably machine learning. This sparked a great interest in these

modern approaches to credit scoring, laying foundation for a considerable
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research effort that has resulted in many publications as well as practi-

cal applications.

However, the addition of more methods to the toolbox of a contempo-
rary credit scoring modeler poses new challenges related to proper proce-
dures of developing, validating, monitoring, and finally implementing such

models and approaches in practice.

This volume tackles the problems related to the above-mentioned new
directions, challenges, difficulties and opportunities in modern credit scor-
ing in an interesting, innovative and constructive fashion. Credit scoring
in context of interpretable machine learning is a rare, extraordinary entry
in the world literature that presents combination of explanation of theoret-

ical concepts and approaches, as well as contemporary scoring practices.

The text covers both classical credit scoring methods and new method-
ological and procedural approaches having their roots in machine learning.
Such a vast range of topics cannot be developed by an individual — it re-
quires a multidisciplinary team capable of combining individual expertise,
experience and skills, as well as an ability to share the courage to respond
to a need of the community for a monograph in this area that would be si-

multaneously methodologically sound and friendly for the reader.

The volume is, therefore, a collection of chapters which have been writ-
ten by the members of the team having different backgrounds, expertise,
experience, as well as professional and research interests. The authors share
the research philosophy and policy of Decision Analysis and Support Unit
at SGH Warsaw School of Economics that emphasizes that at the center
of any application of mathematical models, there should be a clear vision

of how they will be used to aid and support decision making.

The monograph starts with a presentation of the historical and organi-
zational setting of credit scoring and a critical review of data-related pro-
cesses that are relevant for preparing credit scoring models. Afterward, be-
ing aware of the recent data-driven revolution, the exposition moves to the
presentation of selected machine learning methods that can be used for
credit scoring, with a special emphasis on variable selection methods which

concern one of the key challenges of the modeling practice. The third group
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of topics that is covered are analytical tasks that are typically undertaken
when a credit scoring model has been built, that is the model’s perfor-
mance evaluation, model monitoring and methods allowing to understand
how complex machine learning models produce their forecasts. This is a cru-
cial issue due to the fact that virtually all machine learning methods are
of a black (grey) box type in their functioning and hence the results ob-
tained, may be not comprehensible to the user. Approaches to overcome
this inherent difficulty attract much interest in recent years and a new
field of the so-called Explainable Artificial Intelligence (XAI) has emerged.
The monograph is completed with a review of key aspects related to the
deployment of credit scoring models in complex IT infrastructures, with
emphasis on the most important problems related to the performance and
scalability of the scoring process, as well as architectures and processes that
can be used while implementing credit scoring models in the development
of decision engines.

The editors and authors of the particular chapters have to be congrat-
ulated for producing a captivating read and useful volume. Their contri-
butions present well-chosen aspects of modern approaches to credit scoring
up to the highest academic standards, yet in a comprehensible and con-
structive fashion. They focused on the new and promising data-driven ap-
proaches, notably based on machine learning which will certainly dominate

in the years to come.

Professor Janusz Kacprzyk, Ph.D., D.Sc.

Polish Academy of Sciences

Spanish Royal Academy of Economic and Financial Sciences
Bulgarian Academy of Sciences

Finnish Society of Sciences and Letters






Preface

A deep understanding of credit scoring became a must for every person who
professionally tackles problems involving decision making or risk manage-
ment in financial institutions. The complexity of this area recently grows
rapidly due to the increasing versatility of financial products and business
models, a surge of uncertainty on the markets and rise of intricacy of in-
teractions between players on these markets. That manifests itself by the
wealth of data that are currently collected by financial institutions. While
the concept of credit scoring remains indisputable, traditional credit scoring
methods are currently challenged by machine learning approaches that are
very successfully used in many other application areas. However, adding
more methods to the toolbox of a contemporary credit scoring modeler
poses new challenges related to proper procedures of building, validating
and monitoring such models in practice.

The volume Credit scoring in context of interpretable machine learn-
ing presents a unique, and simultaneously balanced, combination of expla-
nation of theoretical concepts and contemporary scoring practices rooted
in these concepts. We assume that the reader has a working analytical
knowledge in fields of finance, mathematics, applied statistics and data pro-
cessing algorithms. This monograph is prepared for one of the three main
target groups: 1) finance and economics students (graduate or postgrad-
uate levels), 2) risk practitioners (e.g., risk managers, data scientists, risk
modelers, regulators, consultants) and 3) independent researchers (includ-
ing academics, freelancing risk specialists, and machine-learning experts).

This monograph’s primary purpose and the ambition we had while writ-

ing it, were to present the development and maintenance of the creditwor-
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thiness assessment process, emphasizing the applicability of the state of the
art data analytics methods (i.e., machine learning). The modern trans-
formation allowing big data driven decision-making, especially in credit
scoring, is present not only in universal banks but also in many other en-
tities that offer solutions based on trade credit. Today’s standards and
business practices require full transparency and audibility of the analyt-
ical methods used. The era of black bozxes, the actions of which could
not be understood and decision-making processes in which stakeholders are
not able to precisely explain the impact of individual factors, has already
ended in many industries and in banking itself probably never came. For
this reason, in this monograph so many pages are devoted not only to the
machine-learning methods themselves (supported by the Explainable Arti-
ficial Intelligence - XAI) but also to other aspects of building robust and
trustworthy quantitative models supporting business processes.

The structure of this monograph is as follows:

e In Chapter 2, we discuss the data utilized in the process of credit
scoring; we also emphasize the importance and particular techniques

of data management.

e In Chapter 3, we review different techniques used for variable se-
lection. Here we present some of our findings in terms of modern

approaches and their superiority over classical procedures.

e In Chapter 4, the selected methods of credit scoring are presented.
In this chapter we introduced both the classical scoring approach

using logistic regression and also its modern competitors.

e In Chapter 5, we present the most frequent data-related issues and

the solutions used to overcome them.

e In Chapter 6, the validation procedures of credit scoring models
are presented. Our discussion is model agnostic — both classical and
modern credit scoring can be validated using the techniques discusses

in that chapter.
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e In Chapter 7, we investigate the methods of explainable machine
learning that are the way to ensure the transparency and interpretabil-

ity of the black-box models.

e In Chapter 8, we discuss the most common performance issues re-
lated to building and maintaining of scoring models. We also review
technological platforms that provide a scalable technology stack al-

lowing to overcome these problems.

e In Chapter 9, we present the techniques used for integrating scoring

models into credit decision making processes.

In this textbook, we discuss the credit scoring of consumer finance prod-
ucts, small and medium enterprises, based on both financial and behavioral
data. For the experimental purposes, we utilize simulated, see Chapters
3 and 4, as well as empirical data, see Chapter 7.

This monograph is the result of exciting discussions and scientific sem-
inars conducted by the team of the Decision Analysis and Support Unit,
SGH Warsaw School of Economics, with business practitioners from the
banking sector. The research conducted at the Decision Analysis and
Support Unit focuses on using quantitative methods to support decision-
making. This research, basic and applied, is currently carried out in strong

connection with applications in four areas:

1. The theory of decision making, with particular emphasis on de-
scribing the preferences of economic entities and supporting individ-

ual and group decision-making processes.

2. Optimization methods, especially methods of finding approximate
solutions to problems with a high level of complexity and character-

ized by uncertainty.

3. Forecasting the consequences of regulatory and managerial deci-

sions.

4. Simulating complex business processes, in particular using the multi-

agent approach.
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Chapter 1

Background of the credit
scoring

DANIEL KASZYNSKI

Decision Analysis and Support Unit
Collegium of Economic Analysis
SGH Warsaw School of Economics

The word credit originates from the Latin cred which can be translated
as to believe, suppose. In its roots, the credit granting was strongly as-
sociated with the trustworthiness of the debtors. The institution of credit
(which is a reallocation of financial resources from those who suffer from the
abundance of capital to those who experience its scarcity) has been accom-
panying humans since the dawn of time. As early as the time of the Sume-
rian civilization (around 3500 BC), within the first known urban civilization
with over 85% of the population living in cities, the institution of credit
was used, in particular as a source of financing and liquidity for agriculture.

Ancient Babylon was also one of the first reported to use credit; the
literature on the subject (Lewis, 1992), indicates notes made on stone
tablets from 2000 B.C.E.: Two shekels of silver have been borrowed by Mas-
Schamach, the son of Adadrimeni, from the sun-priestess Amat-Schamach,
daughter of Warad-Enlil. He will pay the Sun-God’s interest. At the time
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of the harvest, he will pay back the sum and the interest upon it. Other early
references to credit and lending are from Babylonian civilization (c. 1800
B.C.E.); the Babylonian law, written during the reign of King Hammurabi
which formalized and systematized the laws of credit. This code sets the
highest possible levels of interest rates that could be used to grant loans:
33.3% per annum for loans for the purchase of grains, 20% per annum for
loans for the purchase of silver. Besides, the code also introduced prin-
ciples regarding the technical aspects of granting loans (today we would
call it corporate governance principles), e.g. a loan, in order to be binding,
had to be certified by a public official and written down as a contract.
The process of credit granting is associated with the belief and presump-
tion of the lender about the willingness and capability of the debtor in terms
of repayment. In fact, from the perspective of the lender, the proportion
of failures in repayments (for the sake of argument, let us assume that the
credits are identical) forms the cost of doing the credit business. That being
said, the riskier the clients, the bigger premium the lender should charge
to cover: a) defaults of its customers, b) administrative margin, c) cost
of money and d) managerial premium. To be able to estimate the riski-
ness of the client reasonably, the lender should possess some information
about the client (e.g. whether this client had any problems with earlier
credits, the profitability of the business, the risk of the entire industry)
and the mechanism or model to transform that data into the risk score

or credit score.

1.1 History of credit scoring

Creditworthiness scoring is related to the process of accepting credit appli-
cations and is one of the oldest tools in both data analytics and risk man-
agement (Thomas et al., 2017). Its systematic use dates back to the 1950s
—an early application of the loan portfolio in terms of risk management and
diversification. Credit scoring and accompanying tools were also used for
data mining; it was one of the first applications of consumer behavior data

analytics. However, one can find in the literature that credit scoring was
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used even earlier, in 1820. At its beginning in the 1820s, credit reporting
began to modernize which was a result of the popularization of lending and
the need to adjust regulatory standards to the new market regime. New
bankruptcy laws made loans a risky transaction which resulted in attempts
to standardize approaches to credit assessment. Established by a merchant
Lewis Tappan in 1841, the trade agency searched for information from cus-
tomers all over the country regarding the information on debtors’ assets
— this was the aftermath of the first economic crisis caused by a financial
crisis (Morawski, 2003).

The above-mentioned credit scoring attempts were entirely subjective
and human judgment approaches; when assessing creditworthiness, analysts
were guided solely by their experience and expert knowledge (Thomas et
al., 2017). Reports from that period indicate that, for example, one should
be guided by racial criteria when granting loans (Cohen, 2012). From to-
day’s regulatory standards point of view, such behavior is unacceptable
and the credit decision itself must be supported by transparent quantita-
tive measures/features. However, it should be emphasized that the credit
sector in this period was significantly smaller, and the lion-share of loans
were used by enterprises. At that time, loans were granted using a prin-
ciple of minimizing losses — only safe transactions were co-financed by the
loan, with a high level of security for these transactions (Thomas et al.,
2017). At its origin, credit scoring referred to the process of accepting loan

applications in banks (Oesterreichische Nationalbank, 2004).

Nevertheless, credit scoring does not need to be identified only with the
banking approval process. It is also used today in many other processes
where the customer signs the contract, most often committing to regular
financial burdens (e.g. telephone subscription, T.V.), has to be pre-assessed
in order to prepare the best terms of the contract, so that the institution
providing the services would not risk too much. In the context of Big Data,
the scoring analyses are a well-established example of data analytics used

in a straightforward business process.

Philosophically, credit scoring is an activity related to the estimation

of the borrower’s creditworthiness (dependent on given macroeconomic con-
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ditions) that belongs to the trend of pragmatism and empiricism (Thomas
et al., 2017). The leading goal of credit scoring is effective (in terms of the
quality of the returned forecasts) and efficient (in terms of the resources
devoted) estimation of the credit risk forecast. Credit scoring derives its
improvement primarily from objectivity based on statistical modeling meth-
ods and empirical data on customer behavior. The above-mentioned philo-
sophical trends support the use of available data regarding the consumer
or his environment in order to improve the performance of scoring models.
However, this is in contradiction with some regulatory standards which ex-
plicitly prohibit the use of sensitive data (e.g. gender, race) as the criteria

determining whether or not to grant a loan.

1.2 Classical scorecard

The origins of credit scoring, as mentioned above, date back to the 1950s,
when a consulting company, Fair, Isaac and Company, today known as
FICO, created the first commercial scoring system. The underlying prin-
ciples behind this system were related to the cost efficiency (time and re-
sources) but also to increase the objectivity of the scoring process. Lenders
no longer needed to employ so many analysts to perform expert-based scor-
ing — what took the human-based scoring several days/weeks, now could
be performed in a matter of minutes or even seconds (assuming the avail-
ability of data). Today’s perception of the credit scoring model refers to the
statistical approach of scoring which usually involves the creation of the
credit scorecards (Anderson, 2007; Matuszyk, 2004; Thomas et al., 2017).

Credit scoring models are, in principle, statistical predictive models used
to forecast future events — the default of the customer. In particular, most
of the banks use the basic logistic regression, see Chapter 4, as a function
that inputs a set of features into the credit score. The popularity of the
logistic regression model is due to its simplicity and interpretability — the
aspect which is getting more and more attention from the regulatory point

of view but also due to business needs. As of today, the logistic regression
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in banking is widely applied — across IFRS 9 PD calculation, to capital
requirements determination (PD models used in the Basel III framework
for the calculation of Risk-Weighted Assets).

1.3 Data analytics revolution and its challenges

The methods of granting loans (both cash and installment loans) have
changed significantly; the combination of credit market growth, technol-
ogy development and the constant striving to optimize the profitability
profile of companies somehow forced the search for other, more effective
(i.e. generating better prediction) and efficient (i.e. faster) methods of as-
sessing creditworthiness. The current method of lending is rapid — today,
even in a matter of seconds, the end-to-end scoring process is performed.
Such external market requirements exclude manual work related to the
assessment of each credit application by an expert — expert panels assess
only the largest credit exposures and the credit decision itself is delegated
to higher decision-making levels (including the bank’s management board).
This is reflected in the significant increase in the use of formal, technology-
supported mathematical models of creditworthiness assessment observed
over the recent period (Stein, 2005).

One of the significant dangers of using credit scoring is that, just as any
model, it is some kind of generalization. Over time, the scoring model
may become obsolete and the evaluation made on its basis is no longer
reliable (Thomas et al., 2017). This argument, however, points to a more
generic one regarding each model used; it points to the need for continuous
improvement and quality monitoring of the results returned by the model,
see Chapter 6.

Currently, institutions regulating the banking sector are beginning to pay
more and more attention to issues related to reliability of algorithmic pro-
cesses. The EBA report of January 2020 (European Banking Author-
ity, 2020) aims to identify the critical areas related to the use of Big
Data and advanced analytics (BD&AA) approaches in the banking sec-
tor. The report emphasizes that the use of BD&AA is currently on the
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agenda of most of the institutions performing a technological transforma-
tion. The report highlights the essence of the following areas within the use

of machine learning;:
e data management,
e technological infrastructure,
o organization and governance,
e analysis methodology.

The implementation of BD&AA class solutions is, in the perception
of the EBA, an element that significantly enters the area of trust. As indi-
cated by the guidelines, the critical aspect is to develop such technological
and procedural solutions that it is possible to develop trust in the socio-
technical environments into which such systems are integrated. The use
of trustworthy artificial intelligence is associated with the desire to max-
imize the benefits of using artificial intelligence systems while preventing
or reducing the risks associated with their use.

In June 2018, the European Commission established the so-called High-
Level Expert Group on Artificial Intelligence which is an independent group
of 52 experts and professionals deeply engaged in matters concerning civil
society. This group aims to develop guidelines and recommendations in the
field of ethical frameworks (using existing regulatory standards) that should
be followed by designers, implementers and end-users of systems using ar-
tificial intelligence algorithms. This framework should enable equal ethical
rules to be established in all Member States. In December 2018, this group
published draft guidelines on the so-called Trustworthy Artificial Intelli-
gence. As indicated, this document “[...] is intended to start a discussion
on Trustworthy A.I. for Europe” (European Commission, 2019).

The report defines that trustworthy A.I. should have three characteris-
tics throughout its lifecycle:

1. Compliance with the law understood as compliance with all applicable

laws and regulations.
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2. Respecting ethical principles and values.
3. Technical and social robustness.

The indicated guidelines address issues related to Ethics and Reliabil-
ity. Based on the above-mentioned features, the High-Level Expert Group
on A.l. has prepared seven requirements that A.l. systems should meet.
These guidelines provide a horizontal framework that enables the construc-
tion and implementation of trustworthy A.I. — however, as the authors
point out, different situations lead to different challenges. The authors
point to the need to develop sectoral approaches that take into account
the specific conditions and the context of the planned operation of artifi-
cial intelligence systems. This monograph aims to present the procedures
that will enable addressing the requirements indicated, among other things,
in the above-mentioned guidelines related to the technical aspects of using

machine learning methods.

1.4 People and processes

Credit scoring process should be developed using all of the elements of data

mining framework such as Cross-industry standard process for data mining,
CRISP-DM, such as:

1. Understanding the business purpose.

2. Understanding the data.

3. Hypothesis stating and modeling stage.
4. Model evaluation / validation.

5. Model deployment.

In terms of the credit scoring process and associated roles/responsibilities,
we refer to Naeem Siddiqi (2012), as the source materials. The following

main participants should be planned:



Understanding the
data

Hypothesis stating
and modelling
stage

Understanding the
business purpose

N

Model Model evaluation /
deployment validation

Figure 1.1: The Cross-industry standard process for data mining
Source: based on the Shearer (2000)

1. Scorecard developer — the expert in the domain of statistics or econo-
metrics that performs the modeling stage. This role requires busi-
ness knowledge related to the credit products that will be associ-
ated with the scorecard. Moreover, this expert should possess the
knowledge about the data process in the institution but also some
good understanding of the legal and regulatory requirements related
to the model.

2. Data scientist — the expert who supports the data source man-
agement and extraction of necessary records/features. This role re-
quires in-depth knowledge related to the process data within the
institution but also data quality management practices followed by

the organization.

3. Risk manager — the person responsible for managing the company’s
credit portfolio. This role requires to have the broad picture knowl-
edge on the model itself (input data, development, implementation,
monitoring, usage) but also have information on the company’s risk

appetite/tolerance.

4. Product manager — the person responsible for the management

of the product/product branch for which the credit scoring model
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is utilized. This person should have the information on the product-
marketing strategies but also the target segmentation of the cus-
tomers, as well as the scope and character of input data gathered.
Nevertheless, the model formula is usually not shared with the prod-

uct manager.

5. Operational manager — the person responsible for the on-going
management of the model’s related processes, e.g. claims, application

processing, documentation or governance.

6. Model validator — the independent expert who overseeing the model’s
performance and model purpose (more on the validation process
in Chapter 6).

7. IT support — the scoring model is always stored and used on some
IT infrastructure. The I'T support plays a critical role for the technical
robustness, allowing the data flow to and out of the model (more

on the technical aspects we cover in Chapters 8 and 9).

8. Legal support — a supportive role for the matters of regulatory

compliance regarding the form and usage of the scoring model.

At the beginning of the scoring process, the legal aspects related to cus-
tomer are verified — it is checked whether the applicant has provided cor-
rect information. Then, the rules that identify unreliable or suspicious
customers are most often checked, which is referred to as the collective
name — verification with black lists. In case the data from the application
are incorrect, the additional steps of supervision needed to be performed
(e.g. double-check with external source/credit bureau). All these types
of activities should aim to minimize the risk of abuse.

The next stage in the process is to verify whether all the rules and
recommendations made by the supervisor are respected, as the banking
credit market is regulated and the supervisor has the right and obligation
to protect the consumer. Most often, the recommendations refer to the

guidelines limitation on too high debt to income ratio, too long tenor, too



26

high price. Moreover, the fair lending laws, impose the obligatory unbiased
treatment of all customers — they ensure that banking products and credit
decisions are provided equally.

The next, essential stage is the use of the scoring model to deter-
mine whether to accept the exposure — approval of the single exposure
should remain consistent with the organization’s strategy in terms of risk
appetite/tolerance. This process is handled within the banks’ internal
credit approval framework which includes the scoring cut-off threshold def-
inition, i.e. defined explicitly and well documented. The approval process
may include, apart from scoring itself, also additional factors (e.g. collateral
which is not included in the scoring).

At that stage, a credit analyst may break the decision recommended
by the system — it is called scoring’s override. From a practical point of view,
the bank usually, apart from the scoring cut-off threshold (i.e. a black
scoring area), defines some thin range of scores (i.e. a gray scoring area)
that allows individual decisions regarding credit application.

All the above-mentioned steps and interactions with the clients, as well
as the accompanying documentation, should be registered and stored in the
bank’s database — usually, it is performed using the workflow system. Only
then is it possible to learn from mistakes and continually improve the credit

scoring process.



Chapter 2

Data processing for credit

scoring

MACIE] KWIATKOWSKI

In this chapter, data used for credit scoring and accompanying processes
are presented and discussed. The structure of this chapter is as follows:
firstly, the data sources are presented, with particular emphasis on the data
sources available and used by the European financial institutions. Secondly,
data management principles are presented; in the final section, data quality

assurance procedures are discussed.

2.1 Data management

Data quality is a critical issue in credit scoring and the old saying “rubbish
in - rubbish out” remains valid regardless of particular regression or machine
learning technique used. With more and more explanatory variables added,
the effects of using erroneous data (in terms of their quality) are becoming
more complex and the final impact on the estimators/model parameters
(i.e. its value or its stability) is hard to predict. On the other hand, the

cost of cleaning such data increases proportionally to their amount.
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In this monograph, we propose a set of rules and principles that may

be implemented into the data quality assurance process:
e Understanding the target population.

e Understanding the data.

Understanding the data feed process.
e Removing visible rubbish from the data set.

o Tight control on the quality of the outcome variable.

2.1.1 Understanding the target population

Over many years, the keyword for the target population in credit score-
cards was a homogeneous group of clients and products. Nevertheless, the
interpretation of what that homogeneity means was a somewhat arbitrary
choice of the modeler, validator or regulator. Here, based on modeling ex-
perience and good market practice, we point out what choices have proved
to be better and which of them turned out to be wrong.

The bad choices:

Building a scoring model on a product level (e.g. separate credit scorecards
dedicated for cash loans, credit cards, overdrafts) is a reflection of product-
centric silo organizations which leads to a complex model architecture where
clients get inconsistent treatment depending on what product they require.
In a modern omnichannel, customer-focused organization, it causes frus-
tration of clients and sales force alike. Additionally, segmenting the tar-
get population may lead to a lower number of observations available for
modeling and, therefore, lower predictive power and stability of result-
ing scorecards - we strongly suggest verifying results of the segmentation
on predictive power and stability. Furthermore, as definitions of a “bad”
client can significantly differ between products, it can lead to the aforemen-
tioned significant differences in predictive variables, especially for behavior
scorecards; these differences in models have nothing in common with an un-

derlying willingness and capacity, e.g. to repay the loan.
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Development of the different scoring models for enterprises based on their
balance sheet size or annual sales is an approach that is often a reflec-
tion of the internal classification of a client/company, assuming, e.g. their
“small”, “medium” or “large” sizes. This classification is subject to arbi-
trary credit policies and internal politics and is detached from the clients’
characteristics that are further incorporated and analyzed with mathemati-
cal modeling. Moreover, as these credit policies may be frequently changed
(sometimes several times a year), the models would have to be revised

accordingly, adjusted and re-estimated.

The good choice:

Defining the target population based on available information. It eliminates
the leading cause of instability of the model. The coverage of the input
data may vary in time or across the portfolio (e.g. depending on company
size), yet the predictive power of a particular input data set remains mostly
unchanged and unrelated to particular product or business segmentation

of clients.

Furthermore, in the case of different input data, different variables en-
ter the model. A classic example is “reach hit” vs “thin file” vs “no-hit”
segmentation of credit bureau scorecards. In the case of rich history in the
credit bureau (usually defined as at least one currently reported credit prod-
uct), socio-demographic data rarely enter the model and in the case of some
very rich credit bureaus, they can be entirely skipped. On the other hand,
scarce or no credit bureau information can usually be compensated with

more socio-demographic information.

Another rule that should improve the data quality and data handling
is to flag specific observations as “observation exclusions” or “outcome
exclusions”. The latter term refers to observations for which credit out-
come, due to technical issues, cannot be determined with certainty (e.g.
as a result of no credit activity of the client). “Observation exclusions”
term specifies the clients with atypical behavioral profiles; including those
clients into the training sample that might distort the model. Typical
examples of “observation exclusions” include VIP, staff, fraudulent credit

accounts, clients without relevant predictive information. While observa-
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tion exclusions are generally a good practice, the fact that credit scorecard
is used as an input to credit risk provisions under IFRS 9 and capital
calculations under IRB opens a question of how PD parameters should
be calculated for such clients. A common-sense solution of minimizing the
number of observation exclusions in the first place and creating separate
PD pools for those remaining usually works well. Clients with no relevant
predictive information should be treated as observation exclusions anyway,
which is in line with the concept of segmenting the target population based
on available information.

It should be kept in mind that particular groups of clients can always
be excluded from certain credit risk decisions even if the credit score is avail-
able for them (strategy exclusions, e.g. due to lack of customer consent for
automated offering), therefore there is no point to overly limit the target

population of the model.

2.1.2 Understanding the data

The data-mining approach based on sifting through terabytes is not wel-
come and appropriate in credit scoring (and broadly in credit risk). Even
though sensational claims are made by some model vendors and top-shelf
consultants about machine learning models finding predictive alcohol pur-
chasing patterns and early indicators of a divorce, these claims did much
damage to the perception of machine learning in the credit risk area.
Firstly, to a credit risk expert, they sound much more sensational than
credible; secondly, they spark concerns of the general public, journalists,
regulators and members of parliament. Credit risk modeling has always
been a delicate balance between the need to know the client and the pri-
vacy of the client. It is necessary to understand how to assess the client
and that the client knows how he/she is assessed, the latter was even made
a legal requirement in the European Union under the General Data Protec-
tion Regulation. It is also necessary to know which data are indispensable,
as they exhibit cause and effect relationship to customer default and which

are only correlated proxies.
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A safe way to determine which of the vast databases available internally
in the organization or on the market is relevant for modeling, is to look
at what credit risk analysts were looking for over decades. Here we list

some hints, separately for individuals and companies.
Individuals:

e the primary source of income and its stability,

o if salaried: quality and stability of the employer,

o if self-employed: profession, seasonality of the business, vulnerability

to the economic cycle, entry barriers, business history,
e disposable income,
o an alternative source of income or support (e.g. a spouse, a family),
o the character of fixed expenses and their stability,
o assets (home, car, deposits, securities),
e saving rate,

e loans and credit lines currently held, their balance, installments and

maturities,
e current and past delinquencies,
e means of contact,
e geolocation.
Companies:

e nature of business: seasonality, vulnerability to the economic cycle,

entry barriers,
o business history,

e management quality,
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o legal form,

 balance sheet (assets, liabilities, their character and length, financing

sources in particular),
e income statement,
e cash flow,
e exposure to critical suppliers and key clients,
e concentration of suppliers,
e concentration of clients,
e current and past delinquencies,
o exposure to cross border risks (currency risk in particular).

The primary source of data sets for credit scoring is usually within the
credit institution. Banks administer databases of account histories includ-
ing information concerning the income, expense, financial assets, financial
liabilities. Economic dependencies, concentrations and cross-border expo-
sures can be discovered from fund transfers. Sales, as well as geolocation
of clients, can be extracted from point-of-sale terminals (POS). Neverthe-
less, two critical factors have to be handled carefully: data completeness
and privacy.

The data completeness refers to capability of determining the client’s
characteristics (with relatively small error) given a data set — the more
completed data set, the better the predictions. We cannot make a spend-
ing profile of a client based on the data from a single POS terminal even
if it is the leading shop in the client’s village. We cannot tell about the
client’s willingness to pay if we see only delinquencies on our products and
not those in other banks. In order to address the data completeness issue,
various institutions have been established which will be described further
in this chapter.

On the other hand, even a piece of isolated information like a hospital

bill or a legal bill may indicate a severe life accident which is vital for credit
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risk assessment, but here is where privacy regulations come into play. Even
though some general rules apply in the European Union, different compro-
mises have been worked out in different countries. Therefore, it is crucial
that the data set prepared for modeling does not contain prohibited in-
formation and even data strongly correlated with prohibited information.
It means that the input data and final model always needs to be man-
ually scrutinized for privacy issues and consultation with the compliance

department is necessary.

The availability of some data is subject to customer consent. Especially
the clients who have derogatory or sensitive information in some databases
may attempt to withdraw previous consents. Such optional data should
be identified before modeling. A safe approach would be to remove them
from the modeling data set entirely. In the case of primarily positive in-
formation, it may still be considered as long as its withdrawal does not
improve the client’s risk assessment. In any case, optional data should

be checked for stability and consistency over time.

Furthermore, the GDPR (European Parliament, 2016), imposes an obli-
gation to inform each person that his/her data is processed. It is easy
to do in the case of existing clients of the institution, as there is usu-
ally a convenient e-mail communication channel or in the worst-case sce-
nario monthly paper account statements are sent regularly. In the case
of prospects who do not have any relationship with the credit institution
yet, it may be quite onerous, especially if paper letters need to be sent with
a low (e.g. 0.1%) conversion rate to approved loans. In that case, the unit

cost of acquiring a new client would be 1 000 times the cost of a letter.

Information duty may result in high costs the when processing of social
or business networks takes place, as it may apply not only to the client itself
but also his or her surrounding (both internal — e.g. employees, stakeholder
but also external — suppliers, providers, vendors, etc.). It may also apply
if, i.e. a payroll of a corporate client is processed in order to figure out the
cost of its workforce. A solution to this might be through anonymization
or pseudonymization of the data, as it is usually not the identity of a con-

nected person that feeds the credit risk model.
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Finally, the cost of information duty may lead to a complete removal
of specific data fields and observations, e.g. personal data of company
management board or records of sole company owners from a purchased
commercial data register. This, in turn, may drive reconsideration of the
model architecture and target populations of individual scorecards, mainly

if this target population is driven by data availability.

2.1.3 Understanding the data feed process

Not only does the scope of data (e.g. predictive variables and target pop-
ulation) matters. What is equally essential is the refreshment frequency.
Some databases (e.g. current accounts) are refreshed online, some others
(e.g. financial statements) are refreshed only annually, some (e.g. country
statistical office) are provided with a considerable delay. In most credit
risk scorecards timing matters. As we cannot change the timing of external
data sources, the development data sets should be prepared in a way that
these timing differences and delays are reflected. The development data set
should reflect explanatory data as they would likely look like in a produc-
tion process when the predictions are calculated (e.g. it may be assumed
that the financial statements are 6 months old or the observation window
may be structured in a way that 1/12 of observations have financial state-
ments 1-month-old, 1/12 have them 2 months old etc.; in production, the
timing of the data feed should be monitored). A significant and permanent
change in the schedule of the data feed may result in a need to redevelop
the scorecard.

An important issue is the implementation of machine learning mod-
els. Prior to the implementation of modern decision engines which could
be programmed by end-users in the credit risk department, implementation
of simple credit scorecards with 10 to 20 variables took months, sometimes
even more than a year. With modern decision engines, it can be reduced
to weeks, yet the cost and complexity are more than proportional to the
number of variables. Any manual coding, copying from one programming
language (like SAS) to another one (like COBOL) is out of the question with

machine learning model. New generation decision engines support copy-
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paste model deployment or PMML (Predictive Model Markup Language).
Nevertheless, none of these methods will cope with changing the names
of variables. Neither will it cope with pre-processing. Therefore, the mod-
els should be developed on precisely the same data feed which will be used
in production, with all the pre-processing steps.

Furthermore, the timing and the stability of the data feed, especially
if various data sources are connected, should be monitored. There is no good
credit scorecard without a good credit process in which it is embedded.
It may be an application process, a monthly or quarterly portfolio moni-
toring process or an annual credit review process, yet there is little freedom
on what data are provided to the model and how old they are. In some

cases different processes will require different models, too.

2.1.4 Removing visible rubbish from the data set

The advanced modeling methods presented in this monograph will not elim-
inate the problem of incomplete, unstable and too granular data. Some
of the discussed methods may become unstable and inefficient facing the
data quality issues. Adding plenty of variables that do not exhibit explana-
tory power (even if it does not deteriorate the power of the model much
due to regularisation mechanisms) will increase the computing cost and
prediction time. Furthermore, it will increase the operational risk of failure
in case of problems with the data feed. Last but not least, it can make the
costs of model monitoring prohibitive. Therefore, while traditional score-
cards with 10 to 20 variables were an oversimplification of credit risk as-
sessment, models with thousands of explanatory variables seem to contain
mostly irrelevant ones. Here are some good practices on how to identify

irrelevant variables:
o Variables with coverage greatly varying in time.

e Variables provided optionally, either by the client or by the data

vendor.

o Dummy variables indicating missing data (as long as they are highly

correlated due to a data feed missing entirely).
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Customer identification data.

Categorical data with a vast number of categories, for which no hier-

archical data dictionary (coarse categorisation) exists.

Data raising privacy concerns (e.g. revealing religious, political or sex-

ual preferences).

Variables reflecting treatment of the client and policies of an institu-

tion rather than the client’s behavior (e.g. fees, interest rates).

Unprocessed log files (e.g. application data log, collections communi-

cation log).

Unprocessed transaction titles.
Unprocessed transaction counterparties.
Unprocessed contact details.

Unprocessed addresses and zip codes.

It should be noted that commonly used machine learning algorithms

poorly cope with unstructured categorical data with a vast number of cat-

egories. They are prone to overfitting as much as more traditional logis-

tic regression or decision trees. Nevertheless, such data may bear impor-

tant information and some pre-processing is necessary. Examples of pre-

processing include:

Categorising current account transactions (based on merchant codes,

internal transaction codes or with text mining techniques).

Creating summary variables (indicating count and volume) for each

transaction category.

Creating summary variables (indicating count and frequency) of con-

tacts with the client and character of these contacts.

Creating descriptive variables of transaction counterparties (e.g. na-

ture of business, balance sheet size).
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» Creating descriptive variables of geolocation area (e.g. urban or rural,

local unemployment rate, local average salary, etc).

2.1.5 Tight control on the quality of outcome variable

While the quality of hundreds or thousands of potential explanatory vari-
ables might be challenging to handle, the target variable is the one that can
decide on the quality of an entire model. Compared to traditional credit
scorecards, the approach remains unchanged.

In terms of recent experience and good practices, here we provide some

vital issues that have to be addressed:

e Delinquency definition is crucial, especially for individuals and small
and medium enterprises. Some product definitions (balloon loans,
bullet loans, credit lines with no significant monthly repayments) can
compromise it severely. Some products are only delinquent when
not renewed by the bank which makes any credit risk model a self-
fulfilling prophecy. It cannot be addressed by the modeller alone.
Product managers and credit risk managers should work on this issue
otherwise business threatening credit risk losses might occur, as the

authors experienced several times.

e A restructured loan is usually a bad loan. EBA guidelines on for-
bearance and the forbearance status it defines, is a good definition

to follow.

o Last-in-first out (LIFO) is a bad Days Past Due definition. First-in-
first out (FIFO) is much better. A client with one monthly installment

overdue who pays regularly is a good client, even if 90 days past due
under LIFO.

» Additional (no-DPD) default reasons as defined in EBA guidelines
on default definition are a good further indication of bad behavior,
especially for products with compromised DPD calculation and for

corporate clients.
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o It is better to use a less precise “bad” definition which is consis-

tent across clients in the target population and over the observation
window, rather than to use an exact and less consistent one. Incon-
sistencies will be reflected in predictors entering the model. They will

predict these inconsistencies and not the client’s behavior.

12 months outcome window used in IRB PD models is too short, es-
pecially for 90 days past due trigger of bad behavior. Customers can
juggle with cash loan consolidation and credit card balance trans-
fers for much longer before they miss a payment. 18 to 24 months
outcome window is a good pragmatic compromise between capturing

such behavior and developing the model on reasonably recent data.

Outcome variable must be defined on the customer level, taking into
account all products. Otherwise, loan juggling and refinancing be-

havior may cover a bad outcome.

Clients without significant credit activity (e.g. repaying their loans
in less than 6 months or having only untouched credit lines or hav-
ing only minimal balances due to charged fees) are not good clients.
There is no evidence to say so. Prior inactivity is correlated with
future inactivity and lack of activity will indicate a lack of risk if such
clients are flagged as a good outcome. This is wrong, as it may indi-
cate that the bank is not the first choice provider of funds and it will
be used as the last resource lender. Inactive clients should be marked

as outcome exclusions.

2.2 Data sources

As mentioned in the previous section, the principal recommended data

source for the modern credit scoring process is the financial institution itself

and various institutions integrating data: credit bureaus, public commercial

registers, economic information integrators, public statistical offices, third

party payment providers (acting under EU PSD2 directive). The main

difference from modeling and implementation perspective is that internally
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available data come at no additional cost, whereas the external data may

require customer consent to get them and they may have to be paid for.

2.2.1 Own data

Own data has a form of flat tables and it is usually made available in monthly
and daily batches and contains customer transactions since the previous
batch and end of day or end of month account status data. Using monthly
data was a market standard for many years, except for collection score-
cards, where the behavior score is best calculated on collection entry date
with the most recent daily information.

In both cases the scorecards calculated on internal data are calculated
in a monthly or daily batch, matching the monthly or daily structure of in-
put data. In the case of scorecards combining internal information with
external information received online, at least predictive characteristics are
usually pre-calculated in a batch and combined with online information
later, in order to save the computing power of online decision engines.

While there are attempts to calculate daily or even online behavior
scores with robust modern IT technology, this will remain out of the scope
of this publication as authors do not have enough evidence to evaluate
added value compared to a more traditional monthly approach.

There are the following categories of internal data that are necessary
input for credit scorecards and all efforts should be made to identify them.
Their lack in the model should not be covered by other loosely

correlated information:
e delinquencies,
e the mix of products held by the client,
e balances on products held,
e available credit lines,

e cash transactions, number and volume,
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e incoming funds transfers (whenever possible, funds transfers between
accounts belonging to the client and his/her household members should

be shown separately).
Additional internal information which may be useful is the following;:
e history of credit applications made,
e history of contacts with the client and character of these contacts,

o the character of incoming funds transfers (salary, invoices paid, social

security, pension),
o identification of employer (via incoming salary transfer),
e internal transaction codes,

o merchant codes whenever transactions are made with a credit/debit

card,
o geolocation of transactions made with a credit/debit card.

Annual history is most often used; nevertheless, the authors recommend
using more extended history as long as it remains available and continues
to be predictive).

Internal behavioral data can be used in the form of raw data (e.g. cur-
rent loan balances), in a form of an indicator, count or summary variables
(e.g. the number of loans held, the balance of new loans taken in re-
cent 6 months, the fact of being 30 or more days delinquent in the past
3 months etc.).

The history of transactions on current accounts is first pre-processed
based on transaction codes, merchant codes, transaction descriptions and
sender or beneficiary of given funds transfer. The text mining techniques
and classification techniques used for this pre-processing are out of the

scope of this monograph.
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2.2.2 Application forms

A commonly used source of information is an application form (in case
of individuals) and qualitative assessment form (in case of enterprises).
The quality of both varies greatly and it is to large extent dependent on the
quality of data dictionary and attitude of salesforce supporting data gath-
ering process. In recent years, the use of application forms and qualitative

assessment forms is declining due to following reasons:

o Financial institutions compete in terms of minimizing the process-
ing time of credit application and overly detailed questions may dis-
courage clients as the required information may not be available

on the spot.

e The number of questions the client can answer on a mobile phone
screen is physically limited and lengthy application forms, due to tech-

nical issues, tend to crash.

e Sales force is no longer motivated to provide correct data in applica-
tion forms or qualitative assessment. They are motivated to provide

answers most likely resulting in credit approval.

e Application forms are easily manipulated by fraudsters, who can use
internet channels to decode traditional credit scorecards inputting

multiple credit applications.

We recommend using external data sources to compensate for the lack
of application forms or qualitative assessment forms; in the following part,

the additional external data sources are more broadly discussed.

2.2.3 Credit bureaus

The credit bureaus are institutions originally established to exchange credit
information between banks; shared information is subject to dedicated regu-
lations on sharing secret information (subject not only to privacy protection
laws but also to the banking secrecy law). The mission of credit bureaus

is to share credit information, in order to prevent clients from switching
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between banks and covering their bad debts, as well as to prevent exces-
sive debt taking behavior. The credit bureaus can be run by the state
(e.g. Belgian credit bureau owned by the central bank), privately owned
(e.g. British Experian) or owned by a consortium of banks (e.g. Polish
BIK). The ownership form is heavily dependent on the local regulations
adopted in the country. In some countries more than one credit bureau
exists which leads to differences in the coverage, data structure and scope
of information. The scope of information also varies strongly by country,
depending on what legal compromise was struck between the benefits of the
banking sector and the customer’s privacy.

Completeness of coverage is an important quality feature of a credit
bureau. In countries with a high concentration of the banking sector, dom-
inant banks can have a significant impact on how credit bureaus operate,
what data are made available and for what price. In order to increase
the coverage, in recent years also non-banking credit institutions got ad-
mitted to credit bureaus: specialized consumer finance companies, leas-
ing, factoring, financial co-operatives, etc. As there may be separate laws
governing data exchange between these institutions, the scope of avail-
able information may vary depending on institution type and this should
be carefully examined before building the model. Information coming from
non-banking institutions is best flagged separately for model development.
The type of institution from which the client has taken a loan may also
be predictive.

Initially, credit bureaus were set up to share information about individ-
uals. Over time, small and medium enterprises were added to the scope, yet
most banks withdraw information about large corporate clients. Informa-
tion about enterprises is usually provided as a separate data set which may
even have a different format of data or at least different data dictionaries.
Small entrepreneurs may have some loans in the data set for individuals
and some other loans shown in the data set for enterprises (in a different
format). Some form of data integration is therefore recommended before

developing a credit scorecard for this segment.
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A credit bureau may share both negative and positive information. Neg-
ative information consists of records about unpaid loans; positive informa-
tion consists of the records about loans paid regularly. Note that generally
positive information may also negatively impact a customer’s credit score
(e.g. when it shows an excessive level of debt). Depending on the credit
bureau, only negative information may be shown or clients may have an op-
tion to withdraw some of the positive information. This should be taken
into account in modeling, by proper construction of predictive variables
or by giving adequate coefficients to missing information in order to avoid
manipulation of input data.

Credit bureau report is usually provided in XML format (the structure

changes depending on the content) and it consists of following sections:
e customer identification,

¢ identification, timestamp and description of inquiry, in response

to which the credit bureau report is provided,

o summary information (number of open loans, number of loans in the
record, open balances, number of delinquent loans, balances on delin-

quent loans, days past due),
e history of credit inquiries,

o details of loans taken (original terms and conditions, current status,

delinquency and balance),

o history of loans taken (in monthly or even daily intervals: timestamp,

balance, status, delinquency status, days past due).

Some credit bureaus may contain information from courts, bailiffs, so-
cial security or tax institutions.

Most credit bureaus flag which records come from an inquiring institu-
tion. Some show pseudonymized identification of a credit institution so that
records coming from the same contributor can be identified. No credit bu-
reau known to the authors shares the name or publicly known id of the

credit institution which contributes the records.
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Many fields in a credit bureau report are optional and they have a con-
siderably lower coverage than mandatory fields. The specification of credit
bureau data should be checked for these optional fields prior to modeling
and coverage of each optional field should be examined. Many areas may

be discarded from modeling based on such analysis.

The data integrity in credit bureaus varies. The authors have experi-
ence of significant mismatches between summary information and details
of loans taken, duplicate records, the same loan shown as separate records
of different dates, etc. Even though the quality of information improves
as credit bureaus mature, some form of data cleaning is practiced by the
modelers in a bank. Authors do not recommend using summary infor-
mation and instead suggest working on detailed data. Machine learning

algorithms facilitate such an approach.

Credit bureau data can be obtained in two modes: online and offline.
The price for both types of inquiries can vary and it often depends on the to-
tal annual volume of records purchased or contributed to the bureau. Some
bureaus offer a considerably cheaper alerting service where pre-defined trig-
gers (like delinquency, taking a new loan) are set and only clients hitting
these triggers are reported to their credit institution. The cost of includ-
ing credit bureau information in quarterly or monthly intervals for credit
scorecards for all existing clients can be prohibitive. Therefore, full credit
bureau information is often used only for clients applying for loans in an on-
line mode and for a complete database of existing clients, a cheaper alerting

service is used.

The data coming from credit bureaus can be used in their raw form
(summary records), indicator variables based on full history records (indi-
cating a specific event on a given loan type in given time), in a form of sum-
mary records defined by the modeler based on these indicator variables and
in form of ratios, e.g. credit line utilization ratio, ratio of delinquent loans

to all loans reported over the last 12 months etc.
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2.2.4 Public commercial registers

Public commercial registers hold information about enterprises registered
in each country. They are centralized on a country level. The scope may
differ as some will only include companies while others will contain records
of physical persons running registered trade activities (self-employed or sole
traders). The range of information varies from one register to another but

one should reasonably expect at least the following:
e identification of the company,
e legal form and a record of its changes,
¢ identification of the company owners and the history of changes,
¢ identification of company management and a record of changes,

 standardized code of economic activity (nature of the business) and

a record of its changes,
¢ date of establishment,

o current status of activity (ongoing business, suspended, in liquida-

tion) and record of its changes.

Furthermore, company financial reports are increasingly made available
by these public commercial registers, as more and more companies deliver
them in an electronic format. The discipline of providing them to public
commercial registers in a timely manner is also increasing. Some pub-
lic commercial registers also provide additional information like a number
of employed staff which may be very useful for the modeler.

It is important to note that both recent information and record of changes
are beneficial from a credit risk modeling perspective. Furthermore, identi-
fication of company owners can bring a piece of additional information like
their age or companies owned or managed before. Personal credit bureau
records of company owners may be verified. In case the owner is another
company, more detailed information about that parent company can shed

additional light on the credit risk of the company analyzed.
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2.2.5 Financial statements

The financial statement is a set of information about the material situation
and financial result of an economic entity. It is prepared for a given date
and a given preceding period, most often the end of a calendar year for the
previous calendar year. As the preparation of the annual financial state-
ment may take some time, usually a quarter is allowed for preparation and
a further quarter for all necessary approvals before the publication is made.
Therefore, a financial statement is not an immediate source of information
about the financial condition of a company and needs to be supplemented
with more recent data, e.g. internal behavioral information or credit bu-
reau information.

Most annual financial statements are audited, i.e. verified by chartered
accountants who are not employees of the audited company.

Some companies prepare quarterly financial statements which are sup-
posed to provide more recent updates. Nevertheless, modeling practice
shows that they are of inferior quality and using audited annual reports,
albeit old, leads to better quality models (with better predictive power and
stability in time).

Financial statements comprise of:

introduction,

e income statement,

e balance sheet,

e cash flow analysis,

o additional disclosures and clarifications.

The balance sheet is a summary of assets (i.e. what the company owns)
and liabilities (i.e. what the company owes and how its activity is financed).
The income statement is a summary of revenues and costs. A recogni-
tion of revenue or cost in the income statement does not mean that it has

been paid. An essential element of the income statement is depreciation,
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i.e. the cost of acquiring fixed assets is not immediately recognised but

spread (amortised) over time.

The cash flow statement reflects what funds have been received and
what have been paid. The main difference with the income statement
is that it shows the ability to collect money from sold goods and services
and the ability to defer payments for purchased raw materials. Additionally,

the money spent to purchase fixed assets is not amortized over time.

All three elements of financial statements must be used together. Many
companies went bankrupt despite showing high growth and income, as they
were not able to finance and operationally manage further expansion. The fi-
nancial statement not only helps to assess the probability of bankruptcy
or default but it also helps to determine the financial needs of a company
and propose a targeted product (a credit line or a loan of a particular tenor

and amount).

It should be noted that in order to prepare a financial statement a com-
pany should run double-entry accounting, in which corresponding entries
are made in the balance sheet and in the income statement. Not all compa-
nies are obliged to do so (depending on company type and annual turnover
below the regulatory threshold). As a consequence, not all companies pre-

pare and report financial statements.

It should also be noted that various companies (e.g. depending on the size
or nature of business) report financial statements in different formats. Fur-
thermore, the definition of specific fields may depend on whether local
or international accounting standards are used. Information on the stan-

dard user may be found in additional disclosures.

Depending on the format, in which the financial statement is provided
(flat table or XML) irrelevant fields may not be provided at all or they
may be provided as null or even zero values. Especially zero values may
be misleading, as in some cases they will represent a genuine zero and

in some other cases missing value or an irrelevant field.
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2.2.6 Alternative sources of information when financial state-

ments are missing

Some of the alternative data sources may include tax statements, full
transaction record (simplified accounting) or a full VAT transaction record
(e.g. available in a standardised electronic format in Poland as a mandatory
reporting to tax authorities). Especially the full transaction record and full
VAT records are practical, as they show a complete picture of the company’s
turnover. For existing clients, current account records may provide similar
accuracy as long as they are complete (e.g. the company has no current
accounts elsewhere).

Full transaction record and a full VAT record need pre-processing before
modeling, similarly to current account transaction records. The techniques

used for such pre-processing are out of the scope of this publication.

2.2.7 Integrators of economic information

The core business of integrators of economic information is to integrate
publicly available information from publicly available commercial registers,
municipalities, courts about the company, its contracts and financial state-
ments. For many years the key added value was to meticulously copy infor-
mation available on paper or in free text electronic documents and integrate
it into a standardised format while also, to some extent, eliminating format
differences. As electronic forms of recording financial statements have been
standardized, it made the job more comfortable, however the added value
of integrators has decreased. The key benefits of integrators that remain

in place are:

o Possibility to obtain the full database of companies registered in a given

country and abroad (from countries in which the integrator operates).
o Possibility to track historical records.

o Possibility to obtain regular updates.
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e Possibility to develop own applications which explore ownership links
between various companies and individuals, also on an inter-

national scale.

Furthermore, many integrators also run other businesses, credit insurance
in the first place. The credit insurance business gives them an additional
source of information on customer behavior which they may share in a form

of their credit scorecards.

2.2.8 National statistical offices

Even though national statistical offices gather information from individual
companies, the published information consists of aggregated data. Never-
theless, the information from national statistical offices remains a useful
source of information as it enables benchmarking of companies with their
peer groups.

Note that financial statements are difficult to compare across different
economic activities. A wholesaler may have an enormous turnover com-
pared to assets and a low margin. A legal agency may have little or no as-
sets at all, high wage bill and high margins. One possible way to address
this issue is to compare financial results to benchmark (average) financial
statements for each industry, as such simplified financial data are avail-
able from statistical offices. Then some measure of comparison against
the benchmark can be used for modeling instead of raw variable.

Another way of using statistical office data is to attach specific char-
acteristics to geolocation data (i.e. zip codes), e.g. local unemployment
rate, population density and its changes and to use these characteristics

in modeling instead of raw geolocation data.

2.3 Data quality assurance

The building blocks of data quality assurance are monitoring, identification
of issues, remedial of issues and safety by design. First of all, the finan-
cial institution should have established processes to monitor data (and its

quality) which is utilized for credit scorecards. Then the issues should
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be remediated at source, meaning where the error occurs in data process-
ing or in the process of data collection. Furthermore, the models and credit
policies should be constructed in a way that the impact of a single data

failure is limited.

2.3.1 Data quality monitoring

Monitoring of data quality can be set up as two fundamental processes:
an end to end manual check and automated scans. As the cost of running
an entirely random manual test of thousands of input data may be pro-
hibitive, a pragmatic approach is to use automated scans and then manu-
ally test suspected cases to identify the root cause of the problem.

The end-to-end manual test is to track suspected data elements (e.g. cus-
tomer’s income) from the primary source of data to the flat table feeding
the calculation of the model, checking each intermediate calculation and
documenting the result. The automated scans can be classified into the

following categories based on records of an individual client:

o Detection of multiple inputs of the same initial data (e.g. financial
statement, application form) whenever it leads to significant changes
in a short period. Short period may mean different things depending
on the data type. For example, it is not expected that the financial
report significantly changes over a few days in December or that two

children disappear from the application form in just two weeks.

e Values of single variables significantly different from typical values for

the target population.

o Combination of variables significantly different from typical values
for the target population (e.g. a young age person with a very high

income),

» mnonsensical values (e.g. days past due increasing from 0 DPD to 180
DPD over one month, a delinquent account with no reported balances,

activity on a formally closed account).

e Missing values where the values are mandatory.
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Based on a full batch of records feeding the calculation of credit scorecards:
« significant changes in the distribution of the input variable,

e a significant number of unjustified missing values in a mandatory
field (note: missing values are justified when reasonably expected,
e.g. utilization of credit lines is not expected if the client only has

installment loans),
e significant increase in missing values in a non-mandatory field,

e sudden and significant loss of predictive power of any single and orig-

inally strongly predictive model variable.

The exact list of automated scans can consist of hundreds of positions
and it is customized to the data sources, core banking systems and the
model itself.

Automated scans present a summary record of issues detected, number
of cases, percentage of cases with issues to the total size tested population
and finally a list of few typical cases for manual investigation.

Specialized systems exist to support automated scans of input data.
In most cases, they are marketed as fraud prevention tools or anomaly
detection tools, yet they can also be used in a broader context of data
quality assurance. Some of them utilize complex algorithms not only to pick
up the problem but also to describe it. Details and examples of such tools

are out the of scope of this publication.

2.3.2 Identification and resolution of issues

The identification of issues is based on a full tracking of suspected data
elements through processing steps. Root causes vary and they may range
from outsourcing of data entry activities, through the input of “end of file”
character in a text field of input data set, lack of proper regression testing
when ETL (i.e. extract, transform, load) process is modified, just to name
a few from the author’s practice.

As it may sound radical, it is recommended to remediate each data issue

at the source, i.e. where it happened, rather than to build quick sequential
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fixes later in the process. After a few years, the latter approach becomes
completely unmanageable; furthermore, it quite often leads to permanent
destruction of data on which new models could be built.

Therefore, the rule is to detect early, act early and not to let the
issues accumulate.

Fixing problems at the source is more difficult when data are obtained
from external sources. Fortunately, most credit bureaus have similar pro-
cesses of data quality assurance and they can track problems to their data
contributors where the problems originate. There are penalties for errors
in data feeding credit bureaus.

In the case of other data providers (integrators of economic information
etc.), it is good to sign a service level agreement motivating the provider

to listen to feedback and ensure data quality on their side.

2.3.3 Safety by design

Safety by design can be based on the following rules which reduce the

probability of error and facilitate resolution.

e Keep data pre-processing logical and transparent and as simple

as possible.

o Avoid multiple inconsistent ETL layers in multiple data warehouses

and data marts.

o Avoid artificial adjustments, data impacted by window dressing and
classifications impacted by internal politics, even if it is called “one

version of the truth” in the company.

¢ Avoid additional data sources which add instability to the data feed

and do not improve the power of models.

o Avoid processing of data on multiple technology platforms. Even
small things like differing date format or floating-point representation

of data may have annoying consequences.

e Eliminate the human factor in the processing of data, including data

entry and manual transfer of data files.
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e Automate all data feeds and have them appropriately scheduled.

e Implement automated data quality scans whenever data processing

moves from one department of the institution to another.

2.3.4 Using robust regression or machine learning technique
that does not overly rely on single variables

A traditional credit scoring recipe is to select uncorrelated variables with
reliable univariate predictive power which are most appealing to the credit
risk expert and at the same time robust in production implementation.
The correlation effects and following statistical insignificance of additional
variables reduce the number of variables to 10 - 20. Given a vast number
of available data and considerable cost of obtaining them (paying external
data vendors, collecting customer consents, fulfilling GDPR information
duty), it is not a serious proposition. It is even counterintuitive. A tra-
ditional credit risk expert would look at customers income from the appli-
cation form, compare it to the credit turnover on a current account. Fur-
thermore, he/she would attempt to contact the employer, social security
office or tax office (depending on the jurisdiction) to confirm it. Therefore,
common sense tells us to use multiple data sources to extract the same
information, take into account all of them and even to examine differences
in more detail. Here machine learning can help by building similar mech-
anisms into the model. It should be noted though that, depending on the
algorithm, the focus will be either to give equal balance to the same in-
formation coming from other sources or to select a dominant source and
to look at differences. This should be understood (if not controlled) by the
modeler. In any case, with machine learning technique, building models

with few dominant variables can and should be avoided.

2.4 Data pre-processing

Regardless of the estimation techniques used for credit scoring, the following

basic principles of data preparation should be taken into account.
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2.4.1 Keeping the data consistent

Each field of the input data set should have the same meaning, regardless
of other fields in the data set. A simple example is account balance which
can be expressed in various currencies. For the purpose of modeling a single
currency should be used and values in foreign currency should be converted
accordingly. The same applies to gross and net income, positions of financial
statements reported under various standards, etc. In case data cannot
be converted to a single and comparable standard, it is better to split
input data into two or more separate fields according to a different meaning,
leaving missing data whenever necessary.

Records where the data were severely compromised (e.g. due to a failure

in the data feed) should be entirely removed from the modeling data set.

2.4.2 Coding missing values

The critical observation referring to missing value is that missing values
should not be confused with zeroes, either means or medians of the pop-
ulation. They should be considered as a separate category caused by the
conviction that the data is not relevant, that the entire data feed is missing
or that the client withdrew them on purpose.

Depending on the modeling algorithm or any particular implementation
thereof, the treatment of missing values will vary. Some algorithms will dis-
card missing values completely; some will attempt some form of determin-
istic or random imputation. As authors are not in favour of using random

imputation in credit scoring area, they recommend the following approach:

e For categorical data, create a separate category with coded value for

“missing” (i.e. technically it will no longer have a missing value).

e For numerical data, impute a number that will have the smallest im-
pact on the modeling technique used. In the case of decision trees
or ensembles of voting decision trees that would be an unusually high
or unusually low number, beyond any range of commonly occurring

numbers. In the case of linear regression, it would be the mean
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value (calculated after the treatment of outliers described above).

A dummy variable indicating a missing value may also be used.

The approach recommended for linear regression may also be used for
decision trees and ensembles of voting decision trees. It should be noted
that in case the entire data source is missing (e.g. no credit bureau infor-
mation), there may be an additional dummy variable introduced indicating
missing values coming from the above-mentioned approach. It is recom-
mended to replace them with a single dummy variable indicating a missing
data source, in order to control/reduce the complexity of the model. When-
ever the client has the right to withdraw information negatively impacting
his/her credit score, the relevant dummy variable should be artificially ad-
justed to make sure that the missing data correspond to the worst possi-
ble value of the variable in question. When adverse discrimination based
on such a withdrawal is prohibited, we recommend that the use of the entire

variable is carefully considered, even if it remains predictive for credit risk.

2.4.3 Pre-processing data in production

Whatever pre-processing is made for modeling, the same pre-processing
should be implemented in production. Additional data used in process-
ing (such as data from the national statistical office or currency exchange
rates) may need a regular refreshment. Depending on the decision engine
used pre-processing of many input data may result in challenges for model

implementation which are discussed further in this publication.

2.5 Conclusions

The data management process, including the identification of adequate data
sources, along with data-quality assurance and pre-processing, was pre-
sented in this chapter. With the presented good general practices in this
area, we emphasize the uniqueness and specificity of the process for vari-
ous practices (e.g., the scoring model purpose, size of the entity, or prod-
uct/customer segment). The set of good practices presented in the mono-

graph are related to 1) understanding the business context of the process
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and target population, 2) understanding the data, as credit scoring requires
a delicate balance between the need to know the client and the privacy
of the client, 3) understanding the data feed process, 4) removing issues
and problems of the data set, and finally, 5) setting tight control on the
quality of the outcome variable. We argue that modern credit scoring may
heavily benefit from machine learning techniques, but this cannot be at the
expense of a lack of understanding of data processes. Responsible use of ma-
chine learning methods, particularly in model auditability and robustness,
requires a thorough understanding of the data acquisition process and the
related business framework. The first step in building a responsible credit

scoring process is to understand your data!
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The variable selection methods, in classical econometrics, are used to ex-
tract the most important, in terms of statistical significance, features. Usu-
ally it is performed by an iterative a) removing the least important feature
(backward stepwise selection) or b) adding the most statistically significant
one (forward stepwise selection). In principle, these methods should lead
to an iterative improvement in the result, i.e., the overall model’s perfor-
mance or at least to maintain its level. The termination criterion of the
algorithm (backward or forward) is tied up to the dynamics of the cu-
mulative model performance — the algorithm should be stopped when the
model’s predictive power begins to decline which can be observed an in-
crease in test errors.

Those methods are based on a single-factor analysis (inclusion or exclu-

sion of particular variables) which leads to certain risks, such as the fact
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that steps which have been already taken, cannot be undone and they de-
termine what happens next. For instance, in the stepwise method, if a vari-
able was once excluded, it will not be included again. We investigate the
dummy coding as an alternative to Logit and WoE transformation in Sec-
tion 4.3.5 (see also; Scallan, 2013; Scallan, 2011); it should be emphasized
that dummy coding, in the context of credit scoring, is a complex techni-
cal solution which may lead to an unstable selection if not done correctly,
especially when Wald test’s p-value is used. Thus, employing the dummy
coding combined with the standard implementations of stepwise methods
is not recommended.

Additionally, one of the most common problems of the single-factor
analysis is the multicollinearity of dummy variables which jointly represent
the same categorical variable. Also, their correlation is dependent upon the
dummy coding type as well as the reference category, see Section 4.3.5.

To overcome some of the mentioned issues, in this chapter we dis-
cuss selected methods that can be utilized for the purposes of the vari

able selections.

3.1 The importance of variable pre-selection

We start this chapter with an example that aims to present the underlying
concepts — we recommend to study similar examples (also including the
near multicollinearity problem — see Section 5.4). Let us assume our model

is true according to the following equation:

In (1 fip) — —4.842.3X;, + 1.8X,5+0.2X,

Assuming the independent standard normal distribution of the Xj ;, for
all j, we have the E[p;] = 8.08%. Now, let us assume that we simu-
lated n observations (i.e. the vectors X; of i-th observation features, from
standardized normal independent distribution). The model based on the
above-mentioned formula is estimated. The distribution of the model pa-

rameters (500 simulations each) is presented in Figure 3.1.
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Figure 3.1: Variable selection — the impact of the number of observations.
The left-hand side figure presents the estimation results for the n = 200
(small sample) and the right-hand side for the n = 1000 (large sample)
Source: own work

The left-hand side figure presents the estimation results for the n = 200
and the right-hand side for the n = 1000. Intuitively, the variability of the
model’s parameters is negatively related to the number of observations
in the training set.

Now, let us assume that we do not exactly know the key features in this
model (i.e. Const., Var_1, Var_2, Var_3). We have a wide range of vari-
ables that include the three above-mentioned variables. In other words,
we also consider variables which do not have any impact on the target
variable (i.e. 3; = 0, for j = 4,5,...,103 — we assume the 100 irrelevant
variables). Figure 3.2 presents the correct specification of the model (es-
timation on the 3 key features) on the left-hand side and the misspecified
model, i.e. all of the 103 variables with the constant terms, on the right-
hand side.

As presented in Figure 3.2 (n = 1000 in both examples), the coefficients
of the key features suffer from the inclusion of irrelevant variables — there
is an impact on both bias (deviation from the true model coefficients) and
efficiency (variability of the coefficients). This effect explicitly suggests
the need for the model estimation on the filtered features (i.e., exclusion
of irrelevant variables). In terms of classical credit scoring, one would

perform the stepwise estimation to extract the most statistically significant
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Figure 3.2: Variable selection — the impact of the irrelevant variables.
Both of the plots present large sample examples (i.e., n = 1000); however,
for the right-hand side example, additional 100 irrelevant variables has been
included (apart from the constant and 3 relevant variables)

Source: own work

variables, as most of the variables may exhibit similar, uniform power (Gini
of Information Value, as discussed later). Note that the coefficient of Var_3
is equal to 0.2 which is close to zero. Because of this, in case of a lower
number of observations, this variable may be stochastically excluded from
the final set of features and another, more statistically significant variable
will appear in one of the algorithm iterations even though there is no real

relationship between this variable and the target variable.

Moreover, the multicollinearity problem (see Section 5.4) will further
increase the magnitude of statistical inference, i.e., whether the particular
feature should be included in the model or not. In the next example, we as-
sume that all of the features are correlated, i.e., the relevant and irrelevant
variables exhibit a high correlation — 80% of the correlation between all

of the features.

Given the high correlation between features (right-hand sided plot in Fig-
ure 3.3), the variability of the parameters increased significantly (compared
with the right-hand sided Figure 3.2). It should be noted that some of the
methods discussed in this chapter are less resistant to the multicollinearity

and a large number of relevant variables (e.g., stepwise methods, as they
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Figure 3.3: Variable selection — the impact of the multicollinearity on
the model’s parameters. Both of the plots present large sample exam-
ples (i.e., n = 1000), including additional 100 irrelevant variables has been
included. However, in the right-hand sided plot additionally all of the vari-
ables are heavily correlated (80%)

Source: own work

are based on the p-values of particular variables and depend on the exact

order of features inclusion/exclusion).

In Chapter 4, we discuss regularization techniques — e.g. ridge or lasso
regressions. As discussed further in the monograph, those methods are
dedicated to the problem of multicollinearity or small number of vari-
ables. In Figure 3.4, we present the usage of lasso regression to extract the

key variables.

As presented in Figure 3.4, the parameter estimates are biased — for
the left-hand side plot, the penalty imposed on the loss function is too
small and for the right-hand side plot, the penalty is too severe. As dis-
cussed in Chapter 4, the regularization imposes the bias, but as a result,
the model coefficients have smaller variance (i.e. bias-variance trade-off
(James et al., 2013)).

The last example presents the model that almost perfectly replicates
the underlying process — the lasso estimation was performed after internally
selected (i.e. grid search) penalty term, see Section 4.2.2.

It should be noted that the regularization techniques can be utilized

for the purposes of the variable selection, as it was presented in the above-
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Figure 3.4: Variable selection — the impact of the regularization tech-
niques (not calibrated penalty term). Both of the plots present large sam-
ple examples (i.e., n = 1000), including additional 100 irrelevant variables
that are also heavily correlated

Source: own work
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Figure 3.5: Variable selection — the impact of the regularization tech-
niques (well-calibrated penalty term)
Source: own work

mentioned examples (for more on the regularization techniques, see Chap-
ter 4). However, in practice one cannot assume the complete features set
— the estimation is the process that should reveal the final set of variables
(and weights) which should be included into the model. On the other hand,
the penalty imposed on the loss function may be grid searched based on the

validation set, see Section 4.3.2.
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However, the regularization techniques shown in the examples, as in the
case of stepwise, should be handled carefully while using the dummy vari-
ables (penalties imposed on the groups of the related dummy variable).

In this chapter, we discuss well-known feature selection methods in the
case when models are generated as a classical logistic regression with logit
transformation and categorization of all variables (binning). Particular
methods discussed further in the text were tested based on the simulated
data, as presented in (Przanowski, 2011). Therefore, we emphasize the
need for performing an individual analysis — the generic data used in this
monograph are not representative and independent efforts have to be made

to evaluate impact in a particular case.

3.2 Comparison measures for the variable

selection methods

One of the main problems of data analytics is still extraction of the key
features — the abundance of variables only hinders this process, as the va-
riety of possible feature selection grows. The computation of all possible
models (i.e., with all of the possible numbers and combinations of fea-
tures) for large data sets is unpractical or even impossible. More on the
computational complexity is presented in Section 4.3.2. Given the current
state of progress of computer science and technology development, we need
to rely on the algorithms for variables selection — the brute force approach
is no longer feasible.

In the case of a large number of variables (in relation to the number
of cases), stepwise algorithms that select variables very often reach the local
minimum which makes finding the right solution difficult.

For the purposes of presenting the numerical examples, we have an used
artificially generated target variable generated baing on the input data
after the WoE transformation (see Section 4.1.2). In the course of further

analysis, we will monitor the following list of commonly used criteria:

e Gini scaled as a measure of the predictive power; for the technical

purposes we utilized the scaled measure on every set of models: pre-
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dictive power is linearly scaled up to 80% Gini, as each of the data sets
(i.e., the ABT_APP and ABT_BEH) have a different underlying process
(i.e., error included in the model); this measure allows to compare

the distribution of Gini statistics for each method and each data set,

delta Gini, the relative difference of Gini values between the training
set and test set; this measure allows evaluating the stability of the

model and potential overfitting,

NVar, the number of variables; the smaller the number of variables,

the more preferable model in terms of classical scoring,

Nbeta, the number of negative betas in the logistic regression model
(more on negative betas in Section 4.3.4); this measure allows to cap-
ture the confounding of variables; in the case of negative betas, we get
different responses for a single variable model and the same variable

in a model consisting of more variables,

p-value, the classical Wald test of significance; as indicated earlier
in this monograph, this statistic combined with the dummy variable
coding is questionable, but we present its results as in classical ap-

proach it is still most commonly used measure,

VIF — Variance Inflation Factor is the multicollinearity measure; mul-
ticollinearity problem has an impact on the variance of model’s co-
efficients and is usually used in the model’s diagnostic; for further

discussion on the multicollinearity problem, see Section 5.4.

There is no best method today to prove the correctness of the argument

that a given technique is the superior one. This problem is directly asso-

ciated with having universal and comprehensive data, which is obviously

impossible, so one can only generate plenty of random data sets (or gather

publicly available data sets) and carry out a comparative process. Such

a process should be carried out by an analyst in a particular data set so that

one will be able to make final decisions about choosing a better technique

for specific problems. This study cannot be regarded as evidence of the
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superiority of one technique over another but should rather be perceived
as an example of a comparative method on a given data set.

In credit scoring practice, the Analytical Base Table (ABT) is utilized
in data handling. ABT is a table that contains all the variables (and its in-
teractions, dummy variable coding and binnings) for a single observation
(e.g., customer on reporting date). The ABT table usually has thousands
of columns that contain all the information for a particular observation —
including the interactions between features, usually up to the 3rd level (see

also Section 4.1.2 or discussion on the AdaBoost in Section 4.2.6).

3.3 Variable selection methods

In this section, we discuss the most commonly used methods of variable

selection. The discussed methods are presented in the following order:
1. Principal Component Analysis and autoencoders.

2. Sorting and selection of the best set of features due to Gini statistics

and Information Value for each variable treated independently.

3. stepwise method for iterative selection of variable in the backward

and forward versions.

4. Other models used in machine learning to indicate the significance
of variables using feature importance mechanisms as of decision trees
or random forests. In those methods, all of the variables are analyzed

simultaneously.

5. Analytical branch and bound method (Furnival & Wilson, 2000), im-
plemented in the SAS procedure — PROC LOGISTIC. Due to the num-
ber of variables, SAS procedures first limited the number of variables
to about 70 by stepwise selection or best 70 by Gini and than B&B
is run for combinations of 4 to 14 variables (the number of possible
variables is set by expert knowledge, in general more than 14 variables
generate too big VIF), calculating best 20 models per every number

of variables.
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3.3.1 Principal component analysis and autoencoders

One of the most popular methods for a dimensional reduction is the Prin-
cipal Component Analysis method (PCA). It is based on the linear trans-
formation of all variables generated by the eigenvectors of the variance-
covariance normalized matrix of features. Therefore, this method generates
new variables that are linear combinations of the actual features. While the
stepwise method supported with the Wald statistics does not allow to ex-
clude correlated variables, PCA allows for decorrelation of features and
then selecting a few main principal components (i.e., eigenvectors) that
exhibit the highest predictive power against the target variable. Having
selected those components, we can apply reverse engineering and extract
the features that had the most predictive power and are decorrelated.

In scoring models, one needs to preserve the original variables due
to their conversion into scoring cards and interpretability. Therefore, these
methods, although useful and practical in the reduction of dimensionality,
are not suitable for use in the construction of classical scoring models.

It needs to be emphasized that, in principle, one may use the kernel
principal component analysis (kernel PCA) which is the extension of the
basic PCA. This extension is related to the usage of kernel methods (Hof-
mann et al., 2008). The kernel PCA is especially useful when the basic
PCA cannot reduce dimensionality, due to non-linear correlations between
features. In principle, kernel PCA is recommended in case of the poor
performance of basic PCA.

Analogously, one can consider using the neural networks to reduce the
dimensionality of features. The models would take as an input the entire
range of variables and would result in the most critical features, i.e. au-
toencoders (for more on the neural networks, see Section 4.2.3). However,
these networks generate non-linear transformations of variables which sig-

nificantly hampers the interpretation of the resulting variables.

3.3.2 Variable selection by best Gini statistics

The popular and straightforward method of selection is based on the best

features with higher Gini statistics. The Gini statistic is calculated for each
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variable separately (more on the Gini calculation in Chapter 6). The method
assumes the single-factor analysis and the selection of variables that exhibit
the Gini at some predefined level. This way, one can obtain information
about the quality and impact of a given variable on the target variable.

This method is very often used in the initial preselection of variables,
where it can be used to remove variables whose impact is minimal compared
to the rest of the features. The selection of the n best variables having
the most substantial effect on a target variable often leads to a selection
of linearly dependent variables. As a result, the models obtained by this
procedure (compared to other methods) have relatively large statistic Gini
of the entire model but they are burdened with multicollinearity.

As it is presented further in the text, this method is useful and efficient
for scanning through features and rejecting insignificant variables, in the
case of a large number of variables, at the initial phase of data processing
(i.e. preprocessing).

The VARCLUS procedure is based on ABT. Firstly, the clusters of fea-
tures are prepared, based on VARCLUS procedure (the number of the clusters
is the input parameter). Based on that, one develops the table with the
1 — R? and Gini of each particular variable. Among the variables repre-
sentative for the cluster (based on the 1 — R?), we choose only one with
the highest Gini, disqualifying variables that are not logical enough or are
difficult to interpret. One chooses variables that are weakly related to the
cluster and those with high Gini (allowing to obtain the shortlist of fea-
tures as an input to the stepwise method). It is worth noting that this
is not an automatic method and it requires a lot of work and internal dis-
cussions (especially when it comes to logic and variable interpretability)
(Nelson, 2001).

3.3.3 Information Value

The information value IV (information value) can be a beneficial concept
when choosing variables for the model. The IV indicator is based on the
idea of information introduced by C. Shannon, closely related to entropy

and information theory. The IV is defined in the following form:
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. . distr 01
IV = ZZ: (distr 0; — distr 1;) x In (distr 1i>

where:

o distr0; is the distribution of values 0 (for target variable) in the i-th

class for the variable,

o distrl; is the distribution of values 1 (for target variable) in the i-th

class for the variable,
e In is a natural logarithm.

The value of In (%) is defined as the WoE factor.

IV =) "(distr 0; — distr 1;) x WoE;
i
Due to the sensitivity of logarithm and division on zero values, a well-
done binning is critical for the correctness of the mathematical operation
of this method.

3.3.4 Stepwise methods of variable selection

As discussed earlier, the stepwise methods consist of a) backward stepwise
selection (starting with the entire set of features, reduction of the least
important important features in subsequent steps) and b) forward stepwise
selection (starting with no features, adding the most statistically significant
in subsequent steps). In principle, those methods should lead to an iterative
improvement in the overall model’s performance or at least to a mainte-
nance of its level. The algorithm should be stopped when the model’s
predictive power begins to decline (test error increases).

Those methods are based on a single-factor analysis (inclusion or exclu-
sion of particular variables) which leads to certain risks, such as the fact
that steps which were already taken, cannot be undone and they determine
what happens next. For instance, in the stepwise method, if a variable

was once excluded, it will not be included again. The research presents
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the dummy coding as an alternative to Logit and WoE transformation, see
Section 4.3.5, or (Scallan, 2013; Scallan, 2011). It should be emphasized
that dummy coding, in the context of credit scoring, is a complex technical
solution which leads to unstable selection methods, especially when Wald
test’s p-value is used (in case of near multicollinearity problem). Thus, the
dummy coding combined with the stepwise methods is not recommended.

The stepwise methods, as emphasized further in the text, have to take
into consideration some technical issues, e.g. variable coding — dummy
variables should be included/excluded as a complete set of variables cor-
responding to the same categorical variable. This case requires special

handling, as the p-values are dependent upon previous steps.

3.3.5 Decision trees and random forests

Previous variable selection methods were based on the association of indi-
vidual variables with the distribution of a target variable. It turns out that
modeling methods using decision trees including random forests, in addi-
tion to generating the model, can also be used to create a list of variables
ordered from the most important and affecting the target variable to ones
that are irrelevant in the model.

Modeling with decision trees and random forests usually reflects a more
complex nature of data and, at the same time, improves model predic-
tions compared to the model obtained by logistic regression. However, due
to the construction of the scoring card and interpretability (especially in the
banking sector), these models are not used directly.

Variable selection in these methods can be very easily obtained in the
feature importance procedures used in the sklearn library in the Python
environment (Pedregosa et al., 2011). For further discussion on decision
trees and random forests, see Chapter 4.

The random forest or gradient boosting models for all variables take
into account (through the construction of many tree models) the non-linear
correlation between variables. Gradient boosting is particularly efficient
in detecting non-linear relations between variables. Unlike the random

forests (that work better with deeper decision trees), the gradient boosting



70

works best with the decision trees no deeper than 2 or 3, which is similar
to the utilization of ABT features. One may only utilize the first few
decision trees with the highest weights and those will suggest construction
of variables in ABT, significantly reducing work effort on defining ABT
variables by trial and error. Moreover, the gradient boosting with the
logistic regression objective function is simply the linear model based on the
ABT features.

3.3.6 Branch and bound

An analytical solution to the problem of choosing the optimal set of vari-
ables is the Branch and Bound algorithm (B&B) (Furnival & Wilson, 2000;
Narendra & Fukunaga, 1977). This algorithm allows us to search through
the set of variables without searching for all possible solutions. Due to the
analytical nature of the algorithm, it is a method of implementation that
takes quite a long time if there are many variables included.

The B&B method has been implemented in SAS software, the PROC
LOGISTIC (Furnival & Wilson, 2000; SAS, 2013). Virtually all results (even
a small set of variables — 4 to 14 variables) presented in Section 3.4 indicated
the superiority of the B&B method (several percentage points in Gini) over
other methods. Please note that within this monograph, we present results
of two distinct methods: Branch and bound which is based on the Gini
value (i.e., B&B Gini) and Branch and bound which support the further
use of the stepwise (i.e., B&B STEP).

3.4 Numerical experiment of variable selection

In this section we present the results of a numerical experiment. Based
on the simulated framework of the credit scoring data generated as in
(Przanowski, 2011), we run particular variable selection models and eval-
uate individual measures as discussed in Section 3.2. The methodology
of model building is compliant with Basel IT documents such as (Basel Com-
mittee on Banking Supervision, Bank For International Settlements, 2005a)

or (Basel Committee on Banking Supervision, Bank For International Set-
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tlements, 2005¢). Further explanations are also presented in Chapter 4 (def-
inition of the defaulted client).

We have utilized the two data sets for this purpose: a) ABT_BEH — ABT
of the behavioral data and b) ABT_APP — ABT of the application data. Both
of the data sets exhibit highly non-linear relations between features and the
target variable. The taget variable was generated using logistic regression
using the WoE transformation on features — similar to the examples shown
in Section 3.1. As the simulated data sets, i.e., ABT_APP and ABT_BEH, have
a different underlying process (i.e., error included in the model), we have
used the linearly scaled up to 80% Gini as a measure of the predictive
power. This allows us to compare the distribution of Gini statistics for
each of the method and each of the data sets. From the implementation
point of view, we have utilized the SAS framework as well as the codes
prepared as presented in the (Przanowski, 2011). For the machine learning
methods, we have utilized the Python-based libraries: sklearn and Keras.

In the graph below, we have used the following naming convention:

e Random — we choose and compute four logistic regression models for

each fully randomly chosen features with 5-25 variables.
e Gini — selection based on Gini statistics.
e IV — selection based on Information Values.
o TREE — based on the feature importance of the calibrated decision trees.

e FOREST — based on the feature importance of the calibrated ran-

dom forests.
e RFE — based on stepwise methods.
e LASSO — with the parameter C' € {0.001,0.01,0.1, 1, 100, 10000} .
e B&B Gini — Branch and Bound method based on Gini values.

e B&B STEP — Branch and Bound method after stepwise selection.



72

3.4.1 Classical approaches to features preselection

In Figures 3.6-3.10 we present the numerical results of the particular feature

selection methods.

Scaled predictive power - Gini

b=

054

Gini scaled

04 4

Figure 3.6: Single criterion — Gini — the predictive power
Source: own work

As presented in Figure 3.6, the best methods based on the predictive
power are the ones based on the B&B algorithm; moreover, the lasso and

random forests allow for a high predictive power features selection.

In terms of the number of variables, the B&B method allows for the
smaller models — up to 14 variables, see Figure 3.7. This result combined
with the previous, related to predictive power, suggests the superiority
of this model — the high predictive power along with a simple functional

form (i.e. small number of variables).

The previous results are also supported by the next values — in terms
of multicollinearity problem, the B&B method allows to reduce the VIF value
(performed after the stepwise method), see Figure 3.8. VIF for lasso method

is not calculated due to infinite values.

In terms of the overfitting problem, also the B&B method exhibits rela-

tively small changes — delta Gini between training and validation sets, see
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Figure 3.7: Single criterion — NVar — the number of variables
Source: own work
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Figure 3.8: Single criterion — VIF — maximal Variance Infaction Factor
Source: own work

Figure 3.9. Similar superiority is achieved in terms of the Negative Betas,
see 3.10.

The analysis presented in graphs 3.6-3.10, showed that B&B and lasso
have many advantages. In general, apart from B&B and lasso, all other

techniques have negative betas and statistically non-significant variables.



74

Predictive power stability - delta Gini on train and valid
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Figure 3.9: Single criterion — delta Gini
Source: own work
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Figure 3.10: Single criterion — NBeta — the number of negative betas
Source: own work

It is a widespread problem of ABT data where many variables are simi-
lar to one another because they represent the same information collected
in the history, e.g. the number of delinquency events during the last
9 or 12 months can be the same (and hence one may consider using the

VARCLUS, see 3.3.2). That property usually produces the equal value of Gini
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and IV per few similar variables which results in poor estimates in logistic

regression method (see also Section 5.4).

3.4.2 Feature selection with machine learning

Besides, we have also utilized the other methods discussed in Chapter 4
(e.g., XGBoost) as feature selection models. Based on all data sets, i.e. ABT_-
APP and ABT_BEH, we have used machine learning methods to generate mod-
els on pure data (i.e. no binning, no WoE transformation, the categorical
data transformed by dummy coding). In contrast to classical logistic regres-
sion procedures and scorecard building, we did not make binning of data
and we did not run any initial feature selection method.

That idea is opposite to a classical approach where WoE transformation
was the main technique and Wald p-value and VIF collinearity measures
were used. Here WoE method is replaced by missing values imputation
with median values obtained for each feature separately. We also added
new binary features in case the missing values have appeared.

Based on the previous criteria, we have compared the following models:
o Lasso models with a € {0.001,0.01, 1,100, 10000}.
o Ridge classifier with o € {0.001,0.01,0.1,0.2}.
o Decision tree with max_ depth € {10, 30, 50,100, 150}.
o Random forest with max_ depth € {10,30,50,100}.
o Stochastic gradient boosting classifier with o € {0.001,0.01,0.1}.

o XGBoosting classifier with maz_ depth € {1,2,3} and learning rate €
{0.1,0.2,0.3,0.4,0.01,0.02,0.05} and n__estimators € {10, 30, 50,70}
(in total 84 different models).

e Relu Network with one, two and three hidden relu layers, see Sec-
tion 4.2.3.

e Logistic regression — a classical approach presented here only for

comparison purpose.
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Predictive power - Gini on validation dataset ABT_BEH
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Figure 3.11: Gini on validation sample on ABT_BEH
Source: own work

e B&B Step — methods of scorecard building described in the previ-
ous section with conditions: only positive betas and p-value < 0.05,
so only accepted by typical benchmarks — presented here also

for comparison.

All techniques listed above were implemented using sklearn library, except
for neural networks which were created using Keras library.

The first comparison is made on ABT_BEH data set, where Gini on valida-
tion sample and delta Gini — only two criteria are presented, see Figure 3.11
and 3.12. The classical approach represented by the B&B Step method can
be compared with DecisionTreeClassifier, Lasso, RidgeClassifier
and XGBoosting, where they have almost 90% of Gini. It means that
the machine learning methods can be used instead of classical scorecards
as we are able to achieve the same or even better predictive power and
stability on modeling samples (training and validating data sets). Delta
Gini for the DecisionTree Classifier, Lasso, RidgeClassifier and

XGBoosting is small, so models are stable.



delta Gini on datasets ABT_BEH
0.4
0.3 M
E
o
el
S 024
0.1
—-—
== =
00 - - & —— -
T T T T T T T T T
& o) < A &
By W, W W Ty Ry T By Ty
% Dy 8 Yy, 4 s, %,
&, RN o %, N % %
o) 0, % D% CN £
By, “‘/é,) %
KX %,
Figure 3.12: Delta Gini on ABT_BEH
Source: own work
Predictive power - Gini on validation dataset ABT_BEH, simple variables
0] B
0.5
[—] —— =]
<o
£ 044
[G)
[e]
0.3
0.2
T T T T T T T T T
&, o) A [\
% %%, %, Y % T, /p’%@ NN
N8 %, %y OO % sy,
» K Ve, % Ny Y %
@O, () °4F (3 /@ N
i) %, K
%, % s,
N %,

Figure 3.13:
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Gini on ABT_BEH only basing on simple variables
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Predictive power - Gini on validation dataset ABT_APP
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Figure 3.14: Gini on validation sample on ABT_APP
Source: own work

Moreover, now we can test a hypothesis that machine learning tech-
niques do not need very complex variables, they do not need any ag-
gregated information in time, only simple variables representing statuses
and simple summary variables per particular historical month. That idea
is tested in Figure 3.13, where unfortunately DecisionTreeClassifier,
Lasso, RidgeClassifier and XGBoosting have significantly worse values
of Gini than B&B. It should be emphasized that the B&B method is calculated
on all available variables because this is the main idea of scorecard building.
That problem needs to be analyzed in further research. The same conclu-
sions can be formulated based on ABT_APP data, see Figures 3.14-3.16.

In summary, Machine Learning or Artificial Intelligence techniques can
be used for the development of the scoring models in a similar way as tradi-
tional approaches with WokE logistic regression used; however, they require

additional attention in terms of interpretability (see Chapter 7).
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Source: own work
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3.5 Conclusions

This chapter presents selected methods of variable selection for scoring
models and their impact on the quality of obtained models. These meth-
ods are based on statistical properties of individual variables (e.g. stepwise
approach) or global properties of all analyzed variables (e.g. Lasso reg-
ularization). Both classical and machine learning-based approaches have

been presented.

We emphasize the need for performing individual analysis — the gene-
ric/simulated data used in this monograph might not be representative
and independent efforts have to be made to evaluate impact in a particular
case. The optimal feature selection method may be strongly dependent
on a particular case and the final decision in that matter should be made

upon the given data set.

In general, when WoE, Wald p-value and VIF are used as a criterion
for variable selection, then B&B with the stepwise method is very useful
and produces the best results. However, our recommendation regarding
the feature selection (i.e. the best strategy in that matter) is implementing
various selection of methods and performing further performance analysis,
based on the particular case or data set. Even though the results of Section
3.4 presents the B&B as a superior method, we claim that the exact choice
of the technique used in practice should depend on the particular data set it-
self. Given the simple implementation of a specific method in free libraries,
all the discussed methods can be quickly used and evaluated at various

stages of modeling.

Moreover, we always recommend taking into account the model purpose.
In the context of predictive scoring models, the main criteria should be Gini
and delta Gini, as those measures reflect the predictive power. On the other
hand, when the descriptive model is needed, one has to support the inter-
pretability of the generated features actively — e.g. B&B, stepwise method,

decision trees or VARCLUS method presented earlier.

In terms of other practical suggestions, we propose a set of recommen-

dations regarding feature selection methods:
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Using other tests than Wald test to select variables, e.g., Lagrange
Multiplier or Likelihood Ratio. As discussed earlier, we recommend
testing and selecting the groups of dummy variables related to a single

category variable jointly.

Using the WoE transformation instead of using dummy variables for
stepwise selection of variables (issues related to Wald test, as dis-

cussed earlier).

Utilization of marginal measures for the forward feature selection
methods, i.e., Marginal Information Value, Marginal Gini or Marginal
KS (Scallan, 2013).

Utilization of the Generalised Variance Inflation Factor (J. Fox &
Monette, 1992), instead of using VIF. This measure is a generalized
version of the VIF and is used for testing groups of features and

generalized linear models.
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In this chapter, we present machine learning models that, in the light of the
current subject literature, indicate the possibility and adequacy of use
in credit scoring. It should be emphasized that the subject-matter ma-
chine learning literature is currently: a) broad and rich in various meth-
ods and their variants, b) inconclusive in terms of recommendations which
methods should and should not be used. As of the benchmark for ma-
chine learning, we also present the classical approaches in this chapter,

i.e., logistic regression.
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In this monograph, we cover the binary outcome type models, which
result in consideration of random variable having two possible and opposite
outcomes: default or non-default of a particular client. Let Y denote that
random variable and let us assume that Y = 1 or Y = 0, with the value
1 as the reference to the default event. In terms of empirical observations,
we assume that the default event has or has not been observed and the
observation corresponds to the underlying customer status.

For credit scoring, the defaulted client may be defined differently than
in the European Banking Authority (EBA) guidelines (European Banking
Authority, 2017b), so that one may:

1. Obtain more default observations for model estimation.

2. Include longer than 12 months of the observation period for the tar-
get variable (over-crediting does not translate into the default within
12 months).

3. Utilize the contagion effect — the default flag is generated on the

customer level, even though it is calculated on the exposure level.

In the practice of credit scoring, the particular definition of a bad client
should be carefully investigated by the bank internally, e.g., taking into
account the specificity of the clients and products. From a technical point
of view, even shorter DPD definitions may be considered (i.e. compared
to the 90 DPD imposed by the regulatory frameworks) as a bad client
(e.g. 60 DPD as an indication of the Unlikely full repayment). The princi-
ple rule that should govern the practice of trustworthy and robust credit
scoring is to reflect the trustworthiness of the clients appropriately (in terms
of predictive power, see Chapter 3. The exact definition and further dis-
cussion on the default event are out of the scope of this monograph.

The EBA guideline (European Banking Authority, 2017b), regulates
the definition of a default event significantly. Currently the notion of de-
fault plays a vital role, due to most of the banks transforming their previous
default definition into a new one, i.e. New definition of Default. The EBA
established tighter standards concerning the definition of default (CRR Ar-

ticle 178) which in principle is aimed at achieving greater alignment and
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standardization across banks and jurisdictions. Those new standards need
to be implemented by the end of 2020. The main difference in the new
definition is based on Days Past Due (DPD) and two thresholds: relative
and absolute. To accomplish greater standardization across the banking
sector, EBA also provided a list of the default triggers (i.e. Unlikeliness
to Pay — UTP).

The models presented in this chapter base on the default definition that
is calculated on a customer level (contrary to the exposure level). Each cus-
tomer may have a few credit accounts, so in the default definition we con-
sider all of the customer’s accounts existing at the moment of observation.

The following customer statuses are defined accordingly:

e good — a customer who has maximally only one due installment on his

all credits in the next T months,

e bad — a customer who has at least one credit account with more than
three due installments in next T months (in case of T=3, more than

2 installments),

e Ind — an indeterminate case the rest of customers, in a practical
way a customer with more than one due installments but less than

3 (in case of T=3, less than 2 installments).

where T denotes the tenor of observation, i.e. the time horizon from the
observation moment. The above-mentioned statuses are coded as follows:
good=0, bad=1 and Ind=.i. For the scoring model estimation, we assume
that all of the Ind cases are excluded for the training set; for the purposes
of Probability of Default (PD) calibration, Ind cases are treated as the good
clients. As a target variable (i.e. default flag) we prepared the variable
default _cus12 which represents the T=12 tenor. By the definition assumed
in this Methodology, a bad client is a customer who has at least one credit
account with more than three due installments in the next 12 months.
The share of bad customers based on that default definition is defined
as Default Rate (DR).
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For further clarification, we assume the following notation:

o features — are the inputs of the models that are used for the classifica-
tion of good/bad client groups. In this Methodology, we assume that
features are represented mathematically in the matrix with a number
of rows equalling the number of observations (clients) and columns
to the number of variables. In terms of notation, we will also assume
that the features matrix may also contain binary/dummy variables,
as may be represented as an X matrix. As for the synonyms relating

to features, we also use the terms: exogenous or explanatory variables.

e target — is the value that in the interest of modeling process — in case
of credit scoring, we will relate that variable to the creditworthiness
assessment, usually denoted as a Y vector and used interchangeably

with dependent variable or endogenous variable.

In terms of further notation, we followed the original articles and studies,

providing the necessary definitions of variables.

4.1 Classical credit scoring models

The main usage of statistical methods in credit risk management over many
last years was focused on the binary logistic regression model. A default
event was always transformed into a binary predicted variable, even though
in many references, middle statuses such as indeterminate or dormant were
introduced some.

The credit scores, in a similar form as today, were invented in the 1950s
by a team of mathematicians led by Bill Fair and accompanied by Earl Isaac
— the Fair, Isaac and Company, today’s FICO, was established to pre-
pare the standardized credit scoring system (Finance, 2013). The first
versions of the system were based on a manual, paper-based form (hence
today we call it the scorecard). Scorecard points were mainly estimated
by the groups of experts (Thomas et al., 2017) due to the limited devel-
opment of computer science at that time — the scoring process could not

be fully automated.
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Along with the computers becoming the best tools for data analysis and
after discovering the logistic regression method, the practitioners started
to use the scorecards estimated on the logistic regression method. The an-
alyst could decide to choose a classical logistic model or risk scorecard

depending on his or her preferences and bank policy.

4.1.1 Credit Risk Scorecard

The credit acceptance process in banks performs one of the critical functions
in portfolio management (Oesterreichische Nationalbank, 2006), especially
for retail portfolios with an extensive number of applications. In the case
of a large number of requests per month, i.e. tens of thousands, statistical
tools are needed or even necessary in this process. The more credit appli-
cations the bank receives, the more vital the automatic decisions making
tools and advanced statistical models are. The most typical and utilized
model used in that credit scoring process are scorecards; see an example

of a scorecard in Table 4.1 below.

Variable (characteristic) ‘ Category (condition) ‘ Partial score
Age <20 10
Age 20 < Age < 35 20
35 < Age 40
Income < 1500 10
Income 1500 < Income < 3500 26
3500 < Income 49

Table 4.1: Example of a scorecard with two features: Age and Income
Source: own work

The study of the scorecard structure allows us to understand the factors
that drive the creditworthiness assessment. Without specialized knowledge
or statistical skills, one cannot identify the most critical variable in the
presented scorecard. It is possible due to the simple property of partial
score calculation — taking the riskiest category of each variable, we get
the lowest possible value of the scoring. The variable with the biggest
partial score variability is the most important one because changing it can

impact the score the most. Analysis of partial scores also can be useful



88

to identify the best and the worst customer in the process. In our example,
the best customer (i.e. the least risky), is one with age > 35 and income
> 3500. That customer gets 89 points. Opposite customer (i.e. the riskiest)
is one with age < 20 and income < 1500 having only 20 scoring points, the
minimal value.

Moreover, it is worth emphasizing that the scorecards, in principle,
are not identifiable; for explanatory purposes, let us assume the scorecard
presented in Table 4.1. After we add any value x, e.g. © = 1, to all of the
partial scores for the variable Age (e.g. 11, 21, 41) and subtract the same
value z from the Income variable (e.g. 9, 26, 49), each customer will end
up with the same score points as before. Therefore, only score changes
between levels for a variable can be compared across variables.

On the other hand, this construction of the scorecard allows us to deter-
mine the creditworthiness of a customer quickly — and as a result, compare
two distinct customers in that measure. In first scoring models, the assign-
ment of particular partial scores to specific categories, was performed based
on the expert judgment and assessment. However, this caused issues con-
cerning objectivity, auditability of the decision or even unbiasedness (the
national prejudices historically had a significant impact on the credit rating
(Cohen, 2012)). To perform more data-driven scoring, the new analytical

models were proposed.

4.1.2 Logistic regression

The classical linear regression models are known for more than a hundred
years. The first authors, such as Adrien-Marie Legendre and Carl Friedrich
Gauss, created their works in XVII century (Bretscher, 1997), in the form
we know as theory of the analytical Ordinary Least Square Errors (OLS).
It was a significant step in the further development of statistical theory.
That method, however, allowed to use only one objective function, i.e. tar-
get variable as a linear function of the features (independent variables).
The default event, as a binary variable, was not correctly covered by linear
regression (hence the OLS assumes target as a linear function and is not

bounded by 0 and 1). That theory was used with general approval and ac-
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ceptance of its drawback (for the binary target variable modeling), mainly
due to the lack of other, more adequate models. After the introduction
of logistic regression (Cramer, 2002), which allowed intuitive and inter-
pretable modeling of binary output, the consensus also changed and all
credit analysts started to use today’s most widely used model — the logis-
tic regression.

The understanding of the logistic regression model requires, initially,
an introduction of the binomial distribution. Let us consider a random
event involving, i.e. default or non-default; that random variable, Y, may
take two values: ¥ =1 or Y = 0. Let assume that the probability that
Y =1 is equal to some p, i.e.. p= P(Y = 1). Probability of the opposite
event, i.e. non-default, can be calculated by the formula: P(Y = 0) =
1—P(Y =1) =1—p. Let us assume that the random variable Y has
its instance y. In other words — its value has been observed (measurement
was taken). Let us calculate the probability of observing this value. We can

write it in two variants:

P, when y=1,
1—p, when y=0,

or in one common formula:

P(Y =y) =p'(1—p)7¥.

After the transformation into the final form we get:

P(Y = y) = exp (yln (ﬁp) +n(l— p)> .

The element defining the logit function appears here for the first time:
. p
Logit(p) =In | ——
ogit(p) n<1_p>,

which is an important notion in the logistic regression method.
Let us consider a more general situation. In our random sample con-

taining historical data, we observed N observations — instances of y. Each
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observation of the random variable Y,, associated with the status of the
event default, has the value y,, where n is the unique observation in-
dex. The model we are interested in is explaining the relationship between
the probability of the event default which is often mathematically writ-
ten as p, = P(Y,, = 1) and predictors denoted as a sequence of variables

1,2 m

Ty Ty vveey T

;2 where m is the number of variables in Analytical Base Ta-

ble (ABT) — special data structure for modeling. At the beginning, the

regression part is defined, namely a combination of predictors:
m .
XnB = Biah = Bo + Bray, + Boxy, + ... + By
i=0

This combination is associated with a non-linear relationship with proba-
bility p,. Even though there are plenty of similar sigmoid link functions
that can be defined and used in practice, the logit function has become
the most popular.

1 f;n term which
is called the odds of default event which is the ratio of the probability of the

event to the probability of the opposite event. So, we have a model that

Its popularity is due to the ability to interpret the

makes the natural logarithm of odds or logit of the probability of occurrence
of the event default dependent on the regression part X,beta. Finally, the

following equation is estimated:

Logit(pn) = Xn57

where X, are given predictor values, p, are theoretical probability val-
ues of the event default for n-th observation and vector of coefficients
[ is searched for.

The logistic regression model (also known as logit model) uses logit
function as a link function. Logit model and models with other link func-
tions (along with its assumptions regarding the distribution of objective
functions) are regarded as the Generalized Linear Models (Dunteman &
Ho, 2005).
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The f; coefficients are calculated (estimated) based on the maximum
likelihood method. It differs from the previously known least squares
method and is unfortunately associated with a more complex algorithm
for searching for the maximum function. They are found by the iterative
method, approaching the result with increasing accuracy at every step.
If the next steps cause the resulting change to be less than the set ac-
curacy (convergent threshold), then the algorithm stops and a solution
is found. Otherwise, the algorithm is not convergent and, unfortunately,
the input parameters need to be slightly changed. The most popular al-
gorithm is the Newton-Raphson method, in which successive iterations are
determined by moving on the vector determined by the likelihood func-
tion gradient.

The maximum likelihood method, described by Fisher in the XX cen-
tury (R. A. Fisher, 1922), is based on elementary, yet profound observa-
tion/intuition: the probability of obtaining observed values of variables
must be the highest (thus mazimum likelihood method). Discarding the
effects of random fluctuations (which in unbiased estimation are expected
to be zero), we can assume that in case of different observations we would
have different probabilities of occurrence (and the maximal likelihood would
be obtained for the observed set of variables).

Using the assumption about the independence of the observed events
(i.e. that the probability of several events occurring simultaneously is equal

to the product of their probabilities), we can calculate:
PY1=y1,Y2=92,...., YN =yn) =
PYi=uy) P(Ya=y2) ... P(Yn =yn) =

L P -

n=1
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- ﬁ exp (ynln <1 f”p ) +In(1 —pn)> -

n=1 n

= exp (i (ynln (1 f"pn) +1n(1 —pn)>> .

n=1

The likelihood function is the probability of observing all the v, values
together. By applying the logarithm function and inserting the appropriate
regression parts instead of logits, one obtains the final logarithm form of the
likelihood function — L:

N
In(L(B)) = Y _ (ynXnB —In (1 + exp(XnB))).

n=1

The essence of the maximum likelihood method is, therefore, to find
a vector of 8 coefficients such that the logarithm of the likelihood function
is the largest. The regression expression X, is sometimes transformed
as scorecard points — for more on the scorecard points calculation, see
Section 4.3.1.

This may also be achieved by an analysis performed to verify the correct-
ness of discovered rules, categories per variables and their relation between
customer profile, indicated by a particular category and partial score. That
structure of the model seems to be efficient because many properties can
be seen without any special report or data visualization method. Every-
thing can be read based on three information: description of a variable,

category condition and value of the partial score

Binning and variable report

In practice, one has to transform the continuous variable into the cate-
gorical data (e.g. influential variable prevention). We present an example

of a variable report, interpretation cause and effect analysis.
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Number Category (condition) Number of cases | Percent | Risk (%)
1 Missing 11 564 70.5 5.6
2 167 < ACT_CUS_SENIORITY < 227 1 165 7.1 4.1
3 ACT_CUS_SENIORITY < 96 848 5.2 2.9
4 227 < ACT_CUS_SENIORITY 1 427 8.7 2.8
5 96 < ACT_CUS_SENIORITY < 132 710 4.3 2.0
6 132 < ACT_CUS_SENIORITY < 167 700 4.3 1.1

Table 4.2: Report of categories of variable ACT _CUS_SENIORITY —
number of months since first credit, months on book
Source: own work

The WoE transformation is a well-known notion Weight of Evidence (Sid

diqi, 2012). It is very similar to logit value because:

1, (GG _
WoE = In <Bk/B> =

u(5)-0(2).

WOoEj, = Logit — Logit,,,

where k£ — means any variable category, G, B — the number of goods and
bads customers in the entire population and G and By, only in the category.
Therefore, the Weight of Evidence for a category is the difference between
the entire population logit and the category logit. Therefore, the WokE

approach can be also implemented as a logit approach.

4.1.3 Drawbacks of the classical scoring models

The classical approaches to credit scoring, apart from clear advantages
(i.e. straightforward implementation, auditability, interpretability), have
some drawbacks. Among some, we would like to point out few most essen-
tials (Johnston & DiNardo, 1997; Kennedy, 2003; Molnar, 2019):

e as discussed in Section 4.3, classical models require a burdensome,
time-consuming process of variables maintenance, correction and at the
modeling stage selection to the model; this usually involves the en-

gagement of an entire team or even department in banks to handle
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those processes; moreover, these efforts are typically multiplied, for
each of the several scoring models (e.g. products, clients) that are
utilized in the bank.

linearity and strict functional form of the models. The linearity of the
model assumes the linear (usually affine) relation between features
and the target variable. This property is generally perceived as an ad-
vantage, i.e. interpretability of the model, well-known properties,
straightforward model implementation and maintenance, additivity
but also the main drawback, i.e. inability to model complex func-
tional relations, requires heavily input transformations to represent

non-linearities.

interactions between particular features to predict the target out-
come, after considering the individual feature effects (e.d., distinct
effects of Age and Income variables that are not captured by the sum
of partial scores); in principle, classical models allows to model in-
teractions between features, by simply adding new features that are
compositions; this results, however, in an additional increase of the is-
sues related to data management and handling (in case of behavioral
ABT, the original number of variables — dummies and real-valued

— may be equal to few thousands)

in the context of credit scoring and required interpretability of model,
some of the variables, especially those converted from categorical vari-
ables into the dummy should be included/excluded in groups. More-
over, we recommend the dummy coding that uses as the reference
category, the one with the largest cardinality, i.e. the most observa-

tions’ coverage.

4.2 Machine learning for credit scoring

Along with further developments in computer science, as well as lowering

the costs of computation units (CPU, GPU), new models and techniques

for data analytics were discovered and introduced in day-to-day operations.



95

This situation refers strongly to the IT sector which mostly uses the Busi-
ness Intelligence software but also advanced analytic solutions — primarily
for client acquisition, pricing or internal decision-making processes.

Big Data transformation, as this process is usually referred to, also em-
braces some of the banking processes (e.g. demand elasticity computation,
text mining on the current accounts). However, as of today, the usage
of more advanced methods in credit scoring is not widespread. This situ-
ation, as a result of the outlined constraints of classical models, will start
to change as a new and more generally accepted framework supporting ma-
chine learning (especially in terms of interpretability and auditability) will
be developed.

In this section, the formulas and principles of the most popular and
widely-used machine learning models are discussed. The selection was also
based on the adequacy and applicability to the credit scoring context —

presented methods, in our opinion, are the most matching and relevant.

4.2.1 Machine learning methods — introduction

The machine learning refers to a wide group of statistical algorithms and
methods (including the logistic regression) that allow, through parameters’
estimation, find patterns in, usually massive, sets of data. To narrow down
the scope of discussion, in this chapter we focus only on the supervised
learning methods (i.e. the training set contains the values of the target
variable) utilized for classification problems (hence the default flag is binary
outcome variable). We strongly suggest the following references for the
introductory texts on machine learning: (Chollet, 2018; Varian, 2014).
The beginnings of machine learning date back to the 1950s, when infor-
mation and telecommunication sciences were developing intensively. Part
of the leading research units, in addition to conducting scientific work in the
field of computer science, also researched subjects related to questions that
concerned the way the brain works and the similarity of this action to the
mechanics of computer systems’ work was shaped. Early computer pro-
grams contained only hardcoded programs — such programs do not modify

their operation with each iteration. For quite a long time, many experts
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have believed that human-level Al can be achieved by implementing into
computer programs enormous sets of rules and principles governing the
operation of these programs. This approach is referred to in the literature
as symbolic artificial intelligence and even today, it is an essential paradigm
in artificial intelligence from the 1950s to the late 1980s.

Symbolic artificial intelligence reached its peak of popularity in the
1980s — with the so-called boom of expert computer systems. While it proved
suitable for solving well-defined, logical problems, this approach showed
significant difficulties in solving complex issues such as image classification
and speech recognition.

Machine Learning has emerged as an alternative approach to solving
complex problems. Machine learning is an attempt to answer the question
positively — can the computer go beyond human-defined knowledge and
principles and learn on its own how to perform a specific task. Rather than
manually creating rules for how to approach a task for a given data set,
the computer program automatically learns these rules based on the data.
The above-mentioned example of a conceptual approach to solving severe
problems is a new programming paradigm. In classic programming, the
symbolic artificial intelligence paradigm is introduced by a human being
by implementing them in a computer program — data is processed in ac-
cordance to these rules and responses are returned as a result. In machine
learning, the input to an application is answers and data — the computer
itself, presented with many examples relevant to the task, finds a statis-
tical structure in this data which ultimately leads to creation of rules for

automating task solving.

4.2.2 Regularization techniques

In econometric modeling regularization techniques are employed in the case
of ill-posed problems or overfitting of the model; the architecture of those
methods allows to reduce the variance of estimated parameters through
a selection of explanatory variables and, hence, also a reduction of the

variability of the model’s predictions.



97

ALGORITHM
- L SYMBOLIC ARTIFICIAL

ANSWERS
1 INTELLIGENCE
DATA
ANSWERS ——
| MACHINE LEARNING | ALGORITHM
TRAINING SET

Figure 4.1: Comparison of two paradigms: symbolic artificial intelligence
and machine learning
Source: own work

The first case, i.e. ill-posed problem, refers to the econometric models
that exhibit instability of estimation. As a result, the instability of the
model leads to an instance when a small fluctuation in the training set re-
sults in a significant deviation of the model’s forecasts; this feature of the
econometric model, especially within the context of credit scoring, is unde-
sirable and in the extreme leads to an unacceptable model. In the context
of ethical and trustworthy machine learning, we claim that the stability
of the model constitutes a necessary condition of the technical robustness
aspect. The ill-posed problem may have originated, among others, from
highly correlated explanatory variables — the so-called multicollinearity
(for the diagnostics tools, see Section 5.4). The examples of highly cor-
related features usually appear in behavioral scoring (i.e. using the same
features with different observation horizon), for example: variables denot-
ing the credit arrears in different tenors, different tenors of DPD, dummy

behavioral variables.

The second case, i.e. overfitting of the model, refers to an instance
of a model that exhibits a relatively high performance on the training
set, but the prediction error expands siginificantly on different data sets.
It is being said that the model has been overfitted to the initial data
set (i.e. training set) and does not allow inferring on different data sets.

The cause of such a scenario may have originated from the inclusion of too
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many independent variables (Everitt & Skrondal, 2010). The data-generating
process that is the subject of econometric modeling is usually unknown; the
use of too many explanatory variables on a training set can lead to a spu-
riously high level of predictive power in training set — the predictive power
on test sets, however, is significantly lower (Johnston & DiNardo, 1997).
Similarly to the ill-posed problem, the absence of overfitting establishes
a necessary condition of the technical robustness on an algorithm (and

hence often called algorithmic robustness).

Ridge regression

Ridge regression is a regularization technique used for estimating parame-
ters in cases where the explanatory variables exhibit near multicollinearity.
As mentioned in the Section 5.4, multicollinearity causes an increase in the
variance of model parameters and thus an inability to interpret the model
parameter values.

The ridge regression technique is a method of biased estimation — the
estimated parameters are biased (i.e. F [B] # [3), but this allows to reduce
the variance of estimated parameters. Therefore, the rationalization of the
model is able to reduce the variance of the model predictions and parameter
values at the cost of a small estimator bias. That trade-off (lower variance
and little bias) is, from the business point of view, a desired property — un-
less it severely impacts the model’s interpretability. Let B = (Bl, e ﬁp)T.
For estimation, the values of explanatory variables are usually standard-
ized, i.e. >, x;j/N =0and ), :cl%j/N = 1. The ridge regression param-
eters B are defined as an optimal solution for the quadratic programming

problem with inequality constraint (Tikhonov & Arsenin, 1977):
arg min [Zfil log(1 +exp(—>_; Bjmijui)) +1>; /Jﬂ ,

where t > 0 is the tuning parameter of ridge regression (also referred
to as a penalty term).
The selection of the appropriate ¢ parameter (i.e. the one that generates

the smallest prediction error) is made based on the validation data set’s
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Figure 4.2: The contour curve of the ridge regression loss function
Source: own work

results; for a given set of ¢ parameters, the choice of the target model
(i.e. a model with specific tuning parameter) is based on minimization of the

prediction error on the validation set.

Lasso

Tibshirani defined the Least Absolute Shrinkage and Selection Operator —
lasso — as an optimal solution for the following constrained optimization
problem (Tibshirani, 1996). Let B = (31,..., Ep)T. It is assumed that
the explanatory variables are usually standardized, i.e. >, x;j/N = 0 and
o a:f j /N = 1. The regression parameters of lasso B are defined as a opti-

mal solution for the following constrained problem (Tibshirani, 1996):

argmin | S, log(1 + exp(— T By i) + £ 5518y

where ¢ > 0 is the tuning parameter of ridge regression (also referred

as a penalty term).
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Figure 4.3: The contour curve of the lasso regression loss function
Source: own work

Similarly to ridge regression, lasso regression imposes a limit on the
norm of model parameters; in the case of the lasso, however, this is the
l1 norm (also called the urban norm).

Despite the similar form of the models (i.e. loss function of the logistic
regression with an additional penalty component), the following differences

exist between ridge and lasso regression:

1. Lasso regression allows and it is a relatively common case, to ex-
clude individual parameters (i.e. value 8; = 0. In the case of ridge
regression, however, as a rule, the values of the model parameters are

reduced to small values, nonetheless not equal to 0.

2. The lasso regression allows for less complicated and more straightfor-

ward parameters interpretation.

3. In the case of ridge regression, it is possible to observe the change

of sign for the particular parameter.
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4. In the case of lasso regression, the change of the model’s parameters

follows more linearly with the change of the tuning parameter.

5. Ridge regression imposes a higher penalty for bigger values of the

model’s coefficients.

6. In the case of two equal features (or strongly correlated), the ridge
regression will produce equal weights and lasso will provide the co-
efficients with the same sign but not precisely similar (however, the

sum of coefficients will be constant).

7. Both approaches allow reducing variance of the model’s parameters.

Elastic net

The third type of regularization, used in a similar manner as lasso and ridge
regression, is the elastic net regularization which is the combination of both
penalties terms. As it was shown in (Zhou et al., 2015), the elastic net can
be reduced to the linear support vector machine (SVM). It was shown
that for every setup of the elastic net (i.e. parametrization of penalties)
for the binary classification problem, the hyper-plane solution of linear
SVM is identical to the solution of the elastic net. This result enables
a use of highly optimized SVM solvers and GPU acceleration for elastic net
problems (Zhou et al., 2015). The formulae for the logistic regression loss

function with elastic net regularization is as follows:
. 1
argmin | S, log(1 +exp(— T B 0i)) + M(L— )t 551851 + (S, 82

As discussed in this monograph, it is advisable to use the regularization
techniques to eliminate over-fitting. In the beginning, it is always advisable
to perform different regularizations and compare the results (see Section
4.3 for the discussion on validation set) — however, in the context of credit
scoring, with a wide range of features, one can assume that preferable
is the lasso or elastic net since they allow to reduce the redundant features’

weights down to zero. In principle, the elastic net is preferred over lasso,
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as the lasso may be unstable as the number of features is greater than the

size of the training set or some of the features are heavily correlated.

Figure 4.4: The contour curve of the elastic net regression loss function
Source: own work

The regularization techniques described above are utilized in case of mul-
ticollinearity (which is the usual case in behavioral data) and a limited

number of observations (compared to features).

4.2.3 Relu neural network

The relu stands from the Rectified Linear Unit. In the essence, relu neu-
ral network can be represented as a linear function nested in a non-linear
(i.e. rectifier) activation function. In fact, if we would replace relu with the
sigmoid function, we would end up with the logistic regression (assuming
that the neural network is single-layer — only input layer exists). Moreover,
due to the wanishing gradient problem that occurs in sigmoid activation
functions, multilayer neural networks are initialized with the defaulted relu

activation function.



103
The rectifier(relu) activation function has the following form:
f(x) =27 = max(0,z)

where z is the mentioned multiplication of node’s inputs and its weights.

The structure of the neural network consists of the layers and nodes;

the example is presented in the Figure 4.5.
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Figure 4.5: The architecture of a multilayer neural network
Source: own work

This neural network presented above has defined 4 layers (input layer,
two hidden layer and output layer), with the set of 4, 4, 4 and 1 nodes
corresponding to each of the layers. As a matter of fact, the presented
architecture is universal (i.e. more layers, more nodes). The activation
function, for each layer in the presented example, is assumed to be relu

(apart from the input layer — those are simply input features).

On the level of a single node, the output of that node is simply the acti-
vation function evaluated on the summed inputs of the node multiplied with
the node’s weights. The most straightforward activation function that one
can assume is the linear activation (no transformation performed) — that
mapping, however, does not allow to model complex, non-linear patterns
in the data. The relu activation function, as a non-linear, is more pre-
ferred as it allows the nodes to represent more complex patterns in the
data. The training of the neural network is simply optimizing the weights

(presented in Figure 4.5 as the edges) in terms of loss function.
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In terms of the advantages of the relu neural networks, one may em-

phasize the following;:

1. As the loss function is convex, the uniqueness of the solution (uni-

modality) is guaranteed.

2. Absence of the vanishing gradient problem and the possibility to gen-

erate fast predictive algorithms.

3. Absence of the randomness in the weights initialization and the prob-
lems with escaping from the local optima in terms of model’s param-

eters.

For broader discussion on the neural networks, and subjects related (e.g.,

calibration), we recommend (M. A. Nielsen, 2015).

4.2.4 Decision trees

Decision trees are an algorithm of supervised learning, based on data for
which all values of the dependent variable are known. These are nonpara-
metric models in which no assumptions are made a priori concerning the
relationship between a dependent variable and explanatory variables, nor
any assumptions regarding the distribution of the variables or the model’s
errors. Therefore, unlike linear regression, they can reflect any non-linear
relationship. However, in decision trees it is also possible to impose the
monotony of some dependencies, which in the scoring practice is an im-
portant feature, both from a business and regulatory point of view. There
are some order-preserving decision tree construction algorithms that can
be applied to ordinal or continuous variables (Potharst & Feelders, 2002).
Moreover, trees reflect well the interactions between variables without the
need to process the data and prepare it for use in the model.

Trees are most often used in classification problems when the depen-
dent variable is nominal and takes one of several values representing ob-
ject classes. In the case of credit risk assessment, the dependent variable
is binary and means default/bad or non-default/good for a bank client,

i.e. Y = 1 for default and Y = 0 for non-default. A classification tree
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is a machine learning algorithm that subdivides a set of observations into
subsets using tests conducted on attribute values. The purpose of the
division is to obtain subsets that are as homogeneous as possible accord-
ing to the categories of the dependent variable. The most popular algo-
rithms for the construction of classification trees are those that minimize
the measure of diversity in the subsets obtained (Hastie et al., 2009). This
is how the Classification And Regression Trees (CART)! algorithms work
(Breiman et al., 1984) and C4.5 (Quinlan, 2014). Another group consists
of algorithms that divide the set based on statistical tests. This group in-
cludes, e.g. the CHAID algorithm that uses the x? statistics (Kass, 1980)
and algorithms based on permutation tests (Hastie et al., 2009).

Decision tree structure

The tree structure reflects the recursive splits of the set. Nodes and leaves
denote the obtained subsets and tree branches show the rules of division.
Trees are most often used in classification problems when the dependent
variable is nominal and takes one of several values representing object
classes. The divisions of sets of observations are determined based on the
explanatory variables and tree nodes represent tests carried out on the val-
ues of the variables. The root is the first node covering all observations.
The branches correspond to different test results. The leaves show the la-
bels of the observations category. Each tree is a set of classification rules
and each leaf on the tree is a separate classification rule.

A classification rule is an expression of the form:

IF conditions THEN decision.

Classification rules are used as a convenient way of representing knowl-
edge with a very clear interpretation. They indicate the decisions that
are appropriate when the conditions are met. In the case of the problem
of classification, the rule can be called classification and read as follows:

IF conditions THEN category.

!The CART algorithm developed by Breiman enables the construction of trees
in which the dependent variable is either nominal or real. However, due to the area
of an application under investigation, trees with a real dependent variable, called regres-
sive trees, will not be discussed here.
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The left side of the rule is then a set of conditions imposed on the
attribute values and the right side indicates the category of the object.
The leaves of the classification tree can be equated with the classification
rules for a fixed cut-off point. Changing the cut-off point may change some
of the rules so that, under certain conditions, the objects will be assigned

to a different class than before.

The classification of the example is based on successive tests, from the
root to the corresponding leaf. The example is assigned to the class, the
label of which has been indicated by the leaf. Tests carried out in tree nodes
are functions defined on attribute values. Each test assigns a finite number
of values — test results ¢t : A — Ry, where Ry = {r1,r2,...,7m} to a fixed
attribute. The trees in which each test has exactly two results are called

binary trees. The available test results depend on the types of variables.

For continuous and ordinal variables, the breakdowns of sets are deter-
mined based on conditions described by inequalities or as ranges of values.
For example, for a customer’s age variable, these can be divisions that give

the following possible test results:
R, = {< 28,(28,35], ..., (55,65],> 65} .
Binary splits for numeric variables have the form
R, ={A(z) <a,A(z) > a}.

For example, a binary split for a customer’s age variable might produce the

following two test results:
R, = {<35,> 35}.

For nominal variables, the divisions are determined based on conditions
of adherence to separable subsets of variable values. For example, for a mar-

ital status variable, the following three test results are possible:

R, = {{single} , {married, cohabitation} ,{divorced, separated, widowed}} .
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It may also occur that each value of a variable is a separate test result,
i.e. Ry = A. Binary divisions are often based on the selection of one of the

variable values:

R, = {A(2) = a, A(z) # a},

i.e. for marital status:
Ry = {married, others} .

This way of dividing the set leads to the creation of multidimensional
"cubes" in the space of variables characterizing observations.

In each node that is subject to division, the optimum test is selected
from a set of all tests that can be applied to the node. For this pur-
pose, a numerical measure of test quality must be defined. In general,
it can be said that the more homogeneous the subset obtained compared
to the split node, the better the test is. Several test quality measures
which are called splitting criteria, can be used in tree-building algorithms.
The most common splitting criteria used for selecting tests are described
in the next section.

In the process of tree construction, in addition to the test selection cri-
terion, two other elements are also important. The first one is the criteria
that determine whether the division of the set should be continued or com-
pleted and a leaf should be created. The set of such principles is called
stop-splitting criteria. The most common stop criteria for trees will be pre-
sented in the following section. The second element is how to assign leaves
to the classes. By default, the leaf gets the label of the class whose share
in a given subset is the highest. However, it is possible to adopt different
rules for assigning a class to leaves. The issue of labeling, i.e. assignment

of classes, will also be discussed further.

Splitting criteria for classification trees

Choosing the optimal test to divide the set, means selecting the attribute
to perform the test and possible test results. In each node of the same tree,

the available test set may be different. It is also possible that tests in differ-
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ent nodes are based on the same variable but have different sets of results.
In algorithms that minimize the diversity measure, usually the functions
described below are used as criteria for partitioning a set. In practical use,
in credit scoring the imbalance between the number of defaults and non-
defaults is significant. Among the discussed methods, the Gini coefficient
and Gain ratio are methods that are insensitive to the relative proportion

of the two groups.

Entropy and information gain

One of the criteria for the selection of the test is to maximize informa-
tion growth (Quinlan, 2014). The information or entropy contained in the
set of labeled examples depends on the proportions of categories in this

set. The entropy of the set is directly proportional to its impurity and

= >, (\);r)

deC

is expressed by the formula

where:
C — a set of categories described by the dependent variable;
X — entire set;
X4 — a set of observations with category d.

The value expressed in this manner represents the amount of informa-
tion missing for the correct classification of a randomly selected example.
The minimum set entropy value can be 0 and is only achieved if the set
is completely homogeneous. The maximum entropy value depends on the
number of object categories but is always achieved when the distribution
of categories in the set is uniform. The purpose of the test selection and

division of the set is to reduce its entropy.

The Entropy in the set of observations with the result r in test t equals

X3 | X |
Bp(X)=-) ; :
! tr| X1, ]

deC
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where:
Xt — set of observations with the result r in test ¢;
X — set of observations with the result r in test ¢ and with category d;
The entropy of the entire set X after applying test t is a weighted
average for all test results, i.e. for all values r € R; (available results for

a given test).

Ey(X) = Z ’ii?”Etr(X)
reR;
The increase of information in the set after application of test t is ex-
pressed as
9t(X) = I(X) — Ey(X).

The criterion will select as optimal the test that gives the maximum infor-
mation increase in the set after its division arg m?xgt(X ). This is equiv-
alent to the choice of such a test that minimizes the entropy of the set

after division.

Information gain ratio

Another criterion for the division of the set is the information gain ratio
(Quinlan, 2014). This criterion uses the information gain described above.

However, the choice of the test is determined by the value of the quotient

_ gt(X)
grt(X)_IVt(X)’

where I'V; is the informational value of the test ¢, calculated as follows

j : ’1<tr| ‘J(tr‘

I‘/ = — 1 .

! |‘<’ 082 "(‘
reR:

For the Information gain ratio the test that maximizes this factor, that
is arg mtaxgrt(X ) is chosen as the optimal one.

The information value does not depend on the distribution of classes
in the obtained subsets. It only measures the uniformity of the distribution

of a set into subsets. The value of this indicator is high when the set is di-
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vided into subsets of similar size. This value, on the other hand, decreases
when one of the subsets is much larger than the others. Dividing the in-
formation gain by the information value plays the role of normalizing the
gi. The disadvantage of the information gain is that this criterion favors
tests with a large number of results, even when this is not justified, i.e. the
selected test is not actually more effective than others with a lower number
of results (Quinlan, 2014). While the criterion based on gain ratio, thanks
to the applied normalization, does not have this disadvantage. Moreover,
the information gain, due to the preference for tests with many results and
the most homogeneous sets, may lead to overfitting models. Using infor-
mation gain ratio instead of information gain helps to avoid this problem

as well.

Gini Index

The Gini index (for further information, see Chapter 6) is another criterion
that indicates a test to minimize set impurity after its division (Breiman
et al., 1984). The Gini index for any set of labeled examples is represented

by the following formula

d 2
GI(X)=1->)_ <‘§(|‘> :

deC

where the indications used have the same meaning as for entropy.

The Gini index for the set after application of test t is the weighted

average of the Gini indexes for all resulting subtests

Xir
GI(X) = E ||);||GItT(X)'
reR:

A test that minimizes the Gini index, that is arg mtinGIt(X ) is chosen as

the optimum test.
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Twoing Criterion

Previously described test selection criteria can be applied to any number
of subsets created by division. Twoing Criterion is a function used for bi-
nary trees, i.e. trees in which each division generates two subsets (Breiman
et al., 1984). Since the division generates two subsets, one of them is de-
noted by the index L (left) and the other by R (right). The function

assessing the purity of the resulting subsets is

2
1
(X) = {PLPr (Z = Pfé\) ,
deC

where the designations are as follows

Pr, Pp — the share of observations assigned to the left or right subset
respectively in the whole set;

Pg, P}% — the share of observations with category d in the left or right

subset respectively.

A test that maximizes the above-mentioned measure will be selected for

the application.

The x? statistics

An example of an algorithm based on x? statistics is CHAID (Kass, 1980).
This statistic is used to study the independence of two variables with dis-
crete distributions. The null hypothesis under test says that the variables
are independent. In trees, it is used to assess the probability of indepen-
dence of a dependent variable and with explanatory variables that are nom-
inal or have been categorised. For each explanatory variable with m values,
a contingency table with a dependent variable with k values is built. The
table shows the frequency of common occurrences of i-th value of the ex-
planatory variable and j-th value of the dependent variable for i = 1,...,m
and j = 1, ..., k. The x? statistics compares the actual frequencies of cumu-
lative occurrences obtained in the table with theoretical values determined

under the assumption of variables independence:
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k
=3 (ni ;J”Ez'j)a
3 — i

i=1 j=1
where
n;j — frequency of common occurrences of i-th value of the explanatory
variable and j-th value of the dependent variable;
E;; — the expected value of the appropriate frequency of common oc-
currences assuming that the variables are independent.
If the variables are independent, the expected value of common occur-

rences frequency is

L
=
where
n} — number of occurrences of i-th value of the explanatory variable;
2

nj — number of occurrences of j-th value of the dependent variable;

n — total number of observations. The statistics defined in this way
have a x? distribution with (m — 1)(k — 1) degrees of freedom. It measures
the difference between the actual and theoretical distributions assuming
the independence of the variables. The greater the value of this statis-
tic, the greater the difference between the distributions. Exceeding the
critical value at a fixed confidence level rejects the null hypothesis. Accord-
ing to this criterion, the test with the highest value of the statistics will

be selected.

Comments on the criteria

It is difficult to indicate among the above criteria one which always gives
the best results. Using different criteria can lead to trees with different
structures. The shape of a tree also depends on the number and structure
of the classes in a set. The comparison of the test selection criteria for
binary splits shows that significant differences in the obtained tree struc-
tures appear when there are many classes of objects in the set, i.e. when
the explained variable has many values. In the case of credit scoring where

there are only two classes and two values of the dependent variable, all the
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criteria give similar results (Breiman, 1996; Breiman et al., 1984). When
using non-binary partitions, Twoing criterion does not apply while Gini in-
dex and Entropy and still give similar results. Both criteria tend to obtain
homogeneous nodes but entropy tends to result in more balanced parti-
tions with regard to the number of observations in the subsets, which may

be disadvantageous in an unbalanced sample.

Binning and variable report

Binning is a data pre-processing technique which consists of discretizing
a continuous variable by assigning the values to a set of bins. Such practice
helps to make the variable more manageable, e.g. thanks to bucketing out-
liers in lowest or highest intervals of the range together with less extreme
values. This way, outliers become no different than other values from the
tail of the distribution. Binning can also solve complications arising from
a high degree of skewness of a variable. The approach to binning can be ei-
ther unsupervised (bins are based on the distribution of the variable alone)
or supervised (bins are created using external information, e.g. target vari-
able). One of the supervised methods of binning is fitting a decision tree
alming at forecasting target variables, i.e. default rates, using only the vari-
able the analyst wants to discretize. In its technical aspect, it comes down
to searching for a split minimizing the Gini coefficient or entropy, so the
resulting leaves (or bins) naturally show decreased entropy (Kaminski &
Zawisza, 2012). In practice, the binning of variables should be conducted
for the logistic regression; in terms of decision trees, the binning of features

is made within the algorithm (generation of leaves).

Stopping criteria

Stopping criteria control if the tree construction process should be stopped
or not. An over-expanded tree is overfitted to the training set. Its quality
at the test set is usually much lower. Preventing a tree overfitting is possible
by using stopping criteria and pruning the tree. The stopping criterion may

prevent the overfitting by restraining the node from further division.
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The stopping criterion may also be of a technical nature. Such technical

criteria are:

o homogeneity of a set, i.e. the situation when there are only observa-

tions from one class in a node;

¢ lack of available tests — when all observations in a node have the same

values of the explanatory variables.
The other criteria, listed below, are applied to prevent overfitting of a tree:

o maximum depth of the tree — if a tree has reached the maximum
depth indicated in the process parameters, the construction of the

tree is finished;

e mininum node size — a node will not be split if child nodes are less

than specified minimum node size;

e minimum leaf size — a node will not be split if obtained leaves are less

then specified minimum leaf size, the node becomes a leaf;

e minimum leaf purity — a node will not be split if its purity is not less

then a specified level, the node becomes a leaf;

e minimum increase in purity — a node will not be split if its purity
improvement is less then specified level:
maxAP (t,X) <
AP nX) <o
where
X —node to be split;
T — set of available tests;
AP (t, X) — the increase in the purity of the X set after the application
of the test ¢;

B — the minimum required increase in purity.

If entropy is used as a measure of a node X purity, then AP (t, X) = g,(X).
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Advantages and disadvantages of classification trees

Classification trees have many advantages. First of all — the structure of the
tree allows a clear interpretation of the obtained dependencies and classifi-
cation rules, even for people without advanced statistical knowledge. The
form of the tree indicates exactly which variables, how and in what order in-
fluence the affiliation of observations to particular categories. Furthermore,
the tree clearly shows the interactions between the variables. It is also pos-
sible to assess the significance of individual variable in the tree structure
and thus also in the classification process. The significance of a variable
in a tree shows the extent to which a given variable contributes to the
reduction of impurity of obtained subsets.

Classification trees show well the non-linear relationships in the data.
They can be built using any type of variable — real, ordinal and nominal.
They also do not require special variable processing before model building,
although they can also be processed as in other methods, e.g. nominal vari-
ables can be replaced by binary variables or WoE. These algorithms also
handle well outliers, missing values and mistakes in data. No pre-selection
of variables is required. A tree construction method that is based on re-
cursive divisions, makes it possible to select those variables that are most
relevant for the classification process. They are also invariant to monotone
transformations of numerical variables. Monotonicity constraints can also
be imposed which improves the transparency of obtained models and their
agreement with available knowledge.

The disadvantage of classification trees is that sometimes a very small
change in the value of one variable can completely change the classification
result. On the other hand, a small change in the data set may result
in a change in the whole structure of the tree. A problem with using
trees can also be their quickly decreasing interpretability as the number
of nodes grows.

Trees can be components of more sophisticated and advanced models.
They form the basis for other advanced algorithms such as random forests
and boosting methods. These methods are based on sets of classification

trees. Importantly, classification models built with the use of many trees
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— as opposed to single trees — do not have most of the negative properties

mentioned above.

4.2.5 Random forest

A random forest is a set of many classification trees. It is constructed
according to a bagging algorithm, i.e. individual trees are built on inde-
pendent bootstrap samples selected from the training set. The use of ran-
dom forests allows to reduce the variance of the forecast in relation to the
use of a single classification tree which has a large variance (Hastie et al.,
2009). The reduction of variance results from averaging the results obtained
from individual trees. The generalization error in a random forest depends
on the number of trees, the predictive power of individual trees and also
on the correlation between the trees (Breiman et al., 1984). In the case
of that method, one can impose the monotonicity constraint on the partic-
ular features which in credit scoring practice is useful and essential (both
from business and regulatory point of view). Moreover, this constraint can

be implemented in both a single tree or entire forest granularity.

Construction of trees in a random forest

The trees in the random forest are built on independent bootstrap samples
selected from the training set. This minimizes the correlation between the
trees. All trees are built without pruning. During the construction of a sin-
gle tree, a subset of variables is drawn in each node which will be used
to select the optimal test that separates this node. Variables are selected
independently for each node. The classification of observations is deter-
mined by each of the classifiers obtained and the final decision is taken
by voting.

Single decision tree is characterized by a high variance of the forecast.
Averaging results obtained from many trees in a random forest reduces the
forecast variance. The mean variance for B identical random variables with

2

a o variance and a correlation coefficient p between two variables is equal
to (Hastie et al., 2009)
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V(X) = po? + ﬂ02.
B

Therefore, the reduction of the variation of the average result depends
on the number of trees B and the correlation coefficient p. The reduction
of correlation between individual trees depends on choosing independent
bootstrap samples for building trees and independent sampling of a subset
of variables before each division. From among p variables, a subset of m <
p variables is selected, whereby it is usually assumed that m = ,/p.

To determine the error in the classification of a random forest, it is rec-
ommended to make a decision for each observation using only those trees

that were not built on the sample containing that observation.

Significance of variables in a random forest

Similarly to individual classification trees, for random forests it is possible
to determine the significance of individual variables in the model construc-
tion. Various methods of determining the significance of variables based
on set heterogeneity indicators are described, for example, in (Breiman,
2001; Louppe et al., 2013). Usually, the significance of variables is mea-
sured using the Gini index and this measure is called Mean Decrease Gini
(Louppe et al., 2013). This measure shows the average decrease in the Gini
index in the set, which results from the use of a given variable. The most
significant are those variables that contribute the most to the decrease
of the Gini index in a set. Figure 4.6 shows a simple example of a ranking
of variables that was based on the Gini index.

Other methods of determining the significance of variables in the ran-
dom forest are Shapley values (Molnar, 2019) or Variable Importance Mea-
sure (VIM) calculations (Breiman, 2001). Both methods are described
in Chapter 7. Figure 6.13 shows the Permutation Feature Importance indi-
cators that were determined using the permutation method for determining
VIM indices.

This very simple example shows a complete agreement between the
indications of both rankings — the most important variable is ’financed

amount’ and the least important — the variable 'previous contracts’.
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Figure 4.6: Ranking of variables in a random forest based on Gini index
Source: own work

Figure 4.7: The VIM indices obtained by the permutation method for
the random forest model
Source: own work

4.2.6 XGBoosting algorithm

Another widely used tree ensemble model is XGBoost. After its intro-
duction in 2014, it has been proving itself as a fast and effective machine
learning algorithm and a winning method of numerous data science com-
petitions (D. Nielsen, 2016). Just as the random forest, XGBoost is an en-
semble learning method, meaning that the result comes from an aggregated

output of several models. Decision trees are associated with high variance
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and ensemble learning helps to reduce such behavior. It uses a concept that
averaging a set of observations reduces variance (Hastie et al., 2009). In the
case of that method also, one can impose the monotonicity constraint on the
particular features (in both a single tree or the entire forest granularity).

There are two main kinds of ensemble learners: 1) bagging and 2) boost-
ing. Bagging should be known to a reader from random forests. In such
models, it does not matter which model was built first because they are
trained in a parallel way. Boosting works differently — models are trained
sequentially. Each of the models learns from errors made by the previ-
ous model.

Boosting is based on similar principles as bagging but it solves one
of the bagging’s limitations — all models may be wrong in the same area
and make mistakes about the same observations. Boosting solves that issue
by chaining the models — creating one tree leads to another. Each model
focuses on those areas where its predecessor performed poorly (Freund et
al., 1999).

Single classifier Bagging Boosting

Figure 4.8: Decision trees ensemble methods comparison
Source: own work

In the case of Adaptive Boosting (or AdaBoost for short), consecutive
trees learn from the previous model’s mistakes by adjusting weights ac-
cordingly. The bigger the error, the bigger the weight for this observation,

so the cost of a poor prediction is higher as well. These weights are not the
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only ones present in the algorithm, though. There are also weights of the
trees, a so-called Amount of Say which stems from the tree’s forecast qual-
ity. These weights are connected — the better the tree, the more significant
boost will be given to the observations which were not correctly predicted
(or had a significant residual) in this model. Let us see an example of how
such a mechanism works. After starting from equal weights and fitting the

first tree, the following measures are calculated:

1. Amount of Say:

1—TotalError )
TotalError

Amount of Say = 3 In(
where Total Error is a selected weighted error measure, e.g. weighted
error rate. Notice that a classifier with accuracy equal to 50% will
have an Amount of Say equal to 0 and thus does not contribute to the

final prediction.

2. New Sample Weight for correctly classified observations:

NewSampleWeight = SampleWeight x ¢~AmountOfSay

where Sample Weight is the sample weight used in the last iteration

of the algorithm.

3. New Sample Weight for wrongly classified observations:

New Sample Weight = sample weight % e/AmountofSay,

Next, weights are adjusted, to sum up to 1. Please find below the visual-
ization of the Amount of Say and new sample weights.

If the Amount of Say is high, the sample weight is scaled by a multiplier
close to 0 in case of correctly classified samples (they almost disappear for
the next tree) and close to 1 in the case of misclassified ones. The better the
tree is, the bigger will be the importance given to misclassified observations.
In the case of low value of the Amount of Say, multipliers will have very
similar values — for the poorest tree possible with the Amount of Say equal
to 0, both multipliers are equal to 1, therefore no change in weights occur.

In contrast to a random forest, where trees are grown to their maxi-

mum depth, in AdaBoost, usually trees with very few splits are constructed.
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Figure 4.9: Visualization of the new sample weights calculation
Source: own work

In many cases they only have one split and are then called stumps. Com-
bining multiple weak learners leads to creating a powerful, robust model
with substantial predictive value. AdaBoost is extreme in this matter, but
in Gradient Boosting, regular tree depth is a little bigger — usually between
2 and 8. It is especially adequate in credit scoring as variables in the ABT
are usually constructed at depth 2-3. The algorithm allows us to find out
how to construct particular variables in the ABT by looking at few of the
trees with the biggest importance. Gradient Boosting with logistic objective
function can be interpreted as a linear model built on automatically gen-
erated ABT variables. Another key difference between Adaptive Boosting
and Gradient Boosting is that the latter does not only use weights to cor-
rect previous models’ mistakes — models learn directly from predecessor’s

errors instead.

DATASET MODEL ERRORS MODEL ERRORS MODEL

@

PREDICTION

Figure 4.10: High-level architecture of the gradient boosting algorithm
Source: own work
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The basic outline of Gradient Boosting can be described as follows in the
case of a regression problem. We start from a base learner. Depending
on the chosen implementation of the algorithm, it can be a stump, a small
decision tree or even a linear model which constitutes our first guess. The
simplest version of a base learner would be a single leaf with one value
assigned to all observations — an average of the response variable. Once
we have our rough estimate, we can calculate the residuals of the not-
too-advanced model. In the next iteration, we will model these residuals,
not the actual response variable. With each iteration, we’ll be modifying
the previous estimate with modeled residuals by adding the prediction.
Importantly, a hyperparameter called learning rate is used when calculating
the result to prevent overfitting and make only small steps in the right
direction. For example, instead of adding the forecasted residual itself,
we only add 10% of it. Because of this addition, we use even more decision
trees to reach the final solution. After growing the next trees, when we make
predictions, we sum up the original forecast from the base learner with all
of the predicted residuals, each of them multiplied by the defined learning

rate. The final prediction takes the form, as presented in Figure 4.11.

>~ ~
Learning

Learning
+ X Y + ...+ LeX

Figure 4.11: Visualization of prediction making in Gradient Boosting
Source: own work

Why is it called gradient then? In the description above, we trained the
subsequent models straight on the residuals. This case of Gradient Boosting
is the solution when one tires to optimize for a Mean Squared Error loss
function. But Gradient Boosting is agnostic of the type of loss function —
it works on all differentiable loss functions. We could see Gradient Boosting
as a generalization of the algorithm we have defined in the said paragraph.

In a well-known iterative optimization algorithm, Gradient Descent,

we try to optimize parameters (f) of a function by minimizing a loss func-
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tion (L) which takes the predicted values of the response variable § and
y itself and returns a loss value. Hyperparameter 7 is the learning rate used

to scale down the gradient of the loss function L.

O =01 — anL(y,g))

Let us compare that to our case.

Foo =9 —nVyL(y,7)

Fop=Fn_1— nva_1L(y7 Fm—l)

Instead of optimizing the parameters of a function, we optimize the
function architecture F. A gradient of the loss function is called pseudo-
residuals which in the case of MSE loss, become actual residuals as pre-
sented below (with a constant added for purposes of calcu

lation simplification):

=)= -y)

There are many modifications of Gradient Boosting such as Stochastic
gradient boosting where at each iteration of the algorithm a base learner
is fit only on a subsample of the training set drawn at random without
replacement. The method proposed by J.H. Friedman was observed to im-
prove the original method’s accuracy (Friedman, 2002).

However, a Gradient Boosting implementation which gained the most
popularity, is by far XGBoost which highly increased the capabilities of the
algorithm. X in its name stands for extreme and it is for a reason. Upgrades
and improvements are numerous, so is the number of steps, procedures and
parameters a user can set (Chen & Guestrin, 2016). This is why here we will
focus only on the basic functionalities of this method.

XGBoost’s grand advantage is an intricate mechanism for preventing

overfitting. Basic Gradient Boosting already includes a learning rate (eta
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in XGBoost) for decreasing weights. However, this implementation went
much further in this aspect. A vital metric introduced in XGBoost is Gain.
It is a relative contribution of the given feature to the model. The higher
the value, the bigger the importance of a split. Except for stopping fitting
if a node reaches a predefined maximum depth, it also allows for pruning
trees in an automatic manner using, namely Gain. Starting from the leaves
level, XGBoost checks whether Gain from a given split falls below gamma
— a threshold of Gain improvement required to keep a division. If Gain
is lower than this parameter, the node is pruned and the algorithm moves
up branch by branch to the root. In the opposite case, when the node’s
Gain is higher than gamma, not only is the node left but the parent nodes
do not have to be checked for pruning. This stems from the fact that
ultimately it does not matter if a good split comes after a very poor one

— it is still a split beneficial for the model.

A regularization parameter A adds another layer to this process. It is
a constant that is used during Gain and prediction calculations. It af-
fects Gain by being added to Gain’s denominator. Therefore, by decreas-
ing Gain, each tree becomes more susceptible to pruning and less prone
to overfitting. The higher the parameter is, the more conservative the
model. It is worth noting that there is an asymmetry in how lambda af-
fects Gain. The fewer observations are in the node, the higher impact

of lambda is which is, of course, targeted at battling overfitting.

As said by Tiangi Chen, the author of the method, zgboost used a more
reqularized model formalization to control overfitting which gives it better
performance (Hastie et al., 2009). However, there are still many more clever
tricks used in XGBoost which were not described in lengths in this chap-
ter. XGBoost allows for parallel processing and distributed computing,
as well as custom optimization objectives. It contains an in-built proce-
dure of handling missing values and does cross-validation at each iteration.
It offers efficient memory usage and is highly scalable. The core of XG-
Boost is Gradient Boosting which was then enriched in terms of systems

and algorithmic optimization.
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4.3 Frameworks for model development

In this section, the frameworks for scoring model development are pre-
sented. In particular, the different process-steps are presented for both

classical and machine learning model development.

4.3.1 Framework for the classical scoring model building

Almost all predictive models are built by a similar process called SEMMA,
an acronym that stands for Sample, Explore, Modify, Model and Assess,
a list of sequential steps developed by SAS Institute
Azevedo and Santos, 2008.

o Data partition (Random samples). At least two data sets are created:
training and validation, sometimes based on a simple random sample
method or time sampling, where one data set comes from a different

data period than another.

o Binning — categorization of every variable (regardless of the type
of variable: nominal, ordinal, binary or interval). Mainly based on the
entropy measure, each continuous variable is categorized into an or-
dinal variable. This is a typical method used in decision trees (clas-
sification) algorithms, see Section 4.2.4. Nominal or ordinal variables
are also grouped together to form more numerous categories, more

representative in the population.

e« WoE or Logit transformation. Every variable is transformed based
on created categories into interval variable having WoE or Logit val-
ues in categories. That idea is very useful to avoid many problems
such as missing imputation, sensitivity to outliers or dummy vari-
ables in coding nominal variables. All the mentioned problems are
discussed in detail in Chapter 5. The WoE transformation, compared
to dummy coding, allows to save the degrees of freedom — in the
case of behavioral scoring or application scoring based on the credit
bureau ABT, the dummy coding may drastically reduce the number

of observations that may be utilized in estimation. Moreover, the



126

WOoE results in easier auditability and revision (i.e. negative betas
problems — see Section 4.3.4). In the case of small samples, the WoE
provides a smoother assessment of the body of distribution (dummies

are producing more focus on tails).

Variable preselection (feature first selection) — rejection of variables
with low predictive power. At this stage, variables that are unsuit-
able for the final model are rejected based on simple one-dimensional
criteria which have either a significantly weak prediction value or are

very unstable over time.

Multidimensional variable selection — model generator. In the logistic
regression method, there are many different feature selection heuris-
tics, such as stepwise: forward, backward or stepwise based on p-value
criterion or branch and bound (Furnival & Wilson, 2000). The last
one is a very convenient method because it allows you to create many
models providing three options: start, stop and best which means:
from what number of variables in the model to start, how many vari-
ables to end and how many best models to choose. In the case of the
stepwise approach to variables selection, the potential issues that may
arise should be noted, i.e. a) instability of variable selection or b) ran-
domness of entering the model with many variables or ¢) disturbance
of p-value of the statistical tests (e.g. Wald test which is used in vari-
ables statistical relevance testing). The stepwise method does not
possess the property of independence of irrelevant alternatives. The
regularization methods, each time consider the entire set of variables
and do not have the problem of influencing the estimation of previ-
ous steps (i.e. previous variables exclusions); in stepwise, the variable

that was already excluded will not be included again.

Model assessment. There is no single criterion for assessing the model.
Therefore, several criteria are used mainly related to predictive power:
Gini, stability: Gini delta —a relative difference in prediction between
training and validation sets, collinearity measures: maximum of VIF

— Variance Inflation Factor, maximum of Pearson correlation coeffi-
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cient on all variable pairs, maximum of Condition Index, significance
measure: maximum of ProbChiSquare, maximum of p-value for all
variables. In paper Lessmanna et al. (2013) several more are men-
tioned. This topic is still very current, many authors question relying
on Gini statistics (Scallan, 2011). Moreover, some business crite-
ria not connected to classical statistics should be emphasized, such
as variable reliability — can the variable be verified, cost of data,

of particular variable and complexity of variable calculation.

e Model implementation. It was not defined in SEMMA diagram but
that step is very important and cannot be omitted. Awareness of the
implementation of the model in a specific IT environment ensures
consistency and forces the analyst to make many decisions during the

model building process.

o Monitoring and backtesting. This topic will not be addressed directly
in the present work and also is not included in SEMMA but in practice
it is always an indispensable stage of the model lifecycle. You need
to know how to test the correctness of the model’s usage, how to make
sure that the opportunity to build a better one has already appeared
and how to compare both models. Finally, you need to know what
criteria should be used when deciding to exchange for a new one.
Also, you always need to reserve IT resources and other staff for

model monitoring before it will be implemented.

Partial score calculation for risk scorecard

The general logistic regression equation can be written by:
Logit(pn) = X0, (4'1>

where [ represents the regression coefficient vector. The X,, matrix can

be written in detail as follows:

Xy = Lij0ijn,
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where [;; is a logit of j-th category i-th variable and ¢;j, is zero-one matrix
with 1 when n-th observation belongs to j-th category of i-th variable. Also,
a simplified assumption is made that each variable has precisely the same
number of categories so that we can use simpler notation — the number

of groups is equal to v.

Note also that in the case of only one variable in the model, we have
a fairly simple situation where the coefficient 8 = 1. This is due to the fact
that both sides of the equation 4.1 have the same logits. It also means that
the assumption of a linear relationship between the objective function and
the predictors is met in advance. In the case of many variables in the model,
the coefficients should be all positive, since logits and variable category
numbers have such monotonicity. If the variable category number increases,
the risk decreases. Therefore, if there is a change in the sign of the regression
coefficient, then we deal with strong collinearity or a case of a confounding
variable. Counting negative coefficients is ,therefore, one of the collinearity

detection methods, see more in Section 4.3.3.

The product of the X matrix and § vector standing on the right side
of the regression equation 4.1 is the score value for a given observation.
It is not calibrated and is difficult to interpret. Usually, a few simple
transformations are made to give it a more useful form. Note that if the
probability value of p,, increases, then its logit will also do so and thus the
score will increase as well. Therefore, the higher the score, the more likely
the client is to pay back the loans. Most often, the score value is calibrated

through a simple linear function:

Logit(p,) = In ( Pn > =S, = aSS3P 4 p,
L —pn

where S$2l is a calibrated score and S, the raw one while a and b are

coefficients. They are determined so as to obtain an additional property.

To present the example, let us assume that: for a value of 300 points

the chance of being a good customer should be 50 and when the odds

doubles, i.e. it will be 100, then the score should be 320. Odds is defined

as the quotient of the number of goods to bads customers or as the ratio
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Pn
17pn '
customers for one bad customer. Therefore, the system of two equations

should be solved (Siddiqi, 2012):

Odds 50, therefore, represents the customer segment, with 50 goods

In(50) = 300a + b,

In(100) = 320a + b.

This set of equations has the following solution:

In (15000) In(2)
a 20 20 0.03466

300 In (%)

b=1n(50) — —

=~ —6.4852

The final partial score is often rounded to the nearest integer num-
ber. In Table 4.3, we present the example of Partial Score calculation
(for a similar example, see Mayes, 2004). The value of 30 in calculation
formula column is associated with the number of score points required
to double the odds (i.e. after how many score points the odds of being good
clients doubles) — the division of In(2) is required to obtain proper scores
(Scallan, 1999).

Variable ‘ Range ‘ B8 ‘ Calculation formula ‘ P. Score
<20 - =0 (Ref.) -
Age 20-35 0.833 | = 0.833 x (5,37 36
35+ 1.245 | = 1.245 x (5) 53
<1500 - =0 (Ref.) -
Income 1500-3500 | 1.528 | = 1.528 x (g:35) 66
3500+ 2178 | = 2178 x (37) 94
0 2.139 | = 2139 x (537 92
# 30 DPD alarms |1 2.027 | =2.027 x () 87
2+ - =0 (Ref) -

Table 4.3: The example of partial score calculation
Source: own work
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4.3.2 Framework for machine learning model development

The machine learning framework requires the division of initial data into
three samples, i.e. training set, validation set and test set. This approach
differs from the classical econometrics where the initial data set was only di-
vided into a training set and test set (hence, one developed only one model
from the very beginning and to evaluate its performance out of sample
needed only one test set. In machine learning, due to the space of hy-
perparameters is wider than in classical model (i.e. the machine learning
models have, on average, more parameters of training the model than clas-
sical model), there should also be additional data space where models will
be compared out-of-sample and the best one will be selected. In terms
of the framework of model creation in machine learning, it should at least
cover the following steps (Chollet, 2018):

1. Defining the problem, assembling a data set and choosing
the evaluation protocol — this stage is usually reduced when the
problem is well known (e.g. credit scoring for mortgages), the data
is already in the database (i.e. in a data center of a bank) — the only
task is to define the evaluation protocol (i.e. what expectations one
set for the model). For more on the model predictive power and other

model performance measures, see Chapter 6.

2. Explanatory data analysis — each analytical process which is meant
to end with the predictive model should include explanatory data
analysis which covers among others single variable analysis (e.g. sin-
gle factor Gini), the correlation between features, data artifacts and
missings, outlier detection, endogenous variables analysis and analy-
sis of the variables’ distributions over time. The effects of this stage
should provide the information, whether a particular model fits the
purpose/expectations (e.g. in case of strong multicollinearity, the
regularization should be performed, in case of interactions between
variables — see Section 4.1.3 — the random forests or XGboost may

be adequate).



131

3. Development of the primary machine learning-based model
— this stage of the modeling consists of multiple hypotheses stating
and evaluation. At this particular stage, different models are created
to find a specific class of models that fits the best to the training set.
As a result, one should end up with one class of models (e.g. XGboost
models) that will be further explored and improved. It is worth noting
that a different model should be compared on the validation set, using

some of the measures (e.g. Gini, PSI, ROC curve), see Chapter 6.

4. Scaling up the basic model by tuning the parameters; it is usually
performed on the walidation set where the competitive models are
being evaluated. In this phase usually one develops a model that

exhibits the overfitting problem.

5. Regularizing of the model — this stage is performed to prevent
the owverfitting of the model. As of the previous step, the model may
too strongly represent the training-set phenomenons and may diverge
from the process generating data which in principle is in the interest

of the modelers.

It is worth mentioning that in contrast to classical approaches, where
one performs all the necessary features selection (i.e. removal of variables,
single-factor analysis), binning and other data transformations (see Section
4.3.1) in machine learning, the diagnostics are shifted to the later stage
(i.e. regularization). Moreover, it is assumed that the data preparation
process is less demanding and engaging — e.g. in decision trees, the bin-
ning and interactions between features are embedded in the model itself
and there is no need to prepare the ABT table. That, in principle, should
be a cost-effective method since the data handling tasks are less requir-
ing (e.g. there is no need to perform variable selection as it is performed
on the model level), allowing to utilize methods highly efficient in terms
of predictive power.

From the technological point of view, for implementation of the partic-
ular regularization technique, we emphasize that in Python 3.6 one can uti-

lize an open-source package: the scikit-learn (Pedregosa et al., 2011).
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In this environment, one can utilize the linear_model module as fol-
lows: sklearn.linear_model.Lasso, sklearn.linear_model.Ridge or
sklearn.linear_model.ElasticNet. It is worth mpahsizing that this
specification fits the linear model estimation (i.e. OLS type of model). For
the purposes of performing regularization in logistic regression, one should
use the LogisticRegression with additional parametrization of penalty
applied: L1 norm, L2 norm or elasticnet — please note that 12 norm is set
as a default parameter (i.e. if one uses the linear_model.LogisticRegre-
ssion, by default uses also the ridge regularization).

As discussed earlier, it is advisable to use the regularization techniques
to eliminate over-fitting. In the beginning, it is always advisable to perform
different regularizations and compare the results (see Section 4.3 for the
discussion on validation set). However, in the context of credit scoring, with
a wide range of features, one can assume that the preferable is the lasso
or elastic net since they allow to reduce the redundant features’ weights
down to zero. In principle, the elastic net is preferred over lasso, as the
lasso may be unstable as the number of features is greater than the size
of the training set or some of the features are heavily correlated.

What is also important is that, it was shown (Zhou et al., 2015) that
the elastic net can be reduced to the linear SVM; for every setup of the
elastic net (i.e. parametrization of penalties) for the binary classification
problem, the hyper-plane solution of linear SVM is identical to the solution
of elastic net. This result enables one to use highly optimized SVM solvers

and GPU acceleration for elastic net problems (Zhou et al., 2015).

Computational complexity of discussed models

From the technical point of view, the computational complexity of the
model may constitute an obstacle to use it in operations — that is usually
one of the arguments to remain with well known classical approaches. Dis-
cussing the frameworks for machine learning techniques, we would also like
to present simple comparisons between models in terms of

their complexities.
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Let us assume that we have a model that has n variables and m obser-
vations. Each of the iterations of a numerical optimization algorithm that
searches the domain space of parameters in logistic regression is the order
of n xm. The same applies to the regularization techniques — each iteration

of optimization results in the complexity of the order of n x m.

On the other hand, in the case of the selection of variables algorithm,
e.g. stepwise (forward or backward), it is required to create additional
n models which results in the complexity of the order of n? x m. In terms
of regularization techniques, the complexity is the function also of the num-
ber of values of penalty term that is evaluated (also denoted as a grid size
parameter), independent from n and m. The regularization techniques have
a computational complexity of the order of nxm x k, where k is the grid size
in search of optimal penalty term. Additionally, we assume the less efficient

method of penalty term optimization (which can be further improved).

In the case of the n big enough (as in the case of ABT for the behav-
ioral data) and the k respectively lower, the regularization techniques are
less computationally complex than the logistic regression with the stepwise

parameters selection.

In the case of the decision trees, the model complexity is the order
of nxmx29, where g is the maximal depth of the generated trees. It is worth

noting that in practice, g is relatively smaller than n.

In the case of random forest, the model complexity is the order of n x

m X 29 x s, where s is the number of decision trees in the random forest.

The computation complexity of the XGBoost is the order of n xm x 29 x

s, where s is the number of iterations performed in the xgboost algorithm.

4.3.3 Other issues

In this section, we describe the special cases related to data or model specifi-
cation. Those descriptions should guide technical issues related to data/model

handling in the context of credit scoring.
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Panel data

One of the most usual issues faced in behavioral scoring is the encounter
of panel variables. The usage of the panel variables usually does not signifi-
cantly affect the model’s performance in practice but it impacts the critical
levels of the statistical tests, e.g. used to select the variables. This situa-
tion is severe for classical as well as in terms of machine learning models.
All the methods have similar sensitivity on the panel data — if possible,
it is recommended to utilize the dedicated panel models (e.g. Generalized
Linear Mixed Models (McCulloch & Neuhaus, 2014), classification tree us-
ing wavelet-transformation (X. Zhao et al., 2018)). In case of misspecifi-
cation of the model (e.g. panel data), the model will encounter the issues
with tests’ distribution of p-values that were constructed assuming correct
specification — if the model does not satisfy the assumptions, the p-values

will be incorrect.

Small number of observations

As described before, in the case of behavioral scoring with ABT based
models, the usual setup results in a relatively small number of observa-
tions (clients) to the number of features (especially the bad clients). That
problem is profoundly severe as the estimates and model’s predictions will
exhibit high variance as a result. That being said, in case of a small number
of observations (as mentioned before, in relation to the number of features),
one should: a) include the regularization (lasso or elastic net) or b) use the
WoE transformation instead of dummy variable coding. The first approach
is focused on the selection of the most statistically relevant features; the

latter primarily allows to lower the size of features space.

4.3.4 Negative betas

In the case of the WoE transformation, the beta coefficients may be nega-
tive. The negative betas indicate the interactions between variables which
are undetectable in the single factor analysis which is utilized to generate

WoE. If the negative betas are estimated, it means that as a single fac-
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tor, the variable has a positive impact on the target but jointly with other
variables, it has a negative effect (so-called Simpson’s Paradox). For more

information on the higher order association, see Section 5.5.

4.3.5 Categorical variables coding

The categorical data coding is performed to allow the usage of the categor-
ical data, both nominal (with no intrinsic order, e.g. geographical location,
city, industry) and ordinal (with inherent order, e.g. income/age group,
number of installments overdue). The dummy coding is a method of in-
cluding such variables into the model and is the simplest (and probably the
most common) coding system. The approach is to transform the categorical
variable into the series of binary variables — e.g. for instance, the weekday
may be processed using 6 binary variables indicating weekdays. The exclu-
sion of one of the variables (why six, not seven days) is performed to avoid
the perfect correlation problem (more on that in Section 5.4). The one cat-
egory that is not represented by the series of binary variables is called the
reference level or reference category — its value is embedded in the constant
term of the model.

The dummy coding systems may differ in terms of choice of the refer-
ence category — relating to the above-mentioned example — which of the
weekdays should be chosen. The answer may, in case of classical modeling,
be less relevant but become a significant issue in regularization techniques.
As for the credit scoring models, we recommend the dummy coding that
uses as the reference category, the one with the largest cardinality, i.e. the
most observations coverage. This coding system is safe for the regulariza-
tion techniques, i.e. in regularization, the constant value is not penalized
because it would result in a severe bias of the model. Moreover, the dummy
coding allows for a straightforward interpretation of the model’s parame-
ters (which in the context of credit scoring allows the simple diagnostics
of the final credit decision).

Moreover, it is worth noting that the type of dummies coding does not
impact the classical scoring — and the final changes in partial scores of par-

ticular categories (but may result in different score levels). However, in the
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case of the preselection of variables, the dummy coding starts to matter
significantly — if the particular variables are excluded from the model, the
final scoring is also impacted. In that case, we recommend using the joint
tests for the relevance of groups of dummies (relating to one initial cate-
gorical variable). Moreover, as pointed before, we recommend choosing the
category with the largest cardinality as a reference category.

The literature also presents different categorical coding systems, e.g.
simple coding, deviation coding, difference coding, Helmert coding or or-
thogonal polynomial coding. For more information on categorical data
coding, we highly suggest the (Daly et al., 2016). The comparison of the
dummy coding with effects coding (alternative approach) is presented in
(Bech & Gyrd-Hansen, 2005). In practice, we recommend testing different
coding strategies and selecting the one that produces a model with the best

predictive power.

Expert correction and monotonic model response to the input

parameter

In practice, both due to business purposes and regulatory recommenda-
tions, the bank should allow for the expert correction to make one the
model. This action, even if it causes the model to be biased (and ineffi-
ciency of model’s coefficients), may be justified, especially in case of scarcity
of empirical data (e.g. Covid-19 crises is perceived as a world sensation,
not observed in the recent banking history). In principle, the model may
be backed by the expert knowledge, by the manual modification of the
model parameters or imposing constraints on the variables (e.g. based
on the VARCLUS which methods allow for the expert supported automated
mechanism for the variable selection).

In principle, the above-mentioned constraints may also be related to as-
surance of the monotonic model response — which allows for a natural model
interpretation and intuitive results. As one may use different heuristics ap-
proaches, we recommend the usage of the constrained regression procedure
— the parameter estimation, in most of the examples (except for OLS) the

coefficients are estimated using numerical algorithms. One may include the
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assumed and expected feature into the model, e.g. the set of variables that

are preferred by the experts or the monotonic model response.

4.4 Numerical results of models

This section presents an example ofa model’s documentation prepared
in a classical way, i.e. when scorecard points are prepared and the model
is built based on WoE approach. Here, we focus only on the most important
scoring criterion — predictive power; however, we strongly suggest that the
model documentation should also include the discussion on other criteria
(as discussed in Chapter 6).

In this section, as in Chapter 3, we utilize the simulated data for all
testing and model techniques comparison. The main description of data
creation is presented in (Przanowski, 2011). To satisfy the purpose of our
monograph, referenced algorithms were slightly changed to stabilize risk
in time and to generate more variables — up to 2304 customer character-
istics. Data can be treated as an example of credit bureau data of all
available customers and their credits in the market. There are two data

sets created:

1. ABT APP - all customers without delinquency on the reporting
date, with only one due installment in the last 6 months and not
defaulted in the last 12 months — criterion is corresponding to cus-
tomers who are applying for a new credit. On that data set acceptance
models are often built to calculate the probability of default in case

the customer will take a new credit.

2. ABT__BEH — all customers not in default on the reporting date. That
data set represents a classical behavioral portfolio where PD model
used in IRB or IFRS 9 methods are calculated.

4.4.1 Data structures

As it was mentioned earlier, data were randomly generated. The main

information collected per every month of history is the following;:
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o Paid and not paid installments. Delinquency is aggregated into num-
ber of due installment. There is a collected number of paid and due

installments per every credit account.

o Credits. All credits dates are collected: of granting and closing (with
the final status: not paid or paid).

e Days. There are also collected dates of payments. They can be in-
dicated how many days before or after the due date the payment

is done.

o Events. Every customer can have some special events in his history
connected with health, work, family and home. Those events can

have an important impact on payments.

The methodology of model building is compliant with the base of Basel
IT documents, such as (Basel Committee on Banking Supervision, Bank
For International Settlements, 2005a, 2005¢). It is also based on famous
methods described in known books and articles such as (Anderson, 2007;
Janc & Kraska, 2001; Lessmanna et al., 2013; Oesterreichische National-
bank, 2006; Siddiqi, 2012; Thomas et al., 2017; Verstraeten & Van den
Poel, 2005). Extended ideas, formulas ordered structures and processes
are defined in (Przanowski, 2014). Model building process consists of the

following steps:

e Random sample, data partition. There are two data sets created:
training and validating, based on a simple random sample method
(without duplications) in proportions: 50%/50% and it is selected
only 75% of all data.

o Binning, categorization, grouping. There are groups created for the
categories of variables. Based on entropy statistics, every interval
variable is split into categories. This is a typical method used in deci-
sion trees techniques. Nominal variables are also grouped, especially
when the number of unique categories is too big. After binning, every

variable is transformed into a logit variable.
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e Variable preselection. Based on univariate statistics for every vari-
able not important, variables are indicated in this way: too small

predictive power, too unstable in time.

e Multifactor analysis. Multidimensional variable selection. There,
a heuristic method, called branch and bound, is used (Furnival &
Wilson, 2000).

e Model assessment. There are no unique model criteria. The most
popular are the following: predictive power (Gini), stability such as:
Gini or delta Gini —the relative difference between Gini on training
data set and validating, collinearity measures: Max VIF — maximal
variance inflation factor (Koronacki & Cwik, 2008), MAX Pearson
maximal Pearson correlation statistics on pair of variables and MAX
Con Index — maximal condition index (Welfe, 2018) and variable sig-

nificance measures.

e Model implementation. The model can be implemented in a few sys-
tems, so a dedicated document from every implementation

is expected.

e Monitoring and testing. After every implementation, testing starts
(especially after a few days) and then it is followed by

a regular monitoring.

The model is built on all available historical data in the period 2004
— 2018 in ABT_BEH data set. All numbers of observations (customers)
for training and validating data sets are presented in Table 4.4. Historical
data per every year is presented in Table 4.5.
Data set | N. of obs. | N. of goods | N. of bads | N. of ind. | P. of goods [%)] | P. of bads [%] | P. of ind. [%]

52 841 31 010 15 378 6 453 58.7 29.1 12.2
53 070 31514 15 281 6 275 59.4 28.8 11.8

Training
Validating

Table 4.4: Numbers of observations for data sets used for estimation
Source: own work

The general idea of the variable selection in case of the future usage

and business need is to identify all possible customer characteristics bas-
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Year | N. of obs. | N. of goods | N. of bads | N. of ind. | P. of goods [%] | P. of bads [%] | P. of ind. [%]

2004 9 593 5699 2742 1152 59.4 28.6 12.0
2005 10 694 6282 3073 1339 58.7 28.7 12.5
2006 10 546 6247 3086 1213 59.2 29.3 11.5
2007 10 758 6370 3054 1334 59.2 28.4 12.4
2008 10 754 6408 3130 1216 59.6 29.1 11.3
2009 10 878 6485 3079 1314 59.6 28.3 12.1
2010 11 204 6577 3223 1404 58.7 28.8 12.5
2011 10 942 6362 3226 1354 58.1 29.5 12.4
2012 11 247 6536 3285 1426 58.1 29.2 12.7
2013 11 220 6660 3262 1298 59.4 29.1 11.6
2014 11 151 6563 3230 1358 58.9 29.0 12.2
2015 11 229 6664 3225 1340 59.3 28.7 11.9
2016 11 228 6560 3295 1373 58.4 29.3 12.2
2017 11 328 6617 3357 1354 58.4 29.6 12.0
2018 6632 4014 1830 788 60.5 27.6 11.9
Total 159 404 94 044 46 097 19 263 59.0 28.9 12.1

Table 4.5: Number of observation for all available data
Source: own work

ing on positive and negative information collected in various databases
and systems. Often only negative information can differentiate bad cus-
tomers, about 2% - 20% of all but the rest of them can have the same
scorecard points. Only positive information collected in model variables
can differentiate mentioned the rest of the customers, who have never been
in delinquency.

Below we present the example of variables utilized in credit scoring.

1. ACT_ _CUS_DUEUTL —ratio: sum of all current due installments

of all customer s credits over the sum of all number of installments.

2. ACT_CUS_N_ LOANS_ ACT —number of all current customers

credit accounts.

3. ACT_CUS_UTL - ratio: sum of all paid installments of all cus-

tomer s credits over the sum of all number of installments.

4. ACT_STATE_16_CMIN__DUE - example of very simple defi-
nition of the variable representing the state of a customer 16 months
ago, exactly a minimal number of due installments of all customer’s

credit accounts.

5. AGS21_SUM_ CNCR - number of granted credits in the last
21 months.
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6. AGS3_CSEV__ALL — number of all kinds of events (work, family,
health, home) which happened to the customer during the last 3

months.

7. AGS9_PCTL75_CMIN__DUE - 75 percentile of 9 months series

of minimal numbers of due installments.

8. APP_CHAR_JOB__CODE - Customer’s job code, connected

with his income source.

As a target variable for modeling, it is set default_ cusl2. The share
of bad customers based on default definition is defined as DR (default rate),

it is an observed value.

4.4.2 Results for different methods

In this section, we present the summary of a brief numerical experiment.
To be able to compare different results, we have utilized raw data, as dis-
cussed in the previous sections. In terms of classical models, due to the
variety of different methodological assumptions (e.g. features selection,
data pre-processing), here we present only the machine learning methods.

Our findings are as follows:

o the XGBoost model, out of all other models, exhibits the highest

predictive power, both on the training set and test.

e the regularization techniques exhibit similar behavior as the logistic
regression — in that term, we emphasize the need for further penalty
term optimization (in this work, we have utilized only two of them,
assuming the notation of sklearn). As one can observe, for the
low penalization (i.e. Lasso C=1), the results are almost identical

as in Logistic regression.

e the random forest and decision tree perform much better in the train-
ing set but, as it appears, those methods suffer from significant over-
fitting. the As a consequence, the models do poorlyy on the general-

ization on the test (considerably lower delta Gini measure).
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Model ‘ Gini Train ‘ Gini Test
Logistic Regression | 0,46 0,41
Lasso (C=1) 0,46 0,41
Lasso (C=0.1) 0,47 0,4
Elastic Net 0,34 0,33
Decision Tree 0,48 0,37
Random forest 0,49 0,39
XGBoost 0,51 0,42

Table 4.6: The summary of Gini for machine learning scoring models
Source: own work

As it was mentioned in Chapter 3, we highly emphasize the need for
further investigations. According to our best knowledge, the methods pre-
sented are significantly sensitive to the input data and pre-processing meth-
ods — each of the specific cases should be carefully investigate based on the
particular data set. As we have mentioned earlier, the utilized data set was
based on the simulation. In Figures 4.12 — 4.18, we present the ROC curves

for the particular model.

ROC charts
1.0 =
—— Train, Gini=0.46 P
—— Test, Gini=0.41 i

0.8 1

o
o
)

True Positive Rate
o
IS

o
IN)
.

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4.12: Logistic regression results — ROC curve
Source: own work
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Figure 4.13: Lasso regression (C=1) results — ROC curve

Source: own work
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Figure 4.14: Lasso regression (C=0.1) results - ROC curve

Source: own work

4.5 Conclusions

This chapter presents the methods and techniques of data analysis that can

be/are successfully used in credit scoring. In the first part of this chapter,

we highlighted the classic credit scoring approaches common in many finan-
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Figure 4.15: Elastic net regression results — ROC curve
Source: own work
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Figure 4.16: Decision tree results — ROC curve
Source: own work

cial institutions today; most banks now base their credit decision processes

on these methods. The second part of the chapter presents machine learn-

ing techniques that may be used in modern credit scoring. These methods’

advantages are undoubtedly related to the functional form’s greater flexi-
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Figure 4.17: Random forest results — ROC curve

Source: own work
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bility (i.e., features and target variables) and automatic handling of issues

related to the quality of data used for modeling. The chapter ends with

experiments and numerical analyzes that were carried out based on simu-

lation data emulating the actual data used in credit scoring.
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This chapter focuses on introducing methods as analytical tools - in par-
ticular in the context of credit scoring. Detailed analysis of the sensitivity
of machine learning models to data issues or maintaining the interpretabil-

ity of models is the subject of Chapters 5 and 7.



Chapter 5

Sensitivity of machine
learning methods to data

issues

DANIEL KASZYNSKI
KINGA SiuTA
Bocumit. KAMINSKI

Decision Analysis and Support Unit
Collegium of Economic Analysis
SGH Warsaw School of Economics

The credit scoring data sources enable us to obtain information about in-
dividual clients, i.e. socio-demographic data (e.g. age, source of income,
employment sector) or behavioral data (e.g. number of days of delay in pay-
ment). As a rule, at the stage of preparing data for modeling, each intuitive
variable may have some discriminatory power in terms of creditworthiness
assessment; naturally, the relevance of each variable are different. In the
case of most variables, their added value in terms of the discriminant power
of the model as a whole may be negligible which may be related to either

a low or even no discriminant power of a particular variable or a high level



148

of correlation with other variables of the model — an example may be various
behavioral binary variables that often have an almost perfect correlation.

Testing the influence of the dependent variables on the model may also
lead to erroneous results — if we model another random variable with 100
random variables, then with a confidence level of 95%, the average of 5 vari-
ables will be obtained which will have a high discriminant power of the
model. This means that when a large number of independent variables
are used in the regression, with no underlying discriminatory power for the
dependent variable, then only on the basis of the adopted confidence level,
variables with no discriminant power may be selected for the final form
of the model. To avoid overfitting the binary logistic regression model, the
focus should be on the number of events per variable (EPV) rather than
the total number of cases (i.e. events plus non-events).

The problems related to data are not only the issues of selecting vari-
ables for the final form of the model but also the issue of maintaining the
required data quality. In general, the following data or model related issues

are distinguished:

e outlying observations,

e missing data,

e definition of a bad client,

o multicollinearity problem,
o higher order associations,

e new categories of the features.

In this chapter of the monograph, the above-presented issues are discussed

in more detail in the context of presented scoring models.

5.1 Outlying observations

As the commonly used quotation garbage in, garbage out suggests, any
data-related issue may result in poor model design and performance — ei-

ther the predictive power or stability. One of the most usually encountered
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cases in terms of data quality issues is one related to outlier observations,
also called influential observations. Those are the numerical values that fall
significantly far from the expectation, i.e. based on the population distribu-
tion. In principle, the occurrence of outliers may originate from a) technical
issues or problems (e.g. decimal notation of monetary values, wrong cur-
rency assignment — 100 000 PLN earnings equals roughly to about 1 136
700 000 of Iranian Rials), b) changes in regulatory definitions (e.g. New
definition of Default mentioned earlier), c) consolidation of different data
sources (e.g. mergers of the banks/datacenters/department). In the list

below, we specify the impact of outliers on the specific groups of models.

e Binned variables — in the case when numerical variables are first
binned, outliers do not create an issue; they are added to the highest

or the lowest of the bins,

e Decision trees and ensembles of voting decision trees — in principle,
the decision trees, random forests and XGBoost algorithm, by de-
fault, have set minimum percentile/number of observations in each
tree branch which results in robustness to outliers. However, when
this constraint is removed, those methods may exhibit sensitive reac-

tion on outliers (as the tree branch may contain only one observation),

e Linear regressions and regularization techniques — these are most af-
fected by outliers as they may get extremely high or low scores, dis-
torting both developments of the model and making resulting scores

in production nonsensical.

The recommended approach for handling the outliers is to replace extreme
values with certain minimum and maximum percentiles, e.g. if 99%of the
population has an income lower than 40 000 PLN, then each income above
40 000 PLN is replaced with precisely 40 000 PLN. Relevant percentiles
can be decided for each variable separately. Moreover, the outliers become
no different than other values from the tail of the distribution with the

application of binning.
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5.2 Missing data

There is no data when there is no variable (s) for a given observation.
The lack of these variables may result from: a) a human error (e.g. the
bank analyst did not enter a value when filling in the customer’s data),
b) a technical error (e.g. due to a failure, some records have not been
put back in the database), ¢) an observation of a given variable have not
yet taken place (in particular in behavioral assessment, e.g. +90 DPD flag
in case of new loan) or d) a deliberate action (e.g. the customer did not
agree to provide some of his or her data).

While in the case of the first three situations, the fact of the lack of data
does not constitute any additional premise / information that translates
into the estimation of the customer’s creditworthiness, the fourth case may
already have such a translation. This situation occurs most often when
the client wants to refuse to provide some information (e.g. earnings level)
— in this case, the event related to the refusal to provide some information
may in itself be a factor in assessing creditworthiness.

As a rule, there are 3 different types of missing data, i.e.:

o Missing Completely at Random, MCAR: This is the case of miss-
ing data if the probability of missing is the same for all observations.
The occurrence of missing data of the MCAR type is not informative

in terms of its translation into an explanatory variable.

o Missing at Random, MAR: Occurs when there is a systematic rela-
tionship between the propensity for missing values and the observed
data. In other words, the probability of not observing depends only
on the information available (i.e. other variables in the data set).
For example, if introverts are more likely to hide information about
their income than other people — assuming that the fact of being
an introvert does not impact in any way to the creditworthiness (e.g.
we assume that the levels of income and expenses of introverts are
the same as extroverts). The fact of missing occurrence does not im-
pact the assessment of creditworthiness but it may be more common

in some of the sub-populations.
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e« Missing Not at Random, MNAR: if the occurrence of missing
data is related to the assessment of creditworthiness — for example,
people with a history of difficulties in paying off credit obligations
may avoid reporting income; in the absence of earnings information,
having a case of MNAR, it can be concluded that the person is less
creditworthy.

In terms of data missings (MCAR or MAR), in classical scoring (logistic
regression) but also regularization techniques, it is advisable to: a) impute
missings (there are many possible approaches discussed in the literature
like: population average, median or dominant, model fitting; testing several
approaches and selecting one that gives highest predictive power of the
model is recommended) and b) create a dummy variable (0 is no missing for
a particular characteristic, 1 is missing occurs). That approach also allows
us to incorporate potential information on the MNAR into the model.

On the other hand, one of the advantages of machine learning mod-
els, i.e. XGBoost, decision trees, random forests, is that they handle the
missings systematically/internally. For example, in the case of XGBoost,
missing values, by default, are learned during training (i.e. branch direc-
tions for missing values are learned during training), see xgboost v1.2.0.1
(however, one should be careful in case of missing distribution different

in training set and test set).

5.3 Selection of the target variable

As indicated earlier, this monograph covers the binary outcome type mod-
els which result in consideration of random variable having two possible and
opposite outcomes: default or nondefault of a particular client. The Euro-
pean Banking Authority (EBA) guidelines European Banking Authority,
2017b regulates the definition of a default event significantly. As of to-
day, the notion of a default plays a vital role, due to most of the banks
transforming their previous default definition into the new one, i.e. New
definition of Default. The EBA established tighter standards concerning
the definition of default (CRR Article 178) which, in principle, is aimed
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at achieving greater alignment and standardization across banks and juris-
dictions. Those new standards need to be implemented by the end of 2020.
The main difference in the new definition is based on DPD and two thresh-
olds: relative and absolute. To accomplished greater standardization across
the banking sector, EBA also provided a list of the default triggers (i.e. Un-
likeliness to Pay — UTP).

The exact definition of the target variable, including threshold on DPD
but also other early warning signals (most commonly, e.g. job loss, insol-
vency, increase of off-balance utilization or lack of current financial doc-
umentation in case of corporate clients) should follow the guidelines and
regulatory recommendations. In that manner, we highly suggest developing
the definition of default which is consistent with the model purpose as well
as further model usages (e.g. provisions calculations, debt collection).

Usually, additional recalibrations or add-ons that are performed on the
original model are more cumulatively time-consuming than designing the
model adequately from the very beginning. In principle, different model
purposes require different model specifications — however, designing the
scoring model that will also be utilized, e.g. for IFRS 9 or IRB, from the
very beginning, will undoubtedly save time and efforts later-on; for instance,
models used under Advanced Internal Rating Based regime require to have
at least six non-default ratings and one default for corporates. In that
matter, we highly recommend, along with scoring model development, the
regulatory gap analysis which (when performed carefully) will support the
incorporation of all regulatory requirements from the very beginning.

Moreover, in the case of the banks that possess a broader set of histor-
ical data (e.g. ten years of production data), it is advisable to perform the
analysis of the recovery from various DPDs levels as well as vintage analysis
(i.e. consecutive years of credit approvement). Combined results should al-
low to a) empirically authorize the default threshold, b) determine whether
to include additional variables into the scoring model (e.g. dummy vari-
ables with different levels of DPD), ¢) confirm the stability of the model’s

assumptions across various cohorts.
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In this monograph, we discuss credit scoring models that, regardless
of the exact definition of the indicatory flag (target variable), allow us to model

the binary output variable.

5.4 Multicollinearity problem

The phenomenon of multicollinearity of independent variables relates to mul-
tiple regression (i.e. in econometric models in which more than one explana-
tory variable explains one dependent variable) when there is a substantial
linear relationship between individual explanatory variables.

The Gauss-Markov theorem states the conditions, the fulfillment of which
guarantees that among all unbiased linear estimators, the least-squares
method has the least variance of estimators (Greene, 2003). One of the
conditions, apart from the linearity to parameters, random sampling, ex-
ogeneity and homoscedasticity, is the assumption that there is no perfect
multicollinearity of explanatory variables, i.e. the matrix created from the
values of the explanatory variables has a full order. This assumption has
purely technical conditioning: in the case of perfect multicollinearity of ex-
planatory variables (i.e. one of the explanatory variables is a deterministic
linear combination of the other explanatory variables), the estimator val-
ues B = (X TX)~1XTy cannot be obtained, where X is the matrix of values
of the explanatory variables and y is the vector of the values of the ex-
plained variable (X7 X matrix is irreversible). The perfect multicollinearity
of explanatory variables, however, is an extreme case and often associated
with inadequate model specifications, for instance including as many binary
variables as the number of all categories of a variable when encoding cat-
egorical variables into binary variables (then one of the variables is a lin-
ear combination of the others). In practice, near multicollinearity prob-
lem — strong correlation of explanatory variables — is more often the case
of consideration.

In the case of the logistic regression, the set of assumptions is as follows:
1) the target value is a dichotomous variable, 2) the relation between logit

and predictors is linear, 3) there are no influential values, see Section 5.1,
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4) the assumption that there is no perfect multicollinearity of explanatory
variables. In principle, as discussed, the multicollinearity problem is in both
linear and logistic regression an issue.

If the explanatory variables exhibit the near multicollinearity, the es-
timator values may strongly depend on the training set (i.e. the estima-
tor values manifests a high variance) on which model parameters are de-
termined. Near multicollinearity does not, however, affect the predictive
power or reliability of the model or its whole but affects the values of in-
dividual estimators. Such a scenario means that the multiple regression
model with correlated predictors as a whole possesses the predictive power
but the results of individual predictors may be significantly disturbed due
to the usage of the different training sets. The Gauss-Markov theorem refers
to perfect multicollinearity (deterministic, linear relationships between ex-
planatory variables). In this monograph, whenever there is a reference
to multicollinearity and the consequences resulting from this phenomenon,
one should understand near multicollinearity (i.e. stochastic).

Practically, the factors causing multicollinearity can be divided into the

following categories:

e the input data; mainly due to the usage of highly linearly corre-
lated independent variables but also poorly designed data collection
method, low number of observations, a large number of explanatory

variables, etc.,

e incorrect model specifications; among others, incorrect input
of binary-coding: dummy variables used when converting categorical
variables into binary variables, including as many binary variables
as categories), including an explanatory variable which is the result

of calculations carried out on other explanatory variables.

In the latter case, the model exhibits the perfect multicollinearity which,
in principle, is easy to detect when the model’s estimation. The former case
is the subject of a further investigation and description presented below.

The variance of the logistic regression model’s parameter is usually cal-

culated numerically (i.e. the Fisher’s information matrix) (Pruska, 2009;
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Shao & Tu, 2012). To present straightforward effects of the mutlicollinear-
ity on the model’s parameter, we present the estimate for the OLS. The vari-

ance of OLS parameter’s 3;, can be formulated as (O’brien, 2007):

L L-R) (YY)
n—k—1" 1-R}" Y (X;—X)?

where: n denotes the number of observations (i.e. number of rows of the

&%(B;) =

(5.1)

X matrix), k denotes the number of model’s parameters (i.e. the num-
ber of columns of X matrix), Rg denotes the ratio of explained variance
of y by the model, R? denotes the fraction of variance of X; explained by the
model constituted by other explanatory variables X;, j =1,2,...,k, j # 1.

According to equation 5.1, the variance of the 5; parameter depends on:

e the training set size — n; the larger the training set, ceteris paribus

the smaller the variance of §; parameter,

« number of model’s parameters — k; the more explanatory vari-

ables, ceteris paribus, the higher the variance of 3; parameter,

e« the amount of the variance of the dependent variable ex-

2.
Yy

the larger the amount of y-variance explained by the model, ceteris

plained by the set of explanatory variables — R?; intuitively,

paribus, the smaller the variance of §; parameter,

e the amount of the variance of X; depending upon the rest
of explanatory variables — RZZ; the higher the variance of X; de-
pending upon the rest of explanatory variables, ceteris paribus, the

higher the variance of the 8; parameter.

The first two results relate to the combined measure: degrees of freedom
of the model — the higher the number of degrees of freedom, i.e. the differ-
ence between the number of observations and the number of independent
variables of the model, the smaller the variance of the parameter g;.

The last point relates to the problem of multicollinearity of explanatory
variables introduced earlier; when for the particular independent variable,

X;, a large part of the variability can be related to the variability of other
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independent variables, the variance of the parameter of the variable X; is in-
flated. As it was already indicated, the occurrence of multicollinearity in the
model does not reduce the predictive power of the model (i.e. it does not
introduce an estimation bias); however, it affects the ability to interpret
the parameters. In the case when the variance of the variable Xj; is in-
flated, the statistical significance of this variable decreases, to the level

of the purposefulness of the exclusion of that variable from the model.

The main effect of multicollinearity is the inflation of the variance in the
estimation of the model parameter which, as a result, may become statis-
tically insignificant or change the sign of the model’s parameter. The pres-
ence of highly correlated explanatory variables makes it impossible to reli-
ably conclude about the impact of the particular explanatory variable based
on the estimated value of this variable’s parameter; multicollinearity does
not affect the predictive power of the entire model. However, in this mono-
graph, econometric models are used for assessing creditworthiness; from
the regulatory point of view and, due to business requirements, it is neces-
sary to have reliable estimates of the model’s parameters as well as to se-
lect a set of variables that have an intuitive interpretation in the context
of credit scoring. In classical approaches, one would include/exclude a par-
ticular variable in/from the model — in case of the methods described in this
monograph, we allow (in some cases) to gradually increase the value of pa-

rameters along with gaining the “material evidence” of predictive power.

The occurrence of near multicollinearity in the case of classical models
used to assess creditworthiness will result in unbiased results, while it will
not be possible to reliably indicate to the client the reasons for taking indi-
vidual credit decisions (i.e. acceptance or rejection of a loan application).
In this sense, ensuring reliable parameter estimates (i.e. the low variance
of the model’s parameters), as indicated earlier, is necessary and is associ-

ated with the so-called technical robustness of scoring models.

As for the detection of multicollinearity, the literature and practice uti-
lize two main approaches: the Variance Inflation Factor (VIF) and the Con-

dition Index. The VIF indicates the increase of the variance of a particular
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explanatory variable due to its linear correlation with other independent
variables. The value of the VIF for the i'h the variable is defined as:

1

VIF, = ——
1— R?

(5.2)

where: R? denotes the coefficient of determination for the linear regres-
sion of X; over the rest of explanatory variables j € {1,...,m} — {i}. The
subject literature reports different levels of VIF acceptance: from 5 (James
et al., 2013) up to 10 (Hair et al., 1998). Also, some of the references Welfe
(2018) suggest using the models as long as Ri > m?x(R%).

The Condition Index is the measure of multicollinearity in the data.
It is calculated based on the full matrix of the normalized features — from

that matrix, one calculated the eigenvalues and ¢-th index is calculated
1

as: CI; = (AT/{L—;”')?, where )\; is the i-th eigenvalue of the normalized
features matrix (Liao & Valliant, 2012).

In terms of interpretation, as indicated by Kennedy (Kennedy, 2003),
as a rule of thumb for interpreting the value of Condition Index, one should
set two limits for any of the CI;: above 15 (may suggest the collinear-
ity problems) and greater than 30 indicates strong collinearity. Different
studies also confirm those rules, see The IBM Knowledge Center. In the
table below, the example of the Condition Index calculation and values

are presented.

Dimension ‘ Eigenvalue ‘ Condition Index

1 7772 1.000
2 0.453 4.142
3 0.156 7.058
4 0.033 15.347
5 0.065 10.910
6 0.003 50.899
7 0.002 60.835

Table 5.1: Example of the Condition Index calculation
Source: own work
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The above-described measures, VIF and Condition Index, are mostly
referred to as the alternatives and it is recommended to use them jointly.
The main difference in interpretation and usage is embedded in the formulas
— please note the VIF is computed on the single variable level (e.g. the
i-th variable explained by the rest of features) and the Condition Index
is calculated on the model level.

For further explanation of the multicollinearity, let X1, Xo ~ N(0,X),

where 3 is the variance-covariance of X with assumed correlation p:

ox, O 1 pllox, O (5.3)
0 00X, P 1 0 00Xy

Further, let us assume that oy, = 1, ox, = 2 and p € [0,1). Let the
dependent variable be defined as y = 0.5X7 4+ 0.3X3 + ¢, where € ~ N (0, 1).

Y =0Ro =

Figure 5.1 presents an example of the estimated values of the linear
model’s parameters (presented above) for a simulation instance of 500 ob-
servations (hereafter called a low sample case). Consecutive values of cor-
relation coefficients between explanatory variables, X1, X9, are presented
on the x-axis. As discussed earlier, the amount of correlation between ex-
planatory variables affects parameter estimates — an increase in their stan-
dard deviation and a change in parameter value which, in extreme cases
(i.e. low sample and high level of correlation between variables), can lead
to a change of the estimated parameter’s sign (in Figure 5.1, the variable

parameter X changes the sign).

Significant increase of the estimated parameters’ standard deviation,
along with variations of the estimated parameters (e.g. decreasing value
of (Bl) ultimately lead to a reduction of the variables’ statistical signifi-
cance; Figure 5.2 presents the t-statistics for both explanatory variables, ac-
companied by the significance test’s threshold for subsequent values of cor-
relation coefficients between variables.

The statistical significance (i.e. t-statistic) of the variable X5 is higher
for each level of correlation between variables; this can also be depicted
on a more stable estimate of the model parameter value (see Figure 5.2).

According to formula 5.1, as the variance of the value of the explained



159

Value of estimated Standard deviation of the
parameters estimated parameters values
1.00 1.0
0.75
0.8 A
0.50 A
0.25 1 0.6 -
0.00
~0.25 1 0.4
—0.50 A
0.2 A
1
-0.75 "‘/-
-1.00 : : : : 0.0 /== :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Correlation coefficient - p Correlation coefficient - p
— B =B

Figure 5.1: The effects of multicollinearity on parameter estimation — the
case of small sample size
Source: own work
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Figure 5.2: The effects of multicollinearity on statistical significance
of model’s exogenous variables parameter — the case of a small sample size
Source: own work

variable increases, the variance of its estimator decreases:

li 52(B;) = 0 5.4
e, O (Bi) (5.4)
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This means that the variables whose variability is higher are ceteris
paribus more statistically significant in the presence of near multicollinear-
ity. According to the results, the variable X; ceases to be statistically
significant (1% threshold for the two-sided test) around the level of 50%
correlation coefficient value.

The above-outlined simulation scenario has also been calculated for
a bigger sample example where the number of observations equals to 700.
The purpose of this analysis is to present a distinctive influence of the sepa-
rate factors that shape the statistical significance of explanatory variables.
Figure 5.3 shows an example of the estimated parameter values for a sim-
ulation instance of 700 observations. As in the previous example, the size
of the linear correlation between explanatory variables affects parameter es-
timates — the increase in their standard deviation and the change in param-
eter value are, however, significantly less than in the case of a small-sample

scenario (e.g. the parameter of the variable X; does not change sign).

Value of estimated Standard deviation of the
parameters estimated parameters values
1.00 1.0
0.75 4
0.8 1
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Correlation coefficient - p Correlation coefficient - p
— B =B

Figure 5.3: The effects of multicollinearity on parameter estimation — the
case of a bigger sample size
Source: own work

A smaller change of the parameter’s value, along with reduced standard

deviation of the estimated parameter values, leads to an increase in the sta-
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tistical significance of the model parameters; both variables are statistically
significant up to the level of 82% of the linear correlation coefficient; see
Figure 5.4.

2 t-statistics; statistical significance of particular features

251

20 A

Figure 5.4: The effects of multicollinearity on the statistical significance
of model’s exogenous variables parameter — the case of small sample size
Source: own work

Figure 5.5 presents the Variance Inflation Factor for the richer data
set. The results indicate the significance thresholds of the explained vari-
ables (t statistics) and the accompanying levels of Variance Inflation Factor
(VIF) values. It should be noted that the variable X ceases to be statis-
tically significant already at the VIF level around 4.2, while the variable
X5 remains significant up to the VIF level around 33.7.

It should be noted, however, that the literature on the subject reports
different values as VIF threshold levels. The most common Variance Infla-
tion Factor values in the literature are 4, 5 or 10 (O’brien, 2007). It should
be noted, however that artificial, uniform levels of the VIF should not
be used; literature reports point to the need to distinguish between situa-
tions in which a wvariable is statistically significant or not
(Belsley et al., 2005).
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Value of the Variance Inflation Factor
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Figure 5.5: The effects of multicollinearity on the VIF parameter — the
case of bigger sample size
Source: own work

5.5 The Simpson’s Paradox

What happens when we let the data speak for themselves? Actually, in many
cases, anything can happen. Depending on how the data is grouped and
which variables are chosen for the model, the researcher may obtain the
opposite results (Simpson, 1951). A statistical phenomenon where a trend
appears in several different groups of data but disappears or reverses when
these groups are combined is called a Simpson’s Paradox and has mani-
fested itself for decades in various scientific disciplines (Selvitella, 2017).
Let us consider the paradox in two examples. First, let us assume that
in the course of exploratory data analysis, the analyst has got the following

contingency table:

Default
1 |0
Yes | 39 | 1992 | 1,92%
No | 46 | 2 114 | 2,13%

Default Rate

Self-employed

Table 5.2: The Default Rate distribution across job status
Source: own work
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Based on such a table, one might conclude that since the default rate
among salaried individuals equals 2.13% (larger default rates in the col-
umn are bolded) and only 1.92% among self-employed clients, full-time
workers are riskier. Such a simple one-dimensional relationship hardly ever
has enough forecasting power. In many actual problems in credit scor-
ing or any other field, multivariate models have to be created to grasp the
complexity of the data generating process. To do that, further stratification
is performed and, as a result, two other contingency tables are produced.
The first one contains only individuals whose income is lower than or equal

to 3 500 and the second one — the remaining people.

Income < 3500 ]fefat(;lt Default Rate
Seli-employed Eis ;22 17(?50 3.563;)
Income > 3500 ]1Defa1(1]1t Default Rate
TR I AR

Table 5.3: The Default Rate distribution across job status and in-
come group
Source: own work

Contents of these tables might come as a surprise to the analyst be-
cause it turns out that even though full-time workers seemed to be riskier
clients in general, after further stratifying, the trend is opposite. Among
lower-income individuals, it is entrepreneurs who show a higher default rate
(3.83%) compared to full-time workers (2.96%) and the same stands in the
group of individuals with higher income — default rates equal 1.73% and
1.30%, respectively.

This phenomenon has an elementary mathematical explanation. Each
default rate in the stratified tables shows a percentage of defaulted loans
among a particular group and then they are compared regardless of sample
sizes. Mismatch of sample sizes in our example is manifested by the fact

that full-time working group is divided relatively evenly between lower- and
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higher-income groups in terms of a number of clients and not equally at all
in terms of the number of bad loans in favor of the high-income group. For
self-employed individuals, a different thing happened — very few clients fell
into the lower-income bin and a relatively large proportion of them failed

to repay their loans.

Simpson’s Paradox is not a property of categorical data alone but can
occur in other cases as well. Let us take a look at another toy example —

a scatterplot of a continuous variable Income versus Probability of Default.

Figure 5.6: Distribution of the Probability of Default vs. Income level
Source: own work

The scatterplot, see Figure 5.6, strongly suggests a positive relation-
ship between income and probability of a default, meaning that with an in-
crease of the income, the probability of a default rises. Such a discovery
would seem counterintuitive for any credit analyst as higher income usually
tends to lead to steadier repayment of liabilities. However, after another
layer is added and trends within age groups are estimated, not even one
of the slopes is positive, see Figure 5.7. All relationships are either negative

or neutral (non-existent) which in turn is in line with expectations.
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Figure 5.7: Stratified distribution of the Probability of Default vs. In-
come level
Source: own work

Simpson’s Paradox in case of continuous data can arise either because
of data being clustered into separate groups (e.g. if we only had the cate-
gory of aged under 35 and above 65 from the toy example above) or because
of something much more straightforward — because of an underlying strat-
ification within this group. Both of these reasons occur quite frequently

in practice.

5.5.1 What should a data analyst do when facing a Simp-
son’s Paradox?

Let us go back to the original example with contingency tables. The ques-
tion is, what is the truth in this situation? Are self-employed actually
more reliable overall, even if they are riskier clients in both income groups?
Unfortunately, there is no general rule that can be applied here. In this
example, the same data can be used to show either the high or low risk
of self-employed clients, depending on the model used. Therefore, statistics
alone may not give answers here — what needs to be incorporated in the
analysis, is a causal context.

Perhaps the causal model of the data looks in a way presented in the
income stratified tables and the conditional relationships are true. It is also

possible that the stratification shouldn’t be kept by the analyst because
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the income threshold was chosen incorrectly, there should be more than
one threshold or income does not play a part in this process at all. The
number of possibilities is immense. This is why, for a human being who
is testing various stratifications one by one, it would be easy to miss the
correct option or believe in an incorrect one instead. Even though people
are more aware of the data generating process than statistics is, machine
learning algorithms can test significantly more data divisions than people
can and they are unbiased while doing so. Sometimes people’s theories are
subjective or they are simply not advanced and deep enough. This flaw
can be fixed by using methods such as decision trees or random forests
which are capable of creating intricate rules beyond what could be thought
of by credit analysts themselves. This is the reason why, in many fields,
mathematical models eventually gained popularity over expert knowledge
in the first place. Because of this, the analyst’s role is not building the
rules but evaluating them and relating them to reality which takes much

less effort, time and resources and leads to more reliable models.

5.6 New categories in categorical variables

In practical application, one may encounter a situation when a model’s
categorical variables, e.g. for a new client, receive a new category. That
situation, from a technical point of view, prevents using the model — one
can not assign any value for that observation and hence one can no longer
calculate creditworthiness. One of the required properties of Trustworthy
Artificial Intelligence is the technical robustness (European Commission,
2019). In our opinion, a systematic handling of new categories embed-
ded into the design of the scoring model is required under the technical
robustness condition. As for the solutions, we recommend one of the fol-

lowing approaches:

1. when a new category has low cardinality, i.e. a small number of ob-
servations and the categories’ catalog is fixed, it is advisable to reject

this observation because it probably means a technical error,
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2. for a nominal category with high cardinality and dynamic catalog,
we recommend to group the low cardinality categories into one group
(a so-called other category); then the new category, without any ad-

ditional information, can be classified into this factor level,

3. if the embedding of the category space into a metric space is pos-
sible (usually R™, with n small — 1 or 2) one can: a) estimate the
model of the embedding (simplest representant is the WoE transfor-
mation) or b) estimate the model on the original values but based
on the embedding, one approximates the value of new category based
on the old categories (analogously to the nearest neighbor algorithm).
As an example, let us consider the postal code — in that case, the usual
embedding used is the one used based on the geographical coordinates
(and then a) estimate model on the entire set of data or b) locally

approximate the value of new category).

5.7 Complete separation problem

The complete separation problem (sometimes called perfect prediction prob-
lem) refers to a problem related to parameters estimation. It arises when
one can perfectly separate binary target variables within the training set
the observation, based on a few characteristics (usually 1 or 2), (Heinze &
Schemper, 2002). That situation in the context of credit scoring may occur
along with a low number of defaults within a portfolio or extremely corre-
lated features with the target (probably caused by implementation errors
— e.g. including target variable to features matrix). The severity of that
situation results from the technical point of view — in case of complete
separation, the mazimum likelihood estimate does not exist. The above-
mentioned problem can also be generalized to a quasicomplete separation
— a situation when some variable almost perfectly separates the observa-
tions. Let us consider the example presented in Table 5.4.

In the presented example, one tries to generate a model that predicts
the default event based on two variables: Income and Age. As it appears,

the Income variable is an almost complete predictor of the default event;
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Default | Income Age

0 3500+ 35+
0 3500+ <20
0 3500+ 35+
0 1500-3500 | 20-35
0 1500-3500 | <20
0 <1500 35+
1 <1500 <20
1 <1500 <20
1 <1500 20-35
1 <1500 35+

Table 5.4: Example of the complete separation problem
Source: own work

if we calculate default rates within each of the categories of the Income
Variable, then we may conclude that all of the defaults observed happened
for the customers within the group of income lower than 1 500. Only one
customer that has an income of lowest that 1 500 has not defaulted; hence
this example presents the quasi-complete separation (if that customer fell
into a different category of income, this would be the complete separa-
tion problem case). In that situation, the maximum likelihood estimates
do not exist.

From a technical point of view, the sklearn function for logistic regres-
sion, as default, performs regularization — even in the case of complete sep-
aration, the loss function is not equal to zero and the maximum likelihood
estimator exists. The first step, when complete separation is encountered,
is to revise whether the implementation is correct or another variable linked
to the output variable by definition is not included in the model itself. One
of the possible actions to take is to exclude the variable that perfectly sep-
arates defaults; however, that variable may be simply the only adequate
variable to include in the model (and also, this technique leads to a biased
estimation of other predictors). On the other hand, in the case of complete
separation, the maximum likelihood for different features is still valid — only
the exact separator has not reasonable estimates. Another technique that

may be useful is to merge some of the categories.
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In practice, the complete or quasicomplete separation causes a signifi-
cant estimation problem only in a logistic regression case — also, as in the case
of WoE transformation, the complete separation problem may be minimal-
ized by performing appropriate and careful binning (as indicated earlier).
In the case of decision trees, random forest or XGBoost, only in case of one
variable, the estimation procedure may indicate perfect fit; in the case
of multivariate modeling, from the implementation point of view, the min-
imal number of observations (called minimum leaf size, see 4.2.4) is set
so that the perfect fit may be prevented. In terms of regularization tech-
niques, the penalty term is always explicitly present in the models, so from
a technical point of view, a complete separation should not cause any esti-
mation problems (as indicated earlier). As for the practical implementation

of relu, it is usually the case that the model includes some regularization.

5.8 Too granular categorical data

Too granular categorical data do not help in improving the power of mod-
els. Some implementations of machine learning algorithms even limit the
number of categories each variable can have. Therefore, less populated and
similar categories should be merged, which requires considerable work ef-
fort as it is hardly possible to automate. The typical data with too many
categories are codes of economic activity, transaction codes, product codes

in internal data or in credit bureau, zip codes. The steps are the following:
e C(Calculate the number of good and bad observations by category

o Identify categories with similar meaning (e.g. different types of guar-

anteed credit lines)
o Identify categories with similar good/bad odds
o Merge categories with similar good/bad odds and similar meaning

o Out of whatever is left, merge tiny categories (with only a few goods
and bads)
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There is another method utilizing data from the statistical office which
can help with merging zip codes. Zip codes can be mapped to munic-
ipalities and data about municipalities such as the unemployment rate,
population density, population changes can be obtained. Then these mu-
nicipality data (e.g. local unemployment rate) can be used in the model

instead of zip codes.

5.9 Coding ratios

Ratio variables come from behavioral data and financial statements. Ra-
tios may have missing values, missing numerators or denominators or zero
denominators. The signs of numerators and denominators may also vary.
Each of these cases may mean something different in terms of clients’ be-
havior. E.g. take a ratio of customer’s balances on all accounts to the same
balances a year ago. Assume that balances on current accounts and savings
are positive and balances on credit accounts are negative. If the client has
no balances with us, we will get a division zero by zero. If the client is new
and he/she had no balances a year ago, we get a division by zero. When the
client had only deposits and increased them, we will get a positive ratio.
Finally, when the client had loans and took a new one, we will again get

a positive ratio. Therefore:

o It is better to create separate variables depending on whether the

denominator is positive or negative

e Coding missing numerator and missing denominator as separate cat-
egories (separate artificial values or just a mean value and a corre-

sponding dummy variable).

o Coding zero denominators as a yet separate category (another sepa-
rate artificial value or just a mean value and a corresponding dummy

variable).
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5.10 Conclusions

This chapter presents common issues related to the data used in the process
of building predictive models. This discussion’s primary purpose is to present
the critical issues in the data that every expert building a scoring model
should pay attention to. These issues may have a significant impact on the
quality and robustness of the supporting decision-making models. Linking
this chapter with the considerations made in Chapter 4, we indicate that
machine learning methods, unlike classic scoring methods, are less sensitive
(i.e., more resistant) to data-related issues (e.g., collinearity, data occur-
rence gaps). At the same time, we emphasize that the issues described
in this chapter are not specific to the area of credit scoring. These univer-
sal issues are related to data-quality areas - when building any predictive
model, the constructor should consider the risks associated with artifacts

occurring in the data.
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The scoring model validation process is aimed at verifying the correctness
of this model. However, the correct operation of the model has many
aspects and depends on various factors. The scope of the validation process
depends on the stage in the model life cycle. The most extensive scope
of analyses is related to the process of building and implementing the model.
The full recurring validation performed at a fixed frequency also has a wide
scope. The narrowest scope is that of the model monitoring carried out

systematically, e.g. on a quarterly basis.
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An important element of a model validation during its construction
or modification is the verification of its correctness on a developed data
set. It includes an assessment of whether the relationships in the model
are logical and consistent with intuition, the observed impact of individual
variables on the risk and the predictive power of the variables. These
elements result from business knowledge and data analysis performed before
modeling. Such an analysis should include dependencies of the dependent
variable on individual explanatory variables, monotonicity and stability
of these relationships, as well as a study of the predictive power of variables.

In the classic approach to building the model, stable variables, mutu-
ally uncorrelated, with sufficiently high predictive power and with a low
VIF value were selected. In non-classical machine learning methods, the
predictive power of single variables and lack of correlations between them
are not so important. By using regularization methods or algorithms such
as decision trees and random forests, some of the requirements for variables
in the model can be omitted. In machine learning, models can achieve high
performance by integrating many correlated variables with low individual

predictive ability.

6.1 The importance of validation and monitoring

A scoring model that has been properly developed, i.e. taking into account
the standards and issues described above and in the other chapters, should
then be subject to extensive pre-implementation validation. This valida-
tion should cover all important elements related to the construction of the

model, including:

e quality of input data — the data for building the model must cover

an appropriate scope of information and be of appropriate quality,

e the quality of the model itself — the model should have appropriate

discriminatory power and stability as well as calibration accuracy,

e the correct direction and strength of the influence of individual vari-

ables on the operation of the model and its predictive power,
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e the results’ quality — evaluation of the model’s performance in terms

of the quality of results generated by this model.

6.1.1 Validation in the model life cycle

The results of pre-implementation validation of scoring models determine
the model’s admission to the production environment. After this stage,
a post-implementation validation should also be carried out. This includes
the correctness of the technical performance and the integrity of the pro-
cesses and allows one to verify that the model works as expected.

Pre- and post-implementation validations occur at the beginning of the
model’s lifecycle. Subsequent periodic validations and cyclical monitoring
(usually quarterly) are used to assess the correctness of the model oper-
ation but also to verify the cyclical nature of the modelled relationship.
The main purpose of validation is to verify the stability of the model’s
predictive power over time — because the portfolio, economic environment,
bank strategy, risk appetite or other influencing factors may have changed
since the development phase. However, periodic validation also includes
other elements, not only subject to quantitative but also qualitative as-
sessment. On the other hand, monitoring — usually quarterly — is aimed
at generating reports on the operation of the model, including a simplified
assessment, which allows one to monitor the operation of the model and
the portfolio behavior on an ongoing basis. The catalog of analyses car-
ried out as part of the above-mentioned validation processes will be slightly
different in each case.

The validation of the credit scoring model is a mandatory process for
banks, required and controlled by regulators. Moreover, credit scoring mod-
els must be accompanied by a methodology for validating those models
(Polish Financial Supervision Authority, 2015). Such requirements, while
maintaining standards related to the independence of the validation unit,
are aimed at maintaining transparency and standardizing of the valida-

tion process.
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Even the ancients wondered “Quis custodiet ipsos custodes?”'; in the
case of banks and their models, a similar problem arises — how to ensure
appropriate supervision over the correctness of processes. In this case,
the solution to the problem is to adopt appropriate standards and proce-
dures. After the development and implementation of a new model for credit
scoring, the Bank also adopts and approves standards for the validation
of a such model. Also, regulatory requirements related to the independence
of the validation unit are superimposed, i.e. the administrative and func-
tional direct subordination of the validation unit to the management board
member responsible for the supervision of the model risk management
area. Such institutionalization of the validation process and standardiza-
tion of its scope, in the absence of other distortions related to the indepen-
dence of the validation unit, allow constructive and substantive assessment
of the models.

In this chapter, a description of the process and methods of diagnos-
ing the operation of the creditworthiness assessment model is provided,
which is carried out as part of the validation and monitoring processes.
It should be remembered that the catalog of qualitative and quantitative
techniques listed below is not complete and each process of development
of a creditworthiness assessment model should include reflection and further
investigation in the areas of requirements (i.e. must have) and recommen-
dations (so-called should have, nice to have) relating to the scope of the

model itself.

6.1.2 Model purpose

Before deep-diving into the validation process, methods, measures etc.
it is an imperative to discuss the purpose of credit scoring models. The
purpose dictates appropriate validation and monitoring process and rel-
evant measures to verify desired model’s properties. Let us start with
the fundamentals — the business purpose.

Banks use credit scoring models for approving and pricing loans, es-

timating provisions, setting credit risk limits and managing overall credit

'Own translation: Who will guard the guardians themselves?
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risk exposure. To achieve this, models should differentiate between borrow-
ers with better and worse creditworthiness which translates into a lesser
or greater chance of defaulting on the loan. However, depending on the
realized aim, whether it is to decide if a particular customer should or not
get a loan or assess risk of the credit portfolio of a bank, different analysis
horizons apply which in turn demand different sets of data both in terms

of history length and types of parameters.

For credit risk management, the model should take into account param-
eters related to business cycles over many years. In the case of a decision
on a single loan, the model is based on a limited set and history of data
and should decide whether, compared to similar clients, the risk of default
is acceptable by the bank and whether the loan can be granted. Both issues
relate to PD modeling. Howeve,r the first one is called the Through-The-
Cycle (TTC) approach and the second is called Point-In-Time (PIT).

Once there was a need to set some overarching rules on the credit risk
management, regulatory bodies consulted the major financial institutions
to determine market practice. Based on different approaches, the consensus
was reached and the concepts realizing so far business purpose trickled into
regulatory requirements and incentives. A distinction between TTC and
PIT approach is reflected in requirements for calculation of regulatory cap-
ital and the estimation of accounting provisions stemming from recently in-
troduced International Financial Reporting Standard 9 (IFRS 9). Applying
the same model in both cases is not easy because regulatory expectations
differ for the models used for estimating regulatory capital and in account-
ing. In practice, however, one model and two different calibrations are used
for the TTC and PIT approaches. The PIT model may also contain factors
common to the entire population (macroeconomic variables), although they
do not differentiate between good and bad clients. Therefore, they do not

affect the scoring result but they do affect the estimated PD level.

Regulatory capital was put in place to ensure prudent management
of banks and other financial institutions, i.e. they wouldn’t take excessive
leverage and risk becoming insolvent. This means holding enough capi-

tal against taken risk levels protects the company, customers, government
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and the economy as usually financial institutions are systemically impor-
tant parts of it. Rules around capital requirements have been established
in the form of Basel Accords published by the Basel Committee on Bank-
ing Supervision (BCBS) translated later into local laws. For smaller, less
sophisticated institutions, there is an approach based on measures and coef-
ficients proposed by the regulator, whereas more advanced institutions can
opt for an internal rating-based approach of calculating capital require-
ments for credit risk. Following the purpose of regulatory capital being
a buffer for resilience against changing economic conditions, Basel models
are measured on the TTC basis to take into account the economy cycle.
IFRS 9 came into force on the 1st of January 2018 and changed ac-
counting for credit risk. Beforehand, credit loss was recognized after a 90-
days overdue period, under IFRS 9 framework Expected Credit Loss (ECL)
is calculated at the origination of the financial instrument and later up-
dated at reporting dates using forward-looking information. Moreover,
assets are classified into different stages based on a change in the credit
risk since the initial recognition. Such a change in risk can be measured
by PD, CPD (Cumulative PD) or MPD (Marginal PD) values. This snap-
shot view of the current state based on expectations on the future is the
above-mentioned PIT approach. In the case of model validation, the differ-
ence between PIT and TTC matters only when backtesting and assessing
calibration, while the approach used does not affect the assessment of the

quality of the scoring model.

6.1.3 Regulatory incentives

In the field of subject literature, this chapter is based on:

e Recommendation W on model risk management in banks issued by the
Polish Financial Supervision Authority (Polish Financial Supervision
Authority, 2015).

o Instructions for reporting the validation results of internal models
issued by the European Central Bank (European Central Bank, 2019)
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¢ Guidelines on PD estimation, LGD estimation and the treatment
of defaulted exposures issued by the European Banking Authority
(European Banking Authority, 2017a).

e Studies on the Validation of Internal Rating Systems issued by the
Basel Committee on Banking Supervision, Bank For International
Settlements (2005Db).

The above-mentioned selected guidelines provide a regulatory perspective
on issues related to the validation of creditworthiness assessment models —
they have guidelines in both qualitative and quantitative vali-
dation techniques.

It should be noted that these regulations have different areas of ap-
plication. The EBA is a supervisory institution whose regulations apply
throughout the European Union. The ECB is the central bank for the
euro area and its recommendations are binding in this area. Naturally,
the recommendations of the Polish Financial Supervision Authority are
binding for financial institutions operating in Poland. The Basel Com-
mittee on Banking Supervision (BCBS) brings together representatives
of Central Banks and financial regulators from 27 countries around the
world. However, BCBS is not a supervisory institution and its guide-
lines are not binding regulations but recommendations regarding good

banking practices.

6.2 Validation and monitoring process

The validation of the credit scoring model is, in general, a process of assess-
ment of the effectiveness of this model. It is carried out by an independent
bank unit (model validation unit) in a comprehensive manner. The scope
of validation of the credit scoring model should include assessment of the
model’s operation effectiveness, review of the methodological concept ap-
propriateness, assumptions, correctness of its construction as well as its
implementation method (Polish Financial Supervision Authority, 2015).
Cyclical monitoring of the credit scoring model is usually performed

by the bank unit responsible for the construction, use and functioning of the
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model (the so-called model owner or internal unit), using statistical mea-
sures and numerical indicators (Polish Financial Supervision Authority,
2015). Monitoring of the credit scoring model is narrower in terms of the
scope of evaluation than the validation process. It is mainly an assessment
of the effectiveness of the model’s operation, carried out mostly in the area
of analysis of results generated by the model, compared to empirical data
on the observed delinquency rate (for retail borrowers) or observed default
rate (for corporates) of the loan portfolio for which the monitored model
has been prepared (i.e. backtesting). At the same time, monitoring, thanks
to its regularity and frequency, allows capturing any trends in changes in the
portfolio or risk measures.

As for supervisory expectations, the process of assessing the effective-
ness of the credit scoring model should consist of the following types

of analyses:

e pre-implementation validation — performed after the development pro-
cess but before implementation, its aim is to verify input data quality,
statistical soundness of the model and quality of the initial results and

answer whether the model should be implemented,

e post-implementation validation — associated with the implementation
process and subsequent launch of the model in a production envi-
ronment; during the first three months since the date of launch the
correctness of model implementation should be assessed and the final

decision for using the results of this model should be made,

e periodic monitoring — carried out at least once a year and in the case
of data availability, it should be carried out at a quarterly or semi-
annual frequency in usual market condition or even monthly when
in a period of uncertainty and stress economic conditions or in few

first months of operating after implementation or significant updates,

o periodic validation — performed usually once a year/once every two
years depending on the significance and materiality of the model,

it should be an external process (not conducted by the modeling
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unit) of assessing the quality of the operation of models function-
ing and used in the bank (also in terms of the model used to assess
creditworthiness). The objectives of the model validation are verifi-
cation of the correctness and effectiveness of credit scoring models,
diagnosis of areas and issues related to the functioning of the model
that should be improved, formulation and prioritization of recommen-
dations related to the functioning of the model (which are elements
of every validation), verification of the implementation of previous
recommendations and promotion of high management standards (Pol-

ish Financial Supervision Authority, 2015),

o ad hoc validation — performed in response to identification (e.g. as part
of model monitoring) of deterioration in model performance; the scope
of ad hoc validation should always be defined, taking into account the
issues identified; examples of analyses performed as part of ad hoc val-
idation are verification of the adequacy of model assumptions, anal-
ysis of the distribution of variables supplying the model and identifi-
cation of differences concerning the data sets on which the model was
taught, comparing the results of the validated model to the results

generated by the comparative model.

The scope of analyses carried out as part of the processes described above

is presented in Table 6.1.

s - Review of
. Internal Qualitative | Quantitative eview o
Type of evaluation . Frequency . . changes to the
unit review review
model
prg—lmylementatlon X ?efore . v v X
validation implementation
post-implementation validation | X after implementation | v/ 4 X
monthly /
periodic monitoring v quarterly / X 4 X
semi-annually
periodic validation X at least once a year v v 4
ad hoc validation X depending on the identified needs

Table 6.1: Analyses carried out over the life cycle of the model
Source: own work
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As part of the periodic validation, an overall assessment of the credit
scoring model should be prepared with the following scale (European Cen-
tral Bank, 2019):

1. Adequate with no deficiencies — no deficiencies detected by the vali-

dation function (i.e. no follow-up needed).

2. Adequate with minor deficiencies — minor deficiencies detected that

do not lead to any significant bias for risk estimates.

3. Major deficiencies identified — identified deficiencies indicate a signifi-
cant bias for risk parameter estimates, e.g. for IRB models a potential
quantitative impact on the risk-weighted exposure amount (RWEA)
equal to or above +/- 5% but below +/- 10%.

4. Severe deficiencies identified — identified deficiencies indicate a severe
bias for risk parameter estimates, e.g. for IRB models a potential
quantitative impact on the RWEA equal to or above +/- 10%.

It is common practice to communicate validation results in a traffic-
light approach. For the area of qualitative assessment, the following can

be assumed:

o red traffic light — identified severe deficiencies in the model,
« yellow traffic light — identified medium-weight deficiencies of the model,

o green traffic light — no deficiencies identified or deficiencies identified

are of a low significance.

Currently, the assessment of the model operation and its errors are of-
ten characterized by the model’s materiality. This indicator may show
a quantitative impact of the model on the company’s operation. The ma-
teriality can also show the impact of the model errors on the institution’s
qualitative assessment, e.g. on its external rating. Materiality assessment
in qualitative categories is often imprecise, it also uses expert knowledge
and is therefore usually characterized by a descriptive scale, e.g. critical,

high, medium, low.
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6.3 Qualitative methods for credit scoring

models validation

The first discussed area of the analysis is a qualitative assessment, which
is related to the verification of the underlying assumptions of credit scoring
models. It concerns checking whether the model is used in a correct and
adequate way and whether the methodological assumptions that accom-
pany each quantitative model are met (Engelmann & Rauhmeier, 2006).
In this context, the fulfillment of qualitative assessment criteria can be seen
as a prerequisite for undertaking a quantitative assessment — if significant
inaccuracies related to the design or functioning of the model are identified,
the quantitative analysis may provide unreliable results, e.g. indicate the
erroneous, seemingly high quality of the results. The credit scoring model
should be used only if it passes both the qualitative and quantitative as-
sessment. Qualitative and quantitative analysis in this aspect are comple-
mentary to each other and none of them individually constitutes a premise
or criterion for a sufficient assessment of the operation of the credit scoring
model. Elements that are analyzed as a part of the qualitative assessment

are (Engelmann & Rauhmeier, 2006):

e model design, carried out based on model documentation, aimed

at assessing its scope, transparency and completeness;
e data quality, including its completeness and correctness;
e internal use test;

o rating process.

6.3.1 Model design

The assessment of the methodological assumptions of the credit scoring
model is based on a model documentation analysis; in this sense, the scope,
transparency and completeness are essential criteria. It is focused on assess-
ing the adequacy of the adopted architecture and model assumptions, their

compliance with the current environment (including regulatory, economic).
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Model documentation should cover the following areas:

delineation criteria for the portfolio or rating segment?,

whether expert knowledge was used and to what extent,

description of the rating method/model type/model architecture used,
reason for selecting a specific model type,

completeness of the (best practice) criteria used in the model,

data set used in rating development?, data sources, quality control

and archiving mechanisms,
quality assurance for the data set,
model development procedure:

— model architecture and fundamental business assumptions,
— selection and assessment of model parameters?,

— analyses for model development,
quality assurance/validation during model development,
description of all model functions,
calibration of model output to default probabilities,
procedure for validation/regular review,
description of the rating process,

duties and responsibilities concerning the rating model.

2This element covers the characteristics of the target population, including all data
selection methods and rules for excluding data from analysis.

3In addition to the portfolio characteristics, variable selection resulting from technical
constraints (e.g. too many missing data) or substantive reasons should also be taken into
account.

4The meaning of model parameters can be interpreted in different ways. They can
be understood literally when using parametric models, such as logistic regression. How-
ever, in the case of machine learning algorithms, this concept means learning parameters
and algorithm settings.
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Besides, we recommend considering extending the scope of the documen-

tation by:

e description of the process and policies related to maintaining the
credit scoring model — market practice suggests attaching detailed
information on model maintenance to the model documentation (in-

cluding criteria for recalibration or updating source data dictionaries),

e description of the procedures related to data quality management
— if the data quality management methodology is effectively cover-
ing all the models, the documentation may be limited to a descrip-
tion of selected elements specific to a particular credit scoring model;
data quality area should, in principle, include at least a description
of the main characteristics of individual variables used in the model,
i.e. max/min/median/dominant/mean/standard deviation/missing
data/outliers; also, it is worth to include analyses in the field of log-
ical data coherence (e.g. negative income, client aged 18 with higher

education, pensioner aged 21),

e definition of the explained variable — as a rule, the definition of de-
fault used in individual financial institutions may vary, we recommend
including a model definition of the explained variable (i.e. a bad cus-
tomer) in the documentation along with the quantitative criteria for
classification into the default category; besides, it is worth to indicate
the results of a quantitative analysis that stood behind the adoption
of the default definition (e.g. a negligible part of the exposure with
a delay of over 90 days does not return to regular repayment); these
criteria should, in principle, be sensitive enough to capture the risk
relatively quickly but at the same time they have to make sure that
estimation is accurate enough — for this purpose, one can use the Cure
Rate curve analysis (percentage of exposures returning to regular re-
payment) for various baskets DPD delays (i.e. 30, 30-60, 60-90, 90+),

¢ description of the process of reporting the credit scoring model results,

e compliance with internal and supervisory requirements.
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6.3.2 Data quality

The data quality assessment should cover both technical and substantive
aspects. On the one hand, it is important that the data is complete, consis-
tent and reliable. On the other hand, proper validation or archiving mech-
anisms are important. These issues are thoroughly discussed in Chapters

2 and 3 dealing with data used to build scoring models.

6.3.3 Internal use test

The internal use test aims to assess how the model is used in business
processes, including for example risk management, internal capital allo-
cation, management information. Due to the scope of this monograph,
which is limited to scoring models, it is important to highlight the Basel
Committee’s recommendations for models and model-derived ratings. The
recommendation in this area emphasizes the need to understand the ratings

received and to use them effectively.

6.3.4 Rating process

Besides, it is worth noting that, as part of the qualitative assessment, in-
formation may be collected about the size of overwritten ratings (i.e. over-
rides), the occurrence of technical defaults, statistics on the occurrence
of outdated ratings or deficiencies in customer documentation (e.g. financial
statements), transferring ratings, data exclusions, average PD and DR pa-
rameter levels for excluded exposures, portfolio size (in terms of the num-
ber of clients and gross exposure) covered by the creditworthiness assess-

ment model.

6.4 Quantitative methods for credit scoring

models validation

Quantitative assessment of credit scoring models involves the use of appro-

priate procedures and measures, most of which are based on a comparison
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of model forecast and historical customer data. The issue of quantitative

assessment of creditworthiness models covers three main areas:

e discriminatory power — assessment of the model’s ability to distin-

guish bad and good customers,

 predictive power (or calibration) — assessment of the model’s prop-
erties enabling estimation of the probability of entering the default

state by client®,
o stability — assessment of the stability of the model’s operation over time.

The investigation of discriminatory power is the same, regardless of
whether we identify customer groups as bad/good or default/non-default.
Therefore, for simplicity, we will adopt a uniform designation of the quan-
tities used in both cases. For the purposes of this chapter, the following
notation will be used: let PD; ; denote the unobservable, actual probability
of customer’s default in period ¢, e.g. in the IRB regime the PD parame-
ter is modeled over one year; let s;; denote the awarded score for the i-th
client in the period ¢ (i.e. scoring); Let ﬁl\)u denote the probability of en-
tering the default state (or bad group) of the i-th customer in the period
t determined by the creditworthiness assessment model. The general rule
regarding creditworthiness assessment models is that the higher the credit
score and thus the classification into the lower rating class, the smaller the
proportion of exposures that will receive default status in the period ¢, and
the higher the proportion of exposures that will remain non-default during

period t.

6.4.1 Discriminatory power

Based on the notation defined above, the model’s discriminatory power
will be called model property related to the ability to distinguish between
good and bad (or default and non-default) customer groups. The model

distinguishes these groups correctly if for PD1; > PDoy > -+ > PD,4,

5Tt is important to maintain the correct monotonicity of probabilities for the risk
classes. However, the value of PD in classes and in the total population may fluctuate
depending on macroeconomic factors.
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the credit score points obtained from the model meet the relationships
s16 < S2¢ < -+ < Sp¢. As indicated above, the values of PD;; are not
observable, only the fact of entering the default state is observed. It is worth
mentioning that the distribution of the PD(; ;) is not taken into account
here. This means that testing discriminatory power does not answer the
question whether the model is well calibrated, i.e. whether the forecast
meets the condition f/)b(z‘,t) = E[PD; ).

Confusion matrix

The confusion matrix is a tool for assessing the correctness of the model
forecast. It shows a comparison of objects’ classes (good/bad) predicted
by the model with their actual values. In the case where the model’s fore-
cast has a continuous character, e.g. indicates the probability of default
or score, the classification of the model depends on the cut-off point. In this
situation, we get different confusion matrices for different cut-off points.
The confusion matrix is a matrix with dimensions N x N, where N is the
number of states predicted by the model. In the case of creditworthiness
assessment models, the response variable is a binary variable indicating the
future state of the client — default or non-default, hence N = 2. When

forecasting a binary variable based on a model, four situations can occur:

e the default forecast is in accord with the future status, i.e. the cus-
tomer has defaulted: True Positive (TP);

o the default forecast is inconsistent with the future status, i.e. the

customer has not defaulted: False Positive (FP);

e the non-default forecast is in accord with the future status, i.e. the
client has not defaulted: True Negative (TN);

e the non-default forecast does not match the future status, i.e. the
client has defaulted: False Negative (FN).

The confusion matrix for a binary classifier, such as the credit scoring

model, takes the form presented in Table 6.2.
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Model prediction
Default Non-default
False Negative

Y=1 (default) True Positive

Actual (type II error)

Y=0 (non-default) ialseIPosm)lve True Negative
ype I error

Table 6.2: Confusion matrix for a binary classifier
Source: own work

Particular values of the confusion matrix are determined by counting
the observations in each of the four indicated groups. For example, consider
the logistic regression model estimated for one exogenous variable with 200
clients. Let the threshold for the definition of a bad customer (i.e. one
that defaults according to the model forecast) be 50% (i.e. if the forecast
PD; > 50%, it is estimated that Y; = 1). Figure 6.1 illustrates this example.

Figure 6.1: Confusion matrix; the threshold of the default definition —
50%, rejected ratings are below 7
Source: own work

In TP and TN cases, the model made the correct predictions — the
forecast generated by the model is consistent with the client’s state. There

were 30 and 154 such observations, respectively. In FP and FN cases (6 and
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10 observations, respectively) the model forecast was not correct, so the

confusion matrix in this case has the form shown in Table 6.3.

Model prediction
Default | Non-default
Y=1 (default) 30 10
Y=0 (non-default) | 6 154

Actual

Table 6.3: Confusion matrix for an example model with the threshold 50%
Source: own work

From a business point of view, the model error associated with False
Positive and the False Negative error are different. In the case of the first
error, False Positive (type I error), the model predicts that the client will
enter the default state, which is counterfactual. In such a situation, the
customer will have a high probability of entering the default state implied
by the model. The bank has then two options: a) to grant the customer
a loan with a high-risk margin or with additional collateral or b) not to grant
a loan. This means that in the case of FP, the bank either imposes high
credit costs on the customer (to compensate for potential credit loss) or sim-
ply does not grant a loan and therefore does not generate revenues on this
account. It can be pointed out that the FP error is associated with the

so-called missed opportunity cost.

In the case of the second error, False Negative (type II error), the model
predicts that the client will not enter the default state but in reality the
entry into this state is observed. From the bank’s business point of view,
this means incurring a credit cost associated with the need to create credit
risk provisions. From an accounting perspective, this is a decrease in the
asset receivable item, which is accompanied by incurring bad debt expense,

which means a negative impact on the income statement.

Depending on the bank’s risk appetite, i.e. the bank’s maximum ac-
ceptable exposure level and associated risk level, the bank may set credit
acceptance thresholds at different values. In the case of a liberal strategy,
the cut-off point will be high (e.g. 75%) which leads to lower False Positive

values and to greater False Negative values (i.e. lower missed opportunity
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cost at the expense of increasing the potential loss ratio of the portfolio).

An example of such a situation is shown in Figure 6.2.

Figure 6.2: Confusion matrix; the threshold of the default’s definition —
75%, rejected ratings are below 5
Source: own work

In the case of a conservative strategy, the threshold will be low (e.g.
25%), which will reduce the value of the False Negative error and increase
the value of the False Positive error (i.e. reduce the portfolio loss ratio,
at the expense of increasing the missed opportunity cost). This situation
is presented in Figure 6.3.

Based on the data from the confusion matrix, many other numerical
indicators can be determined that further characterize the quality of the
model. A few of them, most often used, are defined below (the numbers

are taken from the example with a cut-off of 50%):

e Precision which indicates the frequency of correct default forecasts:

TP 30

= =83.3
TP+ FP 3046 %

Precision =

o Sensitivity or True Positive Rate (TPR) or recall, indicating the

frequency of the default forecast when the customer has defaulted,
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Figure 6.3: Confusion matrix; the threshold of the default’s definition —
25%, rejected ratings are below 8
Source: own work

means the ability to correctly indicate a positive class:

TP 30

TP+FN 30+10 75.0%

Sensitivity =

o Specificity or True Negative Rate (TNR), indicating the frequency
of the non-default forecast when the client has not defaulted, means

the ability to correctly indicate a negative class:

TN 154

= =96.3
TN+ FP 154+6 %

Speci ficity =

e Accuracy, which means the proportion of observations which have

been correctly classified:

TP +TN _ 30 + 154
TP+TN+FP+FN 30415446+ 10

Accuracy = =92.0%
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o Lift shows how many times more effectively the obtained model indi-

cates a positive class (bad/default) than the random model:

Precision 83.3%

Lift = _ _
U= TP FP)J(TP+ TN + FP+ FN) _ 36/200

4.63

o F-score, taking values from 0 (random model) to 1 (perfect classifica-

tion model):

Sensitivity x Precision 75.0% x 83.3%
F—score = 2x =

— =789
Sensitivity + Precision " 75.0% + 83.3% %

The statistics indicated above illustrate the situation in a static dimen-
sion. All these numerical indicators are determined at a given cut-off point.
Changing the threshold will change the confusion matrix and thus also the

values of the listed indicators.

The listed indicators determined on the basis of the confusion matrix
have different properties and emphasize different features of the classifier.
It is important to mention the essential feature of TPR and TNR indicators.
They characterize the classifier’s ability to correctly indicate observations
from the positive and negative classes, respectively, regardless of the share
of these classes in the data set. Thus, they are good indicators of the
effectiveness of the model even for portfolios with low or unstable default

rate levels.

Receiver Operating Characteristic curve

The ROC curve presents the relationship between Sensitivity and 1-Specificity
values or otherwise the relationship between True Positive Rate and False
Positive Rate (FPR). The FPR value was not previously defined, along with
other statistics for the confusion matrix. The False Positive Rate means

the fraction of all non-default observations which were classified as default:

FP

FPR=——
=85 rFp
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Therefore, there is equality
FPR =1 — Specificity

and we can notice that 1 — Speci ficity is a measure of the size of mistaken
classification of non-default observations which have been assigned to the
default class. In the ROC figure, the horizontal axis means 1 — Speci ficity
and the vertical axis means Sensitivity. The entire curve is included in the
area [0, 1] x [0,1] and it connects the points (0,0) and (1,1). The straight
line connecting these points, i.e. the diagonal of the rectangle, means the
random classifier, while the line running along the sides of the rectangle
through the point (0,1) means the ideal classifier. A typical ROC curve
runs between the diagonal (random model) and the edge of the rectangle
(ideal model), wherein the higher and closer to the point (0,1) the curve
lies, the better the classifier is.

The determined confusion matrix sets only one point on the ROC curve.
The entire curve is obtained by calculation of the TPR and FPR values
for all possible cut-off points. To determine the ROC curve, we sort all
observations in descending order of risk of a bad class (e.g. by probability).
Then — going from the top — for each possible thresholds the TPR and
1-FPR values are determined as the coordinates of the next point located
on the ROC curve. In the case of rating models, we obtain the ROC curve
ordering observations by classes — from the highest to the lowest risk.

Figure 6.4 shows the ROC curves for the two models. The point marked
on the blue curve indicates that for this model 60% TPR corresponds to 16%
FPR. This means that for a given cut-off point, the model correctly predicts
60% of the bad class but at the same time incorrectly classifies 16% of the
good observations as bad.

Besides the shape of the ROC curve itself, the confidence interval for
this curve is also important which shows the range of possible curve runs.
Various methods of determining the confidence interval for the ROC curve
are used. An overview of such methods is provided, for example Macskassy
et al. (2005). An example of a curve diagram with confidence intervals

is shown in Figure 6.5.



195

100%

Hit rate / sensitivity / %goods remain

20%

0%y T T T T T
0% 20% 40% 60% 80% 100%
False alarm rate / 1 - specfificity / %bads remain

————— Perfect model —— Tinit model performance
————— Random model Tcurmodelperformance

Figure 6.4: ROC curves for example of the random model, as well as
perfect model
Source: own work

Figure 6.5: Example of the ROC curve with confidence interval
Source: own work

The smaller the confidence interval for the curve, the lower the variance

of the forecast. However, it should be noted that the confidence interval
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of the ROC curve depends on the size of the good and bad classes. In par-
ticular, the confidence interval depends on the size of the bad class in a way
that the smaller the number of bad observations, the wider the confidence
interval. Thus, the sample size and the share of the bad class affect the
determined confidence interval significantly.

An important feature of the ROC curve is its universality and wide
application. It shows the discriminatory power of a classifier, regardless
of how it was built — whether using statistical methods or machine learning
methods. In addition, this curve shows how accurately the model indicates
observations from the positive class (bad or default), regardless of its share
in the set. This is particularly important for imbalanced data sets, as well
as in situations where the share of the positive class is unstable over time,

e.g. due to the business cycle.

Area Under the Curve ROC

The ROC curve is associated with a numerical quantity — the area under
the curve, denoted by AUC ROC. This is the size of the area under the
ROC curve and contained in the square bounding the graph of this curve.
Thus, the value of this indicator may theoretically be in the range [0, 1].
However, given the fact that the diagonal of the square means the ROC
curve for the random model, in practice the AUC ROC index values are
greater than 0.5. On the other hand, in practice, the indicator does not
reach the value of 1, which corresponds to the ideal model. The higher the
value of this indicator, the greater the discriminatory power of the model.
The size of the area under the ROC curve has its interpretation which
relates to the effectiveness of the model. This value means the probabil-
ity that a randomly selected object from the bad class will have a higher
PD forecast (or lower score) than a randomly selected object from the good
class. This means that the model will correctly rank these observations.
In addition to estimating the AUC ROC, the confidence interval for
this value is also determined. Similarly to the shape of the curve, different
methods for estimating the confidence interval are also used for the AUC.

An example of such a method is bootstraping, i.e. determining AUC ROC
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on many bootstrap samples. Engelman and Ranheimer presented another
method for determining the confidence interval, using estimators of relevant
probabilities (Engelmann & Rauhmeier, 2006). However, in Hanley and
McNeil (1982), a method based on the Wilcoxon test of ranks was used,
which simultaneously allows the determination of the size of both groups
in the set needed to obtain the indicated confidence interval. According
to this method, the confidence interval for AUC ROC is equal to:

AUC F 2, SE(AUC)
where:
SE(AUC) = \/ AUC(l—AUC)+(n1—1)(Q;;szllUCQ)Jr(NO—l)(Qz—AUCZ),
Ql = 2’_4%50,
24UC?
Q2 = 1+AUC>»

Zo — inverse of a normal dist. fun. for the confidence level «,

ng — the number of observations from class 0 (Y=0),

ny — the number of observations from class 1 (Y=1).

For the exemplary ROC curve shown in Figure 6.6, the confidence inter-
val determined using the above method is as follows: [0.873,0.887], so ac-
cording to the graph it is very narrow. The numbers of observations from
different classes were about 4 000 (bad) and 16 0000 (good). However,
for the ROC curve presented in the figure below, for which the respective
numbers were about 1 000 and 21 000, the confidence interval for the AUC
ROC size is [0.826,0.854].

The presented method of determining the confidence interval is based
on the assumption of asymptotic convergence to the standard normal dis-
tribution which is true only with sufficiently large numbers of observations
from the classes good and bad. For a small number of observations and
especially for the low default portfolio, an alternative method is to de-
termine the confidence interval using the bootstrap method. Engelmann
points out that this is a computationally inefficient method (Engelmann &
Rauhmeier, 2006). Together with his co-authors, Engelmann et al. (2003),
he compared the operation of both methods on four portfolios with 100,

50, 20 and 10 defaults, respectively. The methods’ comparison shows that
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Figure 6.6: Example of the ROC curve with confidence interval
Source: own work

for 50 defaults both methods give an almost identical confidence intervals

and even with a smaller number of defaults, the results are very similar.

Cumulative Accuracy Profile curve

Another curve that illustrates the discriminatory power of the model is the
CAP curve. This curve is also contained in the rectangle [0, 1] x [0, 1] and
has a shape similar to the ROC curve. However, its meaning is slightly
different. Similarly to the ROC curve, the observations are first ordered
according to the model forecast — from the highest to the lowest risk. The
cumulative share of such ordered observations in the entire set is marked
on the horizontal axis. On the vertical axis, the fraction of the bad class
is marked, which belongs to a given group of ordered observations. Thus,
it can be seen that on the vertical axis there are TPR values, assuming that
the fraction of the population marked on the horizontal axis is a bad class
indicated by the model.
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The diagonal of the rectangle illustrates the random model. For the
perfect model, all observations from the bad class have the worst ratings,
so at the beginning CAP is shaped as a straight line that reaches level
1 when the cumulative part of the observations reaches the level of default
rate or class bad share in the entire set. From this moment, the CAP
becomes a horizontal line. In practice, the CAP curve runs between a ran-
dom and an ideal model. Naturally, the closer the curve lies to the perfect
model, the higher the discriminatory power of the examined model. The
figure below shows a graph of the CAP curve of an example model with

curves for ideal and random models marked.

100%
80%
60%

40%

True Positive Ratio

20%

0% 20% 40% 60% 80% 100%
Fraction of the population

Model ---Perfect —Random

Figure 6.7: CAP curve of an example model with curves for ideal and
random models
Source: own work

Gini coefficient (Accuracy Ratio)

The Gini coefficient is a numerical indicator of the discriminatory power
of the model. It is associated with both of the above curves — ROC and
CAP and can be determined based on each of them. In connection with the

CAP curve, the name Accuracy Ratio and its abbreviation AR are more
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often used for this indicator. It is equal to the ratio of the size of two areas:
a
ap

The value of ag means the area between the CAP for the validated
model and the CAP for the random model (diagonal). The ap value rep-
resents the area between the CAP for the perfect model and the CAP for

the random model.

100%
"“ m
80% I ’

60%

40%

True Positive Ratio

20%

0%
0% 20% 40% 60% 80% 100%
Fraction of the population

—Model ---Perfect —Random

Figure 6.8: CAP curve of an example model and the areas used for AR
calculation
Source: own work

The AR index values are in the range [0, 1] and the closer the AR value
is to 1, the greater the discriminatory power of the model. On the other
hand, the Gini index value can be determined using AUC ROC, because

the following equality is met

Gini =2AUC —1

The linear relationship of the Gini index with the AUC ROC value
makes these indicators completely equivalent as they convey the same in-
formation. Using the above relationship, we can also determine the confi-
dence interval for the Gini value. For example, for the model for which the

ROC curve is shown in Figure 6.5, the Gini values and confidence interval
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boundaries are as follows:
Gini=2%0.84 —1=0.68

Lowery =2 %0.826 — 1 = 0.652
Uppery =2 %0.854 —1 = 0.708

Therefore, we can say that the confidence interval for the Gini index (which
is 0.68) is [0.652,0.708].

Lorenz curve

The Lorenz curve is another graphic indicator of the discriminatory power
of a model. This curve was originally used in economics as an illustration
of the distribution of the wealth or income of individuals in society. In credit
risk, it was also used in the assessment of LGD models. In scoring models,
it is the next curve after ROC and CAP associated with statistics dependent
on the cut-off point and allowing to calculate the Gini index.

Similar to the previous two curves, the construction of the Lorenz curve
requires all the observations to be ordered by risk estimation based on the
model. We sort observations from the highest to the lowest risk and then
consider in sequence the cut-off points. For subsequent cut-off points, we de-
termine the TPR and FPR sizes and mark them on the horizontal and ver-
tical axes respectively. In this approach, it is simply the reverse of the ROC
curve. For the rating model, the classes are ordered from highest to low-
est risk. Then, the cumulative percentage of rejected bad observations
is marked on the horizontal axis and the cumulative percentage of rejected
good observations on the vertical axis.

As well as for the ROC and CAP curves, the diagonal of the rectangle
in which the Lorenz curve is contained means a random model. The perfect
model means a curve that consists of two edges of the rectangle and passes
through the point (1,0). In practice, the Lorenz curve lies in the area
below the diagonal and the lower it lies and the more convex it is, the more

discriminatory power the model has. The figure below presents Lorenz
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curves for two models, designated Tj,;; and T, respectively. According
to the interpretation described above, the T;,;; model to which the green
curve corresponds has greater discriminatory power than the 7., model

for which the curve is marked in blue.

100%

% Goods captured

0% T = T T T T T
0% 20% 40% 60% 80% 100%
% Bads captured

————— Random model —— Tinit model performance —— Tcurr model performance

Figure 6.9: Lorenz curve of the credit scoring model performance T+
and Teypr
Source: own work

The numerical indicator of the quality of the model determined on the
basis of the Lorenz curve is the area contained between the random model
(diagonal) and the curve for the tested model. The higher the value of this
indicator, the higher the quality of the model. In addition, if we mark the
area below the Lorenz curve as Ay, then the relationship between A and

the Gini index describes the equality:
Gini = 2A L

The above descriptions of ROC, CAP and Lorenz curves show that
they actually carry the same information and can be treated as equiva-
lent. They all have a common feature that they are based on a comparison
of model forecasts with the observed classes. They do not require addi-
tional information on the structure and operation of the model. Therefore,
we can generate these curves for any models that predict the values of a bi-

nary variable, regardless of the algorithms used to build the models. Thus,
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it is possible to evaluate in this way not only models having understandable
interpretation but also models for which we only know the resulting predic-
tion. It is also important that the shapes of these curves and the assessment
of the model depend only on the ordering observations by the model and
the separation of bad and good classes. Therefore, we receive correct as-
sessments of the quality of models even in the case of low or variable share
of the bad class.

Lift curve

The lift curve (cumulative or non-cumulative) shows the effectiveness of the
constructed analytical model. Similarly to other quality indicators, Lift
is based on a comparison of the model forecast with the actual object class
(good/bad). To determine the curve, all observations should be ordered
according to the risk indicated by the model — from the highest to the
lowest. Then the set is divided into equal subsets and the actual share of the
bad class is determined in each of them. The Lift value can be expressed
in a percentage form as a share of the bad class in a given group. On the
other hand, Lift in numerical form indicates how many times the level
of bad class in a given group exceeds the a priori level. Therefore, it is the
value of the lift statistic (described in section “Confusion Matrix”) which
— as it was indicated — shows how many times more effectively the obtained
model indicates a positive class (bad/default) than the random model.

The ordered cases are marked on the horizontal axis of the graph and
the Lift values on the vertical axis. Subsequent points on the horizontal
axis represent a given group of observations, so they can be equated with
cut-off points. If the model works properly, the curve (especially in the
cumulative form) should be monotonically decreasing. Figure 6.10 shows
an example of a Lift curve. The observations were divided into 50 equal
buckets. The maximum lift value for this model is slightly above 4.5.

The value of 4.5 is only achieved for a very small set of the riskiest
observations. However, even for 5% of the riskiest observations, Lift is still
above 4. This means that the model in this group indicates the bad class

four times more effectively than the random model. The a priori level of risk
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Figure 6.10: Lift curve of an example model
Source: own work

in the data set that was used to test the model is 21.85%. Thus, in the
group of 5% of the riskiest observations indicated by the model, the share
of the bad class is approximately 87.4%.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test examines the distance between cumulative
distribution functions for two distributions of random variables. In the
case of credit scoring, the K-S test verifies the significance of the difference
between empirical distributions for two classes of observations: good and
bad. We organize the observations for the study according to an increase
in P(Y = 1), where Y = 1 indicates the bad class. Then we determine
conditional (i.e. separately for classes Y =0, Y = 1) empirical cumulative
distribution functions for observations ordered in such a way.

The zero hypothesis (HO) is tested: the distributions do not differ sig-
nificantly. The alternative hypothesis (H1) has the form: distributions

differ significantly. Test statistics are proportional to the maximum differ-
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ence between the distribution functions. The maximum difference between
these functions for classes Y = 0 and Y = 1 is called the K-S (Kolmogorov-
Smirnov) statistics and characterizes the correct separation of the good and

bad classes:

KS = max |F0— F1].
x
The K-S test statistics is equal to:

noni
ng + ni

KS

where

no — the number of observations from class 0 (y = 0),

ny — the number of observations from class 1 (y = 1).

The (HO) hypothesis is rejected at the significance level « if the test
statistics exceeds the critical value K, of the K-S distribution, i.e. if the

inequality is met
noni

KS > K,
ng + n1

The critical values K, for the most commonly used significance levels of the

test are presented in Table 6.4.

o |01 |0.05]0.01
Ko [ 122 |1.36 | 1.63

Table 6.4: The critical values of the Kolmogorov-Smirnov statistics for
different values of significance level
Source: own work

The result of the test is the rejection or acceptance of the (HO) hypoth-
esis. However, it should be noted that the shape of the K-S curve and the
value of K-S statistics are important indicators of correctness and discrim-
inatory power of the model. The greater the distance between conditional
cumulative distributions and the higher the K-S value, the more effective
the model is. An example of a K-S curve and statistics value is presented

in Figure 6.11.
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K-5=0.67

Figure 6.11: The example of the K-S distance between cumulative distri-
bution functions
Source: own work

The disadvantage of the K-S statistics is that it is a local measure
as opposed to the Gini index which globally characterizes the operation
of the model. As a result, models with different discriminatory power and
different Gini indices may have the same value of the K-S statistics. For the
correct operation of the model, it is important that the maximum difference
between the distributions occurs around proposed cut-off values. Moreover,
K-S is sensitive to sample size and low number of observed defaults. For
small samples, the curve is stepped, which distorts the assessment of the

actual distance between the distributions.

Divergence — as a signal to noise ratio

Signal-to-noise ratio (SNR) is a physical indicator used in image or sound
processing. This measure compares the level of the useful signal to the back-
ground noise level. Statistics also use the SNR as a measure of the ratio
of useful information to background noise. For a single sample, it is the quo-
tient of the sample mean by its standard deviation: SNR = % The SNR
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index can also be used as a measure of the distance between two vectors
of mean values m; and m9 and the standard deviation o1 and o9 and then
its value is B B
SNR="1"T2
o1+ o2
This statistics can be used to assess the correctness of the binary classifi-
cation and to determine the optimal cut-off point for the classifier.
Divergence, just as K-S statistics, is a measure of the model’s ability
to correctly separate observations from the bad and good classes. It il-
lustrates the distance between the conditional distribution of assessments
obtained from the model (score or PD) for two classes of clients. The nu-

merical measure of the distance between distributions is the value

2 _ (mo —m)?
(08 +07)/2°
where
mgo — average score of P(Y = 1) for class 0,
my — average score of P(Y = 1) for class 1,
o3 — score or probability P(Y = 1) variance for class 0,
o2 — score or probability P(Y = 1) variance for class 1.

Divergence can take any non-negative values, with a value of 0 meaning
no discriminatory ability of the model. In turn, the higher the divergence
values, the greater the discriminatory power of the model.

Figure 6.12 shows the PD value distributions separately for the classes
Y =0,Y = 1. A line with arrows indicates the distance between the means
for conditional distributions. The divergence value for the distribution
in the figure is 5.16.

Both divergence and K-S statistics can be used to study and illustrate
the correct separation of classes by classification models built using various

algorithms, e.g. statistical but also machine learning.

Influence of variables on the predictive power of the model

One of the elements of periodic validation is the analysis of the predictive

power of individual variables in the model. In the case of the scoring card,
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Non-default M Default

Figure 6.12: Distance between the means for conditional distribu-
tions of PD
Source: own work

the difference in the average score generated by a given variable for good
and bad observations can be used as a measure of the discriminatory power
of one variable — analogous to the divergence of the entire model. Note
that the square root of the divergence is
p_ =i

3(05 + 1)

Thus, there is a score difference in the numerator which can be decom-
posed into corresponding differences for the individual variables. Below
is an example of a scoring card composed of 5 characteristics. Standard
deviations of score distributions for good and bad in the studied popula-
tion are respectively o9 = 62.65, o1 = 53.12. Thus, the denominator of the

fraction that determines the value of D is
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1
Mp = \/5(08 + 02) = 58.08

Table 6.5 shows the average score values in the good and bad groups for
the entire model and for individual variables. The next column shows the
average score difference. Of course, the difference for the entire model is the
sum of such differences for individual variables. The last column of the table
shows the quotient of the score difference by the denominator Mp calcu-
lated above. For the entire model, it means the square root of divergence.
The remaining numbers add up to this value and can be interpreted as the

share of a given variable in the model discriminatory power.

avg_good | avg bad | difference | sqrt_ div

score 202.09 85.16 116.92 2.01
financed amount 58.12 15.75 42.36 0.73
period of employment 38.31 6.78 31.53 0.54
net income 28.67 13.7 14.96 0.26
previous contracts 16.05 13.36 2.69 0.05
vehicle age 60.94 35.57 25.38 0.44

Table 6.5: The average score values in the good and bad groups
Source: own work

The advantage of such a measure is its additivity — the predictive power
indices of individual variables add up to the divergence of the entire model.
More universal measures that can be determined in the case of any model
are the Gini and Information Value (IV) indices. The Gini index for a single
variable is determined in the same way as Gini for the model — based on the
value of the variable and the bad or good class designation. The observa-
tions are then ordered by the value of the variable under study according
to decreasing risk. The Gini index can be calculated from TPR, FPR,
TNR and FNR values determined for any cut-off point. For the variables
from the model described above, the values of IV and Gini are presented
in Table 6.6.

The IV and Gini indices are not additive — the values for individual

variables do not constitute the appropriate value for the entire model. This
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Variable ‘ v ‘ Gini
financed amount 1.45 | 0.58
period of employment | 1.23 | 0.5
net income 0.53 | 0.38
previous contracts 0.14 | 0.15
vehicle age 0.74 | 0.42

Table 6.6: The values of IV and Gini indices for variables in a model
Source: own work

is a particularly important problem in the case of machine learning methods
which also use highly correlated variables. In such a situation, Shapley
values can be used as significance indicators. Shapley values are described
and characterized in Chapter 7. There is also an example of a calculation
and application of Shapley values there. The difference of the mean values
of Shapley in the groups of good and bad indicates the discriminatory
power of a single variable and, at the same time, these indicators have the
property of additivity. Of course, Shapley values can also be used with
classic models. Importantly, for the logistic regression model built on the
WOoE variables, the same role for individual variables play the indicators
obtained as the products of the coefficients from the model (beta for each

variable) by the appropriate IV values for explanatory variables.

Another method of determining the significance of variables in the
model is the permutation method, which is described in Chapter 7 as Per-
mutation Feature Importance (PFI). It is a model-agnostic method for de-
termining the Variable Importance Measure (VIM). It consists in comparing
the mean error rate for the observations before permutation of the selected
predictor with the mean error level after permutation. This method is also
described in detail in Chapter 7. The idea of the permutation method
is that for an unimportant variable in the model, the permutation will not
affect the classification and error rate. On the other hand, if the predictor
is important, its permutation will have a significant negative impact on the
classification and increase in error. Therefore, the higher the error rate,
the greater the discrete force of the variable. The VIM indices obtained
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by the permutation method for the same as the above set of variables in the

random forest model are shown in Figure 6.13.

Figure 6.13: The VIM indices obtained by the permutation method for
random forest model
Source: own work

The strongest variable in this model turned out to be the variable de-
scribing the amount of financing. The next one was the period of employ-

ment, the least importance has the variable concerning previous contracts.

6.4.2 Predictive power, calibration

The discriminatory power analysis outlined earlier gave an answer to whether,
as a rule, the higher credit score granted to clients implied a lower ob-
servable frequency of the default event. As it was indicated, due to the
lack of observability of PD;; values at the level of individual clients, this
measure is approximated by the observable frequency of the default event
in given rating classes. Calibration tests are used to verify the correctness
of the model’s calibration, i.e. estimation of the PD parameter at the level

of rating classes or the entire model.
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It is worth emphasizing that, when assessing the discriminatory power
of the model, shifting the result by a constant does not change the quality
assessment. The situation is different for the evaluation of the calibration.
Here, the most important thing is the correct assessment of the default rate
in classes and in the population. Therefore, it is essential what approach
was used for the calibration and whether, for example, macroeconomic
factors were taken into account.

When testing model calibration, it should be remembered that, de-
pending on the approach used, a change in the economic environment may
cause a change in the default rates in bands or shifts of clients between
rating classes. For example, in the case of the PIT model, the deteriora-
tion of the economic situation will move customers towards worse ratings.

The economic recovery will bring about opposite changes.

Binomial test

Our subject of interest — modeled variable that refers to default /non-default
flag — is a dichotomous variable that in practice is usually modeled using
the class of generalized linear models (e.g. logistic regression). In such
a case, the model estimates an expected value of an endogenous variable
conditional to the set of exogenous variables (specific for a particular ob-
servation). The validation of such a model may be performed based on the
frequency of default in a particular rating grade.

The most straightforward test that can be utilized is based on the as-
sumption that the defaults appear independently and what we are aiming
for is to verify the unconditional coverage® of default. In such a setup,
we assume in Hy that the 1/31\)1 for i-th rating bin is correct, i.e. is equal
to PD; (which is unobservable — hence standard predictive error-based
methods do not apply). In the binomial test, the distribution of a random
variable (i.e. the probability of default) is assumed to be binomial. For
a set of given exposures and within the particular time window (that refers
to the time-horizon of PD;), we measure the empirical frequency of the de-

faults. Based on the binomial distribution, we can statistically evaluate the

5The analog to the Value-at-Risk validation methodology (Kupiec, 1995)
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observed rate of defaults. Usually, the alternative hypothesis refers to non-
equality to assumed PD; (especially in case of VaR backtesting) — from the
business perspective, the one sided-test may be assumed (i.e. conservative
estimates of ﬁ)l)

From the practical point of view, such a test does not allow to model
the performance of the entire rating system at once. The particular rating
grades have to be tested separately. Also, it should be noted that in the
presence of a multi-period data set, we are utilizing only a single time period
for validation. Moreover, especially in the case of credit risk modeling, the
assumption of defaults’ independence is usually violated. The method’s
most significant advantage, however, is that the results of the test are very
straightforward and intuitive.

As a consequence of such properties (i.e. if Hy is correct, the well-
calibrated test should reject Hy at given significance levels, even if the
process generating data is following Hy!), a binomial test may be used only
for the narrow range of cases, e.g. when the bank starts to use the rating
system for a new customers segment and hence does not possess the broader

data set of historical observations.

Binomial test with correlation

Based on the results of the binomial test, the independence assumption can
be further investigated. In terms of the binomial test with correlation, this
assumption can be removed, but the correlation structure has to be imposed
on the model — analytically or numerically.

In this test, it is assumed that the probability of default of a partic-
ular debtor depends on the: a) idiosyncratic factors of a debtor (specific
exogenous variables reflected in the score), b) the correlation with the sys-
temic factor (upon which all debtors depend on). The introduction of the
correlation factor leads to the less intuitive model’s interpretation and the
more complicated model’s formulae. The model incorporating the correla-
tion structure is also known as the Asymptotic Single Risk Factor model

(ASRF) which is used for the calculation of capital requirement under CRR.
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The drawbacks of the approach stem mainly from the fact that a small
variation in the sample can lead to significant deviation of the crucial values
of the test (and hence also PD; estimates). As a result, the binomial test
with correlation shows that the type I error is higher than the significance
of the test. Moreover, still, the binomial test with correlation is based
on the singular rating-grade for a single time period evaluation.

On the other hand, from the regulatory perspective, it should be noted
that this test is conceptually aligned with the formulae (i.e. ASRF model)
used for the calculation of Risk-Weighted Assets (and hence credit capital
requirements). In such a case, from the validation point of view, using
the aligned test should be perceived as something desirable and expected
(e.g. art. 153 of the CRR).

Normal test

To address the issues of testing the model calibration only for a single time
period, we can utilize the normal test which evaluates whether the actual
probabilities (PD;) are higher than their forecast (ﬁl\)l) The test’s statistic
follows (asymptotically, when the number of periods goes to infinity) normal
distribution. In this test, we are capable of utilizing the multiple periods for
estimation of the empirical frequency of default for a rating grade, which
in principle reflects the TTC philosophy of modeling PD models.

This test does not allow to evaluate multiple rating grades but does
not assume the independence of the defaults in the particular period but
assumes the independence of defaults between periods. In contrast to the
other described tests, this one is a multi-periods test which, in case of avail-

ability of data, provides more robust and stable validation conclusions.

The Jeffrey test

The Jeffrey test allows for verification of the predictive power of credit
scoring models at the level of individual rating classes as well as the en-
tire portfolio (Brown et al., 2001). As part of the Jeffrey test, the values
of predicted defaults are compared with the empirical defaults under the

binomial model. The null hypothesis of the test assumes that the projected
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PD values applied at the beginning of the period are greater than the val-
ues of the defaults realized. Assuming a priori distribution as a binomial
distribution, the a posteriori distribution is set to be a beta distribution
with the parameter a = D + 2 andb=N—-D+1 5, where N is the total
number of customers, D is the number of customers who have entered the
default state. The p-value of the test is ﬁD_s_%,N_DJF%(PD). The test may

be carried out for each rating class as well as at the entire portfolio level.

The Hosmer-Lemeshow test

One of the most commonly used tests for PD calibration is the Hosmer-
Lemeshow test (Hosmer Jr et al., 2013). It verifies whether the expected
frequencies of defaults in particular rating classes are equal to observed
ones. The null hypothesis is that the observed default rate is indifferent
from the estimated PD, i.e.

Hy: PD,= DR, Vg€ (1,...,G)

The test statistic is calculated as follows:

G
Z PD DR):XQ(G_m

,(1—PD,)

where NNV, is the number of observations in the rating grade g. Test statistic
converges to a Chi-Square distribution with G-2 degrees of freedom (as the
number of observations tends to infinity); also, this test assumes the inde-

pendence of the defaults.

The Pluto-Tasche test

The confidence level based approach can be used for estimating PDs for
portfolios without any defaults or with a very low number of them (Pluto
& Tasche, 2011). This method delivers confidence intervals for the PDs
in each rating grade, which can be adjusted by choosing the confidence
level. The approach follows the most prudent estimation principle thus

yielding monotone PD estimates. Low default portfolios are of special con-
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cern in the context of estimation of risk parameters for IRB as PD estimates
for such portfolios based on historical performance or expert judgement may

substantially underestimate capital requirements.

Let us start with the case of no defaults portfolio and assume that
observations are distributed to rating grades A, B and C based on a set
of predefined business rules from an expert-based credit risk model. Grade
A is of the highest creditworthiness and with n4 observations followed
by grade B with np observation and the lowest creditworthiness grade
of C' with n¢g observations. Moreover, let us assume that default occurs
independently (even if we consider no default case for now) and rating
grades give us correct ranking, i.e. PDy < PDp < PD¢, where PD; is (to
be calculated) probability of default for rating grade i. In consequence of the
most prudent estimate principle, we get that PDy = PDp = PD¢c. With
this relation in place, we can proceed to determining a confidence interval
for PD4 at a confidence level . The confidence interval can be viewed
as a set of all values PD 4 that the probability of not observing any default

during the observation period is not less than 1-a which means that:
(1 — PDA)TLAJrnBJrnc >1—a

therefore
1
PDA S 1— (1 _ a)TLA+7LB+TLC

Consequently, the most prudent estimate of PDpg is obtained when PDpg =
PD¢ and applying the same rationale we get

1
PDp <1-(1—a)"strc
and for PD¢ we can use only observations in grade C' which gives

1
PDc<1—(1-a)"e

Naturally, apart from the confidence level «, the most impact for the
upper confidence bound has the sample size. The smaller the sample the

greater upper confidence bound. However, as the data set which gives the
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frequencies is given, the assumed confidence level is to be decided. Authors
of the approach suggest to keep it below 95 percent, however keeping the
confidence level between 50 and 75 percent was also suggested by Benjamin
et al. (2006).

Let us expand the previous example on a case where no default was
observed in grade A, three defaults were observed for grade B and one in
grade C. Similarly, we start with determining the most prudent confidence
region for the PD 4 by assuming again that PDs of three grades are equal.
Then, the confidence region for the probability of observing no more than
four defaults can be determined by using the binomial distribution (under

the assumption of independence of default events) in the following manner

4

l—a< Z (nA =+ TL{_; + nc) PDQ (1- PDA)nAJrnBJrncfi

l
=0

Following the reasoning for PDpg and PD¢ yields

4
l-a<) ("B N ”C> PD (1 — PDpg)"Etne
7
1=0

1—a<=(1-PDc)"® +ncPD¢ (1 — PDg)"e™!

Those inequalities can be solved both analytically — using an appropri-
ate beta distribution function — and numerically.

Even though there were no defaults in the grade A the results were
impacted as defaults from grades B and C entered the calculation. They
affect the upper confidence bounds which are higher than in the previous
case. This approach can be expanded further to involve correlated default
events by employing the Basel single-factor model and the asset correlations
defined in the Basel Accord. It can also be calibrated to observed portfolio

PD by introducing the scaling factor K in the following manner

ﬁ)AnA + ﬁ)BnB + ﬁ)cncK
naA+np+nc

PDPortfolio =



218

In the above-mentioned examples, we have considered just one period.
In the original article, also a multi-period setting was presented. As de-
scribed above, each of the tests has some advantages and drawbacks. In Ta-
ble 6.7, we present the summary of the main characteristics of the above-

mentioned, predictive tests.

Mubltiple No-independence Mu'ltiple No rating Nt'a issues Test
rating . period grade with s
grades assumption testing homogeneity | type I error simplicity
Binomial X X X v v
B%nonnal X v X X X X
with corr.
Normal X X v v v v
Jeffrey v X X v v v
Hos.-Lem. | v/ X X v v v

Table 6.7: The main characteristics of the calibration tests
Source: own work

The particular usage of a test should also be supported by more broad
investigation and reflection, e.g. model assumptions, availability of hori-
zontal data (more observations for one period) and vertical (multiple peri-
ods). Statistical tests are based on specific assumptions about the number
of observations, the independence of class defaults and the stability of the
default rate. In fact, these assumptions are not always met, especially in the
case of a small sample or a portfolio with a low default rate. This means
that the actual confidence intervals for the PD estimates in the classes are
wider than the calculations indicate. On the other hand, big data can also
lead to wrong conclusions. With a very large number of observations, the
test result may indicate the rejection of the Hy hypothesis, even if prac-
tice and experience show that Hg is true. For these reasons, often more
importance is attached not to the statistical significance of the estimate
but to the assessment of the materiality of the problem studied, which can
be expressed, for example, as a percentage of exposure, provisions or Risk
Weighted Assets.
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6.4.3 Stability

Credit risk assessment models are built based on historical data, therefore
one of the validation elements is testing the stability of the model. It aims
to verify that the operating conditions of the model are still as assumed
during the construction of the model. However, it should be noted that
the stability of the model’s operation depends on various factors. The lack
of stability may result from a change in the dependencies and parameters
in the model and then the model should be modified. However, the observed
lack of stability of the model’s assessments may also result from a change
in the customer population or from a change in banking processes. Lack
of stability is also not always a negative phenomenon, e.g. when a change
in the portfolio indicates a higher share of reliable customers. The study
of the stability of the model and population is not only to show whether the
distribution of customer ratings is changing or not. An equally important

element is understanding the reasons for any changes.

Customer migrations

One of the elements of the system stability test is the analysis of rating
changes and customer migration between rating classes. The probabilities
of transitions between rating classes in a given period show the migra-
tion matrix. Usually, the period indicated in the migration matrix is one
year. The migration matrix at a set point in time can be determined based
on two ratings for the same established group of clients. The first rating
is used as the base classification and the second — made after a fixed pe-
riod, e.g. 1 year, allows to determine the flow rates between classes that
occurred in that period. An example of the migration matrix is presented
in Table 6.8.

However, the values for the transition matrix in a given period are spe-
cific implementations of random variables that characterize the transitions
between rating classes. The probabilities of transitions between classes are
estimated based on historical data. For this purpose, for example, a cohort
method can be used, which consists in determining the expected probabil-

ities of transition based on appropriate matrices from many periods. The
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Rating after 1 year
1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ Default

0.89 | 9.78 | 18.46 | 39.98 | 26.45 4.44
0.48 | 4.26 | 15.34 | 19.34 | 51.99 8.59

11918 | 487 | 134 | 092 | 0.62 0.41

Base 2 5.97 | 62.46 | 15.63 8.72 6.33 0.88

. 3 2.31 | 13.87 | 45.87 | 22.47 | 14.26 1.21
rating 1
5

Table 6.8: An example of the migration matrix (in %)
Source: own work

disadvantage of this method is the assumption of the independence of indi-
vidual class transitions, which may not be true. However, this assumption

is often made to simplify the estimation of transition probabilities.

The migration matrix informs about the stability of risk assessments
resulting from the model. If the diagonal values are high, the ratings are
stable. A large dispersion of values outside the diagonal indicates a lack
of stability in assessments. It should be remembered, however, that various
factors influence the stability of model assessments. The reason for changes
in risk assessment may be for example a change in the economic situation
that affects customer assessments. The stability of the model’s ratings also
depends on its design. The application model based on socio-demographic
data at the time of application will show zero migrations during the lifetime
of the loan. A model based on a small number of variables may show
rare but large migrations. In contrast, the model based on many variables

(as in machine learning) will show very frequent but small migrations.

Stability of the migration matrix

The answer to the question about the stability of the transition matrix
is very important for the rating analysis. This stability means that the
probabilities of transition between given classes are constant in time. The
homogeneity of the transition matrix can be tested using the x? test, as-
suming that the individual transitions are independent. The Hy hypothesis
is tested then that
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P(t)) = P(ty) = ... = P(ty)

It is often accepted that migrations between rating classes constitute
the first-order Markov chain. This means that the migration matrix is time
invariant. In addition, it is easy to determine the probabilities of transition

between classes after k periods because

P(k)=P(t1) P(t2)... P(ty) = (P (tr))"

However, we cannot always assume that migrations between classes reflect
the Markov process. And not always transition matrices can be treated
as constant, even if — as in the case of big data — tests can confirm the
truth of such a hypothesis.

Importantly, changes of the transition matrix may affect the capital
requirement and risk management. Therefore, an alternative to the appli-
cation of statistical tests confirming our assumptions may be the assessment
of changes in the transition matrix and their materiality. One of the met-
rics defined in the matrix space may be used for this purpose, for example

the metric Ly or Ly as defined below. For square matrices A = [a;;] and

B = [b;;] where ¢,j =1,...,n, we define the L; and L metrics as follows:
n n
Li(A,B) =) > aij — by
i=1 j=1

Ly(AB) = | S° 5 (ay; — bij)?

i=1 j=1

Assessment of the materiality of changes in the transition matrix can
be based on the distance determined by one of the metrics and the exposure

for the portfolio.

Concentration in rating grades

The purpose of the concentration test is to check and assess whether signif-

icant structural changes can be observed between the periods of validation
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and the implementation validation within the rating classes, i.e. whether
the classes have been dispersed or increased in concentration (the num-
ber and size of customer involvement in rating classes are more or less
uniform). Levels of concentration should be measured in terms of the per-
centage of customers as well as the size of their exposure (European Central
Bank, 2019). It is worth emphasizing that high concentration is not always
clearly negative. In special situations, e.g. very high-quality model or for
low default portfolios, there may be a problem of excessive concentration.
It should be remembered that the high quality of the model has higher

priority than low concentration.

Let K denote the number of non-defaulted exposure rating classes; let
R; be the relative incidence of the i-th rating class at the beginning of the
observation period (weighted by the number of clients or the value of their
exposure). Then the value of the coefficient of variation at the moment

t (i.e. performing proper validation) is given as:

K 1 2
CV; = K}Z(Rr—>
i=1 K

The null hypothesis of the test assumes that the Herfindahl coefficient
value is lower at the time of proper validation than at the time of imple-

mentation validation. The p-value of the test is given by:

VE —1(CV; — CV,,)
VOV2 (05+CV2)

1-¢

where: @ (.) is the cumulative distribution function of the standard normal
distribution, C'V}, is the value of the coefficient of variation determined
as at the date of implementation validation. As part of preparing validation
reports (European Central Bank, 2019), next to the value of the coefficient
of variation, values of the Herfindahl coefficient (Edward Miller, 1991),
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should also be reported:

] (CVE+1)
K
Hi =14 ——%
! + log (K)
As previously indicated, the test is carried out based on the relative fre-
quency of occurrence of the i th rating class of observations based on the

number and value of customer involvement in rating classes, i.e.

o weighted by the number of customers: R; = ﬁ, where NN; is the
j=1
number of customers assigned the j-th rating class,

. Weighted by the exposure value (only to calculate the HI; parameter):

R = ZK E )
to the j-th rating class.

where F; is the exposure value of customers assigned

To illustrate the calculations related to the concentration test, let us sup-
pose we have 20 non-default exposure rating classes. We determine the
values of the R; parameter and the expression (Ri — % )2 for each rating
class as shown in Table 6.9.

Based on these results, the values C'V;,, CV; can be determined:

CVinit = V/0.0006712 x 10 = 0.1159
CV eurr = vV 0.0006972 x 10 = 0.1180

The p-value for this test, given the sample data, is as follows:

v/10 — 1(0.1180 — 0.1159)

= 45.61%
/011597 (0.5 +0.1180?)

1-¢

which means that we fail to reject Hy : HI;p; < HI iy, i.e. the observed
concentration measured using the Herfindahl index at the time of proper
validation is lower than at the time of implementation validation. In addi-
tion, coefficients of variation and relative cardinal frequencies (i.e. R; deter-

mined based on the number of clients) can be used to determine Herfind-
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N_init | N_curr | R_init R_curr ‘ (R*i}’ét*l )2 ‘ ( Rfclu(”fl )2

1 547 720 | 0.043197 | 0.046455 | 0.00004628 | 0.00001257
2 711 846 | 0.056148 | 0.054584 | 0.00003780 | 0.00002101
3 538 650 | 0.042486 | 0.041938 | 0.00005646 | 0.00006499
4 553 840 | 0.043671 | 0.054197 | 0.00004006 | 0.00001762
5 704 851 | 0.055595 | 0.054907 | 0.00003130 | 0.00002408
6 616 676 | 0.048646 | 0.043616 | 0.00000183 | 0.00004076
7 652 893 | 0.051489 | 0.057617 | 0.00000222 | 0.00005801
8 749 890 | 0.059149 | 0.057423 | 0.00008370 | 0.00005510
9 643 795 | 0.050778 | 0.051294 | 0.00000061 | 0.00000167
10 677 831 | 0.053463 | 0.053616 | 0.00001199 | 0.00001308
11 523 739 | 0.041301 | 0.04768 | 0.00007567 | 0.00000538
12 733 728 | 0.057885 | 0.046971 | 0.00006218 | 0.00000918
13 654 833 | 0.051647 | 0.053745 | 0.00000271 | 0.00001403
14 530 603 | 0.041854 | 0.038906 | 0.00006635 | 0.00012308
15 671 858 | 0.052989 | 0.055358 | 0.00000893 | 0.00002871
16 658 875 | 0.051962 | 0.056455 | 0.00000385 | 0.00004167
17 736 707 | 0.058122 | 0.045616 | 0.00006597 | 0.00001922
18 624 614 | 0.049277 | 0.039615 | 0.00000052 | 0.00010784
19 526 843 | 0.041538 | 0.054391 | 0.00007160 | 0.00001928
20 618 707 | 0.048804 | 0.045616 | 0.00000143 | 0.00001922
Port. | 12 663 | 15499 1 1 | 0.000671466 | 0.000696502

Table 6.9: An xample of the calculation of concentration measures
Source: own work

ahal index values as of the date of implementation validation and proper

validation:
0.11592+1

HIpis = 1 log( 1 ) 0.45%
mit — +W— . 0

2
log (0.1180 +1

10 ) — 0.46%

HI =14+ —
curr + ]og(lO)

The values of HI;n;; and HI .y are low (less than 10%), which suggests
that there is no problem with an excessive concentration within individual

rating groups.

Population Stability Index

The examination of model stability has two main aspects — on the one hand,
it covers the stability of assessments generated by the model and on the
other hand, it also covers the stability of the population itself, i.e. the

distribution of individual variables. The indicator that can be used in both



225

cases is the Population Stability Index (PSI). It compares the distribution
of the same characteristics in two different periods, one of which is treated
as the base one and the other as the examined one. The base population
is most often the model development sample. The examined feature can
be a model score or rating but it can also be one of the variables. The PSI

value is determined according to the formula

PSI =Y (Vi—Di)in (g) :

- i

where

Vi — proportion i-th scoring grade in the new population,

D; — proportion i-th scoring grade in the base population.

A PSI value below 0.1 means a stable population. A value exceeding
0.25 means an unstable population. Values from 0.1 to 0.25 mean notice-
able changes in the population. For the score groups presented in Table
6.10, the value of the PSI is 0.05, so the distribution of this scoring in the
new population is completely stable compared to the base population. Sta-

bility of the scoring can also be seen in Graph 6.14 which compares two

distributions.

Vi—D;
D; Vi

Score group Base (in %) | New_pop (in %) Vi = Di ln(%lz) ><V

ln(ﬁi)
scorel 12.3 9.1 | -0.0320 | -0.3013 | 0.0096
score2 27.8 29.5 | 0.0170 | 0.0594 | 0.0010
score3 29.2 33.8 | 0.0460 | 0.1463 | 0.0067
score4 16.9 19.4 | 0.0250 | 0.1380 | 0.0034
scored 13.8 8.2 | -0.0560 | -0.5205 | 0.0291

Table 6.10: Scoring distribution in two periods and PSI calculations
Source: own work

In the same way, one can test the stability of nominal variables as well
as numeric variables if their values are grouped. However, the PSI is heavily
influenced by size fluctuations that may appear in the case of small cate-
gories for nominal variables or narrow grouping intervals for numeric vari-
ables. For this reason, instead of PSI, chi-square or Kolmogorov-Smirnov

tests can be used to analyze the stability of variables. These tests compare
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PSI=0.05
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MW Base New_pop

Figure 6.14: Scoring distributions in two periods
Source: own work

two distributions with each other. In the case of stability tests these are
variable distributions from two periods. For scoring models, it is important
to develop a characteristic analysis report. It allows comparing variable dis-
tributions over two periods but also shows how a change in the distribution

of a variable affects a change in the operation of the model.

Characteristic Analysis Report and stability of variable’s score

The characteristic report compares two distributions for each variable — for
the test population and the base population. However, in addition to the
difference in the distributions themselves, this report also shows what the
average difference in scoring is for these two populations (Siddiqi, 2012).
This makes it possible to understand the reasons for the change in the over-
all scoring determined by the model. In addition, we get the information
which characteristics have the greatest impact on scoring changes.

The total score difference for the variable is determined based on the
differences for individual values resulting from the change in population.
In the first step, for each value of a given variable, the change in population

is calculated as the difference between the examined population and the
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base population, that is (V; — D;). Then, for each variable value, the point
difference is determined as the product of (V; — D;) by the number of points
corresponding to the given value. Finally, the partial differences are added
together and we get the total scoring points difference. Its sign shows
in which direction the shift has taken place — whether customers with higher

or lower scoring have come.

Variable D; Vi . .
values | Base in % | New_ pop in % Vi = Di | Points | Score diff.
valuel 22.10 18.20 | -0.0390 66 -2.574
value2 29.40 27.10 | -0.0230 42 -0.966
value3 17.50 16.70 | -0.0080 28 -0.224
valued 17.70 25.40 | 0.0770 12 0.924
valueb 13.30 12.60 | -0.0070 32 -0.224

Total score diff. -3.06

Table 6.11: An example of the calculation of total scores difference
Source: own work

For example, variable presented in Table 6.11 there was a decrease in the
share of categories to which higher scores correspond. The total score
difference for this variable is -3.06 points. The determined difference can
be interpreted in terms of risk for a specific calibration of the scorecard,
e.g. if the calibration results in doubling the odds for every 20 points.

The above analysis allows assessing the stability of the assessments gen-
erated by the examined variable and its contribution to the overall score.
However, as it stands, it only applies to scorecards. A more universal in-
dicator of the stability of the scores generated by a given variable and its
contribution to the global score is the change in the mean Shapley value
for the variable. Importantly, the Shapley values apply to any machine
learning models — we may say that Shapley values are model agnostic. The
average value of this indicator for a given variable characterizes its signifi-
cance in the model at a global level. The comparison of this indicator for
the training and test sets — as indicated in Chapter 7 — allows for verifi-
cation at the stage of model construction — whether it is stable and has

not been over-trained. On the other hand, comparing the mean Shapley
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value for a variable in two different periods makes it possible to assess the
presence or lack of stability of the variable in the population. It is also
worth noting that in the case of the classic scorecard, the stability analysis
of the Shapley value for the variable is exactly equivalent to the stability
analysis of the scores. Because for the scorecard, the change in the mean
Shapley value for a variable is equal to the difference in the mean score for
the variable in the period under study and on the training set.

Apart from the Shapley values themselves, a broader analysis is also
important, when together with the indices we consider their standard de-
viation and average value. The combined analysis of these values allows
for a better understanding and more precise interpretation of the result
obtained. Therefore, it is also important to periodically verify the stabil-
ity of standard deviations and averages of the Shapley values of different
variables. Similarly, the stability of Permutation Feature Importance in-
dicators for individual variables should be verified. The indicators values
themselves may fluctuate but in a stable model, the order of importance
of the variables should be stable.

Stability of variables

Apart from testing the stability of evaluations generated by variables, the
stability of the distributions and properties of the variables should also
be periodically validated. It may happen that the average Shapley value
for the variable is stable, but the distribution of the characteristics in the
analyzed period is different than in the base period. The most basic
method of assessing the stability of variables is to compile the distribu-
tions of a given variable in the periods compared. Such a juxtaposition
makes it possible to assess the stability of various properties for variables
— the distribution itself but also the range of values, the scale of missing
data, the presence of outliers or atypical values.

In the case of continuous variables, the comparison should include ba-
sic statistics — the range of values, mean, quartiles, standard deviation
but it is also worth comparing more indicators, e.g. deciles of distribu-

tions. For those purposes, we recommend to use the box or violin plots,
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which in a condensed way allows for the distribution presentation. More-
over, it is suggested to monitor the distribution of missing values. Table
6.12 presents the statistics for the variable denoting the amount of loan
installments for companies from the SME sector, determined in the two

compared periods.

Population ‘ min ‘ max ‘ mean ‘quartilel ‘ median ‘ quartile3

Base_ pop 69.44 | 247 637.11 | 5 672.19 | 1726.63 | 2 759.38 | 5 536.64
New_pop | 115.98 | 164 066.22 | 5 387.98 | 1 697.66 | 2690.02 | 5 448.34

Table 6.12: The statistics of the variable denoting the amount of loan
installment in two periods
Source: own work

It can be noticed that despite the significant difference in the ranges
of the value of the variable, its main statistics remain very similar in the
compared periods. A similar conclusion can be drawn by analyzing the
distribution of the variable into deciles — the border values for the deciles

are very similar in both periods, as shown in Table 6.13.

Base population New population

Values ‘ Observations in % ‘ Values ‘ Observations in %
<1 020 10.09 <1 080 10.05

[1 020, 1 510) 9.99 | [1 080, 1 500) 9.93
[1 510, 1 910) 9.94 | [1 500, 1 860) 10.11
[1 910, 2 285) 10.04 | [1 860, 2 215) 10.11
[2 285, 2 760) 9,94 | [2 215, 2 700) 9.93
[2 760, 3 400) 9.99 | [2 700, 3 430) 9.93
[3 400, 4 600) 10.09 | [3 430, 4 720) 10.11
[4 600, 6 420) 10.04 | [4 720, 6 240) 10.05
[6 420, 10 250) 9.99 | [6 240, 10 000) 9.99
>= 10 250 9.89 >= 10 000 9.80

Table 6.13: Distribution of the variable denoting the amount of loan
installment into deciles in two periods
Source: own work

The PSI index can also be used to assess the stability of variables. In the
case of nominal variables, its application is obvious — the percentage shares

of individual variable values are compared. One of the values can also
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be a lack of data. Figure 6.15 summarizes the distributions of a variable
that was created by grouping the number of employees for small businesses.
After grouping, the variable has three categories: 1-2, 3-5, 6 or more and
lack of data (null) was marked as an additional value. Table 6.14 shows
the exact distributions of the variable over the two periods and the PSI
calculations. For the variable presented in the table, the value of the PSI

is 0.11, which means noticeable changes in the structure of this variable”.

Number of employees
40%

30%

20%
10% I
0%

emp_1-2 emp_3-5 emp_6+ null

W Base_pop New_pop

Figure 6.15: Distributions of the nominal variable in two periods
Source: own work

Vi — D;
D; Vi ;
Values Base_pop (in %) | New__pop (in %) Vi— Di ln(%i) XV

ln(ﬁi)

emp_ 1-2 21.69 31.02 0.09336 | 0.358022 | 0.0334
emp_ 3-5 27.48 29.34 0.01854 | 0.065274 | 0.0012
emp_ 6+ 32.87 31.52 -0.01344 | -0.04176 | 0.0006
null 17.96 8.11 -0.09846 | -0.79449 | 0.0782

PSI 0.11

Table 6.14: The PSI indicator calculations for the nominal variable
Source: own work

"Such a change does not always have to be a disadvantage. In the presented example,
it probably results from the improvement of the data filling process.
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For numerical variable, it is possible to test stability using the PSI
indicator if the values of such variable are previously divided into predefined
intervals. As an example, the above-mentioned variable denoting the loan
installment and its division into deciles for the base population can be used.
The decile breakpoints for the base population will be used to split the
variable’s value for the new population. We get the distributions shown
in Figure 6.16. Calculations of the PSI index are presented in Table 6.15.

Instalment
14%

12%

10%
8%
6%
4%
2%
0%

<1020 [1020,1510) [1510,1910) [1910,2285) [2285,2760) [2760,3400) [3400, 4600) [4600, 6420) [6420,10250) >=10250

W Base_pop New_pop

Figure 6.16: Distributions of grouped numerical variable in two periods
Source: own work

The determined value of the PSI indicator for the variable confirms the
conclusions from the comparison of the variable’s statistics for two periods

— the variable is completely stable.

6.4.4 Computational complexity and implementation cost of
the proposed methods of model monitoring

Three groups of quantitative analyses conducted as part of model valida-
tion or monitoring are presented above. These groups include discrimi-
natory power, calibration correctness and model stability. The described
tests and indicators include both simple and complex measures but almost

all analyses within a given group have the same computational complex-



232

Values D; (in %) | V; (in %) Vo D; | (% Vi 3 D;
Base_pop | New_ pop D; v
ln(ﬁi
<1 020 10.09 8.93 -0.0117 | -0.1229 | 0.0014
[1 020. 1 510) 9.99 11.30 0.0131 | 0.1231 | 0.0016
[1510. 1 910) 9.94 11.17 0.0124 | 0.1172 | 0.0014
[1910. 2285) | 10.04 10.11 | 0.0007 | 0.007 0
[2 285. 2 760) 9.94 9.18 -0.0076 | -0.0798 | 0.0006
[2 760. 3 400) 9.99 9.18 -0.0081 | -0.085 | 0.0007
[3 400. 4 600) 10.09 9.43 -0.0067 | -0.0684 | 0.0005
[4 600. 6 420) 10.04 12.11 0.0207 | 0.1873 | 0.0039
[6 420. 10 250) 9.99 9.18 -0.0081 | -0.085 | 0.0007
>= 10 250 9.89 9.43 -0.0046 | -0.0477 | 0.0002
PSI 0.01

Table 6.15: The PSI indicator calculations for grouped a nume-
rical variable
Source: own work

ity. To determine the complexity of individual methods, let us denote the
number of observations in the processed set by n.
In the group of analyses related to the study of discriminatory power,

the following indicators were described:

e Confusion matrix and its statistics, such as precision, accuracy and

others,
e« ROC curve,
e« AUC ROC and its confidence interval,
o CAP curve,
e Gini coefficient,
e Lorenz curve,
e Lift curve,

e K-S test,
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e Divergence for model,

o Divergence for variables,

e Gini for variables,

e Shapley values for variables,

e Permutation Feature Importance.

Among these analyses, only the confusion matrix and its statistics have
O(n) computational complexity. All other indicators and curve plots in this
group — except Shapley values — require the observations to be sorted
by risk assessment (or by variable value when evaluating variables) and
have the computational complexity of O(nlogn). Determining the Shap-
ley value is definitely more computationally complex. The algorithm con-
sistent with the indicator definition has a complexity of O(2%), where
k is the number of variables in the model. Therefore, various attempts are
made to simplify the calculations, e.g. by performing them on sub-samples
(Castro et al., 2017).

The second group of analyses includes calibration tests:
e Binomial test,

¢ Binomial test with correlation,

e Normal test,

e The Jeffrey test,

e The Hosmer-Lemeshow test,

e The Pluto-Tasche test.

In this group, all tests are based on statistics whose computational com-
plexity is O(n).
The third group consists of analyses related to the stability of the model

and variables:

e Migration matrix,
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Stability of migration matrix,
o Concentration in rating grades,
o PSI,

Stability of variable’s score,

— Characteristic Analysis Report,
— Stability of Shapley value for a variable,

— Stability of Permutation Feature Importance,

o PSI for variables.

In this group, almost all analyses, except for the Shapley value and PFI
calculation, have a computational complexity of O(n). Determining Shap-
ley values has a computational complexity of O(2%), where k is the number
of variables in the model. Calculation of PFI indicators has a computa-
tional complexity of O(nlogn).

Apart from the Shapley value, all other indicators are characterized
by low computational cost, even in the case of complex methods. It should
be noted that the main computational cost of most methods is the deter-
mination of the score value, which is then used in the calculations. The
implementation costs are also mainly related to scoring. It can be the
most expensive to prepare an appropriate environment in which the as-
sessments will be generated. On the other hand, all the presented ana-
lytical methods have their implementation in both commercial and open

source environments.

6.4.5 Classic and alternative methods of validating scoring
models

The use of non-classical analytical methods to build scoring models is still
quite rare due to the requirement of interpretability of the credit decision.
However, alternative analytical methods will be increasingly used in risk
assessment. This is due to, among others, two factors: the very high ef-

ficiency of these models and the dynamic development of methods that
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allow us to understand and interpret the operation of models that were
until recently treated as black boxes. This is confirmed by the EBA report
(European Banking Authority, 2020) in which the regulator notes that the
increasing use of big data is inextricably linked with advanced analytics and
the use of machine learning methods. The use of non-classical analytical

methods to some extent also affects the validation of the obtained models.

The first difference is visible already at the stage of preparing and se-
lecting variables for model building. Although the methods used for this
purpose do not change significantly, the approach to the issue of variable
selection has changed dramatically. One of the elements of data valida-
tion at the model building stage was the study of the correlation between
the variables and their discriminatory power. Classical modeling meth-
ods required the use of variables with high discriminatory power and not
correlated with each other, therefore these features were the subject of ver-
ification. Non-classical methods can be correctly and effectively applied
even with highly correlated variables that have low individual predictive
power. Regardless of the methods used, the requirement of the stability

of the variables used to build the model does not change.

The use of alternative methods of model construction does not affect the
methods of validating the discriminatory power of the obtained model. All
the above-described indicators and curves illustrating the discriminatory
power are model agnostic and can be effectively applied to any classification
model with a binary dependent variable. It is similar to the Gini index
for variables. A new element of validation that appeared with the use
of non-classical modeling methods are Shapley values and PFI calculations
for variables. They show the contribution of individual variables to the

discriminatory power of the model.

For the calibration tests, a change is proposed as described in the sum-
mary of Section 6.4.1. It consists of replacing the study of statistical signif-
icance with the study of the materiality of the problem. This approach was
also presented in the ECB document (Bank, 2017). The ECB determines
the materiality of the quantitative impact in the portfolio in terms of the

Risk-Weighted Assets percentage. This is a new approach in validation
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methods however it does not result from the use of alternative ML methods.
The main reason for the change is the problem with the actual realization
of the sample assumptions underlying the statistical tests, e.g. about the
independence of defaults in the rating class or the stability of real DR.
The methods of testing the population and model stability basically
remain unchanged — they consist of comparing the distributions in differ-
ent periods. The main change in this group of analyses, which is related
to the use of non-classical methods, is the use of Shapley values to ver-
ify the stability of the influence of variables on the discriminatory power

of the model.

6.5 Additional validation dimensions

The validation and systematic monitoring of credit risk models are essential
for proper risk management. However, good test results obtained on inter-
nal data can sometimes be misleading. In fact, it may turn out that the risk
has been underestimated and, therefore, risk management and the deter-
mination of provisions are based on erroneous estimates. This may result
from the specificity of one’s own portfolio but it may also be the case that
incorrect assumptions are made at some stage of the process, e.g. regard-
ing the lack of correlation of defaults. Therefore, it is worth carrying out
additional analyses during the risk assessment, such as stress testing and

benchmarking which allow for risk management in a broader perspective.

6.5.1 Stress testing

Stress testing is an analysis that reduces the uncertainty associated with
risk and regulatory capital estimation. It allows to assess and take into
account in risk management the risk resulting from very rare but fea-
sible events that increase the risk. They can be political, institutional
or economic events, but always result in a change in economic conditions.
The most obvious example of such an event is the economic crisis, i.e.

a significant deterioration in macroeconomic conditions, including a de-
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cline in GDP growth. However, the list of such events that may affect the

portfolio risk is much longer. Such factors can be, for example:
 significant drop on the stock exchange and an increase in market risk,

e an increase in the correlation between borrowers and the concentra-

tion of defaults in rating grades,
e increase in the probability of moving to lower risk classes,
e drastic fluctuations in DR,

¢ legal regulations leading to changes in the business conditions of large

borrowers.

Stress testing involves the inclusion in the risk assessment process of scenar-
ios that take into account one or more factors influencing the risk param-
eters. Banks and regulators found out about the importance of the stress
tests during the 2008 crisis. Following these events, the BCBS developed
and published in 2009 the set of sound stress testing practices (on Banking
Supervision, 2009). In 2018, based on several years of observation of banks’
activities in this area, BCBS updated the set of stress-testing principles (on

Banking Supervision, 2018).

6.5.2 Benchmarking

Benchmarking is the comparison of internal ratings and risk assessment
with external information, such as ratings from rating agencies. The bank
may obtain a comparison of risk ratings by using available external ratings
for the joint sample or by generating its own ratings for the external sam-
ple. The use of external data for benchmarking allows the bank to verify
the results of validating the discriminatory power of the model and the
correctness of the calibration. Significant discrepancies in the validation
results and benchmarking should be carefully analyzed in each case.
Performing benchmarking may not be easy to do. Comparing internal
with external ratings requires identifying a common sample for which rat-

ings are available and an appropriate mapping of the ratings to a common
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master scale. Using an external sample can be just as difficult. It is then
necessary to verify not only the quality of the data but also the compliance
of the definition of default and all the characteristics. Yet another difficulty
is the correct interpretation of the results of the comparison. The high dis-
criminatory power of internal risk models on the bank’s own portfolio and,
at the same time, the low rating obtained on the external sample are not
unequivocally justified. The reasons for this may be different and must
always be determined in a specific case. Perhaps these considerations make
the issue of benchmarking still not sufficiently methodologically developed.
An example of developing and conducting an extensive comparative anal-

ysis of models is presented in (Lessmann et al., 2015).

6.6 Conclusions

This chapter presents the process of validating the scoring model, taking
into account the common distinction between qualitative and quantitative
validation. The construction and maintenance of any model supporting
the decision-making process should include an evaluation and verification
component. In credit scoring, this component is even more crucial because
these models directly impact the institution’s profitability and in a suscep-
tible and strictly regulated area (i.e., granting credits).

The procedures described in this chapter apply to both classical mod-
els (e.g., logistic regression model) as well as machine learning models.
Validation of the scoring model performance, including such main areas
as discriminant power assessment, calibration quality assessment, and per-
formance stability, should be the basis of every scoring process, i.e., model

development and monitoring.
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The role of risk in the crediting process is crucial because inappropriate
risk assessment may lead to inefficient estimations of risk costs which may
cause issues for a bank and in consequence, to the whole banking sector
which is one of the fundaments of the economy. In order to avoid such
consequences, the Banking sector is deeply regulated by Basel Commit-
tee on Banking Supervision (BIS, 2020), local Financial Services Authori-
ties, in European Union additionally by the European Central Bank (ECB,

2020). In case of the credit scoring, regulators expect that discrimina-
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tory /predictive power should not be a single measure to assess a model’s
quality — see Chapter 6. Similar importance should be assigned to the sta-
bility and interpretability of the results. Banks are obligated to know how
their model works (know your model rule) and are required to be able to ex-
plain to their customers why a given credit was not granted (a so-called right
to know/explanation rule) (European Parliament, 2016). In other words,
it is expected not only to predict whether the client is less or more prone

to default but also to know why a model predicts that.

According to that, the most commonly used model in the field is a lo-
gistic regression, see Chapter 4 or (Bolton et al., 2010; Siddiqi, 2012) which
equalizes these two aspects. In many researches, it is shown that more flex-
ible machine learning algorithms are providing better predictions, however
in respect to their complexity and nested non-linear structure (Samek et
al., 2017), they are hardly accepted. Usually, the main argument against
flexible algorithms is their lack of interpretability (Bolton et al., 2010).

With respect to that, a trade-off between interpretability and pre-
dictability can be easily seen. So-called white-box models are easier to un-
derstand but may provide poorer predictions and so-called black-box models

may find more non-linear and less obvious patterns (Bzdok et al., 2018).

Some, such as Rudin (2019), suggest using mostly transparent models,
pointing out that they are often highly effective. However, others claim
that elastic models are on average more efficient. For example, Louzada et
al. (2016), performed a comprehensive comparison of credit scoring meth-
ods used in 187 scientific papers form years 1992-2015. In the paper, the
ranking of methods was as follows: SVM, fuzzy logic, neural networks, de-
cision trees and logistic regression. In a more recent paper (Lessmann et
al., 2015), even more complicated machine learning systems, namely het-
erogonous (HCES-Bag, GASEN, Averaging) ensemble methods are pointed
as the best; logistic regression was ranked 17th from 41 algorithms. Hetero-
geneous ensemble models are very complex, as they build their prediction

based on a combination of homogenous model (single or ensemble).

Their important position has also homogenous ensemble algorithms

based on decision trees (Caruana et al., 2008; Caruana & Niculescu-Mizil,
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2006). The structures of such algorithms may be very complex, the most
popular homogenous ensemble tree-based methods consist of many tree
algorithms trained simultaneously or iteratively with different methods
of regularisations, penalization, boosting and bagging are: AdaBoost (see
Chapter 4, or Freund et al. (1999)), GBM (Friedman, 2001), Random For-
rest (see Chapter 4 or Breiman (2001)), XGBoost (see Chapter 4 or Chen
and Guestrin (2016)), Light GBM (Ke et al, 2017), CatBoost
(Prokhorenkova et al., 2018) or Ngboost (Duan et al., 2019).

According to Hand (2005) and Fantazzini and Figini (2009), using com-
plex algorithms might be unnecessary as gain relative to simpler methods
is typically small and is at the expense of interpretability. Nevertheless,
what if we could overcome the trade-off between prediction quality and
interpretability? It seems that if we could understand how advanced algo-
rithms work, we would also understand better the phenomenon standing
behind the data which in turn would help to build a better model. Usually,
it is stated that logistic regression or decision tree are easy to interpret be-
cause one can easily analyze estimated coefficients or variable splits. And
this is true for a small or medium number of parameters, as very deep trees
or regression models with a large number of coefficients are much more

difficult to analyze.

Interpretable models such as logistic regression or decision tree are stiff
which means that they are not able to capture all possible relationships
between variables. It is tempting to use more flexible yet complex mod-
els that capture more sophisticated relationships. And then to extract
knowledge about these relationships from the model. Having this in mind,
it may be concluded that a similar approach may be applied to more com-
plicated algorithms and with regards to that, a better understanding of the
phenomenon may be revealed. Such an approach is a part of Fzplainable
Artificial Intelligence (XAI).

The XAI methods are designed to understand better how the algorithms
work and based on that, explain the decisions and predictions, improve
systems, debugging and fixing data or models — both on global and single
instance level (Barredo Arrieta et al., 2019; Biecek & Burzykowski, 2021).
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In X AT toolbox, we may distinguish many different taxonomies for methods
(Biecek & Burzykowski, 2021; Molnar, 2019):

1. intrinsic and post-hoc methods: intrinsic methods are specific
for simple models (logistic regression is interpretable by its design),
post-hoc methods concentrate on analyzing the model after its de-
velopment (usually are based on predictions or residuals) and may

be applied to complex models as well.

2. model-specific and model-agnostic methods: model-specific meth-
ods are designed using properties of a given model, thus are not useful
for a thorough comparison between models (for example set of diag-
nostics tests and interpretation of coefficients as marginal effects for
linear regression or goodness-of-fit tests and odds ratio interpretation
for logistic regression). Model-specific methods may be fast, as they
can use specific structure, properties or underlying assumptions for
a given model. Model-agnostic methods do not use any specific prop-
erties of models and therefore may be used for all models satisfying
basic assumptions (such as including finite number of features and

providing a prediction as a single value).

3. local (instance) and global level methods : local level meth-
ods are designed for interpreting results for a single prediction or set
of predictions and global level methods are designed to show how

a model works in general.

Different stakeholders are involved in the life cycle of the credit risk
model, such as risk managers, model developers, internal and external au-
ditors, credit officers or bank customers. Because different stakeholders
have different needs, they will also benefit from different XAI methods.
A map showing which stakeholders need which methods was presented by
Biicker et al., see Figure 1 in (Biicker et al., 2020). In the following section,
we will focus on the needs of data scientists creating and validating credit
risk models.

On the instance level, usually the purpose of the XAI methods is to de-

compose prediction of the model for a given instance with features contri-
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butions for each of the component (Hall, 2019). The enormous popularity
of the model agnostic local methods began with the LIME algorithms intro-
duced by Ribeiro et al. (2016a). In this method, a simple surrogate model
is used to approximate an algorithm in some local area. Even though this
approach is used frequently in Image and Text Recognition, its main draw-
back is that we have to estimate an additional model, instead of interpreting
a trained algorithm directly. To overcome this issue, the SHapley Additive
exPlanations (SHAP) values based on the game theory was presented (S.
Lundberg & Lee, 2017). Slack et al. (2020), showed empirically that in case
of unstable data (e.g. with highly correlated predictors) SHAP is a more
reliable method than LIME and currently it is the most popular method for
tabular data. To estimate SHAP values, different model-specific methods
and model-agnostic methods are proposed. Similar to SHAP and relatively
fast method to obtain similar decomposition of a prediction is Break-down
proposed by Gosiewska and Biecek (2020). In this approach, instead of cal-
culating the contribution of a variable in every or many permutations, only
one order of variables (chosen based on local feature importance) is con-
sidered. The SHAP values for the classical scoring models (i.e. scorecard)
is a normalized score for a selected feature.

In this chapter, we will discuss two popular frameworks used in the XAI:
a) a comprehensive XAI framework for model-agnostic methods - DALEX
(Biecek, 2018) and b) comprehensive XAI framework for tree-based model-
framework - TreeSHAP values (S. M. Lundberg et al., 2020).
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Local level Global level
Stakeholders Credit officer Risk manager
Bank customer Data scientist
Questions What causes this Which variables are
particular prediction? the most important?
What would happen How the variable affects
for a different input? model predictions
Variables’ Permutational feature
. Shapley values )
importance importance
Break-down Shapley importance
Variables’ Ceteris paribus / Individual Shaolev profile plot
profiles conditional expectations pley p P

Figure 7.1: A summary of the methods discussed in this chapter. We
show examples of local and global methods for explanations. Local meth-
ods focus on questions asked by a credit officer or a bank customer while
global methods are more often of interest to data scientists or risk man-
agers. In Section 7.1, we will discuss Shapley values and the Break-down
method, Section 7.2 is for Permutational feature importance, Section 7.3
shows Ceteris paribus profiles while Section 7.4 shows variable profiles
Source: own work



245

7.1 Shapley values and Break-down

This chapter brings the topic of methods available for explaining Artifi-
cial Intelligence!. What does it exactly mean that the black-box structure
is interpretable for a human or that we can easily explain why the model
made a certain prediction? There is no standard criteria and definition.
Barredo Arrieta et al. (2019) underline that there is some urgent need
for consensus regarding the definition of Explainable Artificial Intelligence.
Authors mention also common pitfall when confusing interpretability and
explainability terms. While interpretability (often referred as transparency)
is related to the structure of the model which can be analyzed through the
prism of individual coefficients in a way understandable for a human being,
explainability refers to actions of post hoc exploration of models despite
the complexity of its internal structure. Once the functioning of a model
is understood and inner connections between distinct predictors explored,
building trust in the model is the consequence. It is crucial for deci-
sion makers in achieving success. Trustworthiness and confidence of the
model are essential, as its outstanding performance might be only a mat-
ter of a few patterns found in the small subset of data. Interpretable
techniques explored in this paper focus only on post-hoc explanations.
For their evaluation, a set of explanatory variables, prediction function
(learning model generating predictions) and the target outcome is required
(Arya et al., 2019).
Shapley values and decomposition of a single prediction
As mentioned in the introduction, the first goal of XAI methods on the
instance level is to decompose the prediction of the model for a given in-
stance. Most of the approaches available to do that are connected with
Shapley values.

Shapley values are derived from game theory that studies interaction
and actions of cooperative games. The payout function is convex which
means that it pays off for the player to cooperate. The payout for a group

is higher than the rewards they would have received without cooperation.

'Note that this chapter is an extended version of the working paper Klosok and
Chlebus, 2020.
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However, the problem arises as to how to share the reward in a fair way. The
Shapley values set such a fair distribution with good theoretical properties
(Hotz, 2006).

In terms of explainable AI, game theory can be considered as follows:
for every of k participants (predictors), the payoff is understood as pre-
diction assigned to every possible combination of the players’ movements.
It is assumed that agents have different strengths in predicting the out-
come. For every possible combination of strategies (effects of the features),
different payoffs are possible. Shapley values purpose is: for a given set
of features and prediction calculated for them, Shapley values calculate the
contribution of each feature payoff to the final outcome.

Consider K agents who represent predictors in the data set. S C N =
{1,2,..., K} denotes the subset of agents and their number is set as |S|.
The v (S) is the function assigning the subset of agents S with a total
payoff contributed by co-working. For every possible game (prediction),
according to the Shapley formula, ¢ is a function on the fixed set N and
¢ (v) = (a1,...,ax) € RE while a; denotes the contribution of i-th player
to the final output v (N)

o= ¥ =D 0@ - o(s) i=1n
SCN\{i}

(7.1)

where S C N\{i} is the subset of all but i — th features from subset

S and v (S U {i}) is the function with the i — th feature present (Strumbelj
& Kononenko, 2010). The function ¢; (v) computes in some sense marginal
contribution of each player. It is done by summing the effect of each pos-
sible coalition of agents drawn from the N\{i} set. However, it is done
under the assumption that all agents arrive randomly. In order to fairly
distribute their power, Shapley function averages the agents expected pay-
offs over | N|! possible combinations. Another important assumption is that
an empty set v ({)) is also valid in the calculations. Shapley assumes that
v (@) = 0, as nothing is produced for free (Roth, 1988). In order to better

capture the idea, let us consider a set of two players N = {1,2}. There are
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possible four combinations consisting of the players: 0, {1}, {2}, {1,2}.
Generally, for subset consisting of N players, there are 2%V possible combi-

nations. Shapley function for each of the i = {1, 2} player is given by:
61 (0) = 3 v ({1,2}) — v (2] + 3 o (1) — v ()],
62 (0) = 3 [0 ({1,2}) — o (1)) + 3 o ({2)) — v ()]
Thus, Shapley value for each of the player is a weighted sum of marginal

contributions calculated as the difference of the payoff with and without

a given feature.

Roth (1988) states that function ¢ (v) has some meaningful properties.
The first one is known as efficiency state that total output v (IV) is the sum
of K players contributions. In normal terms v (V) would denote prediction
for a single instance, however for the purpose of Shapley value calculations,

it is stated as model outcome minus average model prediction

The second property — symmetry — assumes that for a given subset
of players S and two different agents i and j, so that v (S U {i}) = v (SU{j}),
the function ¢ is symmetric in the sense that it does not depend on the
player’s name, only on its contribution to the function v. In other words,

these two features contributions are equal (17)

¢i (v) = ¢; (v).

The third axiom of dummy player — for any player i if v (S U{i}) = v (S5)
for all S C N\{i} then ¢; (v) = 0. If the contribution of feature i does not
influence the prediction, then its Shapley value ¢; (v) must be zero.

Lastly, Shapley values satisfy additivity. Consider two games and two
contribution functions v and w. The gain from combining these two func-

tions is equal to the sum of individual gains for every player i:

¢i (v+w) = ¢; (v) + ¢ (w) .
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Additionally, ¢; (cv) = c¢; (v), where ¢ € R. This last property is also
known as linearity (Aas et al., 2019; Strumbelj & Kononenko, 2014).

Explanations standing behind Shapley values might be compared to the

linear model where prediction function is given by

K
fa) =60+ Z@wz

i=1
The Bo denotes the intercept, i.e. average model prediction over data
distribution. Shapley values decompose predictions for single instances
in a similar manner to linear models, however the former approach is de-
signed so that it is applicable for every class of models. Let x be an instance
of interest, f (e) prediction function and ¢9 = F [f (z)]. Then prediction
for the single data point is the sum of the intercept and K features contri-

butions)

K
f@)= ¢o+ Z¢i~
i=1

The idea behind Shapley values for a given set of predictors is computing
the difference between the feature effect and the average outcome. In order
to calculate the contribution of predictor i to the score produced by the
model for an observation x, it is necessary to derive a formula for the
difference when regressor value is not known. The difference in the linear
regression model would be an equivalent to feature contribution obtained

with Shapley approach

¢ = B (zi — E[X;]) = Bzxz_E[BzX'L} , i=1,... K.

However, in practice no such explicit equation for non-linear models ex-
ists. In addition to that, linear models often assume no correlation of inde-
pendent variables (i.e. absence of the multicollinearity problem in the data).
In fact, vector of beta coefficients in linear regression might be inflated due
to the correlated factors. When calculating the impact of single variables

on the model output, we want to take into account the phenomenon of fea-
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ture dependence. In order to overcome this problem, a general equation 7.1
has been proposed and it is a representation of Shapley value definition.
Consider final output v (V) that stands for prediction of a single data point.
|N| denotes the number of features for that object. Shapley value for each
of the feature ¢ from the set N is defined as ¢; (v), where v is a value of the
feature 1.

As computing expression ¢; (v) with K features requires creating 2 sub-
sets and increases exponentially with the number of predictors, an alterna-
tive approach has been proposed by Strumbelj and Kononenko (2014). Its
computation is based on Monte Carlo sampling. Consider an observation
z, number of features in the model K, prediction function f () and an in-
teger number m denoting the number of simulations. The output of the
simulation is the contribution of a given feature j to the final prediction.
Strumbelj and Kononenko present the following algorithm for Shapley value
of a single predictor?.

Another popular calculation method of Shapley Values is a SHAP ap-
proach (Shapley Additivie Explanation) proposed by Lundberg and Lee
(2017). The authors proved that for a given simplified input mapping
hz, there is only one additive feature attribution method that has an ex-

planation model which is a linear function of binary variables:

M .
g () =do+ > iz,
=1

where 2’ € {0, 1}M, M is the number of input features and ¢; € R and
satisfies three base properties (local accuracy, missingness and consistency)
and it is based on Shapley Values.

The SHAP values may be considered as Shapley values of a conditional
expectation function of the original model. They are not calculated directly
but are approximated. They may be approximated by model-agnostic (us-

ing presented above Strumbelj and Kononenko method or Kernel SHAP

2The modified version of the presented algorithm, which is especially recommended
for the Gradient Boosting algorithms, is the TreeSHAP (S. M. Lundberg et al., 2018).
This variant of the algorithm records the number of subsets of observation that flow into
each of the node of the tree.
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Algorithm 1: Shapley values ¢; (x) for a single predictor (z).

for 1,...., mdo

Pick a random observation w from the data set;

Pick a random permutation O € 7 (n), where 7 (n) is set of
ordered permutations of the feature indexes;

Create two new instances by and by based on x and w:

e reorder features in x and w according to indices in O:

/
' = (1, ¥2, ..., Tj,..., Ty) and
r_
w = (w1, wa, ..., W, ..., Wy
e create by = (v1, @2, ..., Tj, Wjy1,..., wy) and
bQI(IL'l, T2, «vvy Wy, Witly---, wn)

Instance b is created by taking feature values of 2’ for

1 =1,...,j and features values of w’ for i = 5 +1,...,n.
Analogously, instance by takes feature values of 2’ for
i=1,...,7 — 1 and features values of w’ for i = j,...,n;

Calculate ¢" (x) of the mth iteration from the formula:

¢j(x) = f(b1) — f (b2)

end

Shapley value is the average ¢; (z) = + 3™, o ().
Source: own work

method) or model-specific (Linear, Low-Order, Max, Deep or Tree SHAP)
methods. The Kernel SHAP method consists of 5 steps, (Molnar, 2019).

Among model-specific approaches, the approach for tree-based algo-
rithms seems to be the most important, as those algorithms provide very
often the best results, especially for tabular data (used in credit scoring,
as well). S. M. Lundberg et al. (2020) proposed a TreeExplainer method
that provides an exact calculation of Shapley Values in tree-based models
in polynomial time. What is more, it also captures directly feature in-
teractions and provides a new set of tools for understanding global model
structure based on Shapley Values and hence creates a whole XAI frame-

work for tree-based models.

Shapley values used for the purpose of local model explanations are very

similar in their use and functionality to local surrogate models implemented
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Algorithm 2: The Kernel SHAP method

1. Sample coalitions z}, € {0, WM kel,..., K, where M
is a maximum coalition size, 1 = feature present in coalition,
0 = feature absent;

2. Get a prediction for each zj, by first converting z; to the original
feature space and then applying the model f : f(hs(2}.)); ha(2},)
maps original value for features in coalition and randomly
selected value from data for absent features.;

3. Compute the weight for each z; with the SHAP kernel; the
weight is calculated as:

(M -1)

() 110 = 10

where |2’| is a number of present features in instance z.;
4. Fit weighted linear model optimizing the loss function:

re () =

L(figm) =Y [f (halzr) — 9] ma ()

z'eZ
5. Return Shapley values ¢y, the coefficients from the linear

model.;
Source: own work

in LIME. By contrast to surrogate models that assume linearity of the
classifiers, the concept deriving from coalitional game theory has a strong
mathematical background. Efficiency, symmetry and additivity axioms as-
sure that for each data points features contributions are distributed in a fair
way. Feature contributions for all regressors must be calculated so that the
sum of effects and the average adds up to the local prediction. Moreover,
if a feature is not present among regressors, its Shapley value is surely 0.
Shapley values are not only powerful and reliable tools for local model
inspection but can be aggregated into useful statistics for global model in-
spection. By summing features contributions for all of the instances and
averaging the effect, obtaining marginal contribution is possible. Visualiz-
ing the Shapley values with respect to a chosen predictor value and obtain-

ing partial dependence plot is also possible. One has to bear in mind that
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once calculating feature contribution ¢;, all explanatory variables are taken
into consideration. Explanations produced by local surrogate models often
allow to specify the number of predictors for the user. Comparing to LIME
procedure, estimating K predictors requires 2% combinations of payoffs.
Calculations of feature effect would be time-consuming even for one ob-
servation, not to mention the whole data set. There are some concerns
regarding sampling feature values when calculating payoffs with and with-
out the player. In order to predict the model outcome, the missing regressor
must be randomly sampled from the data. Slack et al. (2020), raise the is-
sue that both LIME and Shapley values computed in different packages are
perturbation-based methods whose results are always biased in some way.
However, in order to overcome this problem, the algorithm based on the
Monte Carlo simulations presented in the Strumbelj and Kononenko might
be executed with sufficiently high parameter m (number of simulations
— which will on the other hand increase further the computational time).

A similar approach to decompose single prediction is a Break-down.
It was proposed by Gosiewska and Biecek (2020). Its general idea is to start
with an empty set and add all of the features one by one and calculate
its average contribution to the prediction. Features are added respectively
to their predictive power. This model-agnostic approach for explaining
single predictions is presented in the algorithm below. It considers only
the step-up approach when calculations begin with an empty set and the
features are added. The step-down approach also exists and requires calcu-
lating the smallest distance between the full set of variables and the feature
removed from it.

Once again, let us consider a set of k features and an observation x.
Define V' as an empty set storing variable indices. Features’ indexes are
added one by one depending on their local importance. For the purpose
of that, it is necessary to define a function calculating the distance between

prediction for original instance x and an instance with features from V'

d(z,V)=|f (&)= f(z(V))|.
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The f (2 (V)) term measures prediction for 2 with feature values fixed
on variables from V. For the rest of the features, it is assumed they follow

the population distribution, conditional on V.

Algorithm 3: Calculation of Break-down values.

Vo0
for i in {1,...., K} do
for j in{1,...., K}\V do

For the observation x calculate the distance with the
feature j added to set V as

d(x,VU{j}) = |f (@)~ f=(Vu{i}D)|.

Choose the feature that maximizes the distance and denote
IS a8 Jmaz}

Calculate contribution of the feature ¢; (z) as difference
of prediction made with the feature j,,4, and without it:

$i (@) = f (VU {jmac}) = f (V).

Add the feature jnqe to the V;
end

end
Source: own work

Variable contributions in this procedure are ordered with their decreas-
ing predictive power. The algorithm chooses the most powerful feature
at first and then adds iteratively less important predictors, (Gosiewska &
Biecek, 2020). The main drawback of this method is that contribution
of the consecutive variable is dependent upon previously added predictors.
This result might be upset in the case of strongly correlated predictors (i.e.

similar effect as in the stepwise method described in Chapter 3).

In DALEX model-agnostic, methods for calculation SHAP and Break-
down (with and without interactions), values are available
(Biecek & Burzykowski, 2021), whereas in SHAP (S. M. Lundberg et al.,
2020), a set of model-specific and model-agnostic methods for SHAP val-

ues are available. What is more, in SHAP framework, additional local and
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global analyses are available based on SHAP values. Similar model-agnostic
methods are available in DALEX and will be described later in the text.

On the local level, the main methods are:

1. SHAP decomposition plot which is a plot showing how a final predi-

cation for an instance stimulated by different feature values.

2. SHAP force plot for an instance which is another plot showing features

contribution to the final prediction for a single observation.
On the global level, the most useful methods are:

1. Features Importance Plot with mean of absolute SHAP values (similar
method to PFI but based on SHAP values).

2. Local explanation summary that shows distributions of SHAP values

for all the features.

3. SHAP dependence plot which shows how a single feature (or in-
teractions of features) affects the output of the model (similar to
PDP/CDP/ALE plots).

4. SHAP force plot for all instances showing groups of instances that

are affected similarly by different features’ values.

The SHAP framework for tree-based models seems to be an effective
choice however, if a comparison between the algorithms for different families
is needed SHAP, values calculation may be time consuming. To be able
to efficiently compare algorithms from different families, DALEX frame-
work seems to be appropriate. Model-agnostic methods available in DALEX

framework are described in the next sections.

7.2 Permutation Feature Importance

Variable importance was first introduced by Breiman (2001), in a random
forest algorithm. Further research was done to propose a model agnostic

tool for calculating the contribution of individual features into prediction
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accuracy based on the Breiman approach (A. Fisher et al., 2019). Variable
importance for feature 7 is calculated by randomly permuting the feature
X; and computing increase a selected loss function, i.e. mean prediction
error, on the newly created data.

Denote a vector of K features X = (X, Xo,..., Xk), Y is an unidi-
mensional vector of true outcomes (dependent variable). Then, the dataset
with n observations D, = {(x1, v1), (z2, y2),..., (Zn, yn)}isa training
set for the machine learning model. Once the prediction function of a model
f (x) is obtained, prediction error of the algorithm is denoted as R ( f ) For

example, for mean square error it would be R (f) = E[(f(X) - Y)2]. In-

stead of compounding term R ( f ) — absolute error, root mean squared error
or any other metric such as R-squared, adjusted R-squared, accuracy, Gini
measure or any other metric incorporating predicted and true outcomes
might be used in order to calculate the performance of the model.

Let us suppose an ensemble learning algorithm (e.g. random forest)
composed of n trees is trained. Hence, the following estimator is proposed,
where L is a selected loss function such as AUC, RMSE or other, D denotes

a validation set and n is the number of observations in the validation sample

R(f D)=t (nl S e Y) .

t=1

Function returning prediction error is an aggregation of predictions re-
turned by all of the ensemble tree estimators fl, fg, ey fntree into the
average value. Alternatively, for a model consisting of a single structure
(e.g. logistic regression) nee is set to one and estimator R ( f, D) can
be derived in a similar manner.

Once an error measure function and original model error is obtained,
it is possible to formally define Permutation Feature Importance (PFI)
of variable X;. Given an original learning sample D,,, permute a feature
X; by shuffling its values randomly. Instead of rearranging the values,
creating a new variable with a given distribution is also acceptable. After
permuting the variable once again, calculate the prediction error with this

newly created data set denoted as D],
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PFI(X:)= R (ft, Df{) —R (ft, D;) .

Finally, the variable importance for predictor X; is the difference be-
tween the prediction error of the estimator calculated with the shuffled
data and prediction error with the original data. In order to compare the
significance of all training features, PFI(X,) should be computed for all
of i = 1,..., K features and sorted by descending values. The above for-
mula assumes that there are ns... tree-based algorithms that generate the
ensemble model, so in order to obtain the contribution of a single variable
to the model score, we must sum up the increase in prediction error for all

member estimators and take the average value (Gregorutti et al., 2017).

There are some concerns regarding this method. Firstly, the permu-
tation of predictor values is random in every iteration. As a consequence,
shuffling the feature for the first time might result in different importance
than for the second time. The solution for eliminating this randomness
component might be performing the action many times and taking the av-
erage result. Plotting the standard deviation of PFI coming from different
calculations is also desirable. Secondly, variable significance can be mea-
sured trustworthily only if the predictors are independent of each other.
However, it is common in practice that independent variables are strongly
correlated. This doubt was raised by Tolosi and Lengauer (2011) who no-
ticed that permutation feature importance depends strongly on the correla-
tion between predictors. They conclude that features belonging to a larger
group of correlated features receive smaller importance weights even though
they might significantly correlate with the dependent variable (similarly
to the SHAP value, in case of the particular feature present in the model).
Lastly, consider the learning algorithm performing very well on the train-
ing sample. It can be so good that we can speak of overfitting to the data.
Such a machine learning structure might be missing some data properties
when tested with the new data sample and PFI calculated on the testing
set might be completely different than PFI with the training set. Mentch
and Hooker (2016) raise arguments against this technique in more detail.

They also mention two meaningful alternatives. The first one suggested
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primarily by Strobl et al. (2008), involves permuting predictor taking into
consideration distribution conditional on the other regressors. The second
method studied by Lehmann and Romano (2006), is leave-one-covariate-out
(LOCO). In line with LOCO, the Feature Importance should be calculated
by measuring the predictor error after calculating the model without fea-
ture of interest. An important difference affecting the calculation time
is that LOCO needs to re-train the model again for each removed variable
which can be time-consuming for complex models. Nevertheless, all these

methods seem to produce comparable results (Mentch & Hooker, 2016).

7.3 Ceteris Paribus Plot/Individual Conditional

Expectation

Ceteris Paribus Plot (CPP) or Individual Conditional Expectation (ICE)
is designed for inspecting single observations of the model. For model
response function f and observations set {(zs,5, zi,c)}i—;, the n denotes
the data points and a predictor zs, fror (xi,5) calculates predicted out-
come of the model keeping z¢ fixed and changing the feature of inter-
est x5 (z. is different for all observations). It requires plotting prediction
as a function of xg conditional on observed . As a result, relation be-
tween the prediction and predictor is shown for N observations — taking
an average of the response results in Partial Dependence Plot (which would
be discussed later on).

In terms of comparing the curves among many instances of the em-
pirical data, it might be desirable to set up a centered CPP/ICE curve.
It is helpful especially in a situation when observations start with differ-
ent predictions and it is hard to capture the differences between them.
Centered CPP/ICE assigns a constant starting prediction for all instances
(centers the observations in the anchor value x*) and then plots the curve

with respect to the following equation (Goldstein et al., 2015):

fICE.CENT (fi,S»l“i,C) = fICE (l“z‘,Svai,C) - fICE (z7, 951',0)’
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where i denotes the observation index, so f g% . cpnT presents formula
for single centered ICE curve. The x* is the anchor point, it might be either
minimum or maximum value of xg or another value. Goldstein et al. (2015),
assures that in case x* is set to minimum of xg, then all centered ICE curves
are anchored at 0. This approach enables comparing predictions for single

instances versus predictions for some fixed feature value.

7.4 Partial Dependence Plot

Q. Zhao and Hastie (2019), state that Partial Dependence Plot (PDP)
depicting marginal effect of an input variable and the model outcome
is a black-box visualization tool most commonly used. This approach
was primary introduced by Friedman (2001). With PDP relation between
a model outcome and the feature values might be visualized on the plot
and better understood. The PDP assumes the X; feature constant while
averaging model predictions (i.e. it shows how the predictions partially
depend on features). This toolbox is especially useful when the direction
of regressors influence on the model outcome is unknown and its assessment
is required.

Writing the procedure formally, let X = (X7, Xo,..., Xg) represent
a vector of K variables and there are n observations in the learning sample.
Suppose s represents an interest set for which PDP is to be calculated
and x. is its complement. Complement x. refers to the observations not
included in the set xs , so z. = x\zs. Prediction function of a model
on data set z is denoted as f (). Partial dependence function on a set

T, is defined as:

fppp (xs) = By, [f (s, xc)] = /f(ﬂ«"s, zc)dP (zc)

where dP (z.) refers to the marginal distribution of x.. Since it is not

precisely known, Partial Dependence might be estimated with the formula:

fPDP xs - Zf x87 xzc
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What this method does is simply averaging over features values keeping

xs constant (not conditional on x) (Greenwell, 2017)).

The idea behind constructing the PDP estimator is rather simple. Sup-
pose we have the training set D, = {(x1, y1), (2, ¥2),..., (Tn, Yn)}-
The first step in the calculations involves replacing all of the data points
from the set D,, with the value for the first observation of that feature.
Afterward, predictions with newly created data set are obtained and the
average value of the predictions is calculated. The procedure is repeated
by replacing all of the feature values with the second observation value and
again an average prediction is obtained. Suppose the number of unique
values for predictor is equal to a number of data points n. The procedure
is repeated then n times, until all average effects are obtained. Finally,

plotting average values calculated for all of k-feature values is possible.

Partial Dependence Plots are most popular for covariates in a one-
dimensional space because plotting them for more dimensions is difficult
to analyze, although 2-dimensional PDP visualizing interactions between
explanatory variables are popular too. Friedman (2001) suggests that with
a large number of predictors, it is recommended to have a measure of rel-
evance such as permutation feature importance because selecting a cou-
ple of useful variables and their combinations might be time-consuming.
Partial Dependence is also computationally expensive. Consider a feature
j, number of data points n and number of grid points m. For every predic-
tor, it is required to make n *x m predictions. Supposing there are hundreds
of explanatory variables, it is reasonable to select a couple of the most desir-
able features for visualization. Reducing computational burden is possible
with setting a suitable grid of points for evaluation of profiles. Instead
of selecting the whole range of possible values for a feature, one can use

quantiles of the feature distribution for PDP calculation.

Certainly, PDP shows the relation between model outcome and input
variable both for categorical and continuous variables. The former is pos-
sible to obtain by simply plotting a single feature values against fppp ().
For the latter, the PDP might be presented as a bar plot, where each bar de-

notes the unique categorical value and height of the bar corresponds to the
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PDP function value. For many unique values of predictor, it might be com-
putationally expensive to calculate Partial Dependence estimator, in which
case we recommend binning (see Section 4.2.4) based on the percentiles.

Comparing PDP with CPP/ICE curve might bring interesting insights
into trained algorithms. As Friedman (2001) noticed, Partial Dependence
might be reliable only in case of weak dependence between predictors. Bal-
ancing these two methods and their results against each other can help
to detect interactions between the features. It might be true especially
where CPP/ICE curves for many instances are significantly different than
the average of them (Partial Dependence Plot).

Similarly as with PFI, correctness of this method might be questioned
in case of the highly correlated features, i.e. dilution of the impact of corre-
lated variables problem or the averaging within the non-existent combina-
tions of variables (e.g. 20 years old with 20 years of work experience). The
second problem is not present in the ALE or SHAP. Fortunately, an al-
ternative method to partial dependence was proposed. Accumulated Local
Effects (ALE) takes the correlation bias into account and, with slight mod-
ifications, calculates average predicted outcome with respect to the predic-
tor value. Another problem with PDP is that fppp (zs) is computed over
marginal distribution of other features. This inflates the results because ob-
servations with hardly probable numbers are created, thus creating fake and

unrealistic data and inflating the shape of the Partial Dependence curve.
Alternatively, instead of marginal density, a conditional distribution
might be used. Marginal Plot was proposed in this manner. The function
calculating MP values takes the form
Pt @) = Epe, [ (Xo, Xo)| X = 2] = [ f (2, 2e)dP ().

Analogously, the estimator of this formula is obtained

_ 1 ~
fM (xs) = Z f(x& xi,c)-
n(ws)
ZGN(IS)
In order to calculate fj; it is necessary to define some neighborhood
of the feature of interest x5. N (z5) C {1,2,...,K} is the subset of ob-

servations where z; s is in close neighborhood of z, and n (z,) denotes the
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number of those instances (Apley & Zhu, 2016). Marginal Plot resolves the
problem of incorporating marginal distribution, however does not account
for correlation bias, as averaging still incorporates dependence between two
features. The solution for this phenomena was proposed by Apley and Zhu
and is named ALE plot.

For a given predictor, Accumulated Local Effects calculate average
changes in prediction for observations in close neighborhood to the orig-
inal one. Formally, ALE requires computing following integral (for non-

differentiable cases we refer to the source paper (Apley & Zhu, 2016))

X = 2 } dzs — constant =

faLE ($s) = /:5 Eacclws [ﬁ (Xsw XC)

min,rs

Ts -
= / /fl (zs, xc) P (2¢|2s)dxcdzs — constant,
Tmin,zg

where }"\1(1‘3, Te) = % denotes the first derivative — change
of f (zs, z.) with respect to a small change of xs. When calculating the
local effect of xy; ALE accumulates the effect of the prediction for a given

predictor with the gradient.

For this purpose, dividing the feature of interest in many intervals
is needed. Intervals are designated as N; (k) and number of instances
falling into k-th interval is denoted as n; (k), where j = 1,2, .., d denotes the
feature index and k = 1,2, .., K denotes the interval number. Ranges of in-
tervals are set with the following notation: N; (k) = (zk—1,, 2,j]. Authors
Zhu and Apley state that zj ; are chosen as % quantile of the data distri-
bution. Subsequent data points are denoted as x;j, where ¢ = 1,2,..,n.
Observations in all intervals sum up to the total number of observations,
so S0 nj (k) = n. Additionally, let k; () indicate the range index num-
ber where a given observation x falls, zp; is set in close neighborhood
to the smallest observation and just below it, whereas zk ; is equal to the

largest x; ;
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kj(z)

1
gare (v) =
JALE kz )

J

> [f(zk,ja i) = f (2h-rs )| s

{i: zi,; €N;(k)}

—_

for each « € (20,5, 2Kk,j|, where z; denotes the observation with sub-
script i including all predictors but j. It is possible to obtain a formula for

centered local effect:

n

fave (x) = gave (z)— %ZQALE (i) = gare (x)— %
i=1

nj (k) gaLe (2r,;)-

Nk

The % Y1 gare (z;5) in the aforementioned equation accounts for av-
erage accumulated local effect for prediction, so the centered local effect
measures how for a given predictor the prediction decreases or increases
comparing to the prediction on average (Apley & Zhu, 2016).

Creating partitions of data based on % quantile of the data is easy for
continuous variables, as these predictors often have some predefined order
and dividing them into ranges is obvious. For categorical data, especially
without exact hierarchy (for example marital status), computation of ALE
effect of the predictor is possible, however it is necessary to somehow define
the order of values. As ALE plot for categorical features computes the effect
across some definite intervals also, it is necessary to define some hierarchy
of the feature levels, so that the effect can be accumulated through the
categories and transmit information about the model behavior consistently

with human logic.

7.5 An empirical example

In order to show how the XAl methods presented above may be used to bet-
ter understand and explain trained the credit scoring model, an XGBoost
algorithm with a logistic link function was trained on the Give Me Some

Credit data set obtained from the Kaggle.com. In Table 7.1, all available in-
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dependent variables and dependent variable (SeriousDlqin2yrs) are briefly
described. The data set contains 150 000 observations with a default rate
equal to 6.7%.

Table 7.1: Description of dependent and independent variables in the
Give Me Some Credit data set.
Source: Data set “Give Me Some Credit” downloaded from Kaggle.com

In the modeling process, the data was divided randomly with 50% ratio
into training and test samples and an XGBoost model was trained with
number of iteration set to 70, max single tree depth to 3 and a learning
rate to 0.3 (all other hyper-parameters were set on default values). Obvi-
ously, the hyper-parameter tuning process may improve the quality of the
model. However, the trained model had good enough discriminatory power
to be used in an example to show how the XAI frameworks help to under-
stand how a complex model works. Note that here, the Gini value equals
to 0.83 on the training sample and 0.71 on the testing sample. Moreover,
the Gini 0.71 corresponds to the AUC equalling 0.855 which is close to being

the best submission on Kaggle. For the sake of convenient interpretation
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of Shapley values, a probability of not being default was modelled, revert-
ing common practice makes positive SHAP values interpretation as being

a better client (less probable to default).

ROC charts

True Positive Rate

P —— Train, Gini=0.83
Pid —— Test, Gini=0.71

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 7.2: ROC curves for the XGB model on train and test sample.
A global level explanation
Source: own work

7.6 Instance level

Stakeholders involved in the model development process can use XAl meth-
ods in different ways. In this section, we take the perspective of data sci-
entists who create and validate the models (Biicker et al., 2020). From this
perspective, on the instance level, two main important questions usually

raise:
1. What was the main cause of model prediction? and
2. What would happen if the client would change somehow?

In the SHAP framework, the answer for the first question using the
SHAP decomposition plot may be found, while in DALEX framework, the
answers for both questions may be found. For the first, using Break-down
or SHAP plots, for the second — a Ceteris Paribus Plot.
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RevolvingUtilizationOfUnsecuredLines (1.018)
NumberOfTimes90DaysLate (1)
NumberOfTime30-59DaysPastDueNotWorse (0)
NumberOfOpenCreditLinesAndLoans (9)
NumberOfTime60-89DaysPastDueNotWorse (0)
DebtRatio (0.187)
Monthlylncome (5,200)
age (58)
NumberOfDependents (0)
NumberRealEstateLoansOrLines (0)
1 2 3 a 5 6

Model output value

Figure 7.3: Shapley values for a single client. Calculated with the SHAP
library. A local level explanation
Source: own work

Figure 7.3 presents SHAP decomposition plot for a given client. In the
figure, the black horizontal line shows an expected value from a model
(in log-odds scale). On the y-axis, all the features in contribution order
are presented. A line showing contribution of each independent variable
is drawn (color of the line depends on the final prediction, if it is negative,
the color is blue, if the prediction is positive, the color is red). The length
of the line between two features shows a contribution of a given variable.

In the brackets, a value of a given feature for a given instance is presented.

In the example, it can be seen that two variables that affect the predic-
tion most are Utilization of Revolving Limit (1.018) and Number of times
that client was 90 days late (1). In both cases, the contribution is nega-
tive (client is riskier), which is in line with expectation, as the client has
used more than 100% of available revolving limit and has bad experience

in being late with payment of obligations.

In DALEX, two different plots may be used to understand how the
features affect the prediction of the model for a given client. Figure 7.4
presents a Break-down plot and Figure 7.5 an SHAP plot (note that a dif-
ferent client is analyzed in the figures from DALEX and then for SHAP

example). The Break-down plot shows how given values of features move
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Figure 7.4: Break-down values for a single client. Calculated with the
DALEX library. A local level explanation
Source: own work

the prediction from the sample average prediction (93.6% — the proba-
bility of being good) to the final prediction (note that probability scale
is used). Features are ordered with respect to their local importance. For
the analyzed client, the most important feature was again the Utilization
of Revolving Limit (86% — relatively high utilization has a negative effect
on the prediction), the next three features are telling us that client has
no due experience and therefore they move the prediction toward higher

probability of being a good client (all equal to 0).
In the DALEX framework, an additional Ceteris Paribus Plot is avail-

able (Figure 7.6) which is designed for what-if analysis for a given client.
In the figure, a red line shows how the probability of being good would
change if the client had a different number of open loans and lines of credit,
keeping all other variables constant (ceteris paribus). The blue dot shows
where is the real number of open products for the client. It can be seen
that the client has around 10 open credit products, it may be also noticed

that the probability of being good wouldn’t change significantly if the client
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Figure 7.5: Shapley values for a single client. Calculating the DALEX
library. A local level explanation
Source: own work

closed his/her products or opened a few more of them. Only after 20 credit
products opened, we may expect a negative trend in probability of being

a good client.

7.7 Global level

The XAI methods are also very useful to analyze a model on the global
(whole model) level. Two main commonly used methods are feature im-
portance and partial dependence plots. The first one helps to understand
the role of all features in the model prediction, the second gives us an un-
derstanding how changes in a given feature affect the prediction of the
model.

Both presented XAI frameworks contain methods for feature impor-
tance and partial dependence plots. However, in the SHAP framework,

except for the Feature Importance Plot, the Local Explanation Plot is also
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Figure 7.6: Ceteris Paribus profile for a single client. Calculating the
DALEX library. A local level explanation
Source: own work

available which gives a bit more insight into the role of the all features

in the model.

In Figures 7.7 and 7.8 Feature Importance Plots for training and testing
samples from SHAP framework are presented. In this framework, the fea-
ture importance for each independent variable is calculated as an absolute
mean of SHAP values. Differences in those values give us a good intuition
in comparison of importance for each of the features (the higher value, the
more important the feature), however a scale for absolute SHAP values
is not so intuitive, therefore a role of given features in the prediction may
be not so easy to assess. Then, the SHAP for the methods with logistic link
function may be explicitly linked to the points to double the odds, so one
can estimate the impact of the feature on the target variable. In Figure
7.7 it may be noticed that the most important variable is utilization of re-
volving lines which is twice as important as any of the rest. Then, a few
following variables are similarly important (age, number of times borrower

has been 30-59 days past due but no worse in the last 2 years, debt ra-
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RevolvingUtilizationOfUnsecuredLines

age
NumberOfTime30-59DaysPastDueNotWorse
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NumberOfOpenCreditLinesAndLoans
NumberOfTimes90DaysLate
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Figure 7.7: Feature Importance plot based on SHAP values for the train-
ing sample. A global level explanation
Source: own work

RevolvingUtilizationOfUnsecuredLines
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NumberOfTime30-59DaysPastDueNotWorse
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Figure 7.8: Feature Importance plot based on SHAP values for the testing
sample. A global level explanation.
Source: own work

tio etc.). We may also notice that contribution of features to predictions
is spread around many different variables, which is very often considered
as crucial for a good credit scoring model (risk of fast deterioration in model

quality is smaller, as prediction is diversified).

In the process of the model assessment, the comparison of features im-
portance between the training and testing samples is very useful. To as-
sess whether the model is rather stable and not over-fitted, the importance

of variables should be similar in both samples. Analyzing Figure 7.7 and 7.8
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it can be stated that for the trained XGBoost model, the importance for
all variables in training and testing samples is very similar. Based on that,
it may be assessed that the model should work similarly for observations
that were not included in the training sample (however, coming from the

same period of time).

Figure 7.9: Permutation Feature Importance for testing sample. A global
level explanation
Source: own work

The feature importance plot is also available in the DALEX framework,
here the Permutation Feature Importance is calculated. This approach
gives an opportunity to choose a metric that is easily interpreted. In Figure
7.9, the feature importance is calculated in marginal AUROC (area under
ROC) drop scale. In this case, the role of variables may be assessed, both
in relative and absolute terms. It may be observed that utilization of revolv-
ing products is again the most important feature (even more than twice im-
portant than next variables). However, based on the results obtained here,
it may be also stated that if the utilization of revolving product would
lose its discriminatory power (as if it was randomly assigned to clients),
the drop in discriminatory power in AUROC scale would be equal to 0.08
(0.22 for the variable vs. 0.14 for the whole model) or 0.16 in Gini scale.
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In other words, the AUROC for the model would drop from 0.86 to 0.78
or Gini from 0.72 to 0.54. As AUROC or Gini scale is usually the most im-
portant scale in financial institutions, an absolute interpretation becomes
also very intuitive. Permutation Feature Importance values depends on the
set of permutations that have been drawn in the calculation process, thus
it may be different for different iterations. In order to present possible
uncertainty in assessment, navy blue box plots are also drawn at the end
of each bar in the figure. In this case, the uncertainty is rather small and
it seems that the main disadvantage (potential instability) of the Permu-

tation Feature Importance method is not essential here.

In the SHAP framework, the Feature Importance may be extended
by an analysis of a Local Explanation Plot presented in Figures 7.10 (train-
ing sample) and 7.11 (testing sample). In the figures, horizontal violin plot
for SHAP values (empirical distribution of SHAP values) is drawn for each
variable. The SHAP values are colored red if the value of a given variable
is high and colored blue otherwise. In both figures, we can see a very similar
distribution of SHAP values for all features, this is another confirmation
that the model should not be deeply over-fitted, as it works similarly on the

training and testing samples.

Analyzing a plot for utilization of revolving products, it can be seen
that the majority of distributions is placed around low values of the vari-
able (blue color) and low values of utilization affects predictions positively
(higher probability of being a good client). However, many high value out-
liers may be also observed that affects prediction negatively and its role

in final prediction is higher (higher values in absolute terms).

The results for the utilization of revolving products seem to be intu-
itive and expected. Much more interesting results may be observed in the
example for a number of dependents. It can be seen that a small num-
ber of dependents has a rather small impact on predictions. This stands
in contrast to a high number of dependents seeming to have a higher im-
pact on the prediction but the direction of the impact is not unequivocal.

The impact for some clients is positive, for others is negative. Such results
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Figure 7.10: Shapley values for training sample. A global level
explanation

Source: own work
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Figure 7.11: Shapley values for testing sample. A global level explanation.
Note that it is similar to 7.10 which suggests good generalisation properties
Source: own work

may suggest an interaction with a variable that may possibly distinguish

both groups.

Another set of methods at the global level of model explanation are
partial dependence plots which show how the change of values for a given

variable affects the predictions in the whole sample.

In the SHAP framework, the SHAP Dependence Plot is available. This
plot shows how SHAP values are distributed for each value of a given vari-

able and whether any specific profile of dependence between a given variable
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and prediction may be observed. Analyzing Figure 7.11, it may be noticed
that being relatively young (30-40 years old) affects the prediction of being
a good client negatively, whereas getting older affect positively the predic-

tion (positive trend stops around 70 years of age).

In the DALEX framework, an analogical plot is Partial Dependence Plot
(Figure 7.13, green line). It also depicts a profile of average dependence
between a given independent and a dependent variable. In this plot, instead
of SHAP values, an average prediction of dependent variable for each value
of an independent variable is presented. In Figure 7.12 a similar positive
tendency in probability of being good when getting older may be observed.

Conclusion should be the same for both analyses.

Both methods work properly, if no collinearity in independent vari-
ables is observed (i.e. the averaging across the combination of features
that are non-existent; the multicollinearity problem should be on the level
of particular approach). There is no solution for such a case in the SHAP
framework, however in the DALEX framework, two possible solutions are
included. First is Conditional Dependence Plot (Figure 7.13, blue line)
which shows how the analyzed independent variable and all collinear vari-
ables jointly affect the average prediction. Second approach is Accumulated
Local Effect Plot (Figure 7.14) which extracts the effect of the collinear
independent variables and shows only the relation between a given inde-
pendent and dependent variable (by construction, it is on different scale,
therefore for predicting probability of being good, it has to be presented
on a different plot). Having all those 3 plots, an appropriate analysis of re-
lation between independent and average prediction of dependent variables

may be performed.

As a general rule, it may be assumed that if all 3 profiles have similar
shapes, the PDP may be interpreted as if they are similar — the target value
prediction is observed along with the change of the feature (accounting also
the correlations between variables). In the case where all those profiles
are different, usually the ALE plot is interpreted as most common, only
a given variable role in prediction of dependent variable is analyzed (not

all collinear variables jointly). In Figures 7.12 and 7.13, it may be observed
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Figure 7.12: Variable profile based on Shapley values. A global level
explanation
Source: own work

Figure 7.13: Partial dependence profile and Conditional dependence pro-
file. A global level explanation
Source: own work



275

Figure 7.14: Accumulated local dependence. A global level explanation
Source: own work

that shapes for all 3 curves are very similar, so it may be concluded that age
is not collinear with other variables and therefore PDP may be interpreted.
Therefore, it may be stated that the young clients (92.5% for clients in age
of 30) have the smallest probability of being a good client and the average
probability is growing with age until around the age of 70 (95-96%), then
the probability stabilizes.

To sum up, both XAI frameworks — DALEX and SHAP, provide a set
of tools that enable to explain how the complex models work, both on local
and global level. The methods presented above are not the only methods
that are available in both frameworks, however they are a good founda-
tion for making complex machine learning models explainable. The choice
between the frameworks is not easy, as both give a comprehensive set
of methods to explain and assess the quality of the model. The choice

should be made including at least a few criteria:
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1. the set of algorithms to be analyzed (SHAP works efficiently for exam-
ple for tree-based model, DALEX is model agnostic, so many different

algorithms may be compared),

2. preferable methods for analysis (SHAP has for example Local Expla-
nation Plot which provides a lot of information at one plot, whereas
DALEX, for example, has a what-if analysis for collinear independent

variables),

3. intuition of interpretation (SHAP has all the methods based on SHAP
values which is consistent, however DALEX has feature importance

in AUROC/Gini scale which are well known in financial institutions),

4. the technology used and preferred by the institution; both SHAP and
DALEX are available both in R and Python.

The set of criteria mentioned above is not exhaustive, many additional
specifics for a given financial institution may be considered. What is im-
portant, no matter which one of XAI frameworks would be finally chosen,
a comprehensive analysis of a model quality and explainability may be per-
formed which is extending actual best practices in credit scoring models as-
sessment. Having those frameworks, we may clearly understand the model
and therefore confirm that credit scoring model based on machine learning
algorithm may be used instead of classical credit scoring model without
increasing the operational or model risk (i.e. related to the methodological
assumptions of the model and interpretability of the model’s parameters).
Basing on methods presented so far, many additional analyses may be per-

formed that extend insight into the analyzed model.

7.8 Extensions of base X AI analysis

Well-prepared XAI frameworks, as those discussed (SHAP and DALEX),
are very intensively developed and new methods are consecutively imple-
mented. In spite of that, not all useful analyses are available and therefore
additional methods and extensions may be created in order to better un-

derstand how the model works. In the section, two very useful plots are
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discussed. Firstly, an extension for Feature Importance analysis is pre-
sented, secondly a plot showing the relation between standard deviation
of SHAP values and mean difference between SHAP values for good and
for bad clients.

In the extended Feature Importance analysis not only mean absolute

SHAP values are analyzed but also:

o standard deviation of SHAP values, for which outliers (severe con-
tributions of a given variable in both directions) weights more than
in mean absolute SHAP values. Standard deviations are by definition
centered around the mean value of the variable, so they may be used
to assess a feature importance with extracting a role of a shift in mean
of SHAP values,

o mean of SHAP values which for training sample should be equal 0, but
for a testing sample may differ slightly (Figure 7.15) or severely (Fig-
ure 7.16). The shift may be either positive or negative, it depends

on a data change.

In order to present how extended Feature Importance may be used
in a model, two plots are compared. In Figure 7.15, the same testing
sample that were used for previous analysis is presented, in Figure 7.16
a testing sample where a shift in distributions of clients may be seen. The
shift in data distributions may be recognized by having mean of SHAP
values not equal 0. If mean is around 0, it means that the average con-
tribution of a given variable is similar in the analyzed sample as in the
training sample. In the second testing sample, the mean of SHAP values
is positive, it can be interpreted as a shift of clients distribution toward
better clients (on average variable contributes more positively than in the
training sample).

Acknowledginh mean of absolute SHAP (mean abs) values and its stan-
dard deviations (stdev), a plethora of useful information may be obtained.
In the first testing sample, shorter bars for mean absolute values than for
standard deviations show that we should expect a group of clients with

severe SHAP values for most of features. Completely different conclusions
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Figure 7.15: Extended Feature Importance analysis for a testing sample

with not significant shift in data
Source: own work
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Figure 7.16: Extended Feature Importance analysis for a testing sample
with significant shift in data
Source: own work

may be drawn from the second testing sample, here the standard deviations

are close to mean absolute values, so the role of outliers is not important.

No matter which metric (mean absolute or standard deviation) we fi-
nally use to assess the importance of the features, we can state that the
relative importance is the same in all cases (the most important is utiliza-

tion of revolving products, then due experience, then age etc.). We may
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also observe that for both testing samples, the rank order of feature im-
portance is similar, as well as its magnitude. Those results suggest that
even though the second sample has a shifted distribution of clients, the role
of each feature in final model predictions should be similar as for the first
testing sample and the training sample consequently.

In this method, as we do not know what was the real outcome (Good
or Bad client), it is assumed that if feature affects predictions in the same
way in different samples, it may support a claim that the feature would
perform similarly in terms of discriminatory power in all the samples con-
sidered. However, in order to confirm that, a joint comparison of predictors
importance and discriminatory power should be performed.

It is interesting to analyze that by having a plot showing the relation
between standard deviation of SHAP values (feature importance) and mean
difference between SHAP values for good and for bad clients (feature dis-
criminatory power). At the plot (Figure 7.17), on an x-axis, standard devi-
ation of SHAP values for each variable is presented, whereas on the y-axis,
deviation between average of SHAP values for good clients and average
of SHAP values for bad clients are presented. The higher standard devia-
tion, the more important the role of a variable in a prediction of a model.
However, based on the standard deviation, it cannot be assessed whether
the importance is linked with correct or not correct predictions.

In order to assess that, deviation between average of SHAP values be-
tween good and bad clients is calculated. It is expected that all variables
affect prediction of being good for good clients positively and for bad client
negatively, therefore the higher the deviance, the better variable in terms
of discriminatory power. After merging this two dimensions together a plot

may be drawn, where:

o features with high average deviance of SHAP values for good and
bad clients and high standard deviation of SHAP values (upper right
corner) should be considered as the most influential and highly sep-

arating. They play a crucial role in the model quality,

o features with a small average deviance of SHAP values for good and

bad clients and small standard deviation of SHAP values (bottom
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left corner) should be considered as not influential and not separating
well. They are candidates to be removed from the model, as they not

provide any valuable information into the model,

o features with small average deviance of SHAP values for good and bad
clients and high standard deviation of SHAP values (bottom right
corner) should be considered as influential but of poor separating
quality. They should be removed from a model, as they not provide

discriminatory power but affect the prediction significantly.

o features with high average deviance of SHAP values for good and
bad clients and small standard deviation of SHAP values (upper left
corner) should be considered as less influential but of high separating
quality. They play also a crucial role in the model quality, even though
they do not affect the prediction severely.

In the analysis, the difference between those two dimensions for training
and testing samples may be included. We may check how the variables
change their positions in the testing sample, in comparison to the training
sample. If variable move more toward the x-axis than the y-axis, it means
that discriminatory power drops more than the importance of the variable
and therefore variable may be considered as riskier.

In Figure 7.17 we can see that the most crucial variable is utilization
of revolting credits. It has the biggest importance as well as discriminatory
power. However, it should be also noticed that in the testing sample its
importance is not diminishing but its discriminatory power is. This re-
sults may raise a risk, as possible further deterioration in discriminatory
power may lead to poor quality of the model. For most of the variables,
in the testing sample discriminatory power drops, there is only one visi-
ble exception for variable counting number of times client was in 90+ days
late. In this case, the discriminatory power of a variable and its importance
grow jointly. In the figure, there are no variables in the bottom right cor-
ner, so there is not a need to remove any variable from the model, however
variables, such as a number of dependents, seem not to have any special

influence on the model and may be considered as redundant.
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Impact of features on the model and on predictive power
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Figure 7.17: Plot showing the relation between standard deviation
of SHAP values (feature importance) and mean difference between SHAP
values for good and for bad clients (feature discriminatory power)
Source: own work

7.9 Conclusions

Explainable Artificial Intelligence methods were presented in this chapter.
Different methods that help to assess and understand models on the lo-
cal (prediction decomposition plots, ceteris paribus plot) and global level
(feature importance, partial dependence plots) were analyzed. The meth-
ods presented are available in two XAI frameworks — SHAP and DALEX.
The SHAP framework is SHAP values-oriented and is especially effective
for tree-based algorithms. The DALEX framework provides methods us-
ing different metrics and is mainly focused on agnostic approaches. Both
frameworks have their pros and cons however are comprehensive and ready
to be proposed as tools for new best practices in credit scoring modeling

using more complex modeling methods.
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In-depth knowledge of data processing, model building and assessment tech-
niques is essential in creating a high-quality credit scoring application but
additional technical knowledge is needed to implement the design in an ef-
ficient and scalable manner. This chapter focuses on computational issues
connected with scoring models and highlights modern trends and platforms

for time-effective processing architecture.

We begin with management and organizational perspective on comput-
ing performance in IT projects. Throughout years of experience, many
frameworks dedicated to managing IT workflows, such as credit scoring
applications, have emerged and shaped the standards for controlling time

and resources. Afterward, we outline the history of computational resources
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and highlight how the approach to raising the components performance has
changed since the creation of the first processor. After that, we follow the
model creation process focusing on performance in consecutive stages: data
gathering, model building and deployment. Each step has distinct charac-
teristics and challenges which manifest themselves with increasing data vol-
ume, model complexity and deployed model utilization. The last part of the
chapter focuses on Big Data services and cloud platforms as an example

of modern computing environments suited for big-scale scoring applications.

8.1 Introduction to computation performance

8.1.1 Computation performance in the context of managing
IT projects

Successful implementation of the scoring model requires also a considera-
tion of computing and operational efficiency. Appropriate data processing
and the construction of a high-quality model is not sufficient to success-
fully build a scoring application. The complexity of algorithms influence
deployment effort for both initial launch and future features. Elaborate
models may require meticulous testing process and additional computation
resources during each release compared to simpler solutions. Additionally,
during the service uptime, maintaining good performance of prediction
both in terms of quality of prediction and responsiveness (latency) may
pose a challenge and is linked with the complexity of the model as well
as retraining process e.g. batch or online which will be discussed in more

details in further sections.

Awareness of possible performance and quality caveats is essential dur-
ing the application planning and designing phase. Formally, in the con-
text of IT project management, there are three main planning factors
(Fraczkowski, 2003):

o cost, i.e. funds that can be allocated to project resources (hardware,

computer software licenses, people and related costs),
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e the time in which the project or project’s milestones should be com-

pleted,

¢ scope including functionalities, used technologies and final shape of the

product.

Technologies used in the financial sector are heavily influenced by legal
regulations and the company’s reputation strategy. Banks strive to be con-
sidered as cutting-edge tech companies associated with security, stability
and innovativeness (Finlay, 2012). Modification of one of the above ele-
ments affects the others, e.g. by increasing costs, it is possible to reduce
the project’s implementation time or increase the planned scope. From the
perspective of projects involving the creation of predictive models, it is es-
sential to consider the required computing power. With the rise in the
data volume and the use of increasingly complex models, it is necessary
to use increasingly faster computers that allow more efficient calculations
and technologies dividing the workload among many computers. In prac-
tice, the computational requirements can be met by increasing the budget
(more efficient equipment, introducing shift work system), postponing the
project completion date or by using appropriate technologies.

In the credit scoring system, a project completion date can be identified
as a start of serving predictions for new clients. With proper set of technolo-
gies e.g. Predictive Model Markup Language (PMML)' and DevOps tools,
the project’s progress may be controlled in a more flexible manner resulting
in a higher chance for completion on time. Model performance specifica-
tion is mostly determined by the number of new credit applications and
latency requirements. System design should take into account that most
of the credit applications are generated through mobile and internet chan-
nels while few applications are filled in bank branches. On the other hand,
in-branch applications need a faster response time while remote channels
latency requirements are more relaxed. As for planning, an important com-

putational factor is tied to the training type — batch training uses internal

"http://dmg.org/



286

bank data while online learning utilizes data provided by the clients. Batch

and online learning are discussed in more detail in Section 8.2.3.

IT projects differ from projects implemented in other industries, mainly
due to the variable scope of the project through duration (Liebert, 2017).
This feature means that I'T projects are often carried out using agile method-
ologies such as Scrum or Extreme Programming which allow to quickly in-
corporate new requirements in the project (Schwalbe, 2013). Requirements
change may also demand increasing scope and volume of data used in or-
der to provide a service for a much larger group of recipients or use a more
complex class of models. The majority of specification changes occur be-
fore the launch of a new system but an additional scope may be added
also during the service operations. Due to that, it is important to base the
system on scalable and extensible technologies, in particular allowing harmo-
nious and quick application adaptation to the growing intensity of requests
(Roszkowski, 2015).

The cost and time of the project are not flexible which is why the
increase in available computing power is currently gained by using appro-
priate computer programs based on Big Data principles or functionalities
of programming languages and computer components (processors, RAM).
Modern solutions, e.g. cloud computing, allow to smoothly modify the
trade-off between the cost and time of calculations depending on current
design requirements, both in model creation and utilization phases. This
is also of great importance in terms of synchronizing the resources within
the project. Apart from unexpected failures, computer equipment is avail-
able for use at any time however, project team members have designated
working hours, therefore the ability to control the speed of calculations gives
them the ability to perform tasks more efficiently and build a product. Syn-
chronization is also important considered that standard model building pro-
cess includes three environments: development, test and production. Data,
code and configurations are migrated between environments to introduce
new features and deploy model. A distinction into environments separates

and organizes the workflow but also introduces additional computational
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overhead. With proper technology and computing infrastructure, migration
cycles may be shortened and the system deployed more efficiently.

An additional area that impacts IT system performance and project
costs is how data is collected — more on the data sources in credit scoring
in Chapter 2. This is an extremely important layer of IT projects that
affects the performance of the product both through the characteristics
of the data device used (HDD, SSD, in-memory data) and the data storage
system (in relational databases, in the form of binary files, JSON, Avro,
HDFS, XML).

8.1.2 Historical outline of computer performance

Around 80 years have passed since the first digital computer was created,
during which the computing power of computers has increased many times.
For comparison, a modern laptop has 4 million times more RAM and
100,000 times faster processor than the on-board computer of the Apollo
11 mission. When analyzing the development of computers, several ap-
proaches to computing performance can be distinguished. Initially, the
increase in machine performance was provided by reducing the size of tran-
sistors used in processors, so more elements were packed in the same space.
According to the Moore’s law, it is assumed that the number of transistors
in microprocessors doubles every 2 years (Moore, 1965).

The term Moore’s law is also used to change the characteristics of other
computer components (e.g. RAM size, hard disk capacity) and related tech-
nologies (e.g. Internet bandwidth).

As already mentioned, one of the main reasons for which this exponen-
tial growth is possible, is the use of continuously smaller elements in the
production process. However, taking into account the physical problems
with the development and miniaturization of transistors, it is expected that
in a few years the limits of element placement will be reached (ITRS, 2015).
For this reason, the computer industry is currently focused on increasing
computing capabilities by creating multi-core processors used in parallel
processing. In the 1960s and ’70s, parallel calculations were used only

in supercomputers using specialized components. In the mid-1980s, as part
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Figure 8.1: Number of transistors on processor chips
Source: own work

of a project funded by NASA, a supercomputer was created based on widely
available Intel 8086 /8087 processors which was a step towards the introduc-
tion of multi-core designs on the mass market (G. Fox et al., 1985). Finally,
the two largest manufacturers of home computer processors included their
first dual-core models to the product catalogue in May 2005 (Intel — Pen-
tium D, AMD — Athlon 64 X2). In 2020, the number of cores in a processor
is one of the main determinants of processor quality and performance. For
example, processors from Intel i9 Series X have 18 cores while AMD Ryzen
9 3950X has 16 cores.

The main assumption of parallel calculations is to divide the instruc-
tions necessary to execute the program among the available processors/cores.
Theoretically, it is therefore possible to reach computations speedup equal
to the number of processor cores. In practice, only certain parts of the pro-

gram can be parallelized, thus the maximum acceleration of calculations
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using multi-core architecture is limited. This problem is described by Am-
dahl’s  law, based on the Gene’s Amdahl article published
in 1967 (Amdahl, 1967).

The maximum calculation acceleration regardless of the number of cores

1
T
if 90% of calculations can be processed in parallel, using multiple cores will

is where p is the ratio of parallelized part in the program. For example,

speed up the program by up to 10 times, see Figure 8.2).
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Figure 8.2: Grafical interpretation of Amdahl’s law
Source: own work

The increase in demand for computing power resulted also in emer-
gence of specialized components prepared for numerical calculations e.g.
graphic cards. Graphics processing units (GPU) were created for the effec-
tive processing of images, films or animations required by computer games
or programs for editing audiovisual files. Adapting GPUs for other type
of calculations was named General-Purpose Computing on Graphics Pro-
cessing Units (GPGPU) and allows to compute particular tasks much faster
compared to the CPU, especially in problems with a high degree of par-
allelism. In November 2006, NVIDIA announced the launch of Compute
Unified Device Architecture (CUDA) technology which defines the general
architecture for calculations on GPUs. As part of the release, NVIDIA
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prepared a programming environment in C language for CUDA integration
(NVIDIA, 2006). Currently, GPGPU libraries are available in many pop-
ular programming languages, such as Python, Java and C#. Calculations
on graphics processors are used, among others, in simulations and modeling
of physical processes, cryptography, mathematics and artificial intelligence.

In machine learning applications (including the construction of scoring
models), it is also possible to use dedicated processors called Al acceler-
ators. Accelerators perform calculations for neural networks much faster
with relatively low power consumption compared to ordinary CPUs. For
example, in May 2016, Google introduced an accelerator called the Tensor
Processing Unit (TPU) which was used by the RankBrain search engine
algorithm or during a match between AlphaGo and Lee Sedol — a Go game
master (Google, 2016). Initially, Google used technology only for inter-
nal projects but since June 2017, TPU has been widely available as part
of Google’s cloud services (Google, 2017). TPU support is built into the
popular machine learning framework — TensorFlow, making it easy for users
to take advantage of this modern technology.

An alternative approach to increase computing capabilities is the tech-
nology referred to as distributed computing which consists in dividing tasks
into smaller subtasks performed simultaneously by a group (cluster) of com-
puters. Distributed computing is the foundation of the popular Big Data
approach which makes it possible to control the speed of calculations by
changing the number of machines in the cluster. Distributed processing
was separated as a distinct area of information science in the early 1980s
(the first Symposium on Principles of Distributed Computing conference
took place in 1982), however, the start of the Big Data trend and the inten-
sive development of distributed computing platforms is associated with the
creation of Apache Hadoop in 20062 (Dean & Ghemawat, 2004; Tel, 2001).
Twelve years after the creation of the Hadoop system, around 60% of com-
panies declare using Big Data technology, when in 2015 it was only 17%
(Dresner Advisory Services, 2018). This dynamic growth is caused by the

progressive digitization of societies and easier access to data sets, which

Zhttps:/ /archive.apache.org/dist /hadoop/common/
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creates demand for efficient and scalable data processing systems. In ad-
dition, the adoption of parallel processing has a low entry threshold, due
to open-source distribution of many Big Data technologies (Spark, Kafka,
Kubernetes, Hadoop) and the growing use of cloud services which allows
to quickly adjust the number of units in computing clusters, which would

not be possible in classic on-premise solutions.

8.2 Performance areas relevant to scoring models

While building credit scoring applications cost and performance consider-

ations emerge in 3 main areas:
1. Gathering data
2. Preparing data and building scoring models
3. Model deployment

FEach step has different compute and storage characteristics and rely
on internal or external resources differently. In case of small scoring mod-
els performance issues may not be apparent but with large or dynamically
growing application, performance bottlenecks on any of aforementioned

stages may lead to usability degradation.

8.2.1 Gathering data

Gathering data for scoring application is a relatively complex process com-
pared to other machine learning applications, more on data sources in Chap-
ter 2. The underlying complexity is a result of factors specific to banking

industry and characteristics of attributes used in modeling, namely:

e heterogeneity of used data sources, both in aspect of data structure
(structured, unstructured and semi-structured data) and source stor-

age system (FTP servers, relational databases, APIs)

« legal obligations to archive data for fixed amount of time and provide

data for audit on demand
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e legal obligations to remove or anonymise unused data for privacy

reasons

e legal compliance with sensitive data handling e.g. GDPR and fair-

aware (non-discriminatory, fair lending) regulations

e high volume and velocity of data due to increasing usage of social feed

or clickstream data and availability of digitized information in general

| Ingestion | Storage | Loading |
External network Internet Internal network
., : Storage layer
e, | —1 ! _f—_]
u E - \V,V,V,V/ Iﬁ
, ©
VPN fi — " wvww e
|| AV VY,V ‘@
= Data AN | &1 —~ g
— pipelines a | =
¢ i Archiving
- L .
’ -I e @
' [ e ]
REST .
API ;

Figure 8.3: Data gathering process
Source: own work

Data gathering process breakdown may be summarized as in Figure
8.3. It consists of data ingestion from both external and internal sources,
storing the data in appropriate service (relational or NoSQL database, data
lake, flat files on filesystem) which includes moving the data inside storage
system (e.g. compressing and archiving) and transferring the data to model
building platform. Depending on assumed approach, transforming the data
(also called data wrangling or data munging) may be considered part of data
gathering but for the sake of the monograph it is bundled with model
building subsection.

Ingestion phase is usually most vulnerable to performance issues due
to external character of data sources and their heterogeneity. During in-
gestion of data, data pipelines built using integration tool (e.g. Apache

Airflow, Informatica PowerCenter, Pentaho) extract data from external
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sources using internet connection or private VPN tunnel and LAN con-
nectivity for sources in company’s network. Performance bottlenecks may

appear in three points:

1. Data sources throughput.
2. Internet connection speed and geographic latency.

3. Overload of machine hosting integration tool.

Storage and data feed applications differ in available throughput and scal-
ability. Particular solutions may additionally impose quotas on the users,
for example REST APIs often limit calls made in time interval (hour, day).
In general, throughput of data source depends on underlying hardware (pro-
cessor, memory) performance but applications may impose varying comput-
ing overhead. For example, simple file transfer should provide higher data
throughput than relational database which perform additional data checks
as part of transfer process. More important issue is limited ability to ad-
just performance provided by external vendors. Assuming that scoring
application requires data from numerous providers and delivering complete
data set to the model is highly expected, performance of all sources may
be considered equal to performance of “the weakest link” as all data has
to be digested before carrying on with the processing. Issue can be mit-
igated by investigating potential vendor infrastructure and including ap-
propriate requirements in the contract.

Another limiting factor during ingestion is internet connection speed
both on source and sink side. During ingestion, data travel through the in-
ternet so maximal throughput is constrained by connection provided by lo-
cal Internet Service Provider (ISP). ISP services are typically bounded
by long-term contract so potential increase in data throughput demand
should be foreseen in advance. Final performance related to internet con-
nection is mainly influenced by source system upload speed, sink download
speed and geographic distance between them. It is worth noting that regu-
lar ISP service is asymmetric and usually provide 10x smaller upload than
download speed. Symmetric connection is possible with dedicated internet

line but this is costly alternative, require additional service contract and
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geographic proximity between data exchanging parties. Another popular
connection service is a Virtual Private Network. VPN is a secure tunnel
between two networks that traverses public internet. It provides another
layer of security but additional encryption typically slow down internet
throughput by 10%-20%.

All data ingestion activities have to be managed by data integration
or orchestration application. As data pipeline workloads may be comput-
ing intensive, performance of data integration server is considerable issue.
Monitoring usage metrics of the server (CPU and memory utilization, disk
I/0) is important to keep ingestion effective. If overload is spotted it is im-
portant to split workloads to different machines or alternatively provide
clusters of machines that scale and distribute work automatically with
increasing utilization. Cluster management platform are often provided

as built-in integration tool feature or additional product.

Internal data sources data may be transferred using LAN connection ei-
ther through wireless WiFi or cable connection using Ethernet. Speed pro-
vided by modern Ethernet (e.g. IEEE P802.3 25 Gb/s Ethernet) standards

is sufficient to eliminate LAN connection from performance considerations.

In storage layer, ingested data is stored and also archived for audit pur-
pose or as a backup. In general, storage systems can be categorized by type
of gathered data (Table 8.1). Modern application store both structured and
unstructured data in data lake tailored to handle multiple data formats.
Another approach to data processing and storage include streaming archi-
tectures (lambda and kappa architectures), in which data move between
producers and consumers through message brokers (Lin, 2017). For exam-
ple, popular distributed message broker Kafka buffer data in any type and
can act as temporary storage before data is collected by proper permanent
storage system. Described approach allows to process data as it is produced

and build more reliable storage systems.

Independently of platform used, data must be stored on physical piece
of hardware which greatly determines system performance (read and write
speed). Typically three types of storage hardware are considered — persis-
tent HDD and SSD and volatile RAM memory. They differ much in terms
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Data type ‘ Example ‘ Data storage ‘ Applications
Structured relational data | SQL/NoSQL databases | MySQL, Cassandra
Semi-structured JSON, XML document databases MongoDB, CouchDB
Unstructured | videos, text files filesystem, HDF'S Hadoop, FTP server

Table 8.1: Data types and dedicated storage examples
Source: own work

of read/write speed and storage cost (Table 8.2). Hard Disk Drives are
10 times slower than Solid State Drives but also 10 times cheaper which
make them suitable for archived data. For latency critical applications
data may be stored in RAM which is more than 10 times faster compared
to SSDs. On the other hand, RAM storage is most expensive solution
and require additional software e.g. Memcached. Another downside of in-
memory storage is RAM volatility which means that stored data is lost after
reboot, although applications such as Redis with special architecture may
provide persistent in-memory system. Common practice for performance-
oriented projects is to use persistent disks as main storage device and boost
speed by temporary caching for frequently used data in-memory. For scor-
ing applications it may be beneficial to cache data obtained from third
party APIs e.g. from credit reference agencies. API calls are slow and may
be limited in number, thus if underlying data change slowly cache provide

fast, temporary storage that can be updated with fresh data on demand.

Storage ‘ Read speed ‘ Write speed ‘ Cost per GB

HDD 200 MB/s 150 MB/s 0,03$
SSD | 2500 MB/s | 1500 MB/s 0,2%
RAM | 35000 MB/s | 30 000 MB/s 5$

Table 8.2: The average performance characteristic of storage hardware,
based on offers on amazon.com, as of the March 2020
Source: own work

In highly regulated industries as banking, it is important to plan and
optimize storage capacity in advance. Financial laws impose different re-
tention periods for data, usually no shorter than 5 years. To effectively

store the data proper compression algorithm should be applied to regu-



296

lar archiving process. For compression of flat files (CSV, Excel files, etc.)
common .tar®.¢gz* format may be used and Parquet® for relational data.
Another consideration is storage infrastructure planning which must pro-
vide redundancy to account for possible data loss and provide sufficient
storage space for audit data.

Last step is loading data to modeling application which is usually present
in the same network. In that case, performance of data transfer is de-
termined either by LAN connection speed, write speed of storage system
(e.g. data lake) or integration server capacity. Some applications for build-
ing Al models (e.g. Databricks) can be mounted directly on top of storage
system, so data is immediately available after ingestion.

Described storage characteristics are relevant to on-premise system but
many of above-mentioned problems may be tackled using cloud storage.

Cloud solutions are often provided in one of three models:
e TaaS — Infrastructure as a Service.
o PaaS — Platform as a Service.
e SaaS — Software as a Service.

These systems differ in management capabilities of underlying software
and hardware. For example in TaaS model, company can rent Virtual Ma-
chines and install appropriate storage application on them. This reduce
infrastructure management work but gives full control over used applica-
tion. In PaaS model, company can directly choose storage service e.g. SQL
Server or MySQL database and all required software will automatically set
up (Table 8.3).

Considering problems mentioned before, using cloud may be beneficial

in few ways:

e resources in the cloud are connected with fast, dedicated connections,
so accessing data sources in the same cloud and geographic region

provides much better performance,

Shttps://www.gnu.org/software/tar/
“https://www.gnu.org/software/gzip/
®https:/ /parquet.apache.org/
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‘ On-premise ‘ IaaS ‘ PaaS ‘ SaaS

Applications X X X

Data X X X A%
Runtime X X A% A%
Operation system | X X \Y \Y
Servers X A% \Y% A%
Storage X Vv A% A%
Networking X A% A% A%

Table 8.3: Comparison of different IT resources management models;
X — managed by you, V — managed by provider
Source: own work

« often PaaS services provide automatic scaling based on chosen metric,
for example database memory may be increased if utilization exceeds

fixed threshold for prolonged time,

o integration services clusters are managed dynamically to accommo-

date current load.

In context of data storage, particular cloud solutions called blob storage
requires additional attention. Blob storage is unstructured data storage
with virtually unlimited space and is billed per GB stored. With this
approach, company don’t have to plan for storage capacity and pay only
for currently used storage. Additionally, blob storage offering distinguish
hot and cold data where hot data is frequently accessed and cold data is read
rarely but has lower price per GB. This map well with current data used for
modeling and archived data stored for legal compliance. Important feature
in terms of legal regulations is that blob storage automatically replicate
and encrypt data, so data is secure and probability of data loss is extremely
low. Cloud providers often guarantee compliance with financial standards

as part of a product®.

Shttps://cloud.google.com /solutions/financial-services



298

8.2.2 Preparing data and building models

For data preparation and model training often complex data transforma-
tions are required. While for copying data storage performance and in-
ternet connection speed were important factors, data transformations are
relying heavily on memory and processor efficiency. To reach highest perfor-
mance high quality components should be used along with modern parallel
and distributed computing practices. Parallel computing may be perceived

on different levels, namely:
e hardware parallelism,
o operating system/software implementation of parallelism,
e paralleled algorithms.

All the above stages must be in sync to provide an effective performance
boost. Hardware parallelism is connected with the physical construction
of processors and their design architecture. A commonly used distinction
was proposed by Flynn and is presented in Table 8.4 (Flynn, n.d.). Single
Instruction Single Data corresponds to the simplest computer where one
instruction is applied to one data piece at a time. An important approach
is Single Instruction Multiple Data in which the same instruction is applied
to multiple data pieces e.g. elements of a vector. Most modern computer
chips, although they are SISD type, incorporate vector processors on the
chip and provide special instructions which can be used on a software level
to utilize them. Multiple Instruction Single Data approach is used in un-
common processors such as Micron Automata. Multiple Instructions Mul-
tiple Data is architecture used in modern CPU where each processor (core)
uses its own data and executes its own program.

A specialized type of SIMD processor is Graphical Processing Unit
which contains many more cores than CPU. For example, Tesla V100 has
640 computing cores while a cutting-edge CPU has 18 cores. Although
each core is slower than the CPU core, GPU computes highly parallel
tasks such as matrix multiplication and other linear algebra operations

quickly. On the other hand, GPUs lack more general instructions that are
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Single data Multiple data
Single SISD \Szg(:fc[z Processors
Instruction | typical thread GPU
Multiple MISD MIMD
Instruction rarely used multi-core processor
Micron Automata

Table 8.4: Flynn’s taxonomy of parallel processors
Source: own work

implemented in CPUs. Application-specific integrated circuit (ASIC) such
as Tensor Processing Unit from Google also relies on massive parallelism.
Third-generation TPU may be rented for up to 1000 cores and perform
Al-specific calculations even faster than GPUs.

Software level parallel computing can be further divided into three

categories:
1. bit-level parallelism,
2. instruction-level parallelism,
3. task parallelism

Bit-level parallelism speed-up stems from doubling the computer’s word
size (the amount of information the processor can manipulate per cycle)
in following processor architectures. For example, an 8-bit processor add
two 16-bit integers by dividing them and adding in two steps while 16-bit
processor would carry that instruction in one cycle. That parallelism type
takes place only when the processor’s word size increases (models with new
architecture are introduced) and the software is adjusted. Currently, the
standard word size is 64-bit.

In instruction-level parallelism (ILP) multiple instructions from the
same instruction stream can be executed concurrently. In the software
context ILP, is managed by a compiler deciding which instructions to exe-
cute in parallel. Parallel instructions are designated implicitly by an opti-

mizer built into compiler or explicitly by a programmer. The degree of ILP
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in programs is very application specific, in certain fields, such as graphics

and scientific computing, the amount can be very large.

Task parallelism is a form of parallelization that focuses on distributing
tasks (concurrently performed by processes or threads) across different pro-
cessors. In other words, multiple threads or instruction sequences from the
same application can be executed concurrently. A common type of task par-
allelism is pipelining which consists of moving a single set of data through
a series of separate tasks where each task can execute independently of the
others. The exploitation of that approach began with the increased usage

of multi-core microprocessors.

To fill the picture of both software and hardware parallelism multi-
threading and multiprocess, computing must be introduced. On the hard-
ware layer, multiprocessing requires multiple cores in processor and mul-
tithreading support for threading in processor architecture (e.g. hyper-
threading technology developed by Intel). On the software level, both con-
cepts have to be handled by a programming language and/or operating
system. The main difference between multiprocessing and multithreading
computing is memory sharing approach. Multiprocessing allocates sepa-
rate memory and resources for each process or program while multithread-
ing threads belonging to the same process share the same memory and
resources of that process (Figure 8.4). Multiple processes generated act
as separate instances of the program (e.g. Python interpreter) and are as-

signed individual IDs in the operating system.

Threads operate inside one process and share the memory during the ex-
ecution, which improves tasks execution inside the process but also can cre-
ate synchronization issues. As threads compete for resources they can block
execution of other threads — in computer science this is referred to as dining
philosophers problem. While the thread is using part of memory, it imposes
a lock on it so that other threads can’t modify the same memory segment
until the lock is released. In extreme situations, it may lead to a dead-
lock — a situation when no thread can proceed further due to locks imposed
by other threads. Due to that, multithread programming has to be handled

carefully and it is a challenging part of software engineering.
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Multithreading on the software level is often managed by an operating
system (Windows, Linux) but there is an alternative approach called green
threading. Green threads emulate multithreaded environments without re-
lying on any native OS abilities and they are managed in user space instead
of kernel space, enabling them to work in environments that do not have
native thread support. That approach is supported in many programming

languages e.g. Python, Julia, Go.
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Figure 8.4: The relation between multiprocessing and multithreading
computing
Source: own work

To fully benefit from hardware and software parallelism, applied com-
putational tasks should also be highly parallel. Applications are often clas-
sified according to how often their subtasks need to synchronize or commu-

nicate into three classes:

1. fine-grained if the subtasks must communicate many times per sec-

ond,

2. coarse-grained if the subtasks do not communicate many times per

second,

3. embarrassingly parallel if they rarely or never have to communicate.
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In the context of building a scoring model and machine learning models

in general, two layers of application can be distinguished:
e outer layer — hyperparameter tuning,
e inner layer — training machine learning algorithm.

Hyperparameter tuning belongs to a class of embarrassingly parallel
problems as every parameters combination may be calculated indepen-
dently (Figure 8.5). Inner layer parallelization depends on the type of ma-

chine learning algorithm used. Highly parallel algorithms include:
e random forest — each tree may be trained independently,
e neural networks — especially efficient on GPU computing,

o gradient boosted trees — XGBoost library provide a parallel algo-
rithm?,

e cross-validation — each iteration of cross-validation may be computed

independently,

e an ensemble of models — components of ensemble models may be

calculated independently.

Outer layer - hyperparameters Inner layer - Al algorithm
Quality
P1 P2 P3 Ps metric
1 N fine- > 1
d grained 4
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execution
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N embarrassingly N
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parallel

Figure 8.5: Parallelization in machine learning
Source: own work

"https:/ /xgboost.readthedocs.io/en/latest/
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The above subsection focused on the model’s complexity and paralleliza-
tion opportunities during training and validation phases but it is worth not-
ing that algorithms’ performance characteristics change while serving pre-
dictions. In effect, training and prediction capabilities should be addressed
and planned separately during the system design phase. The next subsec-
tion introduces a few aspects of deployment performance considerations.
In addition to training and prediction phases, machine learning models uti-
lize additional components with distinct performance profile. In particular,
scoring systems are often connected with interpretation algorithms such
as SHAP, see Chapter 7, or (S. Lundberg & Lee, 2017)) or LIME (Ribeiro
et al., 2016b). Prediction interpretability is a desired feature of credit scor-
ing models, in some cases enforced by law (Goodman & Flaxman, 2017).
Interpretation methods have their own performance specification and may

need a closer inspection to be used effectively.

8.2.3 Model deployment

After training and testing the process, the scoring model is deployed for pro-
duction use and enters the maintenance period. The deployment phase has
a specific performance consideration depending on the retraining policy and
predictions serving model. Additionally, the model should be monitored,
in particular, for performance of predictions (e.g. latency of response) and
quality of predictions (accuracy, precision or other metrics) — see Chapter
6. Performance issues are often intermittent and caused by a sudden hard-
ware failure or a spike in request rate. Quality degradation is a long-term
process caused by concept drift (Gama et al., 2004). The idea behind the
drift is that the distribution of new data is changing compared to data
on which model was trained on. For the scoring system, a possible increase
in the number of bad credits may appear due to recession, thus the model
should be retrained to reflect the shift in data.

Retraining approaches include three main categories:

o one-off training in which the model is retrained in irregular intervals,
usually when predictions quality degradation is spotted or new input

data is available,
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e batch training requires regular model updates based on gathered data,

o real-time (online training) is applicable only to selected AT algorithms

that can be trained on a continuously incoming stream of data.

In the context of retraining policy, computing resources allocation is the
main factor (Figure 8.6). Online training requires small but constant com-
pute supply, batch training is distributed in predictable spikes and one-off
training requires varying supply. Additionally, online learning handles con-
cept drift problem more effectively than batch or one-off training. On the
other hand, online training is not always available, either due to algorithm
design or data preparation limitations. For scoring applications, due to the
long data gathering process, the most relevant training scheme is one-off
and batch training with long retrain intervals. Often 12 to 18 months are
required to mark credits as good or bad and prepare them for the model
update. Furthermore, online training is mostly reserved for the retraining
process in a production environment. In development and testing environ-
ments, models are trained with batches of data on demand.

Another specific trait of credit scoring models is inherent difference be-
tween training and production data. The data set on which the model
is trained is wide and short (many columns, a small number of rows) due
to inclusion of a broad range of predictors such as behavioral and demo-
graphic data. Omn the other hand, new data obtained for classification
is narrow and long (a few columns, many rows). Reduced number of pre-
dictors stems from restricted access to use particular client’s information
or limited bank’s knowledge about the new customer. From a technical per-
spective, the development/testing environment may vary from production
and reverse migrations may be needed to fine-tune the model.

More consideration is required while planning infrastructure for specific
serving model which can be batch or real-time. With the batch-serving ap-
proach, the system produces predictions for many records at once and often
the response time requirements are relaxed. The batch serving works well
if request batches have predictable size and frequency (similar approach
as in batch retraining). In real-time approach, a prediction is provided

for a single record on demand and low response latency is a requirement,
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Figure 8.6: Load characteristics of retraining policies
Source: own work

thus an appropriate infrastructure and technology may be required to con-
trol the performance. For real-time prediction, machine learning models
are usually served as a web-service (REST API), coupled with message
broker (Kafka, Pub/Sub) or as a built-in application feature. Streaming
(message) applications may handle an increased load well due to internal
buffering features (e.g in Pub/Sub which is Google Cloud Platform mes-
sage broker). In case of a web server or in-app prediction high scalability
and load balancing, it may be needed to provide low-latency predictions.
For this task, the Kubernetes cluster in a cloud environment with horizon-
tal scaling enabled is an effective solution: containerized machine learning
model is deployed on each node in a cluster, load balancer distributes traf-
fic and AutoScaler accommodates spikes in requests by increasing nodes

count. More information on model deployment may be found in Chapter 9.

8.3 Platforms for building scoring models

Another approach to boost model building is distributed computing. In dis-
tributed computing, workload is divided between nodes (separate machines)
in a cluster. It is worth noting that each of the nodes can additionally per-
form parallel computations on assigned subtask (e.g. some nodes may use
CPU multithreading and other GPUs accelerations). Typical properties

of modern distributed systems include the following:

o the system handles failures of individual computers and may continue

computations after a node exclusion,
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e structure of the cluster network is not known in advance, the system
may consist of different kinds of computers, network links and may

change during the execution of a distributed program,
¢ each node has only a limited, incomplete view of the system,

o working in a master-slave architecture, in which one node is elected

as a master and coordinate the work of all other nodes (slaves).

Distributed computing platforms have rich software ecosystems with
both open-source and commercial applications. In the context of machine

learning processing, the following open-source components are often used:

» Hadoop — software framework for distributed storage (HDFS), pro-
cessing of big data using the MapReduce programming model and

cluster management (YARN)

e Spark — is an open-source cluster-computing framework prevalent

in machine learning domain

o Kubernetes with Docker containers — open-source container-orchestration
system  for automating application deployment, scaling

and management

Many modern products are built on top of the above-mentioned solutions,
adding additional functionality. For example, Databricks built on Spark
provides collaborative notebooks, integrations tools or additional perfor-
mance tweaks (Delta Lake format). Kubernetes is used as a foundation for
Kubeflow — AT models deployment framework. Another extension of Spark
is Sparkling Water from H20.ai company which enables H20 algorithms
in high-performance Spark cluster.

Hadoop is a framework that started the Big Data era and is still a foun-
dation for modern, cutting-edge applications. Software built on top of Hadoop
is sometimes referred to as Hadoop ecosystem and few of these (e.g. Spark)

has ecosystem of its own. Three core components of Hadoop are:

« HDFS - Hadoop Distributed File System provides distributed

storage.
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e MapReduce — algorithm for distributed processing.

e YARN — Yet Another Resource Negotiator is a layer governing com-

putational and storage resources within a Hadoop cluster.

HDFS provides a logical structure with files stored in directories (fold-
ers) — which resembles traditional file systems. The main difference is that
files in that hierarchical structure are stored in multiple machines instead
of one. From an architectural perspective, HDFS cluster consists of Na-
meNode (master) and DataNodes (slaves). NameNode is a machine or-
ganizing operations and storing system metadata while DataNodes store
files and communicate with the master if any changes occur. HDFS is de-
signed to be used on top of commodity hardware and handle system failures
e.g. node OS or disk failure, Internet connection outage. Each file stored
in HDFS is divided into blocks (usually 128MB in size) which are repli-
cated in accordance to replication policy (3 replicas by default). Every
replica is stored on a different machine (node) or even different machine
racks to handle both node outage or whole rack unavailability (Figure 8.7).
To detect problems in the cluster, each DataNode sends a Heartbeat mes-
sage to the NameNode periodically. The NameNode marks DataNodes
without recent Heartbeats (10 minutes is the time-out by default) as dead
and excludes blocks stored on the machine from the file system. As there
are replicas on the other machines, the system’s functionality is not affected
and the dead node can be healed automatically (e.g. rebooted) or manually
by the operations team. NameNode stores information (metadata) about
all files in HDFS and coordinates both operations within a cluster and
communication with client applications. To further improve robustness,
NameNode can operate on multiple machines kept in sync.

HDEF'S provides a framework to distribute storage but Big Data work-
load won’t be possible without distributed computing. For that purpose,
Hadoop contains MapReduce framework which may process huge amounts
of data in-parallel while maintaining reliability and fault-tolerance (Dean
& Ghemawat, 2004). A MapReduce job splits the input data set into inde-
pendent chunks which are processed by the map tasks in a parallel manner.

Map phase output is sorted and passed to reduce tasks which may aggre-
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Figure 8.7: HDFS architecture scheme
Source: own work

gate intermediate results to final output (Figure 8.8). Typically both the
input and the output of the job are stored in HDFS and the framework
takes care of scheduling, monitoring and re-execution of the failed tasks.
To effectively execute scheduled tasks, MapReduce and the HDFS are run-
ning on the same set of nodes, which allows to do the processing on the

nodes where data is already present.
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Figure 8.8: MapReduce algorithm
Source: own work

Worker node n

In the first version of Hadoop, MapReduce was responsible for every-
thing above the storage layer, including assignment of cluster resources and
data processing. Consequently, higher-level frameworks had to be built

on top of MapReduce which is designed for batch workloads. It became
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obvious that a more general and more flexible platform was necessary.
In order to generalize processing capability, resource management and fault-
tolerance, components were transferred into YARN, effectively decoupling
cluster operations from the data pipelines. The emergence of YARN de-
mocratized usage of HDFS and led to the creation of many purpose-built
frameworks (Figure 8.9). MapReduce was altered to run on top of YARN

as all other application frameworks.

In-memory Stream Batch Data warehouse Graph
Spark Storm MapReduce Hive Giraph

YARN

HDFS

Figure 8.9: High-level architecture of Hadoop-based platforms
Source: own work

One of the commonly used Hadoop-based frameworks for machine learn-
ing workloads (scoring applications in particular) is Spark®. From the
performance perspective, the main Spark’s advantage lies in in-memory
computations that can be many times faster than MapReduce jobs based
on hard drives storage (compare IO speed in Table 8.2). Furthermore,
Spark contains an extensive set of libraries including Spark SQL, MLIib
for machine learning, GraphX for graphs processing and Spark Streaming.
With these built-in functionalities, Spark serves as a unified platform for
multiple types of analytical workloads.

Spark operates on its own abstraction structure called Resilient Dis-
tributed Data set (RDD). Data loaded into Spark is partitioned (distributed)
and then can be further processed using two types of operations: transfor-
mations which create a new data set from an existing one and actions which
return a value to the core engine after running a computation on the data
set. All transformations in Spark are lazy, which means they are not carried
out when called in code but instead when action is later applied to defined

transformations. This design enables Spark to run more efficiently and

8https:/ /spark.apache.org/
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optimize the execution. Beside RDDs, Spark also exposes Dataframes and
Data sets structures. Spark Dataframe is conceptually equivalent to a table
in a relational database or a data frame in R/Python. Compared to basic
RDD, Spark performs additional optimization on Dataframes based on data
content and requested transformations. Dataframes provide a fast and
flexible tool for interactive analysis and preprocessing of data which may
be combined with MLIlib and GraphX algorithms into a single workflow
using ML Pipelines module.

DataFrames ML Pipelines

Spark SQL Spark Streaming MLIib GraphX

Spark core engine

Figure 8.10: Main Spark components
Source: own work

Another big advantage of Spark is easy integration both with sources
and target applications. As aforementioned, a Spark cluster can be run
on Hadoop YARN but also on other platforms e.g. cloud services such
as AWS EC2 or Kubernetes. Data can be ingested directly through one
of many connectors and exposed outside of Spark with commonly used
drivers. Development in Spark is based on a flexible, multi-language ap-
proach. The framework itself is written in Scala but provides interfaces
in Python, Java, R and SQL which allows developers to quickly learn
Spark workflow.

Hadoop and Spark can be launched on on-premise clusters but many
companies decide to use PaaS solutions offered by all major cloud providers.
The main reason for that is high infrastructure maintenance overhead
in an on-premise setup. Multiple machines used as cluster nodes require
operational support both in the hardware and software context. Moreover,
the computation capacity must be planned far ahead due to the non-elastic

character of proprietary IT infrastructure. In a cloud environment, VMs
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maintenance and ensuring machines uptime is on the provider’s side. Con-
fidence in clusters stability is reflected in strict SLAs. Azure HDInsight and
AWS EMR provide 99,9% uptime guarantee and GCP Dataproc 99,5%. All
software updates are handled automatically, including operating systems,
security patches and enabling new Spark/Hadoop versions. Furthermore,
compute resources can be scaled dynamically to provide capacity during
peak demand and release free machines when not needed. Flexible scaling
leads to distinction to interactive clusters for analytics and job-based clus-
ters created from scratch and destroyed after finishing the workload. In the
cloud, the processing is mostly separated from storage. Data may be stored
on blob storage instead and mounted on a cluster on demand, which allows

for more effective budget management compared to on-premise.

Cloud distributions of Big Data open-source frameworks also contain
many custom extensions and improvements compared to basic versions.
They integrate well with other cloud services such as AI and Machine Learn-
ing platforms (Azure ML Studio, GCP AI Platform, AWS SageMaker).
AWS and Azure also provide Databricks service built on Spark but with
a focus on collaboration and handling well data analysis, data science and
data engineering. A wide range of interconnected cloud products may easily

cover all tasks needed in building a credit scoring model.

An important feature of cloud solutions in the context of scoring ap-
plications is built-in security. As data for Al and Big Data frameworks
usually reside in cloud storage, these platforms benefit from automatic en-
cryption in the storage layer. From the network perspective, all cloud
services are hosted in a cloud network separated from the public Internet
and may be secured with additional firewalls, proxies and other network-
based mechanisms. Banks have to take special precautions in storing and
exposing sensitive data which in the cloud may be handled with dedicated
redaction and de-identification tools such as Google’s Cloud Data Loss Pre-
vention or dynamic data masking in Azure. From the financial industry
standpoint, another important feature is cloud vendors compliance with
multiple regulations, in particular information security standards ISO/IEC
27001 and SOC 2, GDPR compliance and financial specific standards such
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as Payment Card Industry DSS or FINRA in the US. For the sake of the
auditing process, audit logs are gathered as a part of cloud-wide logging
services such as Stackdriver in GCP and AWS or Azure Monitor.

With an abundance of available modeling frameworks and data process-
ing technologies, preparing modern credit scoring application architecture
requires extensive expertise and continuous tracking of new solutions. An-
other factor to consider is an ongoing shift from on-premise computing
to hybrid and cloud services which are heavily influencing the financial sec-
tor. Research has found that 54% of banks adopted or prepared a strategy
to adopt cloud solutions by the end of 2021 (Finastra, 2019). Amongthe
main reasons for the switch, institutions mentioned simplification of the
IT infrastructure, cost reduction and increase in cloud regulatory compli-
ance. Moreover, following the innovation and current I'T architecture trends
is much easier with a cloud-based approach, as vendors pursue cutting-edge

technologies and constantly upgrade their offerings.
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Even after the credit scoring model has been trained and extensively vali-
dated, it is far from being a finished product. The last step on its journey
is being deployed in a production environment, so that it can start helping
solve the problem it was designed for. Unfortunately, deploying the model
adequately is not an easy task. Moreover, the art of model deployment

is also just beginning to establish and is far from being a well-defined field.

In this chapter, we first present challenges which might arise during the
model deployment. Later, the most popular formats utilized for export-
ing the model are described. Consequently, we present available methods
of model deployment, along with some guidelines with regard to choosing
the proper one. Finally, we provide a review of good practices for model

deployment, as well as a variety of most popular tools utilized in this field.
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9.1 Challenges in model deployment

Producing a final model is not the end of its business life cycle — after it has
been built and trained, it needs to be properly implemented into production
systems and deployed which can be a cumbersome task. Reports show that
up to 88% of corporate machine learning and artificial intelligence initiatives
are struggling to move beyond test stages (Sallomi & Lee, 2017). This is due
to the fact that machine learning (ML) code is just a small fraction of real-
world ML systems which additionally is not straightaway compliant with
production environments (Sculley et al., 2015). Such a mismatch stems
mainly from differences between data science and production environments.

Data scientists are experts in algorithms and associated mathematics.
The key component of their work is to test a vast range of different ap-
proaches to a given problem in order to find the right solution to it. To do
so, they need tools which are relatively easy to use and flexible with re-
gards to their needs — data scientists use high-level programming languages,
such as Python or R, or dedicated statistical software (e.g. SAS) (Talagala,
2018).

On the other hand, IT developers, who are responsible for deploying
the models, often have little or no ML knowledge (Talagala, 2018). How-
ever, they are experts in deployment and management of software and
services in production. They use low-level programming languages, such
as C++, C# or Java which are more complex than ones utilized by data
scientists but offer better performance which is crucial for production sys-
tems. As a result, there are two types of mismatches between data science
and IT teams — expertise and environment mismatches.

There are two main approaches to overcoming these mismatches as pre-
sented in Figure 9.1 (Braun, 2017).

In the first one (presented at the top), both teams are kept separately.
Data scientists work independently while they develop the final model using
the environment of their choice (e.g. Python or R, along with preferred
libraries). When finished, they produce a detailed specification document
which then needs to be implemented by the developers in the production

environment. Such an approach works but has several disadvantages.
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Figure 9.1: Two collaboration modes between data scientists and
engineers
Source: own work based on the Braun (2017)

Firstly, it requires the two teams to communicate efficiently. This means
having experts in the team who know both the environment used to create
the model and the production environment or ensuring that the documen-
tation provided by the data scientists is comprehensive and exhaustive.

Secondly, if a need to use another modeling method emerges (e.g. ran-
dom forest instead of logistic regression), the production environment needs
to be reconfigured from scratch. Moreover, the cost of implementing the
model increases with the complexity of the statistical method used. Linear
or logistic regression are relatively simple to implement but other meth-
ods, such as gradient boosting or neural networks are much more complex.
Furthermore, a custom implementation of a utilized algorithm might be in-
efficient performance-wise, compared to the well-developed and optimized
libraries which were used to train the model.

Thirdly, models do not always use raw data only — feature engineer-
ing (i.e. applying various transformations to the original data) can be used
to transform the data into a desirable format. If the model is to be di-
rectly implemented in a production system, each data transformation needs

to be handled separately as well. Moreover, if the new features are used
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in future iterations of the model (e.g. In(x1) instead of x?), they need
to be implemented before the model can be deployed. Various operations
utilized for data transformations can be implemented differently in partic-
ular languages as well (e.g. one can use strict inequalities, while the other

utilizes non-strict ones) which can lead to disparate model predictions.

Finally, this approach is error-prone, since it requires a lot of manual
work. It can be also time consuming — implementing an algorithm’s logic
can be a lengthy process. In extreme cases, the model can be no longer
up-to-date after it is finally implemented — behavior patterns of clients can
change overtime and there can be some shifts in the data affecting the
model (Samiullah, 2019).

The second approach (presented at the bottom of Figure 9.1) is to in-
troduce an intersection between the two environments — a part of the pro-
duction system with a clearly identified interface which can be used by data

scientists to plug-in their models.

The code which communicates with the production system would natu-
rally need to follow stricter software development practices than usual data
science code (Braun, 2017) — it should accept input data and return its fore-
casts in a predetermined way, compliant with production

system requirements.

However, engineers would no longer need to implement the model
manually. The data science team would provide them with an object
(i.e. a file in a predetermined format) containing algorithm’s logic and ex-
ecuting its scoring based on data provided by the production system. Ide-
ally, the object could also handle all required data transformations. This
way, engineers do not need to know how the models work, they just need
to provide an infrastructure which would handle the model object execu-
tion properly.

Moreover, such an approach allows data scientists to push models for de-
ployment by themselves, without the need of the engineers’ work. They can
just provide an updated model object to the production system, provided

that there is a proper logging process implemented.

Finding the best practices for collaboration and communication between



317

data science teams and information technology (IT) professionals while au-
tomating and productizing machine learning algorithms, is a new discipline
called MLOps, see (Talagala, 2018). The name is a compound of machine
learning (ML) and operations (Ops). This is still a rapidly developing
discipline and lacks well-defined good practices and standards, however
it already offers solutions which are useful for conscious and reliable model
deployment (Dong, 2017; Gallatin, 2019).

9.2 Methods of exporting model object

Before the finished model can provide any business profit, it needs to be im-
plemented in a production environment. This section provides an overview
of methods used for creating a model object introduced in Section 9.1
and exporting it from the modeling environment, so that it can be used

for deployment.

9.2.1 Code porting

The simplest method of model deployment is the so-called porting — rewrit-
ing the code of a model we want to implement from the language used
by the data science team to a production environment language. This
is equivalent to the first approach described in Section 9.1.

Once the algorithm’s logic is implemented in the desired program-
ming language, the most popular practice is to export model parame-
ters to a JSON file (Baatout, 2017). Doing so provides a relatively easy
method of updating the model’s specification, such as its coefficients, as long
as the same algorithm is used.

There is a tool which allows automating the porting of the model
to some extent — a Python library m2cgen'. It translates Python code
to another desired language. Currently, it supports export to C, C#, Go,
Java, JavaScript, PHP, PowerShell, R and Visual Basic. The majority
of machine learning algorithms are supported: linear models, SVM (Sup-

port Vector Machine), decision trees, random forests and gradient boosting

"https://github.com/BayesWitnesses/m2cgen/blob/master/README.md
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methods, with implementations in a variety of libraries (e.g. scikit-learn).
However, the m2cgen library does not support exporting data transforma-

tions, so they still need to be handled by the engineers manually.

9.2.2 PMML

PMML (Predictive Model Markup Language) is the natural answer to the
problems associated with code porting. It is a cross-platform standard
for saving forecasting models and is based on the XML language. PMML’s
development began in the late 1990s by Data Mining Group (DMG). Its
main propagator was Professor Robert Grossman et al. (1999).

PMML deos not only sets the standard for saving various types of mod-
els but also enables the export of various data transformations (used for both
pre- and post-processing). The current version of PMML standard (4.4)
supports most machine learning models, excluding deep neural networks
(although simple neural networks are supported). It also provides support
for basic data transformations (normalization and discretization of vari-
ables, value mapping and aggregation), as well as some basic operators
and built-in functions.

PMML? is supported by most of the tools currently used in the data
science (Levitan, 2018) — SAS products (Base and Enterprise Miner) and
R (r2pmml, PMML and PMMLTransformations libraries) and Python lan-
guages (export to PMML format is supported by libraries, including popu-
lar scikit-learn, using sklearn2pmml), as well as many production systems
(e.g. Microstrategy, Amazon AWS oracle, Spark and Teradata).

Unfortunately, PMML is a legacy standard — many versions have ap-
peared over the years, each covering a different range of supported models
and data transformations. Furthermore, different products support only
certain PMML versions. Therefore, it is possible that the production envi-
ronment will not be able to support the exported model, although it sup-
ports the PMML standard (but only in the older version).

In addition, PMML supports only a limited number of model classes,

while new ones are introduced late. It also does not support increas-

http://dmg.org/pmml/products.html
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ingly popular deep neural networks. Moreover, only basic data transfor-
mations are supported, without the possibility of defining custom, more
complex ones.

PMML is therefore a good solution only when standard models and data
transformations are used. It is also crucial to verify whether modeling

and production environments support compatible versions of the standard.

9.2.3 ONNX

The ONNX (Open Neural Network eXchange) format is a more modern
equivalent of PMML. It is supposed to provide interoperability of models —
the possibility to use them regardless of the environment and libraries used.
ONNX format is based on so-called computational graphs, used by many
deep and machine learning libraries to represent the algorithms’ logic. How-
ever, it provides consistency between different approaches (for example,
some libraries use static graphs, while others use dynamic graphs). In other
words, ONNX guarantees that the model will always behave in the same
way for a given data set and results obtained will be independent of both
modeling and production environment (McDonald, 2019).

ONNX format comes in two variants: the base ONNX for deep neural
networks and ONNX-ML dedicated to classic machine learning algorithms.
Moreover, ONNXruntime library is also available, allowing for deployment
of the model in the production environment in a fully compatible man-
ner. Currently, the following languages are supported: Python, C#, C++,
C, Java and Ruby. In addition, this library provides support for scoring
models with both: CPUs (Central Processing Unit — a standard processor)
and GPUs (Graphics Processing Unit which provides higher computing
performance). It also supports various accelerators offered for these archi-
tectures (for example NVIDIA CUDA for GPUs).
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The only drawback is the young age of the format (McDonald, 2019).
It was created in 2017 and although the documentation is constantly ex-
panding, it is still limited. Only selected libraries are directly supported
as well. However, many independent packages are created to provide full
compatibility of ONNX format with popular tools. It is ,therefore, a format

with the potential of becoming a new standard for exporting models.

9.2.4 Environment-dependent formats

Apart from formats created with interoperability in mind, there are ones
specific to the environment in which the model was built.

In Python, there is a pickle format used to export various types of ob-
jects. It enables a so-called serialization of objects (i.e. instances of individ-
ual classes) — transforming them into a bitstream file which can be saved
to a disk or sent to another computer or process. In particular, an ob-
ject containing the implementation of a ready-made predictive model can
be a subject to serialization (in Python, the term pickling is adopted from
the format name). Moreover, it is possible to include any custom data
transformations inside the pickled model (Baatout, 2017).

In R ,there are two formats for saving objects: .RDS and .RDA. Both
allow saving and exporting created models but there is a slight difference
between them. After loading, the RDA format restores the exact copy
of the exported object in the working environment, including its name,
which is not a convenient solution in case of model deployment. On the con-
trary, the RDS format enables a full serialization of models. Therefore,
instead of an exact copy of the object, its representation is exported which
after loading can be assigned to any variable.

Apart from formats typical for a given programming language, there
are also formats supported by specific tools or libraries. Most popular
machine learning libraries have their own formats for saving ready mod-
els (such as SavedModel for TensorFlow or POJO and MOJO for h2o)
(Kervizic, 2019).

The disadvantage of using environment-dependent formats is that the pro-

duction environment must be compatible with the environment used to cre-
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ate the model. For example, a model exported by using pickle format can
only be deployed in a production environment with available Python instal-
lation. However, there is a solution (discussed in the next section) which
provides a workaround of this disadvantage in a relatively simple way —

deploying the model as a microservice (Baatout, 2017).

9.3 Model deployment

Once the model is built and exported to one of the formats described in Sec-
tion 9.2, it is time to deploy it in a production environment. This section
outlines the methods for implementing the model and discusses the im-
pact of various approaches to model scoring and retraining with regards

to presented deployment methods.

9.3.1 Methods of model deployment

Depending on the method used to export the model, implementing it may
require different solutions and workload (Koen, 2019).

Code porting requires a manual implementation of the model in a pro-
duction environment by an engineering team, which can be a lengthy pro-
cess, even if the implementation of the model in the appropriate language
will be provided by a data science team. This is due to the fact that follow-
ing items need to be handled: data used by the model, delivered in an ap-
propriate format, adequate processes initializing model scoring and proper
handling of the model’s outputs (Baatout, 2017).

If the model has been exported to an interoperable format (e.g. PMML
or ONNX) which is also supported by the production environment, deploy-
ment of the model usually boils down to loading it into the environment
and integrating it properly via built-in tools which, apart from time sav-
ings, provides also a better optimization in terms of scoring performance
and is less error-prone (McDonald, 2019).

When the format to which the model has been exported requires the re-
construction of a strictly defined environment, the model can be made avail-

able as a microservice — a self-encapsulated application which can be treated



322

as a black box with regards to the production system, as presented in Fig-

ure 9.2.

data prediction
—_—p application —p

Figure 9.2: Communicating with the model as a microservice
Source: own work based on the Danka (2020)

The production system does not know how the model operates in-
ternally. Microservice offers a strictly defined way of communication —
an API (Application Programming Interface) which enables communica-
tion between the model and the production system. Through the API, the
system is able to send the data to the model and receive the predictions
from it. Usually, inputs and outputs are provided in a structured form —
a JSON or YAML file (Danka, 2020). A JSON input to the API could look
like this:

{

"data":
[[0.00632,18,2.31,0,0.538,6.575,65.2,1,296,15.3,396.9,4.98]]
}

while the response obtained from the model (containing the forecast) would

similarly be in a form as below.

{
"data": [25.813999999999993]
}

Since the production system is only responsible for providing and re-
ceiving the data in an appropriate format, all steps required to produce
a model’s prediction should happen inside of the application (microser-

vice). These steps consist of (as presented in Figure 9.3): processing
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the input data provided by the production environment, making predic-
tions with the model built-in within the application, processing the outputs
of the model and providing these outputs in an understandable format back

to the production environment.

4 2

application
process make process
input predictions output
\_ J

Figure 9.3: The insides of the model as a microservice application
Source: own work based on the Danka (2020)

In order to make the model available as a microservice, it needs to be pro-
vided with a properly configured environment. This can be achieved by us-
ing the open-source Docker software. It allows for creating special contain-
ers which encapsulate fully-working environments, configured for the model
(for example, a Docker container can have the appropriate version of Python
language installed, as well as the libraries utilized by the model, such
as scikit-learn or TensorFlow). Such an environment is fully isolated from
the production system and can communicate with it only through API.
Docker containers can be easily run on servers, regardless of their operating
system and configuration which makes the Docker a very versatile solution
(Elfouly, 2019). Thanks to this, the model can be easily transferred between
different types of platforms on which it would work. It can be deployed
both locally and utilizing the bank’s servers or even in the cloud. What
is more, it is also possible to use distributed computing platforms (such
as Spark or Kubernetes) which provide an easy and fast way of scaling
the model (Nazrul, 2018).
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9.3.2 Model scoring and retraining in terms of model de-

ployment

The way the model should be deployed depends a great deal on how it will
be trained and scored (Fletcher, 2019). As already mentioned in Chapter 8,
there are three main approaches with regards to model (re-)training: one-
off, batch and real-time. When it comes to model scoring, there are batch
and real-time scoring.

In one-off training, the model is prepared by a data scientist and then
deployed in a production environment where it continues to work until
its performance deteriorates enough so that it is called upon back to the data
science team for refreshing or a total rebuild (Kervizic, 2019). This is a tra-
ditional approach used in credit scoring (Sousa et al., 2016).

In batch training, the initial model can be trained by a data science
team (allowing it to take advantage of their expert and domain knowledge)
but then the model weights could be adjusted automatically, as new data
becomes available at some fixed intervals of time (batches).

In real-time training, the model is learning constantly, as soon as new
data becomes available. Such an approach is quite rarely used, especially
in highly regulated areas such as credit scoring. Nevertheless, batch ap-
proaches are gaining in popularity (Sousa et al., 2016).

The more frequently the model is being updated, the more flexible so-
lution to model deployment would be desired. For infrequent one-off model
training, porting the code manually could be acceptable — and switching
to more agile methods could not be worth the costs associated with it.
However, if the utilized model starts to change more frequently, it becomes
reasonable to switch towards more universal approaches, such as using some
standardized formats or microservices (Kervizic, 2019).

When it comes to model scoring, choosing a deployment method is a bit
simpler. In real-time scoring, the model’s forecast should be produced
on demand, whenever some trigger occurs (e.g. a client submits an on-
line form for an overdraft). In batch prediction, the model is run in pre-
defined moments. Predictions can be produced for the whole population

(e.g. for pre-approved cash loans) or only customers for whom some change
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in data (e.g. they started using a new type of banking product) or a trigger
event (e.g. credit application was filed) appeared since previous batch run
(Kervizic, 2019).

Since real-time environments are complex, manual porting of the code
in such production systems is not advised (Fletcher, 2019). Most of such
environments work best with models served as microservices which are eas-
ily scalable if the system load increases. For batch scoring, every presented

method can be used, with all their advantages and disadvantages.

9.3.3 Choosing model deployment method

There is a plethora of model export formats and multiple deployment meth-
ods. A natural question would be — which one is the best and which ones
to use? While there is no universal answer, there are some factors worth
considering while choosing the deployment method. Methods presented
in Subsection 9.3.1 are discussed below.

Code porting. Implementing the model manually in a production system
is rarely the desired solution. Such an approach might be apt for one-off
projects, however once a more flexible infrastructure is available, even such
projects can be implemented quicker and in a more reliable way (Kervizic,
2019). Moreover, in credit scoring, models are constantly monitored and
improved if their performance deteriorates, therefore truly one-off projects
occur rarely and being able to deploy models quickly becomes desirable
(Sousa et al., 2016).

Built-in integration tools. Many production systems provide built-in
solutions for deploying machine learning models. This is a convenient solu-
tion since it allows using tools already at hand and simplifies the integration
process which is then partially automated. However, such systems often re-
quire that the model is exported to a particular format (such as PMML
(Levitan, 2018) or ONNX (McDonald, 2019)) which may differ between
the systems. This can be problematic when switching to another system —
then redevelopment of scoring models might be required as well. Moreover,
these formats usually handle only basic data transformations, so there still

might be some feature engineering which would need to be implemented
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by developers separately. Using built-in integration tools and some stan-
dardized export formats should be a sufficient solution if utilized algorithms
and data transformations are standard (Kervizic, 2019).

Model as a microservice. This is the most versatile solution. It re-
quires the data scientists to follow stricter software development prac-
tices, however offers a great deal of flexibility. Not only can it han-
dle any algorithm and data transformation but also allows the data sci-
ence team to use any tools they require and are most comfortable with
(Kervizic, 2019). Additionally, it is compatible with most production en-
vironments and engineers are well accustomed to dealing with microser-
vices served as Docker containers (Husain, 2017). Models encapsulated
as microservices can also be utilized regardless of production solution — its
vendor or a way of distribution (on internal servers, in the cloud or with

distributed computing platforms).

9.4 Good practices in MLOps

There are some good practices stemming from software development which
are industry standards and could be also useful for simplifying model de-
ployment and managing model’s lifecycle (Elfouly, 2019). This section
covers the most important ones: ensuring reproducibility, version control,

proper testing and various deployment approaches.

9.4.1 Reproducibility

It is a good practice to write the code used to build the model so that it is re-
producible from the start (meaning all the steps can be easily reproduced
in another environment or using another computer) (Samiullah, 2019).
In particular, it should be ensured that model inputs and outputs are always
in the same format. Special attention should also be paid to used meta-
data, configuration files, dependencies, formats, etc. For example, changing
the coding method of a binary explanatory variable (change of the refer-
ence class), formatting of dates from DD/MM/YYYY to MM/DD/YYYY
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or measurement units from unity to thousands can all have a substantial

impact on the way the model works.

9.4.2 Version control

Version control is an important factor in building and managing the model.
Developers are successfully using code versioning systems such as Git. How-
ever, in the data science world, in addition to the code containing imple-
mentation of the model itself, the data, based on which the model works, are
also a key element of the design (Bitzer, 2019). It can dynamically change —
through adding new observations or using various transformations to obtain
new variables, all of which can affect the final model (e.g. variables used
or optimal parameter values). In particular, if the production data devi-
ates from the data based on which the model was trained, the production
model may not work at all. Therefore, in addition to managing the version
of the code, it is necessary to manage the data as well — in a way that
connects it to the code. In other words, being able to assign the model
to the appropriate version of the code and the data based on which it was
created is crucial (Vazquez, 2019).

Another useful functionality is being able to easily monitor data science
experiments in a way which allows comparing the quality of the model with
regards to its specification (multiple runs of different versions of the code,
based on different data sets and with different model parameter values).
This way, the data scientist would always be able to track which ap-
proaches have proved to be fruitful and which not. What is more, it makes
data science team coordination easier — each team member is able to track
which models have already been tested which leads to less work duplication
(Vézquez, 2019).

Correct version control can be also crucial with regard to legal compli-
ance. Proper model documentation and logging is often required by the reg-
ulator (e.g. see Polish Financial Supervision Authority (2013, 2015)). Being
able to strictly determine by which version of the model a credit scoring
for a given client was obtained might also be required with regard to the cus-

tomers’ right to explanation of the model’s score, mentioned by the General
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Data Protection Regulation (GDPR) (European Parliament, 2016; Good-
man & Flaxman, 2016).

9.4.3 Model testing

Code testing is another good practice derived from software development
which should be introduced to the model deployment. Once the model is al-
ready built and implemented, it is a good idea to create unit tests which will
be responsible for checking whether the model, as a whole, works correctly
(Samiullah, 2019). A unit test is the smallest and simplest form of software
testing, employed to assess a separable functionality of the tested software
— the model, in this case (Sculley et al., 2015). Examples of what unit tests
for models should cover are presented below.

It is worth to design simple tests checking if the data provided to the
model is in the appropriate format (e.g. whether it contains all the required
variables) and whether it takes appropriate values (e.g. whether the client’s
age is a positive value, within a reasonable range). Model outputs should
also be covered by a separate set of tests (e.g. verifying whether scoring
probabilities are from range [0, 1]) (Béhm, 2019).

Classical methods of model performance monitoring can also be used
to validate the technical correctness of the model’s implementation. For ex-
ample, a rapid decrease in the model’s predictive quality may result from
incorrect loading of the data. Discrepancies between the model’s perfor-
mance in training and production environment may also point to other
technical problems, such as utilizing other versions of libraries or tools
(which can greatly affect the way the model works) (Samiullah, 2019).

Another type of testing involves preventing bugs from sneaking back
into the model. It is a good idea to create a separate test for each his-
torically known issue which would ensure that it does not occur again
in the future. This approach is called regression testing and is designed
to easily detect problems already known but which may be accidentally
reintroduced into the model. By having such tests, recurring problems are

easy and cheap to diagnose and repair, see (Sculley et al., 2015).
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It is also worth to test the model’s performance with regards to the speed
of its execution — this is a benchmark testing. Some model may provide high-
quality predictions but might be virtually useless business-wise due to very
long response times. When the model is scored in batches (and usually out-
side business hours) this might be of lesser importance. However, for real-
time scoring (e.g. when deciding whether to offer an overdraft for a client
who wants to transfer some money via online banking but lacks enough
funds), waiting time of several minutes might be unacceptable (Samiullah,
2019, Sculley et al., 2015).

9.4.4 Deployment approaches

When the model being implemented is supposed to replace the existing one,
it is worth checking (preferably in a safe way) whether the new model really
offers better forecast quality than the previous one and whether it integrates
correctly with the production environment (Gonfalonieri, 2019).

The first solution is to implement the model in a so-called shadow mode
(Sridharan, 2017). It involves launching a new model in a production en-
vironment identical to the ones used in the previous version of the model
but without using the results of the tested model in the business process —
outputs of the tested model are only saved and can then be used to analyze
how the model works. This approach ensures no real unexpected conse-
quences in a production environment, even if the model proves to be flawed.
The drawback is that it requires doubling the computing resources available
for a given process, which is not always possible or cost-effective.

An approach that requires fewer resources is canary testing (Sculley et
al., 2015). In a canary test, the new model is launched only for a small
subset of the customer population. This way, the model can be tested in re-
ality, while minimizing the risk of failure. If the model is satisfactory, it can
be gradually launched for an increasing proportion of customers or made
available to the entire population. Customers subject to canary testing can
be selected in different ways: randomly, based on their geolocation or other
features of interest. This allows testing the model for specific target groups
(Sridharan, 2017).
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It is also possible to combine both approaches — the new model can
be launched only for a part of the population in the shadow mode. Some-
times, however, it is necessary to use the model in real conditions, e.g. when
it is a part of a business process with which the customer has a direct con-
tact. If the model is used in real-time, deploying it only for a small part
of the population allows one to verify whether it will work efficiently under
real traffic load (Samiullah, 2019).

9.5 Tools useful for MLOps

Currently, there are already algorithms, tools and libraries for machine
learning which can be recognized as mature (Dong, 2017). However, the
MLOps domain is still relatively young and thriving (Gallatin, 2019) and
there are no solutions which can be considered as a standard (Dong, 2017;
Gallatin, 2019). Luckily, there are tools which are gaining popularity, de-
velop rapidly and are supported by major players in the field of machine
learning (Marranc, 2018).

9.5.1 Data Version Control

The first solution is DVC (Data Version Control)?. Initially, this open
source project focused only on managing both model code and related data

sets conveniently. Currently, it supports:

o version control of machine learning projects (models, data and inter-

mediate files),

» managing the results of experiments (tracking the results in a unified

format),

» model deployment and sharing (tools that allow to easily share a model

with others and send it to a production environment).

This tool is based on the popular Git version control system and is language-
and framework-independent. Additionally, it supports various data storage

formats: locally, on an internal server and in the cloud.

https://dvc.org/
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9.5.2 MLflow

MLflow? is an open source tool used for comprehensive machine learning

project management. It consists of three components:

e« MLflow Tracking — serves as a system for version control of the model
and data, as well as for managing experiments by monitoring and com-

paring parameters and metrics of individual models.

e MLflow Projects — used to share ML projects in a form that allows

them to be recreated by other users.

e« MLflow Models — provides tools for deployment of various types
of models, with support for many environments and pro-

duction formats.

Additionally, this tool works with any programming language and library.

It also has built-in integration tools for the most popular solutions:
o languages used in data science: Python and R,

e libraries utilized to build models: scikit-learn, PyTorch, Keras, Ten-
sorFlow, H20, XGBoost and Light GBM,

o different export formats and model deployment methods: ONNX|
Docker containers with Python REST API and objects for integra-
tion with cloud services: Microsoft Azure ML, Amazon SageMaker
or Apache Spark UDF.

Furthermore, if a language or library are not directly supported by MLflow,
it provides tools for adding custom integrations as needed.

MLflow’s biggest advantage are so-called flavors. MLFlow makes it pos-
sible to save models in many flavors at once — e.g. as a Python or R function,
in ONNX format and one native for scikit-learn and XGBoost libraries.
Thanks to this, people preferring different environments can work together

on the same model — for example, a gradient boosting model could have

*https://mlflow.org/
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been built in the past by a person using XGBoost library, while the data sci-
entist who is currently responsible for updating model parameters, prefers
the scikit-learn library. By using MLflow they can easily integrate these

two environments.

9.5.3 Kubeflow

Kubeflow® is a tool designed to enhance and simplify the implementation
of machine learning models on Kubernetes which is a container orchestra-
tor — it ensures the automation of container creation and enables simple
scaling of processes based on them. For example, if a given Docker con-
tainer encapsulating the model is not able to handle all queries submitted
by the production system, the Kubernetes environment will automatically
start another copy and redirect excessive traffic to it.

Therefore, Kubeflow can be considered as a glue connecting Kubernetes
environment with individual libraries and tools utilized for model design
and export (Bisong, 2019).

Moreover, Kubeflow is constantly further developed to provide addi-
tional functionalities, such as version control of entire ML projects, exper-
iment monitoring and also model export. Some of these features are still
provided in a beta phase only (at the time of writing — March 2020) but
in the future it will be possible to use Kubeflow either for comprehensive
management of machine learning projects (such as MLflow) or just for Ku-

bernetes support (which is already available).

9.5.4 Commercial solutions

There are also commercial solutions which offer a comprehensive model
management throughout its entire life cycle — from model building, through
its implementation and continuous monitoring.

Cloud-based products are the most popular, with Amazon SageMaker,
Microsoft Azure Machine Learning, Google Cloud Al Platform or Databricks

as market leaders (Marranc, 2018). However, due to security reasons,

Shttps:/ /www.kubeflow.org/
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the environments used in banks for credit scoring are usually isolated
from the Internet, so using cloud-based solutions is not possible then. There
are also solutions that can be used inside own infrastructure, e.g. Dataiku,
Algorithmia or Microstrategy. Most database system providers also offer
partially or fully automated modules for model implementation and man-
agement (although they are often limited only to specific formats
and functionalities).

Most commercial products use or at least provide support for the previ-
ously mentioned open source tools, so it is possible to use both, depending

on the organization’s needs.






Conclusions

The title and content of this monograph are directly related to three ele-
ments: 1) the business problem (i.e. creditworthiness assessment), 2) the
analytical instrument (i.e. modern machine learning methods) and 3) the
method enabling the integration of the previous two (i.e. interpretability
framework for machine learning methods — XAI). However, the combina-
tion of these three elements is not yet sufficient to call the use of machine
learning methods in credit decision responsible. The approach to responsi-
ble credit scoring requires a thorough understanding of the business context
of data sources for credit scoring (Chapter 2) and the sensitivity of indi-
vidual methods to data artifacts (Chapter 5), too. Practical applications
of the techniques described in this book require also the highest standards
in the model validation process (Chapter 6), as well as an appropriate tech-
nological architecture and implementation of these models. The technical
robustness of these algorithms is a multidimensional issue — only a ma-
ture approach to managing this process will ensure an appropriate level
of transparency and resilience.

As a part of this monograph, we presented the particular issues related
credit scoring, which have to be taken into account w hen building both
machine learning models as well as in traditional approaches. The fact that
we raised them simultaneously when describing modern techniques is re-
lated to the fact that they are generally much more resistant to these issues
than the classical approaches currently utilized by banks. Additionally the
techniques described in this monograph that enable the automation of han-
dling of common data quality related issues (e.g. missing data). In classic

credit scoring, the burden of handling such problems is transferred to the
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data analysts who, through multiple repeated steps (unfortunately also ex-
posed to the human perception error), try to best fix problems with data
in the final model. The techniques described in this book make it possible
to, at least partially, automate this process, which may undoubtedly trans-
lates into an increase in the efficiency of model building, without sacrificing

its quality.

The second aspect which, in our opinion, puts the machine learning
models discussed in this monograph in a favorable light is the fact that
they are much more flexible as to the form of functional relations between
features and target variable. They are able to automatically identify non-
linear relationships and interactions between features that may difficult
to discover for humans. Specialists in the field of classical econometrics,
who point out that classical models can also be “taught” non-linear rela-
tionships (e.g. by carrying out non-linear transformations on explanatory
variables), are of course right. Even very complex relationships (i.e. in-
teractions between variables, nonlinearities) can be modeled with simple
techniques. However, this process is time consuming and requires personnel
which is highly qualified in both quantitative methods and the details of the
business problem. This is why analytical departments of many institutions
are extensive (sometimes a single analyst is responsible for maintaining the
definition of only a few variables). Machine learning techniques can be suc-
cessfully used as tools supporting experts in discovering these dependencies,
even if the final decision model is built using classical modeling techniques.
Machine learning models should not be perceived as a threat to the clas-
sic form of data modeling but rather as a set of modern tools supporting
the analyst in discovering the relationships that affect credit scoring. Ob-
taining high quality parameters of these models is not an ultimate goal
in itself as above all, the objective is to prepare a robust analytical tool

that supports the decision making process.

Moreover, the modern approach is not something significantly different
from classical credit scoring modeling. Of course, the form of the model
as well as the way of interpreting parameters change, but the process it-

self remains similar. This situation is best reflected in the issues discussed
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in Chapter 2 or Chapter 6. Note that, in fact, in these two chapters de-
scribing the foundations of credit scoring (i.e. data and validation), the
processes look very similar, and often they are the same! In terms of these
chapters, we intentionally tried to describe the techniques so that they
would be applicable both to classical credit scoring and to scoring based
on modern analytical techniques. We are aware that XAl techniques con-
stitute an additional layer — but wouldn’t classical methods require a sim-
ilar layer if nonlinearity and interactions between variables were included

in their definitions?

However, transformation related to the use of advanced analytical meth-
ods is not an instant switch to different methods and solutions. Our rec-
ommendation in this regard is the responsible and gradual introduction
of machine learning solutions — also because the interpretability of these
models may not be straightforward in terms of credit scoring. These tech-
niques can initially be used as supporting models, i.e. analysis of their
specification and parameterization could help identify previously unknown
relationships between variables (or the identification of defects in existing
models). Such solutions, at least at the beginning, will not be directly
related to the business process, but they will enable indirect verification
of the results obtained using classical methods. It is this gradual familiar-
ization with new analytical solutions that will allow banks to get to know
them well, gain skills and expertise in the field on the way and more im-
portantly, to gain confidence of the environment not only in terms of their

applicability but also their adequacy.

The aspect of collective perception of these methods is also important
— as long as these methods are called “black-box” techniques, both business
practice and regulatory bodies may remain skeptical about their use. How-
ever, we would like to draw your attention to the thread that we already
mentioned at the very beginning of the monograph in Chapter 1 — credit
scoring is derived from pragmatism and empiricism, both of them speak for

the start of applying machine learning methods in credit scoring.

The predictions about the future use of machine learning methods, not

only in banking, indicate mostly their further development and advance-
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ment. Even today, these techniques are widely used in many areas of hu-
man activity, such as medicine, biotechnology, art, marketing, or technol-
ogy. The amount and diversity of data that we collect every day nowadays
speaks for the need to automate analytical processes and utilizing machine
learning is an inherent part of that.

We hope that the collection of methods and reflections discussed in the
monograph will help readers develop disruptive extensions of their scor-

ing approaches.

Editors
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