
XRootD Monitoring Scale Validation
Diego Davila & Derek Weitzel

Summary
After a first validation study, it was clear that the main reason for data loss was due to having
UDP packets longer than the MTU being dropped. This issue has been addressed in 2 different
ways:

1. Limiting the maximum size of the UDP packets being sent by the XRootD Server. This
approach is not the favorite of the XRootD developers because:

a. Is less efficient having to chop packets in little pieces
b. They think this could cause issues when the minimal data unit in a package, e.g.

the LFN, is longer than the maximum size allowed per packet. We have tested
this (Section 3) with a very simplistic approach and looks like the data gets
processed correctly even when the LFN is greater than the MTU

2. Making sure that jumbo frames (MTU=9000) are supported between the XRootD
server(s) and the Collector. This implies a change in deployment model, and operations
responsibility. The sites that operate XRootD servers are responsible for operating a
collector “nearby”, where nearby means on the network reachable via jumbo frames from
the server. This was successfully tested on Section 2

This study describes scale tests of the XRootD monitoring when either of the 2 solutions above
were employed. We expected significant data loss when numerous servers sent data to a
single monitoring collector. In our tests, we did not observe significant data loss when scaling
to 50 very high traffic servers.

Using solution (1) described above, we ran a set of scale tests in Section 2 and showed that the
collector can process around 100 records per second. Also, the current processing rate on the
production system is very close to the observed maximum processing rate. Since we have
observed data loss in the production monitor, we expect eliminating that data loss will raise the
incoming messages above the maximum processing rate.

Recommendations
We observed the maximum processing rate of the monitor which is close to the current
production processing rate. We must improve the processing rate of the monitor or split the
monitor into multiple instances. We must ensure there is no data loss between the servers and
the monitoring collector. Proposed solutions:

1. Remove the possibility of data loss by developing a light-weight monitoring flow
message bus, converting the UDP messages to TCP or use a production Message Bus.
And increase the processing rate of the monitor by parallelizing the processing.

https://zenodo.org/record/3981359

2. Deploy multiple monitoring collectors, assigning servers to a “nearby” collector. It is the
responsibility of the site to choose the location of the collector. OSG or PATh are not
responsible for these collectors. We just provide software and documentation on the
deployment.

Given that the scale of the current collector seems very close to its limit and that the deployment
of the New Generation collectors is very simple, the idea of having multiple collectors deployed
seems like the obvious approach. In this case any site or VO operating an XRootD server
should operate their own collector or make sure that jumbo frames are supported between their
XRootD server and a nearby collector and that the server is configured to limit the maximum
size of the UDP packets sent to the collector to a max of 9000.

Tests Performed

Section 1. Scale tests

After the first study we carried out, it was clear that the main reason for the observed data loss
was related to the drop of UDP packages larger than the minimum MTU within the network, but
the above did not discard the possibility of another source of data loss due to scale, i.e., many
servers generating more monitoring data than what the collector is able to process.

In order to discard the possibility of data loss due to scale we modify the scripts used in the first
study to be able to work with multiple servers at a time and executed 3 repetitions of the 8 tests
in Table 1.

On each test a client will request ‘N’ number of random files to each of the ‘M’ servers, then wait
for a second and repeat until a total amount of ‘O’ files is reached where:
N - Req. rate
M - Num. Servers
O - Total files req.

Every file request is uniquely identified and stored in a json file that will be used later to compare
with the data that gets pulled from the rabbitMQ queue. The comparison is made on 3 attributes:

1. Filename
2. Server name
3. Request Id

If all 3 attributes are found to be the same in a record both in the file with the requests and the
data pulled from RabbitMQ, then the file is considered correct. The column “Success %” shows
the percentage of correct files found in each test averaged over 3 repetitions. As it can be seen
in Table 1 in all cases this percentage is higher than 99%.

https://zenodo.org/record/3981359

Id
Num.

Servers

Files
req. per
server

Total
files
req.

Req.
rate

Files
recorded

rep. 1

Files
recorded

rep. 2

Files
recorded

rep. 3

Files
recorded

avg.
Success

%
ff_10000 2 100 200 20/s 200 200 200 200,00 100,00%

ff_20000 4 100 400 20/s 400 400 400 400,00 100,00%

ff_30000 8 100 800 20/s 800 800 800 800,00 100,00%

ff_40000 32 100 3200 20/s 3200 3200 3190 3196,67 99,90%

ff_50000 50 100 5000 20/s 5000 5000 5000 5000,00 100,00%

ff_60000 50 200 10000 50/s 10000 10000 10000 10000,00 100,00%

ff_70000 50 400 20000 80/s 19977 20000 20000 19992,33 99,96%

ff_80000 50 800 40000 100/s 39981 40000 39992 39991,00 99,98%

Table 1. First set of tests

A second set of tests was executed with the objective of finding out how much the current
implementation of the collector could scale under pressure.

For these tests a single server was used to request a large amount of files and then we
observed how long it would take to the collector to process all of these requests. In Table 2 we
can see that the collector is capable of processing around 100 messages per second. We
compared the above with what is currently observed at the production collector (see Plot 2.) and
concluded that the current scale at which the production collector is operating is very close to its
limit.

Id Total files Transfers time Collector time MPS

ff_01 6000 20.7 61 98.4

ff_02 12000 42.7 120 100.0

ff_03 18000 65 180 100.0

ff_04 120000 446.2 1203 99.8

Table 2. Second set of tests

Id - the identificator of the table
Total files - the amount of files to be requested
Transfer time - the time it took for the files to be transferred to the client
Collector time - the time it took to the collector to process all the requests
MPS - Messages per second (here a message is the full: open -> read N bytes x M -> close)

By looking at the columns 3 and 4 of Table 2 it can be observed that, as the number of requests
(column: Total files) increases, the difference in time between the transfer of files being made
(column: Transfers time) and their monitoring data being processed (column: Collector time)
also increases. If this delay grows enough the initial state of a given request, e.g., a file open
might be dropped by the collector before its corresponding file close is processed, thus loosing
monitoring data.

https://gracc.opensciencegrid.org/dev/d/UEicZJWGk/xrootd-monitor?orgId=1&from=161437174
5673&to=1614374565673&var-Server=validation

Plot 1. Messages processed by the collector over time, the 4 different sections correspond to
the 4 tests described in Table 2

https://gracc.opensciencegrid.org/dev/d/UEicZJWGk/xrootd-monitor?orgId=1&from=161437206
0688&to=1614374880688&var-Server=xrootd-mon.unl.edu

Plot 2. Messages processed by the production collector over time.

Section 2. Comparison between Gled and New Generation collectors.

https://gracc.opensciencegrid.org/dev/d/UEicZJWGk/xrootd-monitor?orgId=1&from=1614371745673&to=1614374565673&var-Server=validation
https://gracc.opensciencegrid.org/dev/d/UEicZJWGk/xrootd-monitor?orgId=1&from=1614371745673&to=1614374565673&var-Server=validation
https://gracc.opensciencegrid.org/dev/d/UEicZJWGk/xrootd-monitor?orgId=1&from=1614372060688&to=1614374880688&var-Server=xrootd-mon.unl.edu
https://gracc.opensciencegrid.org/dev/d/UEicZJWGk/xrootd-monitor?orgId=1&from=1614372060688&to=1614374880688&var-Server=xrootd-mon.unl.edu

One of the goals of this validation is to show that the New Generation collector performs at least
as good as the old Gled collector, for that reason we have carried out a set of tests to show the
data loss between these 2 collectors.

Accessing 90 files with a separation of 60 seconds between one file and the next one, we
recorded the number of records, out of these 90, that were lost on their way to the monit DB at
CERN and the results are shown in the next table

Gled NG at
Nebraska

NG UCSD NG UCSD
w/MTU 9000
in host

NG UCSD
w/MTU 9000
in both host
and container

Lost records 0 9 8 9 0

Notice that for the New Generation collector deployed at UCSD we have 3 different setups:
1. NG UCSD. In this case the collector is deployed unmodified and the host has a default

MTU of 1500
2. NG UCSD w/MTU 9000 in host. In this case we have set the MTU on the host to be

9000 but left the container with its default MTU, as it can be observed, this is useless.
3. NG UCSD w/MTU 9000 in both host and container. In this case both the host, and the

container are configured with a MTU of 9000 (see section “Setting MTU in Docker“
below)

Setting MTU in Docker.

In order for the MTU increase to take effect within the Docker container the following needs to
be done apart from setting the MTU in the host.

First Modify the docker.service file.
Either directly or by making a copy of such file and modifying the copy(recommended):

cp /lib/systemd/system/docker.service /etc/systemd/system/docker.service
And making the following line:

ExecStart=/usr/bin/dockerd -H fd:// --containerd ...
To look like:

ExecStart=/usr/bin/dockerd --mtu 9000 -H fd:// --containerd ...

Then reload the sytemctl daemon and restart docker
sudo systemctl daemon-reload
sudo service docker restart

Finally, on the docker-compose file make sure you have something like this:
networks:

default:
driver: bridge
driver_opts:
com.docker.network.driver.mtu: 9000

Section 3. A LFN longer than the “fbsz” attribute
In the previous study it was found that monitoring data losses could be avoided by limiting the
size of the UDP packets but a question raised:

What happens when the minimal data unit in a package, e.g., the LFN is longer than the
maximum size allowed per packet?

To test the above, we created the following LFN which is made of more than 1638 characters
and requested such file from a server which was configured to keep a maximum packet size of
1400, i.e., fbsz = 1400

The collector processed such requests normally and the record was found in the RabbitMQ later
on.

The monitoring directive was:

xrootd.monitor all flush 30s fbsz 1400 window 5s fstat 60 lfn ops xfr 5 \
dest fstat files info user io 192.168.2.139:9930

And the LFN used:

/store/aaa
aa
aaaaaaaaaaaa/bbb
bb
bbbbbbbbbbbbbbbbbb/ccc
cc
cccccccccccccccccccccccc/ddd
dd
dddddddddddddddddddddddddddddd/eee
ee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee/fff
ff
ff/ggggggggggggggggggggggggggggggggggg
gg
gg/hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hh

https://zenodo.org/record/3981359

hh/iiiiiiiiiiiiiiiiiiiiiii
ii
ii/jjjjjjjjjjjjjjjjj
jj
jj/dummy.root

We used tracepath to verify the MTU between the 2 hosts (XRootD server and Collector) and it
showed a MTU of 1440

[root@xrootd-server-59b69f645d-9t4tt xrootd]# tracepath river-c013.ssl-hep.org
1?: [LOCALHOST] pmtu 1440
1:
192-170-236-133.prometheus-operator-kube-proxy.kube-system.svc.cluster.local
0.045ms
1:
192-170-236-133.prometheus-operator-kube-proxy.kube-system.svc.cluster.local
0.037ms
2: 192-170-236-113.prometheus-operator-kubelet.kube-system.svc.cluster.local
0.337ms reached

Resume: pmtu 1440 hops 2 back 2

