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Abstract (150-250 words, currently 143) 
In this paper we test 15 point-cloud registration algorithms (including  four iterative closest point 

(ICP) and three coherent point drift (CPD) variants) to find which ones give least registration error 

and are fastest for our use case:  detecting the intersection point between two rods for an industrial 

robot application. The algorithms are all in common use. The data comprises both real and 

simulation-adjusted images of approximately perpendicular metal rods taken from different angles.  

The most accurate algorithms of those tested were CPD-affine and CPD-rigid, but they were both 

rather slow. SVR-rigid (support vector regression) was almost as accurate and considerably faster. 

Accuracy is much more important than speed for our application, as the time taken for matching is 

always significantly shorter than the time required for the robot to act. Further investigation is 

needed before the final "best" algorithm can be chosen. 
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1. Introduction 
There are many scenarios that require a real-life image to be matched with a template image that is 

annotated to give key points for robot action. Matching the images allows offsets to be calculated 

and robot parameters to be adjusted to make the action more likely to succeed. The camera is 

placed at a known location relative to (often: fixed to) the robot system, so that the conversion from 

camera-relative coordinates to robot-relative coordinates is fixed or at least easily calculable without 

the need for recalibration. For robot-guidance applications like this, relative location needs to be as 

accurate as possible, but we are not interested in any absolute locations.  

Finding a robot action point in the real world requires images that give information in 3D. Normally 

"3D" sensors (e.g. stereo camera or cameras that include a range finder) collect a 2.5D image which 

is converted to 3D point cloud information. 2.5D is viewpoint-dependent and cannot see the back of 

anything. Nevertheless, 2.5D images contain sufficient information to expand each pixel to give 3D 

world coordinates – but only on a per-pixel basis, and therefore only as individual points. There is no 

information about what exists between the points (hence the interest in high-density point clouds). 

Where the scene contains identified objects, sometimes models can be examined to infer some of 

the missing data e.g. the "back" side of cylinders or other precisely-described shapes. 

Robot action requires not only accurate 3D coordinates for the place where the action is to occur, 

but also an assurance that the path from "here" to that point is unobstructed. Point clouds give 

some of that information, as each point represents the nearest obstruction along the direct line from 

the sensor optical centre to that point – the space in between is known to have been unobstructed 

when the image was taken. Robot action also takes place in real time, meaning that algorithms that 



require a lot of processing time can cause the robot to move slowly or stop and wait until the 

algorithm has its finished output. Most industrial applications want the robot to work as fast as 

possible, so it is wise to avoid anything that makes the robot slower. 

3D point cloud registration (PCR) algorithms work by finding the transformations required to change 

the template image into the real-world image. The purpose of matching the real-world image with 

the template image is that the key points annotated for action are moved and/or deformed along 

with the template, so their positions in the real world are known. Then the robot can go to the 

designated point and orientation and perform its action with a good chance of success.  

Rigid transformations such as translation and rotation (also mirroring) do not change the distance 

between any points, so are fairly fast to calculate. The registration problem for rigid transformations 

is restricted to 6 degrees of freedom. Affine transformations such as shearing and scaling preserve 

lines and parallelism but not necessarily angles or distances. Other non-rigid transformations may be 

based on thin plate splines or the eigenmodes of variation of the point set. Non-rigid 

transformations require more computation time as they are less constrained.  

The most popular PCR algorithms in robotics are simultaneous pose and correspondence methods, 

notably Iterative Closest Point (ICP) [1,2]. Local registration methods such as ICP assume that similar 

point clouds are already roughly aligned and output the best match – even if the images are, in fact, 

completely different (which is not the case for our data). Many variants of each method exist and 

new methods are frequently developed.  

2. Related work 
Many people have compared different variants of ICP using various datasets and various sensors to 

collect the data. Pomerleau et al [3] compared ICP variants on real-world datasets, stating: "Because 

ICP has many variants whose performances depend on the environment and the sensor, hundreds of 

[ICP] variations have been published. However, no comparison frameworks are available." Bellekens 

et al [4] used the mathematically deterministic methods principle component analysis (PCA) and 

singular value decomposition (SVD) to produce a benchmark and compare the precision and 

robustness of different ICP variants. They concluded that "The choice of an algorithm generally 

depends on several important characteristics such as accuracy, computational complexity, and 

convergence rate, each of which depends on the application of interest. Moreover, the 

characteristics of most registration algorithms heavily depend on the data used, and thus on the 

environment itself." Donoso et al [5] explored the performance of 20,736 ICP variants applied to the 

registration of point clouds for the purpose of terrain mapping, using data obtained from a mobile 

platform. They concluded that no single ICP algorithm is better than the others in every scenario.  

Cheng et al [6] compiled an extensive review of different types of PCR algorithms for LiDAR datasets 

but had to conclude that no real evaluation can be done based on the existing literature.  

Since there is no overall "best" algorithm for matching 3D point cloud data, investigations have to be 

made for each type of case. For our crossover-detection case, we chose to investigate 13 of the most 

popular algorithms, see the method section below.  

3. Method 

3.1 Data used  

The dataset contained 1024x1024 images of pairs of 12mm diameter cylindrical rods lying 

approximately at right angles against a plain workbench. All images were taken with a Kinect, which 

means the point clouds are not very dense. An open3d algorithm was used to crop the data in a 



sphere around the crossover point to reduce the number of 3D points further and speed up the 

matching process. This process also means that an initial "coarse" matching can be assumed and 

only local registration methods are needed.  

For the purposes of the work reported in this paper, we took three images taken from different 

angles plus one "template" image where the position of the intersection was already precisely 

known. Each of the three test images were augmented as described below until we had 100 test 

images in total. 

3.2 Image manipulation 

The chosen images were manipulated at three different levels:  

Variation Low Medium High 

Noise (m-3) +/- 0.02 +/- 0.05 +/- 0.2 

Translation (m, each axis) 0 –  0.003 0.003 –  0.01 0.01 – 0.05 

Rotation (degrees, each axis) 0 –  2 2 –  5 5 – 10 

Shear 0 –  0.02 0.02 – 0.1 0.1 – 0.2 

3.3 Algorithms chosen 

The algorithms compared in this paper are: 

A. Iterative closest point (ICP, variants: point to point, point to plane, color and global) 

B. Bayesian coherent point drift (BCPD), both rigid, affine and non-rigid 

C. Support vector regression (SVR), both rigid and non-rigid 

D. Gaussian mixture model (GMMReg) – a form of kernel correlation 

E. Gaussian mixture model  combined with decision tree (GMMTree) 

F. FilterReg - point to point and feature  

The ICP algorithms were taken from open3d version 0.9.0 [7]. The other algorithms were taken from 

the ProgReg library version 0.1.6 [8]. 

3.4 Choosing parameters / pre-experiments 

ICP variants: A threshold value of 0.02 m was set for point-to-point and point-to-plane, otherwise 

the default initialization values were used. For ICP color, parameters chosen were: radius 0.05 m, 

relative fitness of 1e-6, relative root mean square error (RMSE) of 1e-6 and maximum allowed 

iterations set to 100. For ICP global we used feature matching with a distance threshold of 0.4 m and 

RANSAC convergence criteria. Fast point feature histograms (FPFH) features were calculated for 

each point with a radius of 0.05 m and a max nearest neighbors of 100. 

The other algorithms were taken straight from the ProgReg 0.1.6 library that implements PCR 

algorithms with probabilistic (not deterministic) models which should be more robust than ICP. 

Default configurations were used. GMMTree had max iteration set to 20 and tolerance set to 0.0001. 

FilterReg - feat had sigma2 set to zero for the point-to-point and 1000 for "feature", with 

feature=FPFH.  

3.5 Procedure 

Two tests were carried out as follows: 

1. A visual inspection test, where the registered image pairs were examined by eye to assess 

the match. Four result categories were used: unusable, bad, good, very good. 

2. Investigation of mean point-to-point error distance and speed for each algorithm. 



4. Results 

4.1 Visual inspection of 100 matches 

Algorithm Type 
Match quality 

Very good Good  Bad Unusable 

 1. ICP - p2p Rigid 45 35 12 8 

 2. ICP - p2pl Rigid 40 29 11 20 

 3. ICP - color Rigid 9 33 22 36 

 4. ICP - global Rigid 40 37 16 7 

 5. CPD Rigid 40 46 11 3 

 6. SVR Rigid 22 42 31 5 

 7. GMM Rigid 40 35 18 7 

 8. GMMTree Rigid 15 24 21 41 

 9. FilterReg - p2p Rigid 18 30 29 23 

10. FilterReg - feat Rigid 0 0 7 93 

11. CPD Non- Rigid 0 0 0 100 

12. CPD Affine 52 12 18 17 

13. SVR Non- Rigid 39 4 2 56 

These qualitative results show that algorithms 10 (FilterReg - feat) and 11 (CPD non-rigid) cannot be 

used, as the matches that they produce are mostly unusable. 13, 8, 3 and 9 also give over 20% 

unusable matches.  

The algorithms giving the highest number of very good matches are 12 (CPD-affine) and 1 (ICP-p2p). 

Algorithms 2 (ICP-p2pl), 4 (ICP-global), 5 (CPD-rigid) and 7 (GMM-rigid) all produce matches where 

40% are assessed as "very good". Algorithms 1 and 5 are assessed as best as they both produce over 

80 "good" plus "very good" matches and under 10 "unusable" matches. 4 and 7 are also highly rated 

as they both produce 75+ workable matches and under 10 unusable. 



4.2 Low variation tests 

Testing the algorithms on image pairs with low variation, the mean point-to-point error distance for 

8 (GMMTree) was 51,000 mm (to 2 significant figures). Results from the remaining algorithms are 

illustrated in Fig.1. Algorithm 6 gave the best results with a mean error of only  0.11 mm. 13, 5 and 

12 also gave mean errors of under 0.2 mm. As can be seen from Fig.1, 12 gave the tightest spread of 

results with a standard deviation of only 0.017 mm. 

12 and 5 were the slowest algorithms, taking 33 and 25 seconds per match, respectively. 1, 2, 3, 4, 6, 

8 and 9 took under 1 s per match on average. Algorithm 6 (SVR-rigid) therefore looks best here. 

 

4.3 Medium variation tests 

Using images with medium variation, algorithm 8 again gave an error measured in meters and not 

mm. Algorithm 3 is also missed out of Fig.2, with its mean error of 0.013 mm and a standard 

Figure 1: Boxplot of point-to-point error distance (mm) with low variation images, 8 GMMTree removed. 

Orange lines show the mean, open boxes the quartiles, black blobs are outliers. 

Figure 2: Boxplot of point-to-point error with medium variation images, 8 GMMTree and 3 ICP color removed. 

Orange lines show the mean, open boxes the quartiles, black blobs are outliers. 



deviation of 0.044. Algorithm 12 was most accurate with a mean error of 0.083 mm and a standard 

deviation of 0.035. 13, 5 and 6 also gave errors with a mean of under 1 mm.  

Again, 5 and 12 took the longest time, both around 35 s per match. 1, 2, 3, 4, 6 and 9 took under 1 s. 

4.4 High variation tests 

Algorithm 8 again failed completely. Algorithms 2, 3 and 13 also gave errors too high to  be fitted 

into a plot with the other algorithms, which are illustrated in Fig.3. 

Algorithm 12 gave the most accurate results, with a mean error of 0.320 despite the high variation in 

the images. Algorithms 5, 4, 6 and 10 were also good. 13, 12 and 5 were the slowest on average, 

taking a mean of 58, 32 and 31 s respectively, though 10 was also slow and both 10 and 13 had 

outliers taking over 400 s! 2 was fastest, closely followed by 9, 1 and 3. Algorithms 6 and 8 also came 

in under 1 s. 

5. Conclusions 
As could be expected, the ranking of the individual algorithms is similar with all three levels of 

variation -- the highest variation mostly just separates them out, making the ranking more obvious. 

Therefore the results from the low and medium variance tests were ignored, being considered as 

already included in the high variance test results. 

The accumulated results from all the tests are gathered in the table below.  

Algorithm score 
Results from 
visual test 

Results from high variance test Overall 

Mean error mm Speed s 

 1. ICP – p2p  X 0. 44 Bad 

 2. ICP – p2pl OK X 0. 044 Bad 

 3. ICP – color X X 0. 051 Very bad 

 4. ICP – global   1. 7 Good 

 5. CPD – rigid   31. 0 Second best  

Figure 3: Boxplot of point-to-point error distances on images with high variation. Results 
from algorithms 2, 3, 8, and 13 have been removed due to high error values: 0.97 with 
S.D. 4.3, 0.4 with S.D. 2.17, 38000 with S.D 150,000 and 48 with S.D. 130 respectively. 

Orange lines show the mean, open boxes the quartiles, black blobs are outliers. 



accuracy but slow 

 6. SVR – rigid OK  0. 35 Good 

 7. GMM  OK 7. 0 OK 

 8. GMMTree X X 0. 89 Bad 

 9. FilterReg – p2p X OK 0. 014 Bad 

10. FilterReg – feature XX  58. 0 Very bad 

11. CPD – non-rigid XX OK 2. 6 Very bad 

12. CPD – affine   
32 .0 

Best accuracy but 
slow 

13. SVR – non-rigid X X 58 .0 Very bad 

 

Algorithm 12 (CPD-affine) gave minimum error and was slowest with all amounts of variation, with 

algorithm 5 (CPD-rigid) close behind. Algorithm 6 (SVR-rigid) gave almost equally low mean point-to-

point error distance as the CPD algorithms and was considerably faster.  

The ICP variants (algorithms 1-4) gave acceptable results even when using images with high 

variation, always giving errors under 1 mm.  

6. Discussion 
It can be seen that in general the best results come from the slowest algorithms, and there is no 

algorithm that outperforms the others in all areas. Therefore the "best" algorithm depends on the 

nature of the task and its priorities. Here, we assume that the match is being made so that a robot 

can perform some task at the rod intersection. The robot action will be considerably slower than all 

but the worst outliers, so the speed of the match is not important for our task. By contrast, a robot's 

success rate at any given task depends strongly on how well the robot can find and access the 

correct position. The more accurately we can locate the intersection, the greater the probability of 

the robot task succeeding. Therefore the best algorithms for our case appear to be 5 (CPD-rigid) and 

12 (CPD-affine). 

The difference between visual inspection results for 11 (CPD non-rigid) and the other CPD algorithms 

tested (5 and 12) shows how important it is to choose not only the right approach (CPD) but also the 

right version of the chosen approach.  

Pomerleau et al [3] suggests that ICP point-to-plane is generally better than ICP point-to-point. Our 

results agree but the difference is rather small. 

One interesting result is the mismatch between the results from the visual inspection and the mean 

error measurements. One problem with PCR algorithms is that they contain no semantics and give a 

result anyway, meaning that sometimes they make matches where the point pairs are reasonably 

close together, but visual inspection shows that the "matches" are of points that are not paired in 

the real world.  

Generally, PCR algorithms work poorly if the template and scene differ a lot. A bad match could 

either be considered an error or an indication that the scene crossover differs too much from 



expected. Since all the scenes and the templates were very similar, being images of two rods of the 

same size crossing at approximately right angles, the extent of bad matches is surprising. 

Although the robot action is automated via the point cloud registration, for our case it does not 

matter is a few of the cross-overs are missed out. The current process is manual and it is possible for 

one of the current workers to deal with the trickier crossovers. 

6.1 Future work 

We intend investigating algorithms 5, 12, 6 and 4 further. Running these algorithms on the real robot 

will indicate if the slow speed of the two CPD algorithms is problematic in our case or not and if the 

slightly reduced accuracy of the faster 4 (ICP-global) and 6 (SVR-rigid) matters for our case. If 

necessary, i.e. if the given algorithms cannot be made to work well enough, then we may continue 

this work by investigating other PCR algorithms and also non-PCR methods of finding the 

intersection point e.g. finding the pose of each of the two rods separately and using our knowledge 

that they are approximately straight to identify the intersection in 2D, and extending this to 3D by 

using the average distance to the center of each rod as calculated from the point cloud data. No 

template and no matching would be required. 

Very recently, Yang et al. [10] have developed the first certifiably robust registration algorithm, 

named Truncated least squares Estimation And SEmidefinite Relaxation (TEASER). For point cloud 

registration, TEASER not only outputs an estimate of the transformation, but also quantifies the 

optimality of the given estimate. This could provide another interesting approach. 
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