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Abstract—Modern manufacturing has made huge progress 
in production efficiency. However, the status of the production 
equipment deteriorates during manufacturing, and their 
condition can then affect the quality of products and total 
production cost. When viable, maintenance, remanufacturing 
and replacement should be carried out for such equipment to 
reduce the total production cost. However, many processes, for 
example, inspection and manufacturing planning are carried 
out by a human. In the era of Industry 4.0, an automated 
production planning with automated condition monitoring, 
equipment inspection and maintenance planning is desired. In 
this article, the literature on related topics is reviewed. The state 
of the art in this study helps to improve the performance of 
production lines in manufacturing. 

Keywords—smart manufacturing, production planning, 
maintenance planning, automated inspection, diagnostic and 
prognostic, optimization, process control 

I. INTRODUCTION 

Production lines have improved the efficiency of 
manufacturing, however, the status of the production 
equipment deteriorates during high-efficiency mass 
production. The deterioration affects the quality of the 
products. Therefore, it is necessary to maintain the status of 
the equipment, which can be done by maintenance, 
remanufacturing or replacement of the tools. However, the 
normal maintenance interrupts the manufacturing schedule, so 
how to make an optimised total manufacturing plan is very 
important for modern production. 

So far, there are many kinds of maintenance strategy: 
breakdown maintenance, time-based maintenance, PM 
(preventive maintenance), CBM (Condition-based 
Maintenance), TPM (Total Productive Maintenance) [1] and 
maintenance 4.0 [2]. The current maintenance inevitably 
interrupts the production, which is a waste of time and 
resource. The researchers are managing to improve the total 
production plan by optimizing the maintenance plan. 

Inspection of the equipment and condition monitoring of 
the equipment is important to manufacturing. AS (Allocation 
Strategy) and PS (Parametric Strategy) are currently the main 
methods of inspection planning [3]. However, in the context 
of Industry 4.0, the method should be combined as the AS-PS  
method. With the development of sensing technology, the 
TCM (Tool Condition Monitoring) is more real-time and 

precise, the research trend nowadays is to fuse the sensor data 
to make an accurate evaluation of current state and prediction 
of the useful life of the equipment. 

There are 2 main questions to be answered in this review 
article: how to monitor the status of the equipment optimally? 
How to make the maintenance plan without interrupting the 
production or at the least cost? 

The reviewed research literature is searched in Scopus, 
ScienceDirect and ProQuest databases. Since the diagnostic 
and prognostic methods are limited to the development of 
sensors and heuristic algorithms, the Literature review of this 
part is limited from the 2000s to 2020. The key words ‘tool 
wear’ ‘manufacturing’ ‘diagnostic’ ‘prognostic’ are used to 
search for related literature in Scopus, ScienceDirect and 
ProQuest databases (see Fig. 1). 

For optimisation of manufacturing processes, keywords 
‘manufacturing optimisation’, ‘maintenance plan’, ‘quality 
inspection’ and ‘tool condition monitoring’ were used to find 
relevant journal articles. All the journals with the most impact 
indicator were searched. The number of literature in recent 30 
years showed an increasing trend of this topic (see Fig. 2). 

The article is organized like this: in section 2, the methods 
of tool condition monitoring are reviewed. Product quality 
inspection and inspection planning are reviewed in section 3. 
The methods of diagnostic and prognostic to determine the 
equipment state are introduced in section 4. The optimization 

 
Fig. 1. The number of literature on tool wear diagnostic and prognostic 
in recent 20 years 



of the manufacturing process considering maintenance is 
reviewed in section 5. Section 6 draws the conclusion. 

II. TOOL CONDITION MONITORING 

To optimise the production planning according to the 
status of the tools, the status of the tools should be measured 
and predicted. There are two ways to monitor the status of the 
production equipment: monitoring of the tools directly 
(condition monitoring) or inspection of the produced parts. 
There is a confusion of the word ‘inspection’ in former 
literature, while ‘inspection’ is only used for products quality 
in this review, ‘monitoring’ is for the manufacturing tools.  

The HSM (High-Speed Machining) is getting more 
attention due to its efficiency. The main issue in HSM is the 
tool wear [4]. Tool wear is also an important issue in other 
mass production. To diagnosis the tool wear and predict the 
tool’s RUL (Remaining Useful Life), a method of tool 
condition monitoring (TCM) is required. The TCM help to (a) 
reduce the damages of the tools and parts; (b) improve 
productivity; (c) predict the tool wear. There are direct and 
indirect ways to monitor the tool wear, the indirect method 
means to disassemble the tools from the machine to measure. 

Comparing to intelligent TCM, human operators are more 
subjective, flexible, but inaccurate [5]. With the development 
of sensors, the TCM became more and more automated. The 
common methods of TCM are acoustic emission (AE), 
temperature, vibration, current, power, force, computer vision, 
and other measurements. 

After the 1990s, with the development of sensing 
technology, more research was approaching to fuse multi-
measurement to make TCM. In the early 1990s, Tanaka et al. 
[6] introduced microphone into AE TCM. Choi et al. [7] 
introduced the AE method into on-line TCM. The AE was 
fused with cutting force. The tests showed that when the tool 
breakage happened, the AE went bigger. Sound pressure is 
used as well to monitor the tool wear [8]. Infrared pyrometer 
was used to measure the working interface temperature in [9]. 
Infrared thermography was also introduced in [10], which 
made the monitoring continuous. The fitting of acoustic and 
thermal measurement was used to monitor the tool wear in 
real-time [11]. After the 2000s, more researchers started to 
binding the force measurement TCM with more algorithms to 
modelling the tool wear. HMM(Hidden Markov Model) was 
used to track the progress of the tool wear [12]. The status of 
the tool wears was also classified by multiple modelling 
methods. Force measurement was combined with current 

measurement, used a neural-fuzzy network to identify the 
force with current measurement only to reduce the modelling 
uncertainty [13]. Real-time torque(Mz)-force(Fx, Fy, Fz,) 
measurement signal was used to train an ANN(Artificial 
Neural Network) to predict the flank wear of CNC (Computer 
Numerical Control) [14]. The model demonstrated good 
performance with a low error ratio. When the force indicates 
the static performance of the tool wear, the vibration 
demonstrates the dynamic characteristics of the tool wear [5]. 
Force and vibration measurements were carried out to collect 
data to train SW-ELM (Summation Wavelet-Extreme 
Learning Machine) models in high-speed milling CNC in [15]. 
Tool wear trend and RUL were estimated online in an efficient 
method. Martínez-Arellano et al. [16] used vibration 
measurement, force measurement, acoustic emission and a 
microscope to monitor the tool wear, with the help of deep 
learning algorithm which was trained by the sensor data, the 
tool wear condition was classified. The combination of the 
data of the sensors benefits the TCM. Besides, CV (Computer 
Vision), for example, laser sensors, thermography, is more 
used in the modern industry. The sensor fusion of CV and 
force measurement was used to predict the tool breakage, and 
to monitor the tool wear by training SOM (Self Organised 
Map) network [17]. A method combining CCD (Charge-
coupled Device) camera with a microscope was introduced in 
[18]. The high-frequency noise was removed, the Laplacian 
method was used to detect the edge of the defect, however, the 
microscope is difficult to be used on-line. There is also an 
algorithm that estimates the depth of the defect by using one 
camera [19]. There is also 3D reconstruction method which 
building a 3D model to compare with the CAD (Computer-
Aided Design) model of the tool [20]. White light 
interferometry was also introduced to TCM to measure the 
depth of the defects [21]. An automated CVTCM (computer 
vision-based tools condition monitoring) for the micro-milling 
system was introduced in [22], in which the filter filters the 
speckles and noises automatically, and the 3D carrier adjusts 
the position of the CCD, the lens and the light to make proper 
images automatically. 

III. AUTOMATED PRODUCT QUALITY INSPECTION 

The produced parts are inspected in the production line to 
guarantee quality. Meanwhile, the quality of products, for 
example, the surface roughness has a positive relationship 
with the state of tools, so the inspection is also called “indirect 
TCM” because the status of the products has a relation with 
the condition of the tools. 

In total production planning, there are two inspection 
factors to be considered: inspection planning and inspection 
method which are significant and challenging decision in 
quality control and cost plan of the whole production. Because 
after the inspection, the reasons for the defects are modified, 
the defected tools are replanned for maintenance, repair or 
replacement. 

Inspection planning or inspection strategy (IS) research 
was started by Lindsay and Bishop [23]. The IS is classified 
into two approaches: allocation strategy (AS) and parametric 
strategy (PS) [3, 24],. While AS determines where to install 
the inspection devices, the PS plans the sample size to be 
inspected, the number of inspection repetitions, and the 
frequency of inspections. In automated inspection planning, 
AS-PS strategy should be proposed. 

 
Fig. 2. The number of research literature on optimisation of 
manufacturing  of recent 30 years 
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There are two directions of research for the inspection 
location. One is on computer vision, where to install the 
inspection sensors; and the other research is on where to 
implement inspection station on the production line. In this 
review, the focus is the latter one. The conventional linear cost 
function for inspection and rework was established in [23]. 
The total cost of the production line was modelled and the 
inspection stage is determined considering the minimizing of 
the total cost. The optimization functions to determine the 
inspection location, inspection capacity were built in [25]. The 
genetic algorithm was used to determine the location of 
inspection stations [26]. Genetic and simulated annealing 
algorithm were combined to allocate the inspection and 
minimize the total cost [27]. The fuzzy algorithm was also 
used to calculate the number of inspection points and 
Hammersley’s algorithm to determine the locations of 
measuring points for the feature-based inspection planning 
[28]. 

While the bigger sample size guarantees the quality of the 
products, it increases the inspection time and cost. Barnett [29] 
started the research on the economic sample size choice for 
inspection. Hammerly sequence and a stratified sampling 
method were used to determine the sample size in CMM 
(Coordinate Measuring Machine) which was common in 
manufacturing inspection [30]. Genetic algorithm was used to 
determine the sample size of each inspection in a multi-stage 
production line [31]. Dynamic programming was also used to 
dictate the optimal sample size and time interval of inspections 
[32]. Considering the sample size as a deciding factor in the 
inspection research, a dynamic solution using the simulated 
annealing algorithm was made to determine it [33].  

There are many ways to implement the automated 
inspection: robot, measurement chamber [34]. The methods of 
inspection include tactile, optical and X-ray CT (Computed 
Tomography) (see Fig. 3). 

IV. DEFECT DETECTION, IDENTIFICATION AND 

TOOLS EVALUATION 

The results of TCM directly indicates the state of the tools, 
while the results of product inspection also have a positive 
relationship with the tool degradation. The detection of the 
defects helps evaluate the status of the tools, the total 
production plan is re-evaluated according to the integration of 
data.  

According to [35], diagnosis and prognostic methods are 
included in the condition monitoring system. The diagnosis 
system is to estimate the current status of the production 
system, while the prognostic system is to estimate the root 
cause and the RUL of the tools. For the integrated condition 
monitoring system, there are two steps to realise: 1. Identify 
the defects in the products and the machines; 2. Estimate the 
status of the tools and predict the RUL of the tools.  

After the defects are identified, the root causes should be 
found. Although there are many inspection stations on the 

production line, the products with ‘in-built’ defect or design 
defect slip through all the processes and degrades the tools 
[36]. Some defects affect the appearance of the products, 
while others have an impact on the components (tools) on the 
production line. So when the defects are detected, the root 
cause of the defects should be found. There are many methods 
to investigate the root cause of defects [37]: six sigma is a 
customer-focused methodology supported by a handful of 
methods and statistical techniques to reduce defects and 
eliminate waste from processes. It consists of DMAIC (Define, 
Measure, Analyze, Improve, Control) and DFSS (Design-For-
Six-Sigma). A novel warrant cost reduction method was 
introduced in [38]: RCA (Root Cause Analysis). The RCA 
implemented FMEA (Failure Mode and Effects Analysis) to 
collect data and used BN (Bayesian Network) to elicit 
probabilistic inference for warranty failure, DTC (Detection-
To-Correction) cycle time reductions are the benefit of RCA 
model. The RCA was used to improve the product quality, the 
conventional RCA case study showed an improvement, 
however, the RCA required much data, and it runs off-line 
[39]. While RMI (Root-cause Machine Identifier) was used to 
find the root cause for the defects online [40]. The data mining 
algorithm was used to identify the root reasons for the defects 
of products [41]. Dhafr et al. [42] introduced a statistical 
method to identify the root cause of defects by the probability 
map of the process. The data mining method was also used to 
establish a hybrid OLAP(Online Analytical Processing) 
management system to online monitor the defects and find the 
root cause and take actions for a jeans production line [43]. A 
weighted fuzzy algorithm was used to identify the root reason 
for the defects in the industry [44]. Brundage et al. [37] used 
machine learning Bayesian network algorithm to identify the 
root cause in a bottle opener manufacturing process.  

The tool degradation and remaining useful life estimation 
are very important for the manufacturing planning since the 
tool degradation has impacts on the quality of products, and 
the RUL prediction of tools provides important information to 
help make the maintenance plan and avoid overstock of spare 
parts and to prevent fatal breakdown [45]. Kerr et al. [46] 
started to use computer vision to estimate the tool wear 
dimension, the RUL ended when the tool wear met the 
determined threshold. ANN was used to classify the tool wear 
[47], the conclusion was the Fy component of the cutting force 
can be neglected and Fz component increases when the tool 
wears increased. The fuzzy algorithm was introduced to fuse 
force, vibration and AE to estimate the tool wear condition 
[48]. The genetic algorithm assisted SVM (support vector 
machine) was used to fuse sensor data to diagnose the state of 
tools [49]. Three SVMs were used to classify the tools into 
sharp, workable, dull. GA was used to select useful features 
for the SVM classification. The tools were only classified for 
reuse, but the RUL was not estimated. A data-driven approach 
was introduced to estimate the RUL of the drilling machine 
[50]. Force and vibration sensors were used to monitor the 
condition of tools. The data features on the time domain and 
frequency domain were extracted. ABCPD (Adaptive 
Bayesian Change Point Detection) algorithm has been 
proposed to detect different machining stages. Ten algorithms 
were used to compare the effectiveness, the MLP (Multilayer 
Perception) outperformed others in terms of average RMSE 
(Root-mean-square Error). Mikołajczyk et al. [51] also used 
neural network combined with image processing tool to 
predict the tool life in manufacturing.     

Fig. 3. Methods of quality inspection: (a). tactile; (b). optical; (c). X-ray 



Meanwhile, there were few works of literature regarding 
the relation between products inspection and tool degradation 
estimation. Yeo et al. [52] used neural network to integrate the 
data of cutting chip surface reflectance and cutting forces as 
factors to estimate the tool wear. Neural network was also 
used to make a relation between product quality and tool wear 
[53]. The novel model can not only predict the tool wear but 
also predict the surface roughness. RLD (Remaining Life 
Distribution) was introduced into the spare part inventory to 
make the right decision for replacement [54]. An ANFIS 
model was established to predict the product surface 
roughness based on cutting force [55]. It can be also used to 
estimate the RUL of tools by the data of surface roughness 
combing with the cutting force. Hybrid deep learning (gated 
recurrent unit network) algorithm was used to predict the long-
term tool wear and RUL in [56]. The training data came from 
the TCM system. An optimised SVM method was also used 
to estimate the RUL of tools by inspecting the product quality 
in real-time [35]. The relation between product quality and 
tool degradation was established. Then, the RUL of tools was 
estimated. 

V. OPTIMIZATION OF MANUFACTURING 

PLANNING AND SCHEDULING 

Production planning, maintenance scheduling and quality 
systems are the three functions of manufacturing systems with 
different goals defined on shared subjects [57]. The genetic 
algorithm and Tabu search algorithm have been used to find 
an optimised solution in the consideration of the total cost of 
production, inspection and maintenance. However, there were 
few research papers regarding this topic. 

Ross [58] used a numerical approach to find the optimal 
maintenance policy to maintain a Markovian deteriorating 
production machine. The other approach, such as the 
rectifying sampling [59], is to sample the products to screen 
out the defective units [32]. Genetic algorithm was used to 
optimise maintenance scheduling by evaluating the tools life 
[60]. Hennequin et al. [61] introduced fuzzy algorithm to 
optimise the single-stage single machine manufacturing 
system. Nourelfath et al. [62] optimised a multi-state 
production system with PM planning. Pandey et al. [63] 
introduced a novel method to jointly optimise the maintenance 
scheduling, quality control and manufacturing planning. A 
block replacement method was introduced, the minimization 
of the cost per unit time of total schedule time was carried out. 
Zhu et al. [64] introduced a multi-component production 
maintenance scheduling based on the tool condition. A joint 
maintenance interval for all degraded equipment was 
introduced, and a component (machine) alert limit threshold 
was established. Li et al. [65] used TCM and on-line 
inspection to monitor the status of the production line. The 
TCM monitors the status of the machining tool by sensing the 
manufacturing processes, while the on-line product inspection 
also functions to confirm if the tools are working properly to 
avoid unrepairable damages on the workpiece (see Fig. 4). Lu 
and Zhou [66] used TCM, products inspection, and PM to 
schedule the production. For optimization, a cost-based 
improvement factor was introduced to rank the manufacturing 
system. Both the quality of products and the status of the 
manufacturing machines were monitored in the literature. In 
this literature, the tow triggers of preventive maintenance were 
used like former research, the quality of products and state of 
machines are both monitored in this case. Dong and Ye [67] 
introduced a joint-optimisation for the maintenance 

scheduling on green manufacturing. A novel synchronized 
scheduling and maintenance planning was introduced. 
However, the product quality and tool wear problems were not 
involved. 

After the maintenance and manufacturing process are 
optimised, the manufacturing needs re-scheduling. For the 
manufacturing scheduling, many researchers were focusing 
on the multi-stage, multi-machine manufacturing considering 
maintenance. Maintenance is triggered when the predefined 
thresholds of the system condition are met. An integrated 
algorithm was introduced to optimise manufacturing planning 
[68]. A hybrid genetic algorithm was used to optimise the 
scheduling of flexible job shop manufacturing [69]. Hybrid 
GA was used to optimise the flow shop manufacturing with 
the consideration of CBM (Condition-based Maintenance) 
[70]. The degradation level of the production system was also 
evaluated. GA was also used to optimise the makespan and 
total completion time of the manufacturing [71]. BBO 
(biogeography-based optimization) and HSO (harmony 
search optimization) algorithm were used to optimise the FJSP 
(Flexible JobShop Problem) with the consideration of the 
degradation of the machine system [72].  

VI. CONCLUSION 

In this review, many current research and achievements 
have been evaluated in the aspects of inspection, condition 
monitoring, and integrated production & maintenance 
optimisation for the sake of cost reduction. It can be found that 
with the development of information technology, the 
evaluation of the manufacturing condition has been more 
accurate, as the RUL can be estimated. The quality of products 
can be inspected by various means, for example, computer 
vision, optical laser equipment and at the appropriate location. 
The researchers are pushing the improvement of 
manufacturing to Industry 4.0 era. However, there were only 
a small number of literature on the integration of TCM, 
inspection, maintenance, and production planning and 
scheduling.  

As discussed, the TCM and product inspection can make 
up for each other: the TCM only monitors the state of 
equipment to prevent quality degradation of the products, 
meanwhile, the tool wear may be made by defected products. 
An optimised allocation of TCM and inspection can improve 
efficiency. The number of TCM and inspection equipment can 
be planned for the whole production line. Moreover, good 
integration of TCM and inspection can improve the design and 
reduce process defects of the product in return, consequently 
reduce the cost. Related research in this field should be 
considered and further studied in the future. 

 
Fig. 4. Framework of the integrated monitoring system [65] 



Different types of TCM and inspection methods have their 
unique features, the selection of appropriate sensors and data 
fusion algorithm is another problem to be solved. Sensor 
selection should be made based on the shape of the products, 
the operation of production, the manufacturing condition and 
the total cost incurred. For certain context, the motion of 
inspection robot should also be researched.  

Series, parallel, flexible job shop and other types of 
production can produce different kinds of problems. As the 
condition of the production components changes, the 
scheduling of manufacturing and maintenance is difficult. The 
human factor and possible delay of the maintenance increase 
the complexity of the problem. To balance this, the option to 
maintenance, remanufacturing or replacement can be based on 
the cost consideration. 

Although the ‘Industry 4.0’ concept was introduced, the 
implementation of the concept has been rare in the literature. 
In Industry 4.0, all the information about the manufacturing 
system should be integrated, for example, the whole history of 
maintenance or repair, the logistic schedule, all the 
information and equipment should be connected with IoT 
(internet of things). The spare parts stock inventory, logistic 
plan, the maintenance, remanufacturing and replacement plan 
should share information to make sure the condition of 
equipment stay efficient. Then, Industry 4.0 can make 
manufacturing more efficient, cost-effective, and more 
environment friendly. Future research should focus on 
problems on these facets. 
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