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 This paper is based on the improvement of power quality (PQ) using fuel cell 

and fuzzy based controller. By using the proposed controller, the quality of 

power in the grid system especially in micro grid connected with non- linear 

and unbalanced load is enhanced. The configuration of the system is 

combined with hybrid arrangement of photovoltaic ([PV) with wind energy 

conversion system (WECS), fuel cell (FC) including the compressed air 

energy storage system (CAES) where the power management is controlled 

by using the distributed power sharing technique. In this proposed system the 

distortions in voltage at point of common coupling (PCC) is decreased by 

using the FC which acts as compensator in hybrid system. Reference current 

is developed which depends on real and reactive power of the source 

connected to the compensator. Based on demand of power for nonlinear load, 

without using any external communication interfaces, the proposed control 

theory can change the modes of operation and can compensate the unbalance 

in the system which is caused due to single-phase micro sources and load 

changes. The complete productive design of the micro-sources and power 

electronic converters are presented in the paper. The operation and 

performance of the proposed controller used in microgrid is validated 

through simulation in MATLAB/Simulink environment. 
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1. INTRODUCTION 

In recent scenario modern power systems [1] faces different challenges like reduction in cost, losses 

in transmission system, heavy demand of power at load end and besides these challenges reliability condition 

is also an essential factor. To overcome these issues, presently the scientist and researchers are moving 

towards an alternative solution using the distributed generation (DG). This use of DG impacts an alternative 

to the development of the existing distribution networks [2], [3]. Nowadays less or medium DG systems, 

normally including power ratings from 1 Kw to 10 MW connected at the load side are widely acceptable 

because of their better operating performance with high efficiency. At the present time several renewable 

source equipment like the PVs, FCs, along with micro-turbines are the best suitable DGs for power 

generation during peak hours in interior regions [4]. From a report it has been found during last few years, a 

significant development [5] in utilizing this renewable source equipment which is recognized, an appropriate 
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result for distributed generation. Microgrids systems [6]-[8] constitute collections of loads and micro-sources. 

The microgrid must act single controlling unit to provide excellent value and consistent power that counters 

to system deviations. There exist a concerning issue on the synchronising [9, 10] and controlling the power 

quality disturbances because of large diffusion of DGs, together along linear and non-linear loads. To supply 

the preferred real and reactive power to the system connected in microgrid, the DGs are connected in parallel, 

besides the local signals are also utilised as feedback in controlling the converters. The distribution of power 

between the DGs can be realized by monitoring two parameters; one is the frequency while the other is the 

magnitude of the essential voltage. Introduction on fundamentals of microgrid followed by its configuration, 

protection scheme and management of power is presented in [11]-[13]. In [14] analysis of different current 

works on microgrid is discussed. Several policies of management of power with corresponding controlling 

techniques for a microgrid is projected in [15, 16]. The performance of the microgrid during islanding and 

synchronisation is discussed in [17], [18]. The nonlinear loads (NL) connected in the microgrid generates 

harmonics [19], [20] which in turn produces losses in the system as well as reduce the efficiency level of the 

system. Existence of many power filters and FACTS controller, leads to compensate the harmonics and 

reduce the problems related to unbalance in three phase source and load conditions. To maintain an effective 

power management between the utility grid and microgrid, a series-shunt compensator is used and is 

discussed in [21]. Using this compensator, the power quality is enhanced between the two grid systems. The 

proposed method presented in this paper is validated using compensating device.  

 

 

2. SYSTEM CONFIGURATION 

Figure 1 represents the block configuration of the microgrid network. The microgrid consisting of 

different DG systems such as wind. FC, PV with energy storage system such as ultracapacitor (UC) and 

various linear and non-linear loads attached at point of common coupling. The distortion in the voltage at 

PCC is compensated using three control strategies namely droop control, STATCOM based control and 

fuzzy logic-based fuel cell compensation [22]. Figure 2 illustrates configuration structure of hybrid FC-DG 

system. The parameter of the different elements of the hybrid system is represented in Appendix [23]. 
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Figure 1. Block configuration of the microgrid network 
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Figure 2. Configuration structure of hybrid FC- DG system 
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3. SYSTEM MODELING AND CONTROL STRATEGIES 

3.1.  Solid oxide fuel cell model 

Reference [24] proposes a developed and validated model based on the dynamic SOFC stack model. 

The (1) represents the voltage of the FC stack. 

 

𝑉𝑓𝑐 = 𝑁0 (𝐸0 +
𝑅𝑇

2𝐹
𝑙𝑛 ((

𝑃𝐻2𝑃𝑂2

𝑃𝐻2𝑂
)

0.5

)) − 𝑟𝐼𝑓0  (1) 

 

 𝑃𝐻2
, 𝑃𝐻2𝑂, 𝑃𝑂2

 are represented by the following (2), (3), and (4), 
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𝑁0 is the number of FCs joined in series in the pack; 𝐸0, normal no-load voltage;𝑅, general gas 

constant (×101.325 kPa/(kmol·K)); T is the absolute temperature (K); 𝑖𝑓0, current in FC stack (A); 𝐹 is 

Faraday’s constant (C/kmol); KH2,KH2O and KO2 are the molar constants (kmol/(101.325 kPa·s)) of the 

hydrogen, water, and oxygen valves, respectively; Kr, modeling constant (kmol/(s·A)); 𝑃𝐻2
, 𝑃𝐻2𝑂 and 𝑃𝑂2

 are 

the partial pressure (×101.325 kPa) of hydrogen, water and oxygen, respectively; 𝑞𝐻2
𝑖𝑛  is the hydrogen input 

flow (kmol/s) 𝑞𝑂2
𝑖𝑛  is the oxygen input flow (kmol/s); r is the FC internal resistance (Ω); 𝑡𝐻2

, 𝑡𝑂2
 and 𝑡𝐻2𝑂 are 

the hydrogen, oxygen and water time constants (s), respectively [25]. The 𝐾𝑟  is evaluated from the behaviour 

among the rate of reactant hydrogen and the FC current, which is a constant value: 

 

 𝑞𝐻2
𝑟 =

𝑁0𝐼

2𝐹
= 2𝐾𝑟𝐼 (5) 

 

Where  𝑞𝐻2
𝑟  represents the flow of hydrogen (kmol/s). The functional variable 𝑈𝑓, defined as the 

division of the total fuel and is presented as (6) [26], 

 

  𝑈𝑓 =
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Where, 𝑞𝐻2
𝑜𝑢𝑡is the hydrogen output flow (kmol/s). A huge application is required as it reduces the 

necessary fuel and flow of oxidant for a least fuel price. Furthermore, a basic prototype of reformer that 

produces hydrogen through methane is presented. The proposed model is having transfer function with 

second-order. The (7) represents the mathematical expression of the model [27].  

 

 
𝑞𝐻2
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3.2. DC/DC converter design 

 It is highly required to raise the FC voltage and to raise quantity of cells for linking the FC with an 

external network. Function of this converter is to upgrade FC voltage, power control of FC and to maintain 

the voltage regulation. Figure 3 illustrates the model of DC/DC converter. The (8) and (9) represents two 

nonlinear state space averaged equations of the enhanced converter [28]. 
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Where d denotes duty cycle of the converter; U, input voltage; X1, current in inductor; X2, voltage 

across capacitor. 

 
 

Figure 3. Boost dc/dc converter model 

 

 

3.3. DC/AC converter modeling 

A VSI is used in order to integrate various renewable energy sources between supply of the grid and 

the loads. Pulse width modulation (PWM) is extensively implemented in integrating a FC between the supply 

and load. For harmonic reduction, filters are allied in-between the converter and the power system, denoted 

by Ls and Rs, respectively [29]. In Figure 4, 𝑉𝑖𝑎, 𝑉𝑖𝑏, 𝑉𝑖𝑐 and 𝑖𝑎, 𝑖𝑏, 𝑖𝑖𝑐 are respectively AC three phase output 

voltage and output currents of VSI. While, 𝑉𝑠𝑎, 𝑉𝑠𝑏, 𝑉𝑠𝑐 represents the grid bus voltage. 

 

 

 
 

Figure 4. Three-phase DC/AC voltage source inverter 

 

 

3.4. Application of fuzzy logic control for fuel cell based copmensation 

Fuzzy logic control (FLC) is treated as one of the efficient approaches [23]-[25] in soft computing 

methods. FLC is derived from fuzzy set theory. FLC is very dynamic in dealing with complications like 

parameter variation, ambiguity and complexity in system design. For a conventional control system, the 

structure is based on mathematical design of the plant. To analyze any model, the system design or model 

with known parameters is needed. But in FLC the mathematical model is not required and can provide robust 

performance of the linear and non-linear control system with parameter variation. A fuzzy logic controller 

can be classified as fuzzification, knowledge base and defuzzification. Fuzzification is process of converting 

to linguistic variable from crisp value based on certain membership function. FC is utilised as an alternative 

for the typical PI controller. Block configuration of the FLC is equivalent to the scheme shown in Figure 5 

where FLC are employed alternative to PI [30].  

In this model the input to the FLC are the crisp values which are taken as error in voltage and its 

derivatives. And the outputs from the FLC are the crisp value which is considered as the reference voltages 

for the PWM generator. Tracking error and transient overshoots of PWM can be significantly decreased with 

the use of FLC. The control surface of the FLC can be built to represent suitable reactivity for individual 

operating point compared to the typical PI controller. The FLC is executed easily as an off-line pre-calculated 

with control surface of three-dimensional lookup table. Generally, the controlling parameter of a PI 

Controller is fixed. It has to be redesigned if there is variation in operation point of VSI [31].  
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Figure 5. Block diagram for fuzzy controller (voltage regulator) 

 

 

First FLC receives input crisp values as 𝑉𝑑  and ∆𝑉𝑑. Where, 𝑉𝑑and ∆𝑉𝑑ΔVd are respectively the 

voltage error and its derivatives. Similarly, for the second controller Vq and ΔVq are considered as the output 

crisp values. Where, Vq and ΔVq are respectively the voltage error and its derivatives Vdref and Vqref are taken 

as voltage reference [32]. Figure 6 illustrates the triangular membership functions which behave triangular 

shaped by 50%-fold over for an easy and advanced control tuning. Nine membership functions are induced in 

each variable. Where NL, N, NM, Z, PS, PM, P, PL are defined as membership functions. Figure illustrates 

an integrated coordinate system and can improved by means of normal boost for each variable, Gevd for ΔVd, 

Grvd for ΔVd, Gevq for ΔVd, and Gevq for ΔVq. The FLC with 81 rules is selected. The switching function is 

performed by FLC using the Mandani's implication and centroid method for de-fuzzification. The appropriate 

switching pattern for the converter is controlled by the triangular carrier modulation method. Finally, the 

gating patterns can be performed accurately [33], Fuzzy Rule shown in Table 1. 

 

 

 
 

Figure 6. Triangular membership functions 
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4. SIMULATION RESULTS AND ANALYSIS 

To authenticate the proposed control strategy, a microgrid is simulated in MATLAB/Simulink. This 

microgrid is rated at 380V (rms of phase-to-phase) and 50 Hz connected to non-linear load. Two DGs (PV 

and wind turbine) with FC and supercapacitors are connected in this hybrid system [34]. The carrier 

frequency of the interface inverters is 2 kHz. Harmonic compensation for the hybrid DG system under 

different scenarios of load is tested. The current profile of the hybrid system in the absence of the proposed 

controller under balanced nonlinear load is found to be 7.25% and 28.15% for source current and load current 

respectively. Simultaneously, the same system is tested under unbalanced nonlinear load, and the source 

current and load current profile shows around 10.15% and 35.16% respectively. The values are shown in 

Table 2. But after application of fuzzy controller, the current profile is observed to be improved. The 

principle behind the improvement is that FC power generation when surplus is being stored in the super 

capacitors. Then the stored power in super capacitor offers the required reactive power by the load in order to 

keep the voltage at PCC at constant value. System performance is operated for balanced and nonlinear load 

conditions and the corresponding source voltage (𝑉𝑠), source current (𝑖𝑠), load current (𝑖𝑙) and compensating 

current (ic) are presented in Figure 7. Their respective THD values are 1.80% and 19.18%. It shows under 

balanced load the current is improved as compared to the system without controller. Figures 8a and 8b shows 

the THD values of source and load currents. Now the performance of the system is analysed under 

unbalanced nonlinear load conditions. The corresponding source voltage (𝑉𝑠), source current (𝑖𝑠), load 

current (𝑖𝑙) and compensating current (𝑖𝑐) waveforms are shown in Figure 9. Their respective THD values 

are 3.90% and 19.84%. The system performance is found satisfactory as compared to the proposed system 

without controller. The THD values are represented in Figures 10(a) and 10(b). 

 

 

 
 

Figure 7. Performance of system balanced and nonlinear load 
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Figure 8. (a). Harmonic spectrum of source current, (b). Harmonic spectrum of load current 
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Figure 9. Performance of system under unbalanced and nonlinear load 
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Figure 10. (a). Harmonic spectrum of source current, (b). Harmonic spectrum of load current 

 

 

Table 2. THD analysis 
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Without controller 7.25 28.15 10.15 35.16 
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5. CONCLUSION 

In this paper, a hybrid power system based with PV, wind and FC has been proposed which is 

further integrated with inverter to eliminate the current harmonics in the source current. The compensating 

current is injected at PCC to reduce the level of harmonic content in the utility system. The proposed system 

employs FLC technique to perform fast with low complexity burden. FLC is operated under both balanced 

and unbalanced non-linear load. The results outcome reveals that the FLC is providing better performance 

under both the loads with minimum THD. 

 

 

APPENDIX 

The parameter of the different elements of the hybrid system is represented in Table 3. 
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Line voltage and frequency 230V, 50Hz Hysteresis band limit 0.5 A 

Line and load inductance 1mH, (30, 20, 10) mH Sampling time 2e-5 seconds 

Load resistance (20, 15 and 10) Ω Switching frequency of boost 

converter 

2 kHz 

Inductance of boost converter 

(pv side) 

3.5 mH Balanced active and reactive load 10 kW, 6kVAR, 

Filter coupling inductance 2.25 mH Unbalanced active and reactive 

load 

10 kW, 9 kW, and 11 kW; 

6 kVAR, 5.5 kVAR, and 

6.6 kVAR. 

Controller gain KP=24, KI=1.2 
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