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 In this paper, a smart drive system of the induction motor (IM) is proposed 

and adapted for applications in electric vehicles (EVs). Objectively, the EV 

drive systems are robust over wide speed and torque ranges. The proposed 

drive system is independent of encoder (encoderless) and concerned with the 

torque control drive (TCD) and indirect rotor field-oriented control (IRFOC) 

using the sliding mode observer (SMO). This arrangement of monitoring 

system and control techniques are smartly integrated for the IM applications 

in EVs. The encoderless technique utilizes SMO to estimate the stator 

current, rotor flux angle, and rotor speed. The SMO is verified in motoring 

mode at very low and zero speed conditions. The accelerator pedal is utilized 

for TCD to generate the reference torque required to accelerate the EV by the 

driver. The rotor flux angle is estimated based on IRFOC method. The 

laboratory waveforms illustrate the robustness of the encoderless control of 

the IM-based torque control drive system in electrical vehicle applications at 

very low speed using SMO. The laboratory waveforms prove the validity of 

SMO with encoderless control of a smart dive system of the IM in EV 

applications under load torque/speed variations. 
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1. INTRODUCTION  

Due to the increasing demand for smart cities and sustainable electrifications using renewable power 

generations, the recent research trends are proposed to increase the penetration of electric vehicles (EVs). 

However, the drive system of EV needs sensors for the rotor speed measurements. These sensors are not 

adapted with harsh environments changes such as mechanical vibrations, temperature changes, and dust. To 

solve these problems, the developments of encoderless of Induction Motor (IM) drives have been increased, 

recently. Encoderless speed estimation techniques are utilized in hostile environments and also for abnormal 

conditions in safety-critical applications in case of damage of speed sensor [1], [2]. 

The IMs have been good solutions in the field of EV drive systems, because they have many merits 

such as robustness, rigidity, simple construction, less cost, and less maintenance. Furthermore, the IM drives 

have been utilized in many position tracking applications, which need precise control action for example 

actuation, robotics, automation process, and guided process. These merits make the IMs a very good solution 

for industrial applications. Thus, precise position and speed controls are mandatory in EV drive systems 

during load torque/speed disturbances [1]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Sliding mode observer (SMO) is one of the models concerning encoderless speed estimation 

techniques for the motor drive systems. It can robustly and efficiently estimate the motor speed, rotor flux, 

rotor position, and motor torque, where only one observer gain is needed [3]. Also, a good, stable, and 

robustness performance against the parameters’ sensitivity can be obtained over wide speed range of 

operation, as well as ease of implementation [4]-[5]. To keep the dynamic states of operations for the 

estimated variables, time-varying gains for the switching functions of the observer are used [6]. However, 

chattering is the main disadvantage of the SMO variable structure system. This system chattering is reduced 

using a sigmoid function and the observer is constructed based on a back electro-motive force (EMF) model 

for improving the effect of estimation [7]-[9].  

In [10], a nonlinear SMO scheme is proposed for interior permanent magnet synchronous motor 

(IPMSM) considering maximum torque per ampere (MTPA), the SMO is utilized as speed estimator 

technique. Lyapunov stability analysis is achieved for both the controller and observer. A second-order SMO 

is used to estimate the rotor speed based on a super twisting algorithm and model reference adaptive system 

calculating principles [11]. A comparative study between full order SMO and improved integration for the 

voltage model (VM) is presented in [12]. In that study, the dc offset is estimated and kept by proportional 

plus integral (PI) compensator, in which all unwanted offsets and drifts are compensated in the acquisition 

terminals. However, due to the incorrect observer variables, a phase shift is observed in quasi-SMO (QSMO) 

or discrete-time SMO during the load changes [13]. Toward solving this problem, an adaptive QSMO is 

presented to calculate the extended EMF components for the IPMSM, in which are utilized to determine the 

rotor angle for the IPMSM. For robust encoderless control, an Iterative SMO (ISMO) is proposed in [14]. 

The ISMO enhances the estimated speed performance by minimizing the back EMF error. 

In [15], a quadrature phase-locked loop (QPLL)-based on high order SMO for IPMSM with MTPA 

is presented to enhance the encoderless position control of IPMSM. The QPLL calculation method has 

immunity against noise and distortion effects. Improving the estimated rotor flux angle at very low speed 

operation based on SMO is presented in [16]. The proposed technique does not need any speed adaptation 

algorithm and has immunity to the deviation of speed estimation. A predictive SMO of the stator flux at a 

wide range of operating speed, the saliency of the machine due to it is saturation effect is utilized in [17]. A 

changeover algorithm is programmed to combine all modes of operations. Sliding mode reaching law 

(SMRL) is proposed in [18] to adapt the encoderless speed control operation of the IPMSM under different 

disturbances and uncertainties. The SMRL has a feature of adaptation according to the control system 

variations, as results in a reduction of the chattering problem, are done on the control input, while the 

tracking operation of the controller is maintained unchanged.  

Nonsingular terminal sliding mode (NTSM) is integrated with high order sliding mode (HOSM) for 

estimating the IPMSM speed and its position [19]. To eliminate the chattering and to ensure observer 

stability, the HOSM control law is designed. In [20], a scheme of the encoderless speed estimation at a very 

low operating speed for the IMPSM utilizing SMO is investigated. The delay time due to the low pass filter 

or the chattering problem is solved using a sigmoid function for the sign or saturation function. Two SMOs 

with compound manifolds for the IM speed/flux observation is presented in [21]. The encoderless control of 

the IM-based model reference adaptive system (MRAS) for EV application is presented in [22].  

In [23]-[25], an adaptive and robust position control for the IM is proposed. The switching gains are 

selected considering the system uncertainties. Also, the slip speed is used to estimate the rotor flux angle. As 

early mentioned, the main disadvantage of SMO is the chattering performance because the oscillations occur 

with high frequencies when sliding mode takes place. The solution of SMO problems is to eliminate the 

chattering and enhance the speed estimation accuracy, especially in low-speed region. However, the EV can 

be driven from zero speed up to its limit speed. To find a speed control universally over a very wide range of 

speed and independent of speed encoder is a challenge for the EV applications.  

In this paper, main contributions are summarized by: 

• Integrating a smart drive system of IM.  

• Utilizing the SMO of speed estimation for the encoderless speed-controlled IM with torque control 

drives systems in EV applications. 

• Implementing the indirect rotor field-oriented control (IRFOC) for the encoderless speed control of the 

IM drive systems in EVs in the laboratory using a digital signal processing DSpace-DS1103 control board.  

• Evaluate the laboratory waveforms under extreme disturbances of the load torque/speed. 

• Evaluate the effectiveness of the proposed smart encoderless IM drive system at very low and zero 

mechanical frequency. 
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2. MODEL DESCRIPTION OF IM 

The model of IM in the stationary reference frame taking the stator current and rotor flux as state 

variable is represented by (1) [26]:  
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Rs and Rr are the stator and rotor resistances, respectively. Ls and Lr are the stator and rotor 

inductances, respectively. Lm is the magnetizing inductance, and r is the rotor speed.  is the leakage 

coefficient, and Tr is the rotor time constant.  

The equation of electromechanical torque is illustrated by (2) and (3): 
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where P is the IM pole pairs, 
s

qsI , 
s

dsI ,
s

qr , and 
s

dr are quadrature-axis, direct-axis stator currents and rotor fluxes 

in stationary reference frame respectively. The rotor angle is computed as (4): 

 

 (4) 

 

 

3. SMO FOR POSITION AND SPEED ESTIMATIONS 

The model presented in [26] is utilized to determine the rotor speed and position as described as (5). 
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s

qr̂ are the estimated rotor flux in direct and quadrature axes respectively. F is the tan-sigmoid switching 

function described by (6): 
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the estimated rotor position is described by (7): 

 

 (7) 

 

 

4. EV-INCORPORATED ENCODERLESS SPEED ESTIMATION BASED ON SMO WITH TCD 

The schematic diagram of the encoderless speed estimation utilizing SMO for IRFOC of the IM 

based TCD in EV applications is shown in Figure 1. The torque demand signal is inserted into the IM drive 
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system using accelerator pedal-based torque control drive technique in EV applications by the driver. This 

drive system for the EV is smart as it is independent of the encoders. As depicted in the figure, the reference 

q-axis current component in synchronous reference frame is evaluated from the electromagnetic torque 

formula as (8) [22]: 
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Also, the reference d-axis current component in synchronous reference frame is dependant of the 

reference rotor flux amplitude 
*

r  and magnetizing inductance as (9): 
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The d-axis and q-axis reference currents components in combination with the estimated rotor flux 

angle using SMO are utilized to generate the reference three-phase stator currents 
*

abci . Two voltage and two 

current transducers are utilized to sense the two-phase stator voltages and two-phase stator currents signals. 

The third phase voltage and current is evaluated based on the three-phase balance concept. The actual three-

phase motor currents-based transducers signals are compared with the reference three-phase motor currents 

and the deviations between these signals are fed into the hysteresis band current controller (HBCC). The 

outputs of the HBCC are the input gate pules of the three-phase inverter using IGBT switches. The drive 

system is driven with speed command signal obtained from permanent magnet synchronous motor (PMSM). The 

reference speed is the output of V/F speed-controlled inverter and the IM rotor speed is scaled up/down based on 

the gearbox turns ratio. The wheel speed for EV drive applications is the output speed from the gear box device. 

 

 

 
 

Figure 1. Schematic diagram of the SMO for IRFOC of the encoderless IM based torque control drive 

 

 

5. LABORATORY SYSTEM SETUP  

The schematic diagram of the proposed encoderless IM drive using SMO speed estimator utilizing 

TDC based on IRFOC strategy of EV applications has been implemented in the laboratory using DSpace-

DS1103 control board for 5.5 kW IM as shown in Figure 2. The machine under test was operated concerning 

encoderless torque-controlled drive conditions. The drive speed is imposed by the speed-controlled load 

dynamometer PMSM. The specifications of the IM that are used in all laboratory tests are given in Table 1. 

The IM is fed from a 3-phase VS-inverter, which has six isolated gate bipolar transistors (IGBT’s) switches 

and its pulses are obtained by utilizing a gate driver board. The DS1103 control board is mounted in a 
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personal computer (PC). This Digital Signal Processing (DSP) board has a set of on-board peripherals such 

as digital-to-analog (D/A), analog-to-digital (A/D) converters and position encoder interfaces. It also 

provides the necessary digital input/output (I/O) ports, timer function I/O capture, and PWM gate pulses 

generation ports. Over PC, all calculations are done and performed using the Matlab/Simulink environment. 

The Simulink control models are compiled using a Texas Instruments Matlab/Simulink real-time interface 

environment and downloaded to the DSpace-DS1103 board utilizing DSpace software tools. 

 

 

Table 1. The rated values and specifications of the IM 
Specitication Value 

Rated output power 5.5 kW 

Rated voltage 186 V 

F 50 Hz 

P 2 

Rs 0.294 Ω 

Rr 0.14325 Ω 

Ls 57.3 mH 

Lr 57.3 mH 

Lm 56.43 mH 

J 0.12 kg.m2 

B 0.018 N.m.s/rad 

 

 

For the experimental execution, a real-time Simulink control model is done and then compiled to the 

DSP board utilizing software tools. The accelerator pedal is utilized for inserting the reference torque in EV 

application by the driver, the reference currents 𝑖𝑞
∗  and  𝑖𝑑

∗  are utilized to generate the reference phase currents 

 𝑖𝑎
∗ ,  𝑖𝑏

∗  𝑎𝑛𝑑 𝑖𝑐
∗  using the inverse Park’s transformation formula. The motor voltages and currents are sensed 

using LA25-NP Hall-effect current sensors and LV25-P Hall-effect voltage sensors, respectively. The motor 

measurements are sent back to the DSP control board via the A/D ports. The differences between the sensed 

phase currents and their corresponding reference phase current are fed as an input to hystereses bands to 

generate pulses for the three-phase inverter. The generated pulses trigger the IGBT gates of the inverter to 

feed the IM with suitable voltages and frequency. The optical encoder with 1024-pulse resolution is utilized 

to sense the rotor speed/position, this sensed signal is utilized as a reference signal for comparison purposes 

with the estimated speed signal. The IM is coupled to a speed-controlled load dynamometer (PMSM).  

To verify and prove the efficiency of the proposed TCD and encoderless speed estimation based on 

the SMO observer with EV applications, the laboratory waveforms are taken at various operating conditions. 

These conditions include the IM drive at very low and zero speeds in motoring and regenerating modes and 

with sudden load variations. Also, the running at zero electrical frequency is also evaluated. The results are 

taken under IRFOC of the encoderless IM drive. The IM was running under TCD condition with standard dq 

current loops, and the estimated flux angle is used for vector transformation of the rotor-oriented dq- frame. 

The drive system was connected to a speed controlled PMSM whose speed is monitored.  

 

 

 
 

Figure 2. Schematic diagram of the laboratory setup for SMO-based speed estimation of IRFOC encoderless 

IM drive using DSpace-DS1103 control board 



Int J Pow Elec & Dri Syst ISSN: 2088-8694  

 

Smart integration of drive system for induction motor applications in electric … (Mohamed K. Metwaly) 

25 

6. RESULTS AND DISCUSSIONS  

6.1.  Very low and zero speed operation  

The starting performance of the encoderless IM with TCD using the SMO for speed estimation at 

very low speed of 20 rpm under rated load condition is shown in Figure 3. In Figure 3.a the upper graph 

presents the rotor speed reference obtained from the position encoder (black) and the estimated speed using 

the SMO (gary-dotted), while the error between these two signals is depicted in the middle graph in rpm. It is 

noted that the difference between these two speeds is approximately 13 rpm during starting which dies out 

after 0.5 sec. This proves the accuracy of estimated speed signal and the effectiveness of the SMO. This can 

be smartly achieved without any encoder. The load current (iq) is depicted in the lower graph. The stator 

currents in αβ frames are shown in the upper graph of Figure 3(b). In order, to present the advantages of the 

SMO, the rotor flux angles and the difference between the reference (black) and estimated flux (gray-dotted) 

angles are depicted in the middle and lower graphs in Figure 3(b). The figure presents the rotor flux angle 

smartly obtained from the encoderless control method using the SMO technique (gray-dotted) and the flux 

angle from the sensor-based (reference) current model (black). It is noted that the estimated flux angle tracks 

the reference one smartly and smoothly with small flux angle deviation as shown in the lower graph of Figure 

3(b). The application of SMO provides better matching to the real values of the rotor flux angle without any 

encoder. 

Figure. 4 shows the laboratory waveforms during the dynamic speed responses of the encoderless 

IM drive using the SMO technique at rated load and speed change. The IM drive system was operated at 

speed reference 20 rpm under rated load condition, then a sudden speed change to zero speed was applied at 

t=18 sec, then back to 20 rpm at t=48 sec. The encoderless drive operates in the motoring mode. It is 

observed that the encoderless drive shows a significant performance with excellent speed estimation accuracy 

with approximately 8 rpm deviation which dies out soon after transients. Also, the deviation between the 

reference flux angle and the estimated flux angle (based on the SMO technique) is illustrated in the lower 

graph of Figure 4(b). As it is observed, the angle deviation stays within a few degrees as depicted in the 

lower graph of Figure 4(b). 

 

 

 
(a)  

 
(b) 

 

Figure 3. Laboratory evaluation of fixed low speed at 20 rpm during starting period at the rated load; (a) the 

subfigures are a comparison of actual (black), estimated (grey-dotted) speeds, speed estimation error (rpm), 

and load torque current (p.u), (b) the subfigures are - current, comparison of reference (black) and 

estimated (grey-dotted) flux angles, and flux angle error 

 

 

 
(a) 

 
(b) 

 

Figure 4. Laboratory evaluation at step speed changes (20 rpm → 0 rpm → 20 rpm) at the rated load;  

(a) speed comparison, error, and load torque current, (b) - current, flux angle comparison, and error 
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6.2.  Sudden load disturbances at very low and zero speeds 

The laboratory waveforms showing the performance of the encoderless IM based TCD using the 

SMO with sudden applying and removing the rated load torque for 20 rpm speed reference at t=8 sec and 

t=41 sec, respectively in the motoring mode are shown in Figure 5. The Laboratory waveforms showing 

applying and removing the rated-load torque for reference speed zero are also presented as depicted in  

Figure 6. A rated load torque step is applied at t=12 sec and removed at t=32 sec. As it is noted, a good 

matching between the measured and estimated speeds is achieved since the estimated speed follows the 

measured one and recovers quickly under load impact. The estimated signals can successfully track the 

measured ones during the transient and steady states. A considerable reduction of the speed estimation error 

of approximately 20 rpm during transient operation to zero rpm in steady state is observed. It is evident that 

the SMO works properly, especially in the motoring mode at very low and zero speeds under sudden load 

disturbances. It can be seen that the speed, the current, the rotor flux angle are correctly observed. The actual 

rotor flux angle tracks the estimated rotor flux angle of the SMO technique, with only limited error as 

depicted in the middle and lower graphs of Figure 5(b) and Figure 6(b) respectively. The deviation between 

the actual rotor flux angle and the estimated flux angle stays within a few degrees. This also indicates that the 

speed control of encoderless IM based TCD using the SMO works well.  

 

 

 
(a) 

 
(b) 

 

Figure 5. Laboratory evaluation during sudden application and removal of the rated load torque at speed of 

20 rpm; (a) speed comparison, error, and load torque current, (b) - current, flux angle comparison, and error 

 

 

 
(a) 

 
(b) 

 

Figure 6. Laboratory evaluation during sudden application and removal of the rated load torque at zero speed; 

(a) speed comparison, error, and load torque current, (b) - current, flux angle comparison, and error 

 

 

6.3.  Speed reversal at very low speed  

The laboratory waveforms illustrate the performance of the encoderless IM based TCD using the 

SMO during very low speed reversals are shown in Figure 7. The IM is operated at rated load condition. The 

reference speed is suddenly changed from -20 rpm to 20 rpm at t = 7 sec, then back to -20 rpm at t=21 sec, 

and changed to 20 rpm at t = 34 sec. The encoderless drive operates first in the regenerating mode (t=0→7 

sec), then in the motoring mode (t = 7 → 21 sec), again in the regenerating mode (t=21→34 sec), and finally 

in the motoring mode (t = 34 → 40 sec) as illustrated in Figure 7. It has been observed that the encoderless 
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IM based TCD using the SMO show a significant performance with excellent estimation accuracy during 

very low speed reversals in the motoring and regenerating modes of operation. Also, the estimated rotor flux 

angle tracks the reference one with small error as shown in the middle and lower graphs of Figure 7(b). 

 

 

 
(a) 

 
(b) 

 

Figure 7. Laboratory evaluation at very low speed reversal ±20 rpm at rated load; (a) speed comparison, 

error, and load torque current, (b) - current, flux angle comparison, and error 

 

 

7. CONCLUSION  

In this paper, a smart integration of drive system based on encoderless IM, TCD, and indirect rotor 

field-oriented control IRFOC using the SMO is utilized for speed estimation in EV applications. The SMO is 

utilized to estimate the rotor speed from stator currents/voltages measurements. The mathematical model of 

SMO is presented, and laboratory implemented. The TCD is used as accelerating torque which generates the 

reference torque current in EV by the driver. In the absence of encoder sensor, TCD based on IRFOC 

requires encoderless speed estimator for flux angle determination. Laboratory waveforms confirm the 

effectiveness of the proposed encoderless IM based TCD using the SMO at very low and zero speeds. The 

rotor speed/flux angle estimation accuracy is noted under load torque/speed variations. 
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