

Resolving subglacial hydrology network dynamics through seismic observations on an Alpine glacier.

A 3-year PhD research defended by Ugo NANNI on December 3rd 2020

Supervisors:

Florent Gimbert (CNRS, IGE) Christian Vincent (CNRS, IGE)

Rapporteurs:

Gwenn Flowers (Simon Fraser University) Jérôme Vergne (Université de Strasbourg, EOST) <u>Guest</u>

Examinators:

Maurine Montagnat (CNRS, CNRM MétéoFrance)

Anne Oberman (SED, ETH Zürich)

Mauro Werder (VAW, ETH Zürich)

Philippe Roux (CNRS, ISTERRE)

My first step in glaciology

INTRODUCTION

Glaciers and ice sheets drive sea-level-rise

On the dynamics of glaciers

- Glaciers form by snow accumulation
- Ice slowly deforms and flows downhill

On the dynamics of glaciers

- Glaciers form by snow accumulation
- Ice slowly deforms and flows downhill
- At low altitudes surface melt occurs and meltwater penetrates glaciers

INTRODUCTION

On the dynamics of glaciers

- Glaciers form by snow accumulation
- Ice slowly deforms and flows downhill
- In low altitudes surface melt occurs and meltwater penetrates glaciers
- Subglacial waterflow modulates sliding by lubrication

INTRODUCTION

Up to 50 to 90% of ice flow

My second step in glaciology

A complex response to water supply

No direct relationship water/sliding

Evolution of the subglacial drainage system

A complex drainage system

Evolution of the subglacial drainage system

INTRODUCTION

Limited measurements

How to measure a system rapidly evolving in time and strongly heterogeneous in space?

Limited measurements

How to measure a system rapidly evolving in time and strongly heterogeneous in space?

Ground penetrating radar

Limited access to physical properties

August 2019, Rhonegletscher (Church et al., 2020)

INTRODUCTION

Basal water pressure measurements

Punctual and highly heterogeneous

Results of 700+ boreholes pressure sensors (Rada and Schoof, 2018)

Key questions remain

- Where are cavities and channels?
- How do they develop?
- What are their hydraulic properties?

Great uncertainties on the fate of glaciers

Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow 2002

H. Jay Zwally,¹* Waleed Abdalati,² Tom Herring,³ Kristine Larson,⁴ Jack Saba,⁵ Konrad Steffen⁶ ARTICLE 2019 https://doi.org/10.1038/s41467-019-12039-2 OPEN Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt Peter A. Tuckett¹, Jeremy C. Ely ^{1*}, Andrew J. Sole ¹, Stephen J. Livingstone ¹, Benjamin J. Davison², J. Melchior van Wessem³ & Joshua Howard¹

Dominant inefficient drainage system?

INTRODUCTION

Decadal <u>slowdown of</u> a land-terminating sector of the Greenland Ice Sheet despite warming ²⁰¹⁵

Andrew J. Tedstone¹, Peter W. Nienow¹, Noel Gourmelen¹, Amaury Dehecq^{1,2}, Daniel Goldberg¹ & Edward Hanna³

Dominant efficient

drainage system?

Time to find a **new way** to observe subglacial hydrology

10

Can seismology help?

INTRODUCTION

A new-born tool to study subglacial hydrology

INTRODUCTION

Mendenhall glacier, Alaska

A promising physical framework

<u>Gimbert et al., (2014, 2016)</u>:

• Seismic power scales with hydraulic **RADIUS** and hydraulic **PRESSURE** gradient

Limitations at the beginning of my PhD

When/where can we apply it

• To other glaciers?

To complete melt-season?
 (at lower discharge?)

What can we observe?

- Only sensitive to channels?
- Spatial information?

My questions

MMMMMMMM #1 Can we MEASURE subglacial-water-flow-induced seismicity
over complete melt-seasons?

Part I

What is the **TEMPORAL** dynamics of subglacial hydraulic properties over complete melt-seasons?

My #3 Can we **LOCATE** distributed sources of seismic noise?

Part II

#4 What is the **SPATIAL** dynamics of cavities and channels?

Glacier d'Argentière: a field-scale laboratory

Unique measurements

14/08/2019 10:00

Glacier ice

- 30+ years of measurements of water discharge and sliding
- High sensitivity to subglacial water flow

Seismic measurements: temporal

- Up to 7 seismic stations maintained from spring **2016** to winter **2020**
 - Collaboration with Fabian Walter and Dominik Graeff from ETH Zurich

In collaboration with the SAUSSURE project: a multidisciplinary investigation of the subglacial processes on glacier d'Argentière.

Seismic measurements: temporal

Seismic measurements: spatial

- 98 seismic stations maitained for one-month in spring 2018
- A cross-disciplinary and cross-institutes collaboration

In collaboration with the RESOLVE project: a development of a multi-instrument platform for interdisciplinary research.

So what did I observe?

Part I: Temporal investigation of subglacial water flow

MMMMMM #1 Can we MEASURE subglacial-water-flow-induced seismicity
over complete melt seasons?

What is the **TEMPORAL** dynamics of subglacial hydraulic properties over complete melt seasons?

Seismic measurements

19

Seismic measurements

Notations

Trends at seasonal scales

21

Trends at seasonal scales

 <u>Consistency</u> between observations and predictions

21

#1 I USED SEISMOLOGY TO STUDY COMPLETE MELT SEASON

Inversion of hydraulic properties

RESULTS PART

Inversion of hydraulic properties

Channel dynamics: theory

RESULTS PART I

• Steady-state and equilibirum prediction for channel dynamics by Rothlisberger (1975)

Channel dynamics: theory VS observation

RESULTS PART I

• Steady-state and equilibirum prediction for channel dynamics by Rothlisberger (1975)

 Out of equilibrium and pressurized at high discharge

(Nanni et al., 2020)

Potential cause(s) for high pressure in summer

Kinetics of water supply > channel's response time

RESULTS PART I

Cavities might be pressurized

Previously thought to be noise-free

Part II: Spatial investigation of subglacial water flow

where where

#3 Can we **LOCATE** distributed sources of seismic noise?

#4 What is the **SPATIAL** dynamics of cavities and channels?

Measurements: 98 seismic sensors

The RESOLVE-Argentière project

RESULTS PART II

(Gimbert, Nanni, Roux et al., 2020)

Glacier geometry and waterways

How to locate **distributed** noise sources ?

Very few studies ...

Venkatesh et al., 2003; Stehly et al., 2006; Burtin et al., 2010; Corciulo et al., 2013; Chmiel et al., 2019

How to locate **punctual** sources ?

Phase coherence for a punctual source

Wavefront when throwing a stone in a lake

Phase coherence for a punctual source

Wavefront when throwing a stone in a lake

METHODS PART II

MFP: the Match-field-processing method

- Assume a unique source over 1 second-signal
- Minimize misfit | Phase_{model} Phase_{observed} | (gradient-based minimization)

MFP: the Match-field-processing method

• Assume a unique source over 1 second-signal

METHODS PART II

• Minimize misfit | Phase_{model} – Phase_{observed} | (gradient-based minimization)

Punctual source: easy

- Assume a unique source over 1 second-signal
- Minimize misfit | Phase_{model} Phase_{observed} | (gradient-based minimization)
- MFP score \propto phase coherency over the array

Distributed sources: tricky

- Assume a unique source over 1 second-signal
- Minimize misfit | Phase_{model} Phase_{observed} | (gradient-based minimization)
- MFP score \propto phase coherency over the array

Distributed sources: tricky

- Assume a unique source over 1 second-signal
- Minimize misfit | Phase_{model} Phase_{observed} | (gradient-based minimization)
- MFP score \propto phase coherency over the array

A CONCEPTUAL ADVANCE!

- Assume a unique source over 1 second-signal
- Minimize misfit | Phase_{model} Phase_{observed} | (gradient-based minimization)
- MFP score \propto phase coherency over the array

- Subglacial water flow: low MFP score (several sources are active simultaneously)
- I stack each 1 second-location over long time periods (~ days)

Making density probability maps

Patterns of noise and punctual sources

Patterns of noise and punctual sources

#3 | AM CAPABLE OF LOCATING SUBGLACIAL WATER FLOW

Along-flow geometry

- ~ 50m width of source location
 - Due to seismic wavelength? (300m at 5Hz)

34

• Spread sources?

Spatio-temporal dynamics

From distributed ...

From distributed ...

From distributed ... to localized

From distributed ... to localized

#4 | AM CAPABLE OF CAPTURING SUBGLACIAL HYDROLOGY DYNAMICS

Spatial dynamics and hydraulic properties

Spatial dynamics and hydraulic properties

Spatial dynamics and hydraulic properties

From inefficient to efficient?

My questions on the methodology

MMMMMMM #1 Can we MEASURE subglacial-water-flow-induced seismicity over complete melt-seasons?

What is the **TEMPORAL** dynamics of subglacial hydraulic properties over complete melt-seasons?

WWWWWW #3 Can we LOCATE distributed sources of seismic noise?

#4 What is the **SPATIAL** dynamics of cavities and channels?

My questions on the methodology

MMMM

What is the **TEMPORAL** dynamics of subglacial hydraulic properties over complete melt-seasons?

MMMMMMM #3 Can we LOCATE distributed sources of seismic noise?

#4 What is the **SPATIAL** dynamics of cavities and channels?
My conclusions on methodological aspects

I WAS CAPABLE OF SPATIALLY LOCATING SUBGLACIAL WATER FLOW

Submitted to PNAS + published in SRL

Perspectives: different timescales

Perspectives: spatial variations of amplitudes

Amplitude

PERSPECTIVES ON THE METHODOLOGY

Phase

- Might allow to spatialized hydraulic properties
- Complex effect of attenuation/amplification

My questions on the studied processes

MMMMMMM #1 Can we MEASURE subglacial-water-flow-induced seismicity over complete melt-seasons?

What is the **TEMPORAL** dynamics of subglacial hydraulic properties over complete melt-seasons?

MMMMMMM #3 Can we LOCATE distributed sources of seismic noise?

#4 What is the **SPATIAL** dynamics of cavities and channels?

My conclusions on the studied processes

My conclusions on the studied processes

Implication for subglacial hydrology dynamics

- Do we observe cavities only?
- Do cavities domiantes the drainage system?

CONCLUSIONS

Modelling subglacial hydrology with Elmer/Ice-GlaDS coupling by A. Gilbert

Perspectives: we need to study other settings

PERSPECTIVES

Current (or soon) dense seismic experiments

Subglacial lakes in Greenland (S. Livingstone, A. Booth and others - UK)

My post-doc?

PERSPECTIVES

Subglacial hydrology and stick-slips in Canada (N. Stevens, L. Zoet and others - USA)

Soft-bedded glaciers and surges in Spitzberg (T. Schuler, A. Kholer, and others - Norway) My post-doc?

My PhD

Grounding line dynamics and subglacial hydrology in Antarctica – <u>1,000 sensors</u> (The International Thwaites Glacier collaboration)

Perspectives: continue sharing beyond academia

Presenting my works during the « Week of science»

PERSPECTIVES

A collaboration during the Grenoble Scientific Game Jam

Implication for monitoring Q

 Using the relation between Q and Pw for channels out-of-equilibrium allow to estimate Q from Pw with less than 10% error compared to more than 65% if channels are assumed to be at equilibrium.

Deriving seismic power – discharge scalings

From (Gimbert et al., 2016)

•Noise power from turbulent flow scales as
$$P_w \propto \zeta W u_*^{14/3}$$

- with $\zeta = \left(\frac{H}{k_s}\right)$, k_s the wall roughness and H the flow depth
- and u_* the shear velocity and W the river width

For subglacial channels we assume:

- Uniform pressure fluctuations along the walls
 - so $W = \Gamma$ the wetted perimeter
- $H \ll k_s$ so we can neglect variations in ζ
- Subglacial channel flow is steady and uniform at large scale
 - so $u_* = \sqrt{gRS}$

• with $R = \frac{A}{\Gamma}$ the Hydraulic radius and $S = -\frac{1}{\rho g} \frac{\partial p}{\partial x} + \tan \theta$ the pressure gradient

Deriving seismic power – discharge scalings

From (Gimbert et al., 2016)

•We then define the flow discharge as Q = AU• with $U = \frac{R^{2/3}S^{1/2}}{n}$ the Manning's formulation

•Noise power becomes: $P_w \propto \Gamma R^{7/3} S^{7/3}$ and $Q \propto A R^{2/3} S^{1/2}$

•Defining β the shape function with $\Gamma = \beta R$ and $A = \beta R^2$ we can define:

$$\begin{aligned} & P_w \propto \beta^{-11/3} R^{-82/9} Q^{14/3} \\ & P_w \propto \beta^{-1/4} S^{41/24} Q^{5/4} \end{aligned}$$

$$\longrightarrow$$

$$\frac{P_w}{P_w} \propto \frac{Q^{14}}{3}$$
$$\frac{P_w}{P_w} \propto \frac{Q^{5}}{4}$$

c) Beam [0.75-0.99] 5 ± 2 Hz

f) Beam [0.75-0.99] 15 ± 4 Hz

Rel. PDF

Rel. PDF

Null

Null

b) Beam [0.07-0.16]

i) Beam [0.8-0.99] 5 ± 2 Hz Max. 200 m

Energy distribution over the 97 NODES for different time periods

Variability index (t,n) for each node (n) calculated every t =3 hours for f in [3-7] Hz

DOY

Synthetic model for surface waves (f=5 Hz)

