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Abstract 11 

Pig intestines used as natural sausage casings are currently cleaned and then sent from Europe to 12 

China for manual quality control and grading. This process can be made greener by automation that 13 

removes the need for transport. A suitable machine now exists, able to check the casings for leaks 14 

and to grade and cut them to standard lengths. The one remaining quality control process is 15 

checking for impurities left by the cleaning process. A sophisticated vision system and a deep 16 

learning system is needed. 17 

After preliminary lighting tests, images of cleaned pig intestines destined for sausage casings were 18 

examined manually for impurities. Pixels depicting impurities were labelled and mask impurity 19 

images produced as "ground truth". Two deep learning methods were applied in order to predict the 20 

areas of impurities in these images: Halcon with SOLOv2 semantic segmentation and Detectron2 21 

with Mask-R-CNN instance segmentation. Despite the over-abundance of background pixels, both 22 

algorithms learned the segmentation. Detectron2 was more accurate but Halcon found more of the 23 

impurities, which was attributed to the difference between the segmentation types: semantic vs 24 

instance. Since the aim of this work is to produce clean intestines for use in the food industry, false 25 

positives are more acceptable than false negatives, so Halcon was chosen. 26 
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Introduction 29 

Intestines are often used as natural sausage casings, that is as edible containers for various types of 30 

sausage. They are therefore subject to standard food safety and hygiene requirements. The current 31 

processing system involves extracting and cleaning the intestines at the local abattoir and then 32 

shipping the intestines to low-wage countries such as China for quality control, grading and cutting. 33 

This involve filling the intestine with water, measuring the intestine diameter and thickness, looking 34 

for any leaks (caused by holes) and looking for "impurities" (remains of faeces). Where holes or 35 

impurities are found that section is cut out and discarded. This process occurs manually at high 36 

speeds. Due to the transportation time, sausage casings are around 6 months old before they are 37 

filled and the sausages sold as human food. It would be better to perform the sorting more locally, 38 

making the product fresher, reducing the CO2 emissions associated with the transport, and 39 

increasing traceability. It is already possible to automatically detect holes, grade and cut sausage 40 

casings. This project investigates how to automate the final step of detecting impurities in pig 41 

intestines and thereby enable moving the production of food-quality natural sausage casings back to 42 

Europe. 43 

SelectiCa is a three-in-one robot in the final stages of development (Proxima Centauri, 2020) that will 44 

be able to perform the sorting and grading tasks to at least the standard obtained by manual 45 

workers. It can automatically pick the casings up, fill them with water, check for leaks and cut where 46 

a leak is detected, measure the diameter and sort into standard sizes, at 2m/s and without any 47 

direct labour required. Most of the grading and quality control in SelectiCa is performed by a 3D 48 

vision system that scans the surface of the water-filled casing. From this, precise diameter 49 

measurements can be performed, as well as holes where water is spraying out, but impurities are 50 

harder to detect. Impurities vary considerably in size, shape, intensity etc., and often look a lot like 51 

elements of the intestines that are not impurities. This makes the correct classification of impurities 52 

a challenging task and therefore makes deep learning the method of choice, as it can find quite 53 

subtle patterns if given sufficient annotated data. Here, we use a convolution neural network (CNN) 54 

architecture for our deep learning process. 55 

Region-based CNN (R-CNN) methods create boundaries around every object that is present in the 56 

image. They divide the image into regions and use a greedy algorithm to recursively combine similar 57 

regions. The proposed regions are fed into a CNN which produces a high-dimensional feature vector 58 

for each, plus offset values to improve the precision of the bounding box. This process takes much 59 

too much time for real-time applications, so faster methods have been developed. 60 

Detectron2 (Wu et al., 2019) was built by Facebook AI Research (FAIR) to support rapid 61 

implementation and evaluation of novel computer vision research. It is based on Pytorch, an open-62 

source optimized tensor library for deep learning based in Lua but with a good Python interface 63 

and reasonable C++ interface. Detectron2 is very easy to use and supports multiple advanced deep-64 

learning methods. For this case, we want a method with high accuracy rather than high speed. We 65 

also prefer to use established algorithms to maximize stability, reliability, and robustness for this 66 

industrial application. 67 

We therefore chose Mask R-CNN (He et al., 2017), which is an instance segmentation method also 68 

developed by FAIR that identifies every pixel of every object in the image (instead of only using 69 

bounding boxes). It uses a backbone CNN network supplemented by a feature pyramid network that 70 

is better at representing objects at multiple scales. It involves using small masks to compute losses 71 

and then scaling the masks up to the size of the bounding box during inferencing. This region of 72 

interest (ROI) pooling enables sub-pixel accuracy.  73 



In this paper we investigate how well the Detectron2 Mask R-CNN method detects impurities in pig 74 

intestines based on images obtained using an industrial 2D camera integrated with the SelectiCa 75 

robot. We will compare this to the impurities detected by the commercial system Halcon (MVTec). 76 

Halcon software is often used for research-level machine vision applications and is certainly very 77 

flexible and has a good development environment, but it is rather expensive for industrial use. It 78 

does not (yet) support instance segmentation but is very strong for semantic segmentation (where 79 

objects are found and labelled by class). Since for this application we are only concerned with a 80 

binary classification of whether sections of casings contain impurities or not, semantic segmentation 81 

should be sufficient.  82 

In order to use the same evaluation method, we will base our assessment of both methods on 83 

evaluation algorithms developed in the Halcon framework. We therefore ran standard Halcon 84 

segmentation and object detection on our images and compared this Halcon output with the output 85 

from Detectron2 running Mask R-CNN to discover which is better. The aim of this work is to make a 86 

vision solution that would work as a future product upgrade for Proxima, so that they can take 87 

commercial advantage of the results derived from our research. 88 

Method 89 

The hardware we used for obtaining images and training the networks, apart from the latest 90 

SelectiCa prototype, was the following:  91 

• Grayscale camera: Basler acA2440-20gm, resolution 2440 x 2048 pixels 92 

• Colour camera: Basler acA1920-155uc, resolution 1920 x 155 pixels 93 

• Custom-made RGB LED diodes giving the possibility of specific light wave lengths, located in 94 

the mandrel 95 

• Back light: MBJ Imaging DBL3030-WT with white LEDs (5000K) 96 

Lighting tests 97 

Correct lighting is a very important factor for computer vision tasks. Initial investigations into lighting 98 

involved multiple lighting tests to come up with a solution that was optimal for the harsh food-grade 99 

environment it was going to work in.  100 

Different lighting set-ups were tried before the main tests started. Front lighting creates too much 101 

glare, as the intestines are very wet and therefore reflective. Back lighting creates a more muted and 102 

diffuse light where impurities show up well as darker patches. Blood vessels, connective tissue, etc. 103 

mostly show up as paler tracks, sometimes with a shadow. 104 

  105 

Figure 1: Grayscale image of a water-filled pig intestine in the SelectiCa machine, lit by back lighting,  106 
showing a fountain produced by a small hole. 107 



Another idea was to install LED lights in the mandrel that the casings slide along, so the intestine is lit 108 

from the inside. Both impurities and veins show up as lighter than the background (Figure 2).  109 

  110 

Figure 2: Grayscale image of a water-filled pig intestine in the SelectiCa machine lit from inside (LEDs in the mandrel) 111 

Since annotating by hand is a very time-consuming task and the image background contains a lot of 112 

irrelevant information, the images are cropped to a 1101 x 901 pixel region of interest. This means 113 

that any impurities take up a larger proportion of the image, so learning is easier. 114 

  115 

Figure 3: Left: grayscale image of a water-filled intestine. Right: same image segmented to display the impurities found. 116 

Our investigations into lighting led to the following conclusions and decisions for the training and 117 

comparison phase: 118 

• Light position: Lighting from the front does not work well due to reflections. Back lighting 119 

works well but would require considerable modification to the SelectiCa machine. Internal 120 

lights give almost as good results as back lighting and require very little modification and 121 

extra cost, so this was the lighting scheme chosen. 122 

• Light: The colours amber, red, green, and blue were tested for the LEDs in the mandrel. 123 

However, using a specific colour did not improve image quality. Therefore the LED colour 124 

was chosen to be amber, which was converted to grayscale using the grayscale camera. 125 

• Camera: The visual image of impurities was not improved by using light with different 126 

wavelengths or by using a colour camera. The grayscale camera has a larger dynamic range 127 

and so was the one chosen, as it performed better. 128 

Segmentation method 129 

It is important to identify and localize any impurities present in the pig intestine, so that these 130 

sections can be removed or rejected to ensure that those casings used for sausages comply with 131 

food hygiene requirements. Since there is no current standard for how to identify and classify 132 

intestine impurities, the choice of segmentation method and learning model is relatively open.  133 



The main types of segmentation method suitable for this case are:  134 

• Object detection: if the requirement is the number of impurities, or a relative measure of 135 

impurity area, a bounding box could be used. There exist many accurate and fast object 136 

detection models, such as YOLO (Redmon et al., 2016), SSD (Liu et al., 2016) and many more.  137 

• Semantic segmentation: if a relative pixelwise measure of how much impurity there is in 138 

each image is needed, then semantic segmentation would be the optimal choice.  139 

• Instance segmentation: This gives both a bounding box and a mask for each object and is 140 

therefore the most versatile method. Since there is not yet any definitive specification of 141 

how to use the results of the segmentation of impurities, instance segmentation is 142 

preferred. 143 

Real-time results are essential as any section of casing containing impurities must be cut out while 144 

that intestine is still on the machine and so distances to the impurities are calibrated. One of the 145 

current top-performing, real-time instance segmentation models is SOLO v2 (Wang et al., 2020). 146 

Figure 4 shows a comparative performance table from that paper.  147 

 148 

Figure 4: Table showing the performance of different instance segmentation algorithms, from Wang et al. (2020) 149 

Hyperparameters  150 

A critical task when setting up a high-performing neural network is selecting the best 151 

hyperparameters. For the Detection2 algorithm, a grid search was performed among these settings: 152 

Setting Values tested Value chosen 

Network model  Mask-RCNN: mask_rcnn_R_50_FPN_3x.yaml  

Learning rate [0.0001, 0.001] 0.001 

Iterations [1500, 2000, 5000] 2000 

Batch Size [64, 128, 256] 256 

Image Size  Not adjustable 

Very similar hyperparameters were tested to find the best Halcon deep learning network: 153 

Setting Values tested Value chosen 

Network model  pretrained_dl_segmentation_enhanced.hdl 

Learning rate [0.0001, 0.001, 0.01] 0.001 

Momentum [0.5, 0.75, 0.9, 0.95, 0.99] 0.95 

Weight Decay [0.00001, 0.0001, 0.001, 0.01] 0.01 

Batch Size  225 

Image Size  274x224 



Annotation of images 154 

Ground truth was obtained manually, by a researcher looking at the training and test images and 155 

hand-labelling any impurities found. We used the DTI annotation tool to perform this annotation and 156 

saved the impure regions as mask images as shown in Figure 5, in a format readable by both Halcon 157 

and Detectron2. Any tool capable of creating masks or polygons can be used for this task e.g. 158 

MakeSense (n.d.) which is used via a browser and LabelMe (Wada, 2016) which is used on a local 159 

platform. These mask images are used by the algorithms as training data so that the algorithm 160 

knows what to converge to. 161 

  162 

Figure 5: Annotated areas converted to binary masks using the DTI annotation tool 163 

The Detectron2 API for Mask-RCNN takes as input a file in JavaScript object notation (ECMA, 2017) 164 

with annotation in a common objects in context (COCO) (Lin et al., 2014) style which can also be read 165 

by Halcon. Therefore, the mask image annotations were converted to .json format using an 166 

internally created script.  167 

Comparing Halcon and Detectron2 outputs 168 

Halcon as default outputs pixel accuracy and intersection over union, whereas the Detectron2 code 169 

outputs average precision (also based on intersection over union, but this parameter is hidden). 170 

Therefore, instead of comparing evaluations from each algorithm, we decided to rely on the 171 

evaluation method of Halcon. To evaluate the Detectron2 results, the predicted impurity regions 172 

from the network were injected into Halcon’s evaluation procedures in order to generate results in 173 

the same format as Halcon. 174 

Results 175 

Initial experimentation using simplified tests confirmed that the average precision obtained from the 176 

Halcon output processed by our new code was essentially the same as that obtained using 177 

Detectron2. This also confirms that it is possible to find impurities using both semantic and instance 178 

segmentation coupled with deep learning.  179 

The Detectron2 algorithm detects instances of potential impurities and marks each region containing 180 

an impurity in colour, as shown in Figure 6. The results show that the regions identified by 181 

Detectron2 as impurities are about the same size and shape as the impurities labelled as ground 182 

truth. Most impurities are found (though not the large area in light blue on LHS of the ground truth 183 

image nor a couple of smaller regions, notably the red top middle and the red bottom middle; and 184 

the green bar at the bottom is condensed to a small dark dot). One additional impurity (RHS, blue) is 185 

found that is not present in the manually-annotated ground truth image.  186 



 187 

Figure 6: Detectron2: Left: original image, Centre: predictions of impurity, Right: ground truth annotation 188 

The semantic segmentation output from Halcon is shown in Figure 7. Halcon identifies regions 189 

containing impurities, it does not attempt to identify individual instances of impurities. Not 190 

unexpectedly, we see that the regions estimated to contain impurities are considerably larger than 191 

the ground truth regions. This gives Halcon less opportunity to miss an individual impurity in a 192 

contaminated area. All ground truth impurities are found and several extra places are identified as 193 

contaminated, notably on the RHS. 194 

 195 

Figure 7: Halcon: Left: original image, Centre: predictions of impurity, Right: ground truth annotation 196 

Analysis of results 197 

The two most important measures used here are intersection over union (IoU) and pixel accuracy, as 198 

a standard bounding box method cannot be used for instance segmentation. 199 

Intersection over union (IoU) 200 

IoU is defined as the division of the area of overlap/intersection with the area of union, as depicted 201 

below: 202 

IoU =   
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (𝑜𝑣𝑒𝑟𝑙𝑎𝑝)

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛 (𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎)
  =  203 

 204 

IoU Background Impurity Mean 

Halcon 0.989 0.277 0.633 

Detectron2 0.996 0.456 0.726 

Since a very large proportion of the pixels were background, both trained networks are very good at 205 

predicting background. The IoU of pixels depicting impurities is notably lower, especially for Halcon, 206 

so Detectron2 appears better. This is unsurprising, as the regions predicted by Halcon as containing 207 

impurities are noticeably larger than the impurities themselves, so there are many false positives to 208 

increase the IoU denominator.  209 



Pixel accuracy 210 

Pixel accuracy is the ratio of pixels predicted with the correct class-label (true positive plus true 211 

negatives) over the total number of pixels. 212 

Pixel Accuracy Background Impurity Mean 

Halcon 0.991 0.782 0.886 

Detectron2 0.999 0.579 0.789 
 213 

Again it can be seen that both deep learning algorithms perform very well with the background and 214 

less well with the impurities -- and here, Halcon looks better. The higher impurity detection accuracy 215 

obtained from Halcon is not surprising, given that the Halcon impurity regions contain so many extra 216 

pixels (compare the area classed as containing impurities in Figures 5 and 6) and some of these are 217 

pixels genuinely depicting impurities. 218 

Confusion matrix 219 

A pixel confusion matrix shows the percentage of pixels (in total) found to be background or 220 

impurity. Each row of the matrix represents the instances in a predicted class, while each column 221 

represents the instances in an actual class. The green numbers are true positives, while red ones are 222 

false positives. 223 

Halcon pixel confusion matrix Background Impurity 

Background 98.543 % 0.112 % 

Impurity 0.941 % 0.403 % 

 224 

Detectron2 pixel confusion matrix Background Impurity 

Background 99.344 % 0.217 % 

Impurity 0.140 % 0.230 % 

Again, both algorithms are shown to work well on background and badly on impurities. However, 225 

these matrices also clearly show the great disparity between the number of background pixels in our 226 

tests and the number of pixels depicting impurities. This means that small errors in identifying the 227 

impurities during the determination of the ground truth data will have a large impact on the results.  228 

Discussion 229 

In any task involving the detection of a rare occurrence as here, the true negative “no problem” 230 

pixels greatly outnumber the problem (in our case, impurity) pixels. This means that it is easy for a 231 

learning algorithm to learn to label every pixel as negative and still be assessed as reasonably 232 

accurate. Both algorithms tested here managed to avoid this problem and detect some impurities. 233 

The Detectron2 algorithm performs notably better on background pixels. This is not surprising, as 234 

the larger size of the Halcon “impurity” regions mean that they necessarily include a number of 235 

incorrectly labelled background pixels. The extra area covered by the Halcon-predicted “impurity” 236 

class means that more genuine impurities are correctly labelled AND more background pixels are 237 

falsely labelled as depicting impurities. For similar reasons, the Detectron2 algorithm identifies fewer 238 

of the true positives AND is better at correctly labelling background pixels. Impurities often occur in 239 

small groups (as in the image shown in Figures 5 and 6) so Halcon’s extra area may often accidentally 240 

overlap with other true impurities. Detectron2’s parsimonious labelling can also cause occasional 241 

pixels to be missed around the edges of an impurity. These comments are likely to be correct for all 242 

semantic vs instance segmentation of these images. 243 



We find that both algorithms work well on detecting areas containing impurities in the image stream 244 

of casings moving past the camera, even at 2m/s. The Detectron2 neural network is more accurate 245 

in its classification so is more satisfying to researchers, but it can be argued that it is more important 246 

to detect ALL faecal contamination than to be accurate. Some level of false positives and the 247 

resulting loss of clean intestine is better than missing genuine impurities and them ending up in 248 

food. This argument would mean that the Halcon results would be better in a commercial, food 249 

production setting. Whether Halcon with SOLOv2 is the best of the semantic segmentation models, 250 

and whether Detectron2 with Mask-R-CNN is the best of the instance segmentation models, is 251 

unknown as yet. It would be interesting to run similar tests with other segmentation methods e.g. 252 

from the Halcon library, as future work. 253 

If these detections methods yield good results, Proxima will consider offering impurity detection as 254 

an add-on to their current system.  255 
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