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Abstract. In this work we propose a novel virtual element approach for solving bound-
ary value problems in 2D linear isotropic micropolar elasticity. Following the basic idea
of the Virtual Element Method (VEM), the degrees of freedom of each material point,
i.e. the displacement and rotation fields, are decomposed into both a polynomial space,
either linear or quadratic, and a remaining space that is kept virtual in the formulation.
Generalized consistency and stabilization terms are consistently derived.
Different patch tests, properly conceived for micropolar continua, are proposed and com-
pared to reference solutions present in literature. The obtained results are in good agree-
ment with these solutions, confirming the capability of the proposed elements in the
modelling of the expected responses.
The expected applications of this methodology concern the mechanical study of mi-
crostructured materials, inherently characterized by nonlocal response, which has been
widely proven to be effectively represented by micropolar continua.

1 INTRODUCTION

A wide range of microstructured materials, commonly adopted in different engineering
applications, is strongly characterized by nonlocal response, due to the presence of in-
ternal lengths and related dispersion properties [37, 32, 30]. This behaviour is especially
evident for materials with characteristic sizes at the microstructure that are comparable
to a structural length. Examples include fiber-beam networks, polycristals, foams, cancel-
lous bones, but also metal matrix composites or masonry-like materials [34, 29, 19]. In all
such cases, the overall constitutive behaviour is influenced by scale parameters, directly

1



M. Pingaro, M. L. De Bellis and P. Trovalusci

related to the dimension of heterogeneities, that are typically non negligible with respect
to the characteristic structural size.
In this context, the micropolar continuum, that belongs to the class of generalized con-
tinua [11], is able to retain memory of an inherent microstructure, providing an enriched
constitutive behaviour, with respect to the classical Cauchy continuum. Each material
point is, indeed, provided with displacement and rotation degrees of freedom, thus result-
ing in additional strains and stresses: besides the classical components, micropolar ones
include curvatures (work conjugate to couple stresses) and skew-symmetric strains (work
conjugate to skew-symmetric stresses).
From the experimental point of view, micropolar effects have been captured and identified
in several materials ranging from natural materials [17, 28, 27, 18], up to engineered ma-
terials obtained via 3D printing techniques [26]. On the other hand, from the numerical
modelling point of view different approaches have been proposed including micromechan-
ical modelling [24, 13, 1, 4, 12, 19] and multi-scale modelling [31, 35, 16, 33, 21, 15, 36].
In most cases finite element analyses have been performed in order to solve boundary
value problems at different scales of interest [12, 19]. As an alternative to the Finite
element method, the Virtual Element Method (VEM) has been recently proposed [5, 6],
representing an extension of mimetic finite difference approaches to deal with very gen-
eral polygonal elements with generic number of nodes. The VEM is proving to be a very
effective numerical tool, characterized by high flexibility especially concerning the mod-
elling of very complex geometries, hanging nodes and very robust with respect to mesh
distortion. Many applications have been presented so far ranging from linear elasticity
[23, 22, 25, 8, 20] up to non-linear problems [10, 2, 3, 14].
In this work, we propose a virtual element approach for solving boundary value problems
in 2D linear isotropic micropolar elasticity. Following the basic idea of the method, here,
the displacement and rotation fields are decomposed into a polynomial space, either linear
or quadratic, and a remaining space that is kept virtual in the formulation. Generalized
consistency and stabilization terms are consistently derived.
Different applications are proposed [24], ranging from a patch test, properly conceived for
micropolar continua, to various engineering applications. The obtained results are in good
agreement with reference solutions, confirming the capability of the proposed elements in
modelling the expected responses.

2 VIRTUAL FORMULATION FOR COSSERAT MEDIA

In this section we recall the governing equations of 2D linear elastic Cosserat continuum
adopted in the presented study and describe the related virtual element space [5, 6], as
well as the construction of the bilinear forms resulting from the weak form.
We consider a two–dimensional domain in the space R2, where the Cartesian coordinate
system (O, x, y) is introduced. The body is subjected to the volume force, represented
by the vector f ∈ (L2(Ω)) 2, f = {f1, f2}T , and body couple represented by the scalar
m ∈ L2(Ω), m = m3, where L2(Ω) is the standard Lebesgue space. For the sake of
simplicity we use homogeneous Dirichlet boundary conditions and consider the Sobolev
spaces, Q := H1

0 (Ω) and V := [Q]2. We introduce the admissible displacement fields
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v ∈ V and the admissible rotation fields ϕ3 ∈ Q.
Under the hypothesis of small deformations, the kinematical descriptors are the dis-

placement field vector u = {u1, u2}T and the scalar rotation field ω = ω3. The corre-
sponding strain measures are the strain vector ε = {ε11, ε22, ε12, ε21}T and the curvature
vector κ = {κ1, κ2}T . The compatibility equations write:{

εij = uj,i + eji ω ,

κj = ω,j ,
(1)

where eij is the two-dimensional permutation tensor. Whereas the equilibrium equations
are: {

σij,i + fj = 0 ,

µi,i + ejk σjk +m = 0 ,
(2)

where σ is the non–symmetric stress vector σ = {σ11, σ22, σ12, σ21}T and µand the and
couple stress vector is µ = {µ1, µ2}T .

In the case of 2D isotropic linear elasticity we adopt the following constitutive equations
[24]

σij = Aijhk εhk ,

µi = 4Gl2 κi ,
(3)

where the elastic tensor of the fourth order A is:

A = G


2(1−ν)
1−2ν

2ν
1−2ν

0 0
2ν

1−2ν
2(1−ν)
1−2ν

0 0

0 0 1 + k 1− k
0 0 1− k 1 + k

 , (4)

where G is the shear modulus, ν is the Poisson modulus, and l is the length scale material
constant. k = Gc/G is the ratio between the Cosserat shear modulus Gc and the standard
shear modulus G. The weak form of the linear elastic problem reads:

Find (u, ω) ∈ V ×Q such that :
a(u,v) + b(ω,v) =< f ,v > ∀v ∈ V
b(u, ϕ) + c(ω, ϕ) =< m,ϕ > ∀ϕ ∈ Q

(5)

where:

a(u,v) =

∫
Ω

Aijhk uh,k vi,j dΩ ,

b(ω,v) =

∫
Ω

Aijhk ehk ω vi,j dΩ ,

c(ω, ϕ) =

∫
Ω

(Aijhk ehk eij ω ϕ) +
(
2Gl2 ω,nϕ,n

)
dΩ ,

< f ,v >=

∫
Ω

fi vi dΩ ,

< m,ϕ >=

∫
Ω

mϕ dΩ .

(6)
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In order to approximate the solution of the problem (5) we consider a decomposition Th
of the domain Ω into non overlapping polygonal elements E. In the following, we denote
by e the straight edges of the mesh Th and, for all e ∈ ∂E, ni denotes the outward unit
normal vector to ei. The symbol ne represents the number of the edges of the polygon E,
that coincides with the number of the element vertices.

Let k be an integer ≥ 1. Let us denote by Pk(Ω) the space of polynomials, living on
the set Ω ⊆ R2, of degree less than or equal to k.

By the discretization introduced, it is possible to write the bilinear forms (5), as in the
finite element methodology, in the following way:

a(u,v) =
∑
E∈Th

aE(u,v) ∀v ∈ V ,

b(ω,v) =
∑
E∈Th

bE(ω,v) ∀v ∈ V ,

c(ω, ϕ) =
∑
E∈Th

cE(ω, ϕ) ∀ϕ ∈ Q ,

(7)

The discrete virtual element spaces, Vh and Qh, are:

Vh :=
{
v ∈ V : v |E∈ Vh|E ∀E ∈ Th

}
,

Qh :=
{
q ∈ Q : q |E∈ Qh|E ∀E ∈ Th

}
,

(8)

where Vh|E :=
(
Vh|E

)2
and the local spaces Vh|E and Qh|E are defined as

Vh|E :=
{
vh ∈ H1(E) ∩ C0(E) : 4vh ∈ Pk−2(E), vh |e∈ Pk(e) ∀e ∈ ∂E

}
,

Qh|E :=
{
qh ∈ H1(E) ∩ C0(E) : 4qh ∈ Pk−2(E), qh |e∈ Pk(e) ∀e ∈ ∂E

}
.

(9)

By the definition of the local spaces (9), we can observe that, in contrast to the standard
finite element approach, the local spaces, Vh|E and Qh|E, are not fully explicit, in fact
Vh|E and Qh|E contain all the polynomials of degree ≤ k, plus other functions that, in
general, will not be polynomials. Moreover vh is a polynomial of degree k on each edge e
of E and globally continuous on ∂E.

The problem (5) restricted to the discrete spaces Vh and Qh becomes:
Find (uh, ωh) ∈ Vh ×Qh such that
ah(uh,vh) + b(ωh,vh) =< f ,vh > ∀vh ∈ Vh ,
b(uh, ϕh) + c(ωh, ϕh) =< m,ϕh > ∀ϕ ∈ Qh ,

(10)

where ah(·, ·) : Vh × Vh → R, bh(·, ·) : Vh × Qh → R and ch(·, ·) : Qh × Qh → R are
the discrete bilinear forms approximating the continuous forms a(·, ·), b(·, ·) and c(·, ·)
respectively. < f ,vh > and < m,ϕh > are the terms approximating the virtual work of
external loads.
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Table 1: Patch test: coordinates nodes

Node x y
1 0.04 0.02
2 0.18 0.03
3 0.16 0.08
4 0.08 0.08
5 0.00 0.00
6 0.24 0.00
7 0.24 0.12
8 0.00 0.12

The discrete bilinear forms are constructed element by element as:

ah(uh,vh) =
∑
E∈Th

aEh (uh,vh) ∀uh, vh ∈ Vh ,

bh(ωh,vh) =
∑
E∈Th

bEh (ωh,vh) ∀ωh ∈ Qh, ∀vh ∈ Vh ,

ch(ωh, ϕh) =
∑
E∈Th

cEh (ωh, ϕh) ∀ωh, ϕh ∈ Qh .

(11)

The local stiffness matrices can be derived, consistently with [6, 9], after introducing
the local L2-projection operators Π∇E : Vh(E) → (Pk(E))2, Π∇E : Qh(E) → Pk(E) and
Π0
E : Qh(E)→ Pk(E).
The details on the construction of the local stiffness matrix are presented in [6, 9, 7, 22],

while are here omitted for the sake of brevity.

3 NUMERICAL RESULTS

In this section we report a patch test to prove the reliability and the performances of the
developed VEM Cosserat element. The patch test presented has been proposed by [24]
and it was specifically conceived for Cosserat finite elements.
We consider a rectangular region discretized using two type of mesh: the first type is made
by non-overlapping distorted triangular elements, Fig. 1(a), while the second by Voronoi
elements, Fig. 1(b). The coordinates of the nodes for the triangular mesh are reported in
the Tab. 1. We impose different boundary conditions (three different cases are analysed
in the following) and both strains and stresses are checked [24]. Satisfaction of the patch
tests guarantees stability and convergence of the element’s solution [38] when used for the
solution of real problems. For all tests we set the elastic constants: G = 1000, ν = 0.25,
l = 0.1 and k = 0.5.
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(a) Triangular element mesh (b) Voronoi mesh

Figure 1: Domain problem and the two relative mesh adopted

3.1 Patch Test 1

The first test is developed to check the capabilities of the element to reproduce the
linear elastic Cauchy continuum. We impose the following boundary conditions in terms
of displacements, u, and rotation, ω

u1 = 10−3 (x1 + (1/2)x2) ,

u2 = 10−3 (x1 + x2) ,

ω = (1/4) 10−3 ,

f1 = f2 = 0 ,

m = 0 ,

(12)

and the relative analytical solution are:

σ11 = σ22 = 4 ,

σ12 = σ21 = 1.5 ,

µ1 = µ2 = 0 .

(13)

The stress, σ, is constant and symmetric and the couple, µ, is identically null. In Fig.
2 we report the solution in terms of displacements for the two type of meshes adopted.
In Figs. 3 and 4 the map color of the stresses for the two different mesh adopted are
reported.

3.2 Patch Test 2

The following patch test was suited to check the capabilities to account for constant
non-symmetric stress and identically null couple. We impose the following boundary
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(a) Displacement direction 1, u1 (b) Displacement direction 2, u2

(c) Displacement direction 1, u1 (d) Displacement direction 2, u2

Figure 2: Displacement solution obtained for all tests with triangular and Voronoi meshes, respectively

conditions

u1 = 10−3 (x1 + (1/2)x2) ,

u2 = 10−3 (x1 + x2) ,

ω = (1/4 + 1/(4α)) 10−3 ,

f1 = f2 = 0 ,

m = 1 ,

(14)

where the parameter α is 1− k. The relative analytical solution in terms of stresses are:

σ11 = σ22 = 4 ,

σ12 = 1 ,

σ21 = 2 ,

µ1 = µ2 = 0 .

(15)

The solution obtained are shown in Figs. 5 and 6.
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(a) Stress σ11 = σ22 (b) Stress σ12 = σ21

(c) Couple µ1 = µ2

Figure 3: Stress solution for path test 1 with triangular mesh

3.3 Patch Test 3

The patch test 3 tests a general case of Cosserat continuum. The following boundary
conditions are imposed

u1 = 10−3 (x1 + (1/2)x2) ,

u2 = 10−3 (x1 + x2) ,

ω = (1/4 + 1/(2α)(x1 − x2)) 10−3 ,

f1 = f2 = 1 ,

m = 2(x1 − x2) ,

(16)

and the relative solution:

σ11 = σ22 = 4 ,

σ12 = 1.5− (x1 − x2) ,

σ21 = 1.5 + (x1 − x2) ,

µ1 = −µ2 = (2l2/α) .

(17)

The contour plot of the stresses for triangular and Voronoi meshes are shown in Fig. 7
and Fig. 8 respectively. In Tab. 2 the displacements and the stresses at the point P (see
Fig. 1(a)) are reported and compared with the exact solution. All results in the Tab. 2
are refereed to the triangular mesh. The Virtual Element (VEM), here proposed, shows
improved performances compared with the MLINT (linear displacement and rotation),
MQLT (quadratic displacement and linear rotation) and MQUAT (quadratic displacement
and rotation) elements proposed by [24].
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(a) Stress σ11 = σ22 (b) Stress σ12 = σ21

(c) Couple µ1 = µ2

Figure 4: Stress solution for path test 1 with Voronoi mesh

Table 2: Patch test 3: displacements at node 2 and stresses at P = (0.0933, 0.06) using triangular mesh

u1 × 103 u2 × 103 ω × 103 σ11 σ12 µ1

MLINT 0.1944 0.2096 0.4001 3.9928 1.4634 0.0400
MQLT 0.1945 0.2097 0.4001 3.9956 1.4668 0.0400

MQUAT 0.1945 0.2097 0.3960 3.9956 1.4707 0.0392
VEM 0.1950 0.2100 0.3998 4.0000 1.4668 0.0399
Exact 0.1950 0.2100 0.4000 4.0000 1.4667 0.0400

4 FINAL REMARKS

In the present work we developed a novel formulation of the Virtual Element method-
ology for 2D micropolar linear elastic continuum. In particular we adopt linear Virtual
Element Method both for displacements and rotations. The formulation developed and
implemented is in good agreement with the patch tests presented in literature and all
tests are passed for the standard triangular mesh and for distorted Voronoi mesh.
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(a) Stress σ11 = σ22 (b) Stress σ12

(c) Stress σ21 (d) Couple µ1 = µ2

Figure 5: Stress solution for path test 2 with triangular mesh
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