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Abstract 

Background:  The standard reference region (RR) for amyloid-beta (Aβ) PET studies is the cerebellar grey matter 
(GMCB), while alternative RRs have mostly been utilized without prior validation against the gold standard. This study 
compared five commonly used RRs to gold standard plasma input-based quantification using the GMCB.

Methods:  Thirteen subjects from a test–retest (TRT) study and 30 from a longitudinal study were retrospectively 
included (total: 17 Alzheimer’s disease, 13 mild cognitive impairment, 13 controls). Dynamic [11C]PiB PET (90 min) and 
T1-weighted MR scans were co-registered and time–activity curves were extracted for cortical target regions and the 
following RRs: GMCB, whole cerebellum (WCB), white matter brainstem/pons (WMBS), whole brainstem (WBS) and 
eroded subcortical white matter (WMES). A two-tissue reversible plasma input model (2T4k_Vb) with GMCB as RR, 
reference Logan and the simplified reference tissue model were used to derive distribution volume ratios (DVRs), and 
standardized uptake value (SUV) ratios were calculated for 40–60 min and 60–90 min intervals. Parameter variability 
was evaluated using TRT scans, and correlations and agreements with the gold standard (DVR from 2T4k_Vb with 
GMCB RR) were also assessed. Next, longitudinal changes in SUVs (both intervals) were assessed for each RR. Finally, 
the ability to discriminate between visually Aβ positive and Aβ negative scans was assessed.

Results:  All RRs yielded stable TRT performance (max 5.1% variability), with WCB consistently showing lower 
variability. All approaches were able to discriminate between Aβ positive and Aβ negative scans, with highest effect 
sizes obtained for GMCB (range − 0.9 to − 0.7), followed by WCB (range − 0.8 to − 0.6). Furthermore, all approaches 
provided good correlations with the gold standard (r ≥ 0.78), while the highest bias (as assessed by the regression 
slope) was observed using WMES (range slope 0.52–0.67), followed by WBS (range slope 0.58–0.92) and WMBS (range 
slope 0.62–0.91). Finally, RR SUVs were stable across a period of 2.6 years for all except WBS and WMBS RRs (60–90 min 
interval).

Conclusions:  GMCB and WCB are considered the best RRs for quantifying amyloid burden using [11C]PiB PET.
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Background
Amyloid-beta accumulation (Aβ) in the brain is a 
pathological hallmark of Alzheimer’s disease (AD) 
and can be measured in  vivo using positron emission 
tomography (PET) [1, 2]. One of the first amyloid PET 
tracers is Pittsburgh compound B ([11C]PiB), which binds 
with high specificity to fibrillar Aβ deposits [3, 4]. Both 
static and dynamic PET image acquisition protocols have 
been used, where the first is often preferred for routine 
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and multi-centre studies due to its short duration and 
relatively simple processing. However, a static scan 
only provides a semi-quantitative measure of amyloid 
load, which can be affected by confounders [5–8]. 
Therefore, performing dynamic acquisitions and full 
quantification using kinetic modelling may be required 
for assessing subtle changes in amyloid load, which is 
of particular importance in longitudinal studies where 
other physiological parameters may change, thereby 
introducing bias [5]. In general, a disadvantage of such 
a protocol is the need for arterial sampling, which 
is logistically challenging, requires specially trained 
staff and dedicated equipment, and is particularly 
burdensome to the patient. A possible alternative to the 
use of arterial sampling is a reference tissue approach 
[9]. Reference tissue approaches rely on the assumption 
that a region devoid of specific binding, but otherwise 
having similar tissue characteristics as the target region 
of interest, is available (= reference region), providing an 
indirect input function and circumventing the need for 
arterial sampling [10, 11].

In case of imaging Aβ deposits in AD using [11C]PiB, the 
cerebellar grey matter (GMCB) meets the assumptions 
of a reference region in nearly all patients, and it has 
been validated against the plasma input approach [6, 
12]. Only in rare familial forms and advanced stages of 
AD, this region might become compromised with Aβ 
plaques [13, 14]. In addition, accurate segmentation of 
this region can be challenging and may be hampered by 
truncation of the field of view in the lower portion of 
the brain. In recent years, several reports have proposed 
alternative reference regions, either aiming to overcome 
these issues, or aiming to improve effect sizes when 
measuring Aβ changes over time [15–17]. However, these 
alternative reference regions do not necessarily meet 
all requirements for a suitable reference tissue, such as 
having the same tissue characteristics as the target tissue 
or showing longitudinal stability and similar behaviour 
across diagnostic groups [15, 16]. One such region often 
used for amyloid quantification is whole cerebellum 
[16, 17]. Alternatively, reference tissues predominantly 
consisting of white matter, such as brainstem/pons or 
eroded subcortical white matter (centrum semiovale) 
have been proposed, in particular, for longitudinal 
amyloid quantification [17, 18]. However, age-related 
changes have been reported in the non-specific tracer 
retention of white matter regions, possibly compromising 
their use for longitudinal amyloid quantification [19].

To date, the impact of using alternative reference 
regions (RRs) on amyloid quantification has mainly been 
evaluated for semi-quantitative parameters [15–17]. 
Most alternative RRs have not been validated against 
the gold standard, i.e. full quantification with metabolite 

corrected plasma input curves or full quantification using 
a validated reference region.

Therefore, the present work focussed on the widely 
used [11C]PiB amyloid PET tracer and evaluated the 
use of the validated cerebellar grey matter as well as 
four alternative reference regions: whole cerebellum, 
white matter brainstem/pons, whole brainstem and 
eroded subcortical white matter. The performance 
of these regions was evaluated for both semi- and 
fully quantitative analysis in a test–retest (TRT) and 
longitudinal setting in terms of precision with respect 
to TRT variability, accuracy compared with the gold 
standard, stability over time (in case of the standardized 
uptake value, SUV), power for group discrimination 
and detecting physiologically plausible, longitudinal 
accumulation processes.

Materials and methods
Subjects
Clinical data of 43 participants belonging to two different 
studies, both conducted within the Amsterdam UMC, 
location VUmc, were included retrospectively [20, 21]. 
Thirteen subjects [6 cognitively unimpaired (CU), 1 mild 
cognitive impaired (MCI), 6 AD] were part of a TRT 
study and underwent arterial sampling, as described in 
detail by Tolboom et  al. [21]. The other 30 subjects (11 
CU, 12 MCI, 7 AD) were part of a longitudinal study as 
described by Ossenkoppele et al. [20]. In brief, all subjects 
received standard dementia screening for diagnostic 
purposes and amyloid PET scans were assessed visually 
(positive or negative) [21, 22]. Before enrolment, all 
participants provided written informed consent and the 
Medical Ethics Review Committee of the Amsterdam 
UMC, location VUmc, had approved both studies.

Image acquisition
All subjects from the TRT study underwent a structural 
T1-weighted MR scan on a 1.5 T Siemens Sonata scanner 
(MPRAGE: matrix size 256 × 256 and 160 slices, voxel 
size 1.0 × 1.0 × 1.5  mm, echo time = 3.97  ms, repetition 
time = 2.700  ms, inversion time = 950  ms, flip angle 8°) 
and a test and same-day retest dynamic [11C]PiB PET 
scan (except for one subject) on a Siemens ECAT EXACT 
HR + scanner [21]. All participants first received a 10 min 
transmission scan for photon attenuation correction, 
followed by an intravenous [11C]PiB injection and 
simultaneously starting a 90 min dynamic PET scan [21]. 
Arterial blood was monitored continuously for the first 
60 min using an online detection system and additional 
manual samples were drawn for calibration, to determine 
plasma to whole-blood ratios, and to measure plasma 
parent and metabolite fractions [21]. For seven subjects, 
arterial blood data were not available or not of sufficient 
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quality for at least one of the scans. In addition, for one 
subject, the second scan was not used due to severe 
motion between PET frames. Consequently, a total of 
N = 6 test scans and N = 5 retest scans with plasma input 
data were available.

With respect to the longitudinal study, subjects also 
underwent similar T1-weighted MR and dynamic 
[11C]PiB PET scans at baseline, and follow-up (same 
scanners), 30.3 ± 5.4 (range 23–48) months later, but no 
arterial blood was sampled [20].

Image processing
First, structural T1-weighted MR images were 
co-registered to their corresponding PET image. Next, 
PVE-lab software was used to segment grey matter 
(GM), white matter (WM) and cerebrospinal fluid 
(CSF), as well as to delineate volumes of interest (VOIs) 
based on the Hammers atlas [23, 24]. The following grey 
matter regions were used as target regions: medial and 
lateral anterior temporal lobe, posterior temporal lobe, 
superior, middle and inferior temporal gyrus, fusiform 
gyrus, parahippocampal and ambient gyrus, anterior and 
posterior cingulate gyrus, middle and orbitofrontal gyrus, 
gyrus rectus, inferior and superior frontal gyrus, pre- 
and post-central gyrus, superior parietal gyrus and the 
(infero)lateral remainder of the parietal lobe. In addition, 
a composite global cortical region was generated as the 
volume-weighted average across all target regions. The 
RRs included GMCB, whole cerebellum (WCB), white 
matter brainstem/pons (WMBS), whole brainstem 
(WBS) and the eroded subcortical white matter (WMES). 
The WMES was obtained by eroding the subject’s whole 
brain WM segmentation (using the imerode function 
in MATLAB) and manually removing cerebellar and 
brainstem white matter. Corresponding time–activity 
curves (TACs) were obtained by superimposing VOIs on 
the dynamic PET scan.

Kinetic analysis
Only for scans where arterial plasma input data were 
available, the reversible two-tissue compartment model 
with four rate constants and additional blood volume 
fraction parameter (2T4k_Vb) was used to estimate the 
volume of distribution (VT). Volume of distribution ratios 
(DVR2T4k_Vb = VT target / VT reference) were calculated 
indirectly by using the validated GMCB as RR (here 
called: DVRPI_GMCB) (= gold standard) [6, 12].

For all scans, reference Logan (RLogan) was used to 
estimate DVR (DVRRLOGAN). The implementation did 
not require fixing k2′ (as per Eq. 7 from Logan et al. [25]) 
and a linearization time (t*) of 50  min p.i. was used [6, 
25]. In addition, the simplified reference tissue model 
(SRTM) was used to estimate binding potential (BPND) 

with parameter fit boundaries optimized per RR (see 
Additional file 1: Supplementary Table 1), and BPND + 1 
(= DVR) was calculated for comparison [10]. Finally, 
standardized uptake value ratios (SUVr) were calculated 
for two frequently used acquisition windows (40–60 and 
60–90 min p.i., SUVr40−60 and SUVr60–90, respectively) [6, 
12]. For each reference tissue method, all RRs mentioned 
above were used.

Statistical analysis
Statistical analyses were performed in IBM SPSS 
Statistics for Windows Version 24.0 (IBM Corp. Armonk 
New York U.S.A.), GraphPad Prism for Windows Version 
7.04 (La Jolla California, USA), and Origin Version 2019b 
(OriginLab Corporation, Northampton, Massachusetts, 
USA). For each reference region and method, regional 
outliers were defined based on the median absolute 
deviation (MAD3) criterion assuming a non-normal 
distribution [26]. This resulted in a total of 36 values, 
across all subjects (from the 2T4k_Vb and SRTM models) 
being excluded from further analyses (see Additional 
file  1: supplementary materials for details). Differences 
in age and score on the Mini-Mental State Examination 
(MMSE) between diagnostic groups were assessed using 
nonparametric Kruskal–Wallis and post hoc Mann–
Whitney U tests, while differences in the proportion of 
males and females were tested with Chi-square tests. As 
the TRT cohort consisted of only one MCI subject, this 
subject was not used for comparison.

Test–retest cohort
First, using the composite global cortical value, relative 
test–retest variability was calculated per RR and method 
according to Eq. 1, where the estimate of global cortical 
amyloid load (DVR or SUVr) of the test scan is denoted 
as T and for the retest scan as R

Second, based on results obtained from the test scans 
(N = 6), agreement between regional quantification 
(for all RRs and reference tissue methods) and the gold 
standard (DVRPI_GMCB) was assessed using Bland–
Altman (BA) analysis [27]. Next, linear regression 
analysis of the data points in the BA plots was used to 
assess whether (and to what extent) bias was dependent 
on underlying amyloid burden. Finally, correlations, 
slopes and intercepts between DVRPI_GMCB and the 
corresponding parameter of interest derived from each 
of the RRs and methods were calculated using linear 
regression analysis.

(1)TrT variability (%) =
|T − R|

0.5 · |T + R|
· 100
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Longitudinal cohort
A subset of subjects (N = 18) had information available 
on injected dose and patient weight, for which SUV TACs 
were calculated for all RRs. In addition, mean SUVs were 
calculated for all RRs and both acquisition windows (40–
60 min and 60–90 min p.i.). The shape of the SUV TACs 
were assessed in the baseline scans, and the stability of 
the RRs over time was assessed using paired t tests with 
Bonferroni correction. Follow-up time was standardized 
to the average follow-up time across subjects (2.6 years) 
to account for between-subject differences.

Finally, as an exploratory analysis, the annual 
percentage change in the composite global cortical value 
was calculated per individual and for each of the RRs 
(according to Eq. 2)

With the parameter at follow-up scan as FU, at baseline 
scan as BL and Years stands for the number of years 
since baseline scan. These values were plotted against 
the baseline parameter and the relationship was assessed 
by fitting linear and quadratic models through the 
data. These models were chosen based on the previous 
literature and the known dose–response relationship of 
binding [1, 28, 29], where the hypothesis is that amyloid 
burden measured with PET plateaus at later stages of the 
disease [1]. Goodness of fit was assessed using the Akaike 
Information Criterion (AIC) [30].

Discriminative ability reference regions
For the global cortical parameter of interest, derived 
using each of the methods and RRs, the ability to 
discriminate between visually Aβ positive and Aβ 
negative scans was assessed using Mann–Whitney U 
tests with Bonferroni correction (using scans with stable 
longitudinal visual assessment: N = 80). In addition, the 
Hodges–Lehmann estimate of the median difference was 
used as measure of the effect size [31].

(2)Annual percentage change =
FU− BL

Years
·
100

BL

Results
Subjects
Demographics are presented in Table  1. As expected, 
CU subjects had higher MMSE scores (i.e. better global 
cognition) than AD subjects in both TRT (p = 0.003) 
and longitudinal (p = 0.001) studies. In addition, in the 
longitudinal study, higher MMSE scores were observed 
for CU compared with MCI subjects (p = 0.005), as 
well as a trend towards higher MMSE scores for MCI 
compared with AD subjects (p = 0.083). There were no 
differences with respect to age and sex.

Test–retest cohort
Test–retest variability
The maximum TRT variability across regions and 
methods was 5.1%, with lowest TRT variability 
observed for WCB across methods (Table  2). Across 
RRs, RLogan showed least variability overall, while 
SUVr40−60 showed less variability than SUVr60–90 
(Table  2). Furthermore, the Bland–Altman analyses 
showed that for all RRs and methods, variability 
was most pronounced at low SUVR and DVR values 
(Fig.  1) and highest for the WMES (Additional file  1: 
Supplementary Table 2a).

Table 1  Subject demographics

Values are depicted as M ± SD

TRT​ CU (N = 6) MCI (N = 1) AD (N = 6)

Age 64.3 ± 5.7 71.0 61.0 ± 3.0

Females (%) 50% 100% 17%

MMSE 29.7 ± 0.5 28.0 20.7 ± 2.0

Longitudinal CU (N = 11) MCI (N = 12) AD (N = 7)

Age 66.4 ± 7.3 67.4 ± 6.7 60.4 ± 5.4

Females (%) 27% 33% 14%

MMSE 29.4 ± 0.5 27.2 ± 2.5 25.3 ± 2.3

Table 2  Relative test–retest variability across  reference 
regions and methods

All values are % TRT variability of global cortical averages for N = 12

Values depicted as mean (%) ± SD, MMSE = Mini-Mental State Examination

DVRRLOGAN DVRSRTM SUVr40−60 SUVr60−90

GM cerebellum 2.8 2.9 3.5 5.1

Whole cerebellum 1.4 2.0 2.2 2.8

WM brainstem /pons 2.4 3.3 2.3 3.7

Whole brainstem 2.1 3.8 2.2 3.1

Subcortical eroded 
WM

2.4 2.7 3.7 3.9
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Agreement with gold standard
Across methods, all RRs showed a strong correlation 
(r ≥ 0.78) with the gold standard, DVRPI_GMCB (Table 3). 
Furthermore, GMCB and WCB RRs showed the smallest 
bias across methods as indicated by the regression slopes 
(Table  3, range 0.85–1.12, 0.81–1.05, respectively) and 
WMES the worst (Table 3, range 0.57–0.67) and shown 
by the Bland–Altman analysis (Fig.  1 and Additional 
file 1: Supplementary Table 2a). However, using RRs that 
contained white matter resulted in an underestimation 
compared with DVRPI_GMCB for all parameters except 
SUVr’s calculated using the WCB (Table 3 and Fig. 1). In 
addition, the bias introduced by using WMES RR showed 
the strongest dependency on the underlying amyloid 
burden (Fig.  1 and Additional file  1: Supplementary 
Table  2b). Finally, across methods, SUVr60−90 showed 
a better correlation with DVRPI_GMCB than SUVr40−60 
(Table 3).

Longitudinal cohort
SUV reference region TACs and stability over time
SUV TACs of the five RRs are depicted in Fig.  2, 
illustrating that WCB and GMCB, as well as WBS and 
WMBS showed a very similar shape. Furthermore, 
cerebellar RRs showed the steepest decline in uptake 

over time, followed by brainstem RRs and cerebellar and 
WMES RR TACs differed most.

With respect to the stability of longitudinal SUV 
uptake (60–90  min p.i.), significant decreases (after 
Bonferroni correction) between baseline and follow-up 
SUV measurements were only present for WBS and 
WMBS (p = 0.004, p = 0.003) and a trend level decrease 
was observed for WCB (p = 0.006). With respect to the 
early acquisition window (40–60 min p.i.), no significant 
differences were present, although the strongest trend 
was observed for WBS and WMBS.

Annual change and baseline amyloid load
Across methods, the relationship between annual 
percentage change and baseline amyloid load as obtained 
by GMCB and WCB was best described by a quadratic 
relationship (Fig.  3) (ΔAIC GMCB RLogan: 8.0, SRTM: 
6.4, SUVr40−60: 3.6, SUVr60−90: 2.4 and ΔAIC WCB 
RLogan: 4.2, SRTM: 12.3, SUVr40−60: 2.9, SUVr60−90: 2.0). 
In contrast, for WMBS and WBS the relationship was 
best described by a quadratic model for SRTM (ΔAIC: 
8.5 and 12.2, respectively) and SUVr40−60 (ΔAIC: 3.3 
and 3.8, respectively) and by a linear model for RLogan 
(ΔAIC: 1.6 and 1.5, respectively) and SUVr60−90 (ΔAIC: 
2.4 and 2.5, respectively) (Fig. 3). Finally, with respect to 
WMES, the relationship was best described by a linear 
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model for all methods (ΔAIC RLogan: 0.8, SRTM: 1.2 
SUVr40−60: 0.0, SUVr60−90: 1.8).

Scans from both cohorts
Discriminative ability reference regions
All parameters of interest derived using each of the RRs 
(and methods) were able to discriminate between Aβ 
positive and Aβ negative (p < 0.001) scans (Additional 
file  1: Supplementary Fig.  1). The highest effect sizes 
were obtained for GMCB (range − 0.9 to − 0.7), followed 
by the WCB RR (range − 0.8 to − 0.6) and lowest effect 
sizes for WMES (-0.4) (Additional file 1: Supplementary 
Table 3).

Discussion
In the present [11C]PiB study, the performance of five 
reference regions was evaluated. All reference regions 
yielded relatively small test–retest variability and showed 
good correlations with the gold standard DVRPI_GMCB. 
However, largest bias, as shown by the regression slopes 
and BA analyses, was observed for white matter-based 
RRs. In addition, the choice of reference region did not 
impact the ability to differentiate between Aβ positive and 
negative scans, but the largest effect sizes were obtained 

for GMCB and WCB. Furthermore, the longitudinal 
study showed that SUV changed over time for both 
WBS and WMBS RRs, but only when using the late 
acquisition window (60−90 min). Finally, the relationship 
between baseline amyloid and Aβ accumulation was best 
described by a quadratic model, as expected, for GMCB 
and WCB.

While the maximum TRT variability was 5.1% across 
methods, the WCB RR showed consistently lower 
variability (Table 2). This may be related to the fact that 
this region is less prone to segmentation errors than for 
example GMCB and has more counts compared with the 
brainstem as a result of its larger volume. In addition, 
WCB may also outperform WMES in terms of TRT 
variability because the latter showed bias that was more 
dependent on the underlying amyloid burden (Fig. 1 and 
Additional file  1: Supplementary Table  2b). Finally, all 
regional parameters of interest, derived using all methods 

Table 3  Test–retest cohort: correlations between reference 
tissue methods with  varying RRs and  the  gold standard: 
DVRPI_GMCB

Values are shown for each of the methods and correspond to the linear 
regression analysis

Reference region DVRRLOGAN DVRSRTM SUVr40−60 SUVr60−90

GM Cerebellum

  r 0.88 0.85 0.81 0.89

 Slope 0.85 0.85 1.04 1.12

 Intercept 0.14 0.18  − 0.03  − 0.10

Whole Cerebellum

 r 0.85 0.81 0.77 0.84

 Slope 0.81 0.84 1.00 1.05

 Intercept 0.09 0.03  − 0.11  − 0.15

WM Brainstem /Pons

 r 0.81 0.84 0.78 0.80

 Slope 0.73 0.62 0.81 0.91

 Intercept  − 0.07 0.04  − 0.24  − 0.30

Whole Brainstem
Subcortical

 r 0.81 0.83 0.79 0.80

 Slope 0.74 0.58 0.83 0.92

 Intercept  − 0.06 0.11  − 0.24  − 0.29

Eroded WM

 r 0.83 0.86 0.82 0.86

 Slope 0.57 0.52 0.67 0.63

 Intercept 0.07 0.13  − 0.10  − 0.08

0 20 40 60 80 100
0

1

2

3

4

Time (min)

SU
V

WMES

0 20 40 60 80 100
0

1

2

3

4

SU
V

WCB
GMCB

0 20 40 60 80 100
0

1

2

3

4

SU
V

WMBS
WBS

Fig. 2  SUV TACs for all reference regions. Standardized uptake value 
time activity curves (corrected for weight and injected dose)
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and RRs, showed good correlations (r ≥ 0.78) with 
regional DVRPI_GMCB (Table 3).

Using GMCB and WCB as RR yielded, as expected, 
least bias as compared with the gold standard (as shown 
by the linear regression: Table 3 and BA analysis: Fig. 1 
and Additional file 1: Supplementary Table 2a). RRs that 
primarily contained white matter showed substantial 
underestimation compared with values obtained by 
the plasma input model, except for WCB, were this 
underestimation was only observed for RLogan and 
SRTM (Table  3). This underestimation is likely a result 
of both the relatively high uptake in white compared 
with grey matter and the different kinetics in this 
tissue compared to other RRs as illustrated by Fig.  2. 
Furthermore, given that the two cerebellar as well as 
the two brainstem RR SUV TACs were very similar in 
shape, relatively small differences in performance with 
respect to precision and accuracy were expected. These 
findings also indicate that the effect of choice of tissue 

of the RR on quantification is smaller than the effect 
of using a different anatomical RR. Furthermore, for 
WMES RR, bias (as shown by the BA analysis) was most 
dependent on the underlying amyloid burden (Additional 
file 1: Supplementary Table 2b). Therefore, using WMES 
for normalization purposes could be problematic, in 
particular, for analysing regions or subjects spanning the 
AD continuum.

The longitudinal results showed significant decreases 
in WBS and WMBS SUV only for the late (60–90 min) 
acquisition window. However, a similar trend (although 
not significant) was present for the early (40–60  min) 
acquisition window. This finding might be related to the 
fact that SUV does not take flow changes into account 
[20]. As such, using WBS or WMBS for normalization 
purposes, may result in an overestimation of the true 
Aβ load and this would be particularly problematic 
for longitudinal Aβ quantification [19]. In fact, effects 
of these confounding factors may explain why some 

Fig. 3  Baseline Aβ versus annual percentage change across reference regions and methods. The asterisk indicates the model that was preferred by 
the AIC
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studies have reported increased power for detecting 
longitudinal changes or larger between group 
differences in rates of Aβ change, using white matter 
RRs [32, 33]. Moreover, decreases in white matter SUV 
also may explain the lower pons and WMES SUVR 
values for groups of increasing disease severity (using 
GMCB as RR), as previously reported by Tryputsen 
and colleagues [34], although the authors themselves 
provide a different explanation by suggesting it could 
be due to increasing GMCB Aβ load. Ideally, one would 
have used VT for assessing the stability of RRs over 
time, but this was not possible as these subjects did not 
undergo arterial sampling.

Furthermore, results showed that although all RRs were 
able to discriminate between Aβ positive and Aβ negative 
scans, GMCB and WCB provided the highest effect sizes, 
while WMES provided the poorest results. Therefore, 
GMCB and WCB would be preferred for detecting 
more subtle between-group differences. These findings 
partially differ from some previous reports, likely due to 
differences in study population, study design or criteria 
used for defining the optimal RR. For example, some 
studies reported highest effect sizes for GMCB and pons 
or for WMES and pons when discriminating between 
diagnostic groups, which only partly agrees with the 
present results when discriminating between Aβ positive 
and Aβ negative scans [35, 36]. Moreover, the high effect 
sizes reported for WM RRs could also be related to the 
effect of confounding factors, as discussed above. It 
should be noted, however, that these results belong to a 
group classification analysis, and hence they cannot be 
compared directly with findings from studies assessing 
the statistical power for detecting longitudinal changes 
in Aβ burden, that employ a within-subject design [32, 
34]. Finally, differences in the criteria used for identifying 
the optimal RR can have a significant impact on outcome. 
For example, while Schwarz and colleagues exclusively 
focused on longitudinal criteria to recommend a 
combination of voxels from supratentorial white matter 
and whole cerebellum as RR, the present study used a 
combination of criteria based on a comparison against 
the gold standard, test–retest variability and longitudinal 
performance [33].

In the present study, an inverted u-shaped relationship 
between baseline amyloid load and Aβ accumulation was 
observed only for GMCB and WCB RRs. This pattern 
has been reported previously [28, 37, 38], and is in line 
with the known sigmoidal dose response relationship 
of binding [29]. It should be noted that this was only an 
exploratory analysis, and further studies are needed to 
explore this relationship and possible between group 
differences in Aβ accumulation (e.g. by diagnostic or Aβ 
status) in a larger dataset.

Taken together, the present results suggest that GMCB 
and WCB are suitable RRs with respect to analysing [11C]
PiB scans. Overall, accuracy as compared with the gold 
standard was higher using GMCB, while precision (as 
assessed by measurement variability and dependency of 
the bias on underlying Aβ burden) was more favourable 
using WCB. Therefore, in cross-sectional studies one 
might prefer GMCB, as it more closely adheres to the 
“truth”, while in longitudinal studies, where stability of 
results outweighs a small bias, WCB would be preferred. 
Finally, it is important to note that the results of the 
present study relate to [11C]PiB and are not necessarily 
translatable to other tracers. As shown previously by 
Villemagne and colleagues for SUVr, the most stable RR 
may differ per tracer [39], and this finding was supported 
by studies using both [18F]florbetaben and [18F]
florbetapir [16, 40]. These between-tracer discrepancies 
may be the result of differences in non-specific binding in 
the reference region (as compared with the F-18 labelled 
tracers) or violations of the reference tissue approach. 
Hence, they emphasize the importance of a per tracer 
evaluation of suitable RRs.

Conclusion
Outcome measures of all reference regions correlated 
well with the gold standard and showed stable test–retest 
performance. However, the largest bias compared with 
the gold standard was observed for eroded subcortical 
white matter, followed by whole brain stem and white 
matter brainstem/pons. Furthermore, using the 60–90-
min acquisition window, significant longitudinal 
alterations in SUV were observed, for whole brain stem 
and white matter brainstem/pons reference regions. 
Therefore, grey matter cerebellum and whole cerebellum 
are considered to be the best RRs for measuring amyloid 
burden with [11C]PiB.
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