
What exactly happened to LSID? It was a technically sound approach it would seem and one
whose failure we would do well to learn more from.

Authors:

Stian Soiland-Reyes, eScience Lab, University of Manchester

http://orcid.org/0000-0001-9842-9718

Alan R Williams, eScience Lab, University of Manchester

http://orcid.org/0000-0003-3156-2105

doi:10.5281/zenodo.46804

Life Science Identi�ers (LSID) was an identi�cation scheme for identifying Life Science information, e.g.

describing genes, proteins, species. It was created by the bioinformatics community, and standardized in

2004 as an LSID speci�cation through the Object Management Group. As of 2016 it is no longer used,

except within the biodiversity community for identifying species.

LSID overview
The LSID speci�cation speci�es 4 aspects of LSIDs:

LSID Syntax specifying a URN scheme, e.g. URN:LSID:rcsb.org:PDB:1D4X:22

LSID Resolution Service, an API for retrieving data and metadata for a given LSID

LSID Resolution Discovery Service – an API for �nding LSID Resolution Services for a given LSID names-

pace

LSID Assigning Service – an API for minting new LSIDs

The APIs were speci�ed as Java interfaces, WSDL Web Services (SOAP and basic WSDL bindings for

HTTP GET and FTP retrieval). The speci�cation suggests a method for registering LSID Resolution Ser-

vices through SRV records in DNS.

The aims of LSIDs in 2004 were certainly promising:

ACADEMIC, LINKED DATA

WHAT EXACTLY HAPPENED TO LSID?
2016-02-26 | STIAN SOILAND-REYES | LEAVE A COMMENT

myGrid developer blog

LSIDs are expressed as a URN namespace and share the following functional capabilities of
URNs:

Global scope: A LSID is a name with global scope that does not imply a location. It has the
same meaning everywhere.
Global uniqueness: The same LSID will never be assigned to two different objects
Persistence: It is intended that the lifetime of an LSID be permanent. That is, the LSID will be
globally unique forever, and may be used as a reference to an object well beyond the lifetime of
the object it identi�es or of any naming authority involved in the assignment of its name.
Scalability: LSIDs can be assigned to any data element that might conceivably be available on
the network, for hundreds of years
Legacy Support: The LSID naming scheme must permit the support of existing legacy naming
systems, insofar as they meet the requirements speci�ed below.
Extensibility: Any scheme for LSIDs must permit future extensions to the scheme.
Independence: It is solely the responsibility of a name issuing authority to determine
conditions under which it will issue a name.
Resolution: A URN will not impede resolution (translation to a URL).

Source: Life Sciences Identi�ers Speci�cation, page 15

So what went wrong?
The short answer is that LSID did not receive enough uptake. But we think the real reason for that is

more complicated.

Lack of support from main actors
Lack of uptake might partially be because the importance of global identi�ers in Life Sciences, although

well known at the time (and obviously causing LSID to be created), did not receive enough focus from

upstream bodies like funders, institutions and even PIs, and remained a niche for the Semantic Web

branch of Life Science data management.

Many large data providers in life sciences did not adapt LSIDs, probably because it meant too many

changes to their architecture. Thus the exposure, knowledge and skills around LSIDs did not propagate

to the masses.

Data Management Policies (which would require repositories with identi�ers for deposits) were in their

infancy at the time, now they are pretty much mandated both by funders and institutions.

Technically there are of course many other potential reasons why LSID failed, which would have in�u-

enced the social-political attitudes.

New URI scheme

LSIDs use a its own URN scheme urn:lsid, which was not supported by browsers or operating systems.

Adding support for resolving a sub-scheme of urn: to browsers seemed dif�cult as it meant handling the

whole urn: scheme, some even used another URI scheme lsidres: as a workaround.

If LSIDs were linked to at all, then most common would be application-speci�c http:// links which em-

beds the LSID somewhere in its path or parameters, e.g. http://ipni.org

/urn:lsid:ipni.org:names:986604-1:1.1.2.1.1.2 which uses HTTP 303 See Other redirects to a HTML rep-

resentation on http://www.ipni.org/ipni/plantNameByVersion.do?id=986604-1&version=1.1.2.1.1.2&

output_format=lsid-metadata&show_history=true (and thus is a Cool URI)

urn:lsid was never registered with IANA as an of�cial namespace and so remained an non-standard

scheme.

Dependency on DNS records
While an LSID promised to be location independent (allowing multiple sources to describe the same ob-

ject), and had provisioning for multiple alternative LSID resolvers to be discovered via http://lsidauthor-

ity.org/ – this never manifested, and in practice LSID was bound to a DNS domain name.

For such an LSID to be resolvable without additional con�guration, this required technical changes to

the DNS records. At the time, most Life Science web services were not even using DNS CNAMEs to pro-

vide service names (e.g. repository.example.com), and Web Service URLs like

http://underthedesk18762.institute.example.edu:8081/~phdstudent5/service2.cgi

were unfortunately very common.

Asking such service providers to modify (and maintain!) their DNS SRV records was probably asking for

too much. (As a side-note, the required SRV service type was not registered with IANA either).

In practice the reference implementation LSID Resolver Service also needed to run on its own port,

which required it to work through �rewall changes.

The end result was that most LSIDs you could �nd during the 2000s were not resolvable through the

LSID Resolution mechanism unless you knew by hard-coding where the LSID Resolution Service was

hosted.

Dif�cult to resolve
While tools like BioJava included support for resolving LSIDs (downloading the data), practically LSIDs

were not used for resolution programmatically, at least not through the LSID Resolution Service.

This could be because these services were dif�cult to �nd (see DNS section above), or poorly maintained

(running on a separate port, often down for weeks until someone notice), or dif�cult to call (required

SOAP libraries, which in the early 2000s suffered from many incompatibility issues).

In practice LSIDs were resolved as in the ipni.org example, with simple HTTP redirects from simple HTTP

URIs, but from services which only supported “their own” LSIDs. Such HTTP redirections are simple to

support in pretty much any server frameworks and client libraries.

And so this begs the question – what makes an LSID different from a plain old HTTP URI?

So the LSID design suffered with a requirements for resolution that made it trickier (or at least gave the

impression of being trickier) to use and mint, but in the end only the identi�er bit of LSID was used.

Lack of metadata requirements
LSID had provisioning to ask for metadata in addition to the data, having two methods getData() and

getMetadata()

While keeping a clear distinction between data and metadata seems like a good idea, in practice it can be

quite hard as one researcher’s metadata is another researchers data. There’s also the question if this is

the metadata about the identi�er, (e.g. allocated in April 2004), the metadata about the record (e.g. last

updated in 2014), or the metadata about the thing (e.g. discovered in 1823).

Often the distinction between a thing and the description about the thing can be blurry, which is a well

known problem for the Semantic Web (httpRange-14). Additionally many data formats include their own

metadata mechanism, e.g. FASTA headers, which could be hard to keep in sync with the metadata in the

LSID record.

The reference implementation for the LSID Allocation Service did not require any particular metadata,

which meant that in practice you could get away with no metadata at all.

LSID metadata was provided in RDF, which at the time had poor application library support, forcing many

to hand-write metadata in the awkward RDF/XML format (since replaced by JSON-LD and Turtle).

The landscape of RDF vocabularies and ontologies for describing biological information was quite rough

in the 2000s, with many incompatible or confusing approaches, often require a full “buy in” to a particular

model. Practically the only commonly used vocabularies at the time were Dublin Core Terms and FOAF –

but the LSID speci�cation did not provide any minimal metadata requirements or guidance on how to

form the metadata.

Today the simplicity of DC Terms has evolved to schema.org , useful for all kinds of lightweight metadata,

detailed provenance can be described with PROV, and collective efforts like the OBO Foundry create do-

main-speci�c ontologies.

Rather than distinguishing between data and metadata, today we do content-negotiation between dif-

ferent formats/representations (e.g. HTML, JSON, XML, JSON-LD, RDF Turtle), or embed metadata

in-line of HTML using microformats like RDFa.

Non-distributed allocation
Allocating LSIDs centrally through an LSID Allocation Service was tricky for distributed architectures,

which were popular at the time.

For instance, Taverna Workbench version 1, running on desktop computers, used LSIDs to identify every

data item that was created during a work�ow run. In theory LSIDs were a good �t – as such data don’t

have a “proper home” yet – it’s still good to give them identi�ers early on and carry it along in the prove-

nance trace.

But in practice Taverna had to “call home” to mygrid.org.uk’s LSID Allocation Service to get new identi-

�ers. This meant that this LSID service became a single point of failure for any Taverna installation (un-

less overriden in local con�guration), and any downtime would stop every work�ow running. Yet these

LSIDs were allocated blindly and sequentially, we (deliberately for privacy reasons) did not record any

metadata beyond “producer=Taverna” and had no ability to resolve the data from the LSID server.

And so in a next version of Taverna we changed the identi�er code to generate random UUIDs locally,

and allocated LSIDs like:

urn:lsid:net.sf.taverna:DataThing:b1b5c94f-d54d-4039-901c-3ad022e5845f

Now what makes that LSID URI any different from an URI with the pre�x urn:uuid: or http://ns.tav-

erna.org.uk/ ?

HTTP took over – death of WSDL
LSIDs are born in the early WSDL days. WSDL and SOAP was a glori�ed XML-RPC message-passing pro-

tocol that just happened to run over HTTP – in theory you could even transport SOAP messages over

email!

WSDL users did not easily agree on common XML schemas, and so each web service would have its own

schema for its operations and results.

So an <id> XML �eld (or was that attribute?) that could be sent across multiple WSDL services seemed

useful – hence there was a need for LSID.

There was no need for the LSID to be directly downloadable – as WSDL services always ran through a

single HTTP endpoint and just modi�ed which XML message requests were POSTed.

But this meant some size challenges, the LSID Resolution protocol is primarily WSDL based, which

proved tricky with the getData() method returning base64-encoded bytes, which would make the

SOAP libraries eat memory – anything over 50 MB became “big data”!

In plain HTTP we have known for a long time now to transfer largish �les, while LSID had to resolve to a

separate byte-range-variant of getData() which, if at all supported, complicated download for clients.

In 2000, Roy Fielding published his PhD thesis Architectural Styles and the Design of Network-based

Software Architectures – summarised by its mantra “hypermedia as the engine of application state“, and ef-

fectively establishing the Representational State Transfer (REST) as the software architectural style of

the Web.

REST services are now ubiquitous on the web, and with JSON taking over as a much simpler data format

than XML, REST now power not just most bioinformatics web services but also today’s modern mobile

apps and web applications, like Facebook, Twitter and GMail.

So with REST the HTTP Resources and their URIs become �rst citizens again (rather than WSDLs lonely

endpoints). HTTP URIs are resolvable directly to both human (HTML) and computational representa-

tions (JSON, XML, RDF) thanks to content-negotiation.

So I can use http://purl.uniprot.org/uniprot/P99999 to refer to a protein, and even if you have no special

code to resolve this, you can just paste the link into your browser and read about Cytochrome c protein.

But if you retrieve that Uniprot URI as Linked Data, then you can programmatically access the data, or

retrieve just the FASTA sequence. Even as a uniprot.org assigned identi�er, the URI works well with

third-party APIs, e.g. with with Open PHACTS to retrieve the related pathways.

As a plain old URI, http://purl.uniprot.org/uniprot/P99999 can be added to web pages, publications and

other repositories without any further explanation.

Centralization
Since last decade we have moved back towards centralised architectures. While our architectures con-

sists of distributed REST services (e.g. ElasticSearch and Apache CouchDB) and vertically scalable plat-

forms (e.g. Apache Hadoop, Docker microservices), but now it is running on centralised cloud services

owned by a handful of companies like Amazon AWS, DigitalOcean and Microsoft Azure.

Large data integration efforts like Uniprot and ChEMBL have also effectively centralised ID allocations in

bioinformatics. Yet after the advent of next-gen sequencing and robotic synthesis and analysis we are

also producing more data than ever before.

Dif�cult to integrate
This is just speculation, but given the state of Web Services support in server frameworks at the time of

LSID it would be very hard for actors like EBI and Uniprot to modify their existing web-based services to

support the LSID protocol.

Thus they would need to set up a separate LSID Resolution Service, but that didn’t know anything about

their existing ID schemes which understandably they didn’t want to change over night.

Done again today (20/20 hindsight) as a plain HTTP redirection based service, LSID could easily be im-

plemented even in modern frameworks like node.js or Ruby on Rails without needing any special li-

braries.

Conclusion
LSIDs were doing all the “right things” according to its time: de�ning a location-independent URN

scheme, using DNS SRV entries, providing WSDL services, separating data and metadata, using RDF,

providing discovery mechanisms and alternative resolution services.

Yet it can be argued that LSIDs, in many ways just like SOAP, was a complicated way to replicate some-

thing that could already do the job – the Web and plain-old http:// URIs.

Perhaps we needed to go the long way around to �gure it all out.

IDENTIFIER LSID

