The Fortran 95 Library puXML

A short reference manual

Guy Munhoven
Université de Liege, Belgium

http://www.astro.ulg.ac.be/~munhoven

© Guy Munhoven, 14th April 2021

Abstract

UXML is a Fortran 95 library offering minimalistic support to read and
process information from EXtensible Markup Language (XML) files.

uXML is distributed for usage under the GNU AFFERO GENERAL
PusLic LICENSE v3.0 (AGPL-3.0).

1 Introduction

Processing simple text files with arbitrary content (i. e., text lines of differ-
ent and undetermined lengths) is already difficult in Fortran. Support for
CHARACTER strings is mixed: the intrinsic commands for processing CHARACTER
strings are quite diverse and powerful. The CHARACTER type itself offers, how-
ever, only very limited possibilities, at least if standard conforming code is a
pre-requisite.

This was one of the first shortcomings to overcome during the develop-
ment of yXML. There were, once upon a time, various modules available
for this purpose, implementing an ISO0_VARYING STRING module along the
lines of 150/1EC 1539-2:2000. The reference implementation was known to
suffer from memory leaks. Later other implementations were developed, but
these now tend to become difficult to find. Currently, such modules can still
be found at Rich Townsend’s MAD STAR site http://www.astro.wisc.edu/
~townsend/static.php?ref=iso-varying-string. Here, I decided to de-
velop a new module for representing and handling CHARACTER type content
of arbitrary undetermined length, tailored to the needs of this project.

http://www.astro.ulg.ac.be/~munhoven
http://www.astro.wisc.edu/~townsend/static.php?ref=iso-varying-string
http://www.astro.wisc.edu/~townsend/static.php?ref=iso-varying-string

The approach adopted for the second stage — reading and processing
XML files follows a mixture of the two commonly used methods for process-
ing XML content: SAX (Simple API for XML) and DOM (Document Object
Model). Based upon the SAX method, an event based description of a given
document is loaded into memory (by the XMLSTRUCT subroutine from the
MODMXM_STRUCTLOAD module-see below). That information is then used by
a second subroutine (XMLLOAD, from the same module) to load the file’s con-
tents and store it in an internal tree, where it can be parsed and processed.

1.1 Getting, Building and Installing XML
1.1.1 Prerequisites

A Fortran 95 conforming compiler is all that is required. The source code of
UXML is written in standard-conforming Fortran 95.

1.1.2 Getting the source code

The source code for XML can be made available to you in two ways:
1. in a compressed archive (typically a .tar.gz file);

2. by custom access to the SVN repository that hosts the source code and
allows you to manually download it to your computing platform where
all the necessary tools (SVN client, ...) for this access means have been
installed beforehand — you will have been informed about the required
credential information to use and steps to carry out in this case.

The source code is located under $MUXML/src, where $MUXML stands for the
root path of the library.

1.1.3 Possible customizations

uXML uses a few pre-defined logical unit numbers for I/O purposes. These
can, however, be easily changed to avoid conflicts with a main applica-
tion that would like to take advantage of the XML functionality of uXML.
The adopted values are set via Fortran PARAMETERsS or via pre-processor
#define’s:

e there are two logical unit numbers declared in modmxm_general.F90
(p_unit = 10 and and p_logunit = 11);

 thelogical unit numbers for STDERR and STDDBG are defined in modmxm. h
by #define MXM_STDERR O and #define MXM_STDDBG 100, resp.;

modmxm.h furthermore offers extensive debugging options for a fine-grained
troubleshooting. Please notice that neither STDERR nor STDDBG are explicitly
opened files. On most LINUX systems, e. g., the logical unit 0 is attached to
the screen and output directed to unit 100 would then go to a file with the
name fort.100 (or with ome other, compiler- or system-dependent name).

1.1.4 Building the library

The building process is based upon the classical make utility.

The default settings in the Makefile are for the GFORTRAN compiler, on
a LINUX platform. For other compilers or platforms, the settings may have to
be adapted. Once the required customisation has been done, it is sufficient
to issue

make

from a terminal window, while in $MUXML/src.

1.1.5 Installing the library and MOD files

The library archive libmodmxm.a can now be copied or moved to a central
location, such as /usr/local/1ib. The generated MOD files that are required
to USE the various modules included in XML can also be copied to a central
location, such as /usr/local/include/modmxm. Both can nevertheless also
be left in place.

2 Library Overview

The pXML library is composed of a series of Fortran 95 modules. In the
following sections, we present short summaries of the roles that the different
module fulfil both for internal purposes, but also in the API (the Application
Programming Interface), i. e., the way the sub-programs provided by puXML
must be used to carry out the various tasks required to read in XML files,
and how to access and extract specific content provided.

2.1 MODMXM_STRUCTLOAD

The MODMXM_STRUCTLOAD module is the main turntable for reading in content
from an XML file. It hosts two FUNCTION sub-programs:

o XMLSTRUCT analyses the file’s structure and collects information about
its elements’ delimitations in a STKXE linked list (see MODMXM_STKXE
module description below);

« XMLLOAD uses the information from that STKXE structure to read in the
file’s contents and distribute them into a STKMX tree (see MODMXM_STKMX
module description below).

The STKMX tree contents can then be parsed, interpreted and processed by
the main application.

For the analysis of the XML file’s structure, XMLSTRUCT follows a last-
in—first-out (LIFO) approach of tasks, with support from the MODMXM_TASKS
module.

2.2 MODMXM_TASKS

MODMXM_TASKS hosts the task management part of the XMLSTRUCT function
sub-program from MODMXM_STRUCTLOAD and is also only used by that sub-
prgram. It defines identifiers and meaningful names for the different tasks
that XMLSTRUCT has to perform, such as processing comments, strings, tags
and other structural elements of XML files. It furthermore provides the task
stack management support (pushing and pulling tasks, ...).

2.3 MODMXM_STKRC

MODMXM_STKRC — STKRC stands for “STacK of Record Chunks” — is a support
module to manage and process text content read from files with irregular and
no determined line (records) lengths. Content may extend over several lines
(file records); EOR characters are detected and tracked. Each chunk has a
maximum length of 10 characters by default. This length is nevertheless
parametrized and can be changed, but a lower limit of 10 is enforced, as the
housekeeping overhead becomes too large with shorter lengths than this.
The module first of all provides TYPE definitions for the required struc-
tures, named stack_recchunks. It furthermore includes subroutines to

« create, extend, compact and deallocate part or all of such structures;

o determine their effective lengths and the number of terminated records
it contains;

» compare the contents of two such structures against each other or to
compare the content of such a structure against a normal character
string;

 split up such structures into shorter sub-structures of the same type or
into arrays of normal strings.

2.4 MODMXM_GENERAL

MODMXM_GENERAL is closely related to the previous one (MODMXM_STKRC). It
provides first of all the central PARAMETER that defines the maximum chunk
length used in the character chunk structures of MODMXM_STKRC. It also pro-
vides the IOSTAT return values for the Fortran READ command. As these are
compiler specific, they get determined by the make process, using the pro-
vided CONFIGURE__MODMXM utility (source code in configure_modmxm.F90).
Finally, MODMXM_GENERAL includes a subroutine to read one chunk for a
stack_recchunks, with additional house-keeping and monitoring.

2.5 MODMXM_STKXE

MODMXM_STKXE and MODMXM_STKMX represent the central parts of uXML. STKXE
stands for “STacK of XML Events”. FEvents represent any particular feature
that can be encountered while parsing an XML file, such as detecting tag
opening (<) or closing (>) characters, comments starting (<!--) and closing
(-=>) sequences, single or double quotes opening or closing string content,
attribute name starting and ending positions, etc. MODMXM_STKXE includes a
collection of parametric identifiers for the events that are processed. A func-
tion sub-program may be used to retrieve meaningful names for the identi-
fiers.

Information read from a file is first submitted to initial consistency checks
and then collected in a double-linked list of INTEGER(:) arrays (a list of
TYPE(stack_xmlevents), or STKXE list for short). The information recorded
for each event documents

« its position in the file, in terms of the record/line number, the order
of the chunk (first, second, etc.) in the record and the position of the
triggering character in the chunk;

e its type;

« additional characteristics where useful, such as the length for a name,
the number of attributes for an element, etc.;

» possibly the number of consecutive occurrences of the same event.

MODMXM_STKXE includes two types of SUBROUTINE sub-programs. The first
ones are used to manage STKXE linked lists:

» create and extend them;

o dump their contents;

« gather statistical informations from the registered.

The second ones are used to walk through a STKXE linked list to seek for
events (an individual one, the next one of several from a list, etc.)

2.6 MODMXM_STKMX

While MODMXM_STKXE holds the information about the structure and layout
of an XML files, MODMXM_STKMX provides a means to represents the contents
of the file in an organised tree. STKMX stands for “STacK of MiniXML”
elements. The content of an XML file is stored in a multiply-linked list (a list
of TYPE(stack_minixml), or STKMX list for short) of complex structures, that
holds as diverse information as the type of content (root or other elements
with names and attributes, including attribute names and contents; Parsed
Character DATA, PCDATA, or unparsed Character DATA, CDATA). STKMX
lists are multiply linked as each of their nodes may have several children or
siblings (siblings have a common parent node). Each node is linked to its
parent node, to the first and the the last of its child nodes as well as to the
preceding and the following of its sibling nodes. This extensive linking allows
for a rather straightforward scanning of the tree.
MODMXM_STKMX includes subroutines to

o create, extend and deallocate STKMX tree lists;
 print out information

o find and extract information from the tree (e. g., locate element nodes
by their name, retrieve attribute indices by their name, attribute con-
tents, data content, etc.)

3 Module reference

In this section, we describe the relevant subroutine and function interfaces
that are required to use uXML. We mostly focus on functionality that is
required to use the library. Functionality that is of internal usage only will
only be shortly summarised.

3.1 MODULE MODMXM_STRUCTLOAD

The MODMXM_STRUCTLOAD module provides the main commands to read in the
contents of an XML file into an organised tree including meta-information on
the various types of content. The data transfer from the file to the memory is

carried out in a two-step process. Prerequisites are the usage of the following
modules :

o MODMXM_STKXE
o MODMXM_STKMX
o MODMXM_STRUCTLOAD

The call sequence is then

stkxe_root => XMLSTRUCT(str_xmlfilename [, ...])
stkxm_root => XMLLOAD(str_xmlfilename, stkxe root [, ...])

The resulting stkxm_root then holds the contents of the XML file and can
be parsed to extract the required information.

3.1.1 FUNCTION XMLSTRUCT

The XMLSTRUCT fution uses the following modules:
o MODMXM_GENERAL
o MODMXM_TASKS
o MODMXM_STKXE

The fundamental interface of XMLSTRUCT is as follows:

FUNCTION XMLSTRUCT(str_xmlfilename, &
n_maxlen_eltname, &
n_maxlen attname, n_maxlen attcont) &

RESULT (stkxe_events)

TYPE(stack_xmlevents), POINTER :: stkxe_events

CHARACTER (LEN=x) , INTENT(IN) :: str_xmlfilename
INTEGER, INTENT(OUT) :: n_maxlen eltname
INTEGER, INTENT(OUT) :: n_maxlen attname
INTEGER, INTENT(OUT) :: n_maxlen_attcont

XMLSTRUCT takes as arguments :
o str_xmlfilename, which holds the path to the XML file to process;

e n_maxlen eltname, an optional argument that can be used to retrieve
the maximum length of all the element names detected in the file;

7

e n_maxlen_ attname, an optional argument that can be used to retrieve
the maximum length of all the attribute names detected in any of the
elements the file;

e n_maxlen_ attcont, an optional argument that can be used to retrieve

the maximum length of all the attribute contents found anywhere in
the file.

The three optional arguments can be used to make sure that the subsequent
transfer of content to size-limited character string variables can be made
without loss.

XMLSTRUCT returns a POINTER to a TYPE(stack_xmlevents) list, to be
used in a subsequent XMLLOAD call.
3.1.2 FUNCTION XMLLOAD
XMLLOAD uses the following modules:

o MODMXM GENERAL

o MODMXM_ STKXE

o MODMXM_STKRC

o MODMXM STKMX

The fundamental interface of XMLLOAD is as follows:

FUNCTION XMLLOAD(str_xmlfilename, stkxe root, n_maxdepth) &
RESULT (stkmx_root)

TYPE(stack_minixml), POINTER :: stkmx_root
CHARACTER (LEN=x) , INTENT(IN) :: str_xmlfilename
TYPE(stack_xmlevents), POINTER :: stkxe_root
INTEGER, OPTIONAL, INTENT(OUT) :: n_maxdepth

XMLLOAD takes as arguments
e str_xmlfilename which holds the path to the XML file to process;

e stkxe_root, the POINTER to the TYPE(stack_xmlevents) list dressed
before by XMLSTRUCT on the same XML file;

e n_maxdepth, an optional argument that can be used to retrieve the
largest number of simultaneously opened elements plus one, to allow
for possible data it might contain.

XMLLOAD returns a POINTER to a TYPE(stack minixml) tree, which holds all
of the contents of the XML file in an ordered tree. The optional argument can
be used allow for a targeted dimensioning of work space during the processing
of the tree.

3.2 MODULE MODMXM_STKRC
3.2.1 TYPE definitions

The MODMXM_STKRC module provides the fundamental TYPE definition for the
linked list with the chunked representation of character strings of undeter-
mined length.

TYPE stack_recchunks

INTEGER :: n_chars
CHARACTER(LEN=p_maxlen_chunk) :: str_chunk
LOGICAL :: 1 eor

TYPE(stack_recchunks), POINTER :: prev
TYPE(stack_recchunks), POINTER :: next
END TYPE

TYPE stkrc_ptr
TYPE(stack_recchunks), POINTER :: ptr
END TYPE

The additional TYPE stkrc_ptr is a container. It encapsulates a POINTER
to TYPE(stack_recchunks), making possible the usage of arrays of pointers
to TYPE(stack_recchunks) structures.

3.2.2 SUBROUTINE STKRC_createRoot

STKRC_createRoot allocates and initializes a new STKRC list.

SUBROUTINE STKRC_createRoot(stkrc_any, &
nlay_stkrc, nlen_stkrc)

TYPE(stack_recchunks), POINTER :: stkrc_any
INTEGER, OPTIONAL, INTENT(OUT) :: nlay_stkrc
INTEGER, OPTIONAL, INTENT(OUT) :: nlen_stkrc

The new STKRC list, accessible through the returned POINTER stkrc_any
consists of one chunk, left empty, with %n_chars set to 0. Both Y%prev
and %next pointers are initialised to NULL. The optional nlay_stkrc and

9

nlen_stkrc can be used for monitoring purposes. nlay_stkrc counts the
number of chunks in the list, nlen_stkrc the total number of characters. If
present, they are initialised to 1 and 0, resp.

3.2.3 SUBROUTINE STKRC_createNext

STKRC_createNext appends one chunk to a given STKRC list.

SUBROUTINE STKRC_createNext (stkrc_any, &
nlay_stkrc, nlen_stkrc)

TYPE(stack_recchunks), POINTER :: stkrc_any
INTEGER, OPTIONAL, INTENT(INOUT) :: nlay_stkrc
INTEGER, OPTIONAL, INTENT (INOUT) :: nlen stkrc

The given stkrc_any must point to the tail chunk of an existing list (i.e.,
stkrc_any must be NULL). If stkrc_any itself is not associated, or if it is
already linked to a chunk, STKRC createNext aborts. If present, the optional
nlay_stkrc and nlen_stkrc are incremented by 1 and 0, resp.

3.2.4 SUBROUTINE STKRC_deallocateStkrc

The STKRC_deallocateStkrc deletes the tail of an STKRC list starting at and
including a given chunk

SUBROUTINE STKRC_deallocateStkrc(stkrc_any, &
nlay discarded, nlen_discarded)

TYPE(stack_recchunks), POINTER :: stkrc_any
INTEGER, OPTIONAL, INTENT(OUT) :: nlay_discarded
INTEGER, OPTIONAL, INTENT(OUT) :: nlen discarded

If stkrc_any is not associated, STKRC_deallocateStkrc returns silently. All
of the list elements following and including the one pointed to by stkrc_any
are deallocated; the pointer stkrc_any is nullified upon return. If stkrc_any
does not point to the root (the first component) of the list, the preceding
element also gets its %next pointer nullified. The optional nlay_discarded
and nlen_discarded resp. report the number of chunks removed and the
total number of characters they contained.

10

3.2.5 SUBROUTINE STKRC_compactStkrc

STKRC_compactStkrc compacts and shortens an existing STKRC list.

SUBROUTINE STKRC_compactStkrc(stkrc_any)

TYPE(stack_recchunks), POINTER :: stkrc_any

STKRC_compactStkrc scans the list starting from stkrc_any. Partially filled
chunks that do not have an EOR marker set are filled up with content from
the following chunks. Any resulting empty chunks are removed.

3.2.6 SUBROUTINE STKRC_copyStkrcToStr

STKRC_copyStkrcToStr concatenates the chunks of an STKRC list and copies
the result into a CHARACTER string.

SUBROUTINE STKRC_copyStkrcToStr(stkrc_source, &
str_dest, nlen_returned, &
1 pruneateor, 1_spcédeor)

TYPE(stack_recchunks), POINTER :: stkrc_source
CHARACTER (LEN=x%) , INTENT(OUT) :: str_dest
INTEGER, OPTIONAL, INTENT(OUT) :: nlen_returned
LOGICAL, OPTIONAL, INTENT(IN) :: 1 _pruneateor
LOGICAL, OPTIONAL, INTENT(IN) :: 1_spcdeor

By default

o the complete content of stkrc_source is transcribed into str_dest,
but transcripion is limited to LEN(str_dest) characters;

o EOR markers are ignored;

» str_dest is filled with space characters (SPC) to the right if necessary.
The default behaviour can be changed by usage of the optional arguments:

e by setting 1_pruneateor = .TRUE., the transcription ends at the end
of the first STKRC chunk that presents EOR

e by setting 1_spcd4eor = .TRUE., EOR markers are replaced by SPC

o if present, nlen_returned is set to the actual number of characters
transcribed, or to —1, in case str_dest has not enough space to hold
all the characters to be transcribed.

11

3.2.7 SUBROUTINE STKRC_writeStkrc

Similarly to STKRC_copyStkrcToStr, STKRC_writeStkrc concatenates the
chunks of a STKRC list, but then prints them out.

SUBROUTINE STKRC writeStkrc(stkrc source, i unit, &
1 pruneateor, 1_spc4eor, 1_advance, &
nlen_returned)

TYPE(stack_recchunks), POINTER :: stkrc_source
INTEGER, OPTIONAL, INTENT(IN) :: i unit
LOGICAL, OPTIONAL, INTENT(IN) :: 1_pruneateor
LOGICAL, OPTIONAL, INTENT(IN) :: 1_spcéeor
LOGICAL, OPTIONAL, INTENT(IN) :: 1 advance
INTEGER, OPTIONAL, INTENT(OUT) :: nlen returned
By default,

o the printing destination is the standard output unit (*, STDOUT);
o each EOR marker triggers a linefeed at the end of the marked chunk;
o a linefeed is printed upon completion.

The default behaviour can be changed by usage of the optional arguments:

o if present, i_unit is used as the logical unit for the print destination
instead of *;

e by setting 1_pruneateor = .TRUE., printing ends with the first STKRC
chunk that has an EOR marker;

e by setting 1_spc4eor = .TRUE., EOR markers do not trigger new lines,
but insertion of a SPC;

o by setting 1_advance = .FALSE., no linefeed is printed upon comple-
tion;

o if present, nlen_returned is set to the actual number of characters
printed (including SPCs that possibly replace EORs.

12

3.2.8 SUBROUTINE STKRC_dumpStkrc

The subroutine STKRC_dumpStkrc can be used to dump the complete infor-
mation held by a STKRC list, node by node.

SUBROUTINE STKRC_dumpStkrc(stkrc_source, i_unit)

TYPE(stack_recchunks), POINTER :: stkrc_source
INTEGER, OPTIONAL, INTENT(IN) :: i unit

By default, the dump is sent to the standard output unit (*, STDOUT). The
default destination can be overridden by using the optional i_unit to define
a logical unit number as the destination.

For each chunk, its order in the list is given, the number of characters it
holds, its actual content (delimited by >...<, the presence of an EOR marker,
and the association status of the linking pointers (%prev and %next).

3.2.9 SUBROUTINE STKRC_lentrim

Similarly to the intrinsic function LEN_TRIM, STKRC lentrim returns the
number of characters held in the concatenated chunks of an STKRC list, after
removal of trailing SPCs in the concatenated string.

SUBROUTINE STKRC lentrim(stkrc_source, &
nlentrim_stkrc, nlen_ stkrc)

TYPE(stack_recchunks), POINTER :: stkrc_source
INTEGER, INTENT(OUT) :: nlentrim_ stkrc
INTEGER, OPTIONAL, INTENT(OUT) :: nlen_stkrc

Upon return, nlentrim_stkrc holds the total number of characters in the
STKRC list, where all the trailing SPCs in each chunk has been neglected. If
present, the optional nlen_ stkrc includes the total number of characters
held by the STKRC list, obtained by summing the %n_chars information of
all the chunks. Any trailing space is included.

3.2.10 FUNCTION STKRC_STKRC_EQ_STKRC

The STKRC_STKRC_EQ_STKRC function compares the contents of two STKRC
lists.

LOGICAL FUNCTION STKRC_STKRC_EQ_STKRC(stkrc_1, stkrc_2)

TYPE(stack_recchunks), POINTER :: stkrc_1, stkrc_2

13

The distribution of the content is not considered significant: two lists stkrc_1
and stkrc_2 are assumed to be equal if the sequence of characters that they
hold is exactly the same; EOR markers are disregarded. STKRC_STKRC_EQ_STKRC
returns . TRUE. if the contents of the two lists are equal in this sense, .FALSE.
otherwise.

3.2.11 FUNCTION STKRC_STKRC_EQ_STR

The STKRC_STKRC_EQ_STKRC function compares the content of an STKRC list
to that of a CHARACTER string.

LOGICAL FUNCTION STKRC_STKRC_EQ_STR(stkrc_1, str_2)

TYPE(stack_recchunks), POINTER 1 stkrc_1
CHARACTER (LEN=%) , INTENT(IN) :: str_2

The lists stkrc_1 and the CHARACTER string str_2 are assumed to be equal
if the sequence of characters stored in stkrc_1 is exactly the same as that in
str_2; EOR markers are disregarded. STKRC_STKRC_EQ_STR returns .TRUE.
if the contents of the two lists are equal in this sense, .FALSE. otherwise.

3.2.12 FUNCTION STKRC_createCopyStkrc

STKRC_createCopyStkrc prepares a copy of a given STKRC list.

FUNCTION STKRC_createCopyStkrc(stkrc_in) &
RESULT (stkrc_out)

TYPE(stack_recchunks), POINTER :: stkrc_in
TYPE(stack_recchunks), POINTER :: stkrc_out

If stkrc_in is not associated, STKRC_createCopyStkrc returns the NULL
pointer as a result; else it returns the pointer to a one-to-one copy of stkrc_in.

3.2.13 FUNCTION STKRC_createSplitCopyStkrc

STKRC_createSplitCopyStkrc also produces a copy of given STKRC list.
However, unlike STKRC\ _createCopyStkrc, a new list is started after each
chunk that is marked with an EOR and the resulting set of sub-lists is re-
turned as a 1D-array of TYPE(stkrc_ptr) pointer containers.

FUNCTION STKRC_createSplitCopyStkrc(stkrc_in) &
RESULT (stkrcp_out)

14

TYPE (stack_recchunks), POINTER :: stkrc_in
TYPE(stkrc_ptr), DIMENSION(:), POINTER :: stkrcp_out

Each component of the resulting array thus points to the contents of a single
record.

3.2.14 SUBROUTINE STKRC_createSplitCopyStr

Similarly to STKRC_createSplitCopyStkrc, STKRC_createSplitCopyStr pro-
duces a copy of an STKRC list split up into single records delimited by the
EOR markers. The set of records is, however, not returned as an array of
TYPE(stkrc_ptr) pointer containers, but as an array of CHARACTER strings.

SUBROUTINE STKRC_createSplitCopyStr(stkrc_in, &
strarr _out, nlen returned)

TYPE (stack_recchunks), POINTER :: stkrc_in
CHARACTER(LEN=x), DIMENSION(:), POINTER :: strarr_out
INTEGER, OPTIONAL, INTENT (OUT) :: nlen_returned

The lengths of the CHARACTER strings is defined by the calling program unit;
the array of CHARACTER strings is allocated here. STKRC_ncountSections
(see below) is used to determine the number of records (sections) included
in stkrc_in.

3.2.15 FUNCTION STKRC_ncountSections

STKRC_ncountSections returns the number of sections (records) in an STKRC
list, delimited by the EOR markers.

FUNCTION STKRC ncountSections(stkrc_in) &
RESULT(n_sections)

TYPE(stack_recchunks), POINTER :: stkrc_in
INTEGER :: n_sections

15

3.3 MODULE MODMXM_STKMX

The MODMXM_STKMX provides a derived TYPE (a type of a multiply linked tree
structure) to hold the complete content of an XML file and additional meta-
data to allow for an efficient scanning and processing. The components of
that structure are presented in section [3.3.1] The subroutines presented in
sections to deal with the setting up, the construction and manage-
ment of the tree itself (mainly for internal usage in XMLLOAD, e. g.) and only
briefly addressed. The subroutines and function presented in sections
toB.3.14] allow to locate and extract information from an STKMX tree and are
thus the important interface sub-programs to get access to the information
read in from an XML file.

3.3.1 TYPE definitions

The TYPE stack minixml definition is cornerstone to the XML processing
that can be carried out with yXML. It defines a multi-purpose structure to
organise the information included in an XML file in different types (structural
information and data content)

TYPE stack_minixml

INTEGER i 1_type
! Ji_type
! = -1: undetermined

! = 0: root element, name and attributes

! = 1: element name with attridbutes

! = 2: PCDATA or CDATA of an element

! (implies that

! /m_children = 0,

! Jstr_eltname => NULL,

! Jstr_attname => NULL,

! Jmze_child_a => NULL,

! smze_child_z => NULL)

! = 3: PCDATA

! = 4: CDATA

INTEGER :: n_children
! Jn_children: only for elements

INTEGER :: n_order
! Jn_order: order of the information

16

= 0: root element name and its attridbutes

= 1: sub-elements of the root element or
data in the root element

= 2: sub-elements of order-1-elements

R RS

INTEGER, DIMENSION(:), POINTER :: i_chain
! Zi_chain: integer array indicating the
! information sequence

! RANK(i_chain) = Jn_order

TYPE(stack_recchunks), POINTER :: stkrc_eltname
INTEGER :: nlen_eltname
! Jstkrc_eltname: element name
! (only for element nodes)
! /nlen_eltname: element name length
! (only for element nodes)

TYPE(stkrc_ptr), &

DIMENSION(:), ALLOCATABLE :: stkrc_attnames
INTEGER, &
DIMENSION(:), ALLOCATABLE :: nlen_ attnames

! Jstkrc_attnames: attribute names

! (only for element nodes, only

! allocated if any attributes present)
! Jnlen_attnames: attribute name lengths
! (only for element nodes, only

! allocated if any attributes present)

TYPE(stkrc_ptr), &

DIMENSION(:), ALLOCATABLE :: stkrc_attcntts
INTEGER, &
DIMENSION(:), ALLOCATABLE :: nlen_attcntts

! Jstkrc_attnames: attribute contents

! (only for element nodes, only

! allocated if any attributes present)

! /nlen_attnames: attribute content lengths
! (only for element nodes, only

! allocated if any attridbutes present)

TYPE(stack_recchunks), POINTER :: stkrc_data
INTEGER :: nlen_data

17

I /stkrc_data: data content

! (only for data nodes)

! /nlen_data: data content length
! (only for data nodes)

! pointer to parent element
TYPE(stack_minixml), POINTER :: parelt

! pointer to previous sibling

TYPE(stack_minixml), POINTER :: prevsib

! pointer to next sibling
TYPE(stack_minixml), POINTER :: nextsib

! pointer to first child
TYPE(stack_minixml), POINTER :: frstchild

! pointer to last child
TYPE(stack minixml), POINTER :: lastchild

END TYPE

! Encapsulate POINTER to TYPE(stack_minizml)
! in order to use arrays of pointers to
! TYPE(stack_minizml)
TYPE stkmx_ptr
TYPE(stack_minixml), POINTER :: ptr
END TYPE

TYPE stkmx_ptrlist
TYPE(stack_minixml), POINTER :: stkmx
TYPE(stkmx_ptrlist), POINTER :: next
END TYPE

The complete content of an XML file is read in and distributed in a tree of
multiply linked TYPE stack _minixml nodes: the root of the tree is the root
element of the XML file. The content of each element is scanned and stored in
subsequent child nodes of that element: one node for each sub-element, for
each section of PCDATA (Parsable Character DATA) or ¢DATA (Character
DATA), in the order in which they are found in the file. All theses nodes
that have a common parent node are called siblings. Notice that only element
nodes can have child nodes. Each child node is linked to its parent node (via
hparelt) and to its preceding and its following sibling, if any (via %prevsib

18

and %nextsib, resp.). Each parent node is also linked to its first and its last
child node (via %frstchild and %nextchild. This crosslinking allows for a
fast and efficient navigation. Each node may also hold additional information
(e. g., number of attributes, names and their respective contents for element
nodes, etc.).

3.3.2 SUBROUTINE STKMX_CREATE_ROOT

STKMX_CREATE_ROOT allocates a root node of an STKMX tree and initialised
the numerous components with default values.

SUBROUTINE STKMX_ CREATE ROOT (stkmx_root)

TYPE(stack_minixml), POINTER :: stkmx root

Please notice that STKMX CREATE ROOT only initiates a new STKMX tree, but
does not initialise it as a root element node of an XML tree. The performed
initialisation only puts it into a controlled undefined state.

3.3.3 SUBROUTINE STKMX_ADD_CHILD

The STKMX_ADD_CHILD subroutine adds a new child node to an existing ele-
ment node of an STKMX tree.

SUBROUTINE STKMX_ADD_CHILD(stkmx_parelt, 1_datachild)

TYPE(stack_minixml), POINTER :: stkmx_parelt
LOGICAL, OPTIONAL, INTENT(IN) :: 1 datachild

The new child node is added as a child node to stkmx_parelt. Upon cre-
ation it can be accessed from stkmx_parelt via its %lastchild pointer. By
default, the child node is pre-configured as an element node unless the op-
tional 1_datachild is present and set to .TRUE., in which case a data node
is pre-configured.

3.3.4 SUBROUTINE STKMX_DEALLOCATE

The STKMX _DEALLOCATE subroutine removes the subtree attached to a given
node of an STKMX tree, including that itself; if the node is a data node, only
that node itself is removed.

SUBROUTINE STKMX DEALLOCATE(stkmx_any)

TYPE(stack_minixml), POINTER :: stkmx_any

19

All the relevant pointers to and from the node are removed or by-passed. Fi-
nally, all the content of the nodes of the sub-tree is removed and the memory
deallocated.

3.3.5 SUBROUTINE STKMX_INFO_NODE

STKMX INFO_NODE prints out summary information about a given node of an
STKMX tree.

SUBROUTINE STKMX INFO _NODE(stkmx node, i_unit)

TYPE(stack_minixml), POINTER :: stkmx_node
INTEGER, OPTIONAL, INTENT(IN) :: i_unit

By default, the information is printed to the standard output (*, STDOUT).
If present, the optional i_unit is used to redirect the output to the logical
unit number that it provides.

3.3.6 FUNCTION STKMX_getRootElement

The STKMX_getRootElement can be used to find the root element of the tree
that a given node belongs to.

FUNCTION STKMX_getRootElement (stkmx_any) &
RESULT (stkmx_rootelt)

TYPE(stack_minixml), POINTER :: stkmx_any
TYPE(stack_minixml), POINTER :: stkmx_rootelt

STKMX_getRootElement takes a POINTER to a TYPE(stack_minixml) node
as an argument and returns

o a NULL pointer if stkmx_any is not associated;

« a pointer to the root element node of stkmx_any.

3.3.7 FUNCTION STKMX_getElementNodeByName

The STKMX _getElementNodeByName provides a means to locate child element
of a given node by their tag names.

FUNCTION STKMX_getElementNodeByName(stkmx_any, str_eltname) &
RESULT (stkmx_nodearr)

TYPE (stkmx_ptr), DIMENSION(:), POINTER :: stkmx_nodearr

20

TYPE(stack minixml), POINTER 1 stkmx_any
CHARACTER (LEN=x) , INTENT (IN) :: str_eltname

As arguments, STKMX_getElementNodeByName takes a TYPE(stack_minixml)
pointer to the parent node to analyse and the name of the element(s) to search
for. As an element may have more than one child element with a given name,
the result is returned as an pointer to an 1D-array of TYPE(stkmx_ptr)
pointer containers. STKMX_getElementNodeByName returns

e a NULL pointer if stkmx_any does not have any child nodes at all;

e a NULL pointer if stkmx_any does not have any child node with that
name;

e a lD-array stkmx_nodearr, with as many components as there are child
elements named str_name for stkmx_any, and whose pointer compo-
nent point to the different children found.

3.3.8 FUNCTION STKMX_getUniqueChildEltByName

STKMX _getUniqueChildEltByName also allows to locate a child element of a
node by its name. However, unlike Similarly to STKMX_getElementNodeByName,
STKMX_getUniqueChildE1tByName looks for unique childs only.

FUNCTION STKMX_getUniqueChildEltByName (stkmx_any, &
str_eltname) &

RESULT (stkmx_resnode)

TYPE(stack_minixml), POINTER :: stkmx_any
CHARACTER (LEN=x) , INTENT(IN) :: str_eltname
TYPE(stack_minixml), POINTER :: stkmx_resnode

As arguments, STKMX _getUniqueChildE1tByName takes a pointer to the par-
ent node (TYPE(stack_minixml)) to analyse and the name of the child ele-
ment to search for. It returns a TYPE(stack_minixml) pointer to the child
node of stkmx_any that is named str_eltname, if there is only one such
child. Otherwise, it

o returns a NULL pointer if stkmx_any does not have any children;

e returns a NULL pointer if stkmx_any does not have any child named
str_eltname;

o triggers an error and aborts if there is more than one child element
named str_eltname.

21

3.3.9 FUNCTION STKMX_getChildElementNodes

STKMX_getChildElementNodes can be used to retrieve pointers to all the
child nodes of a given STKMX node that are element nodes.

FUNCTION STKMX_ getChildElementNodes(stkmx_any) &
RESULT (stkmx_nodearr)

TYPE(stack_minixml), POINTER :: stkmx_any
TYPE(stkmx_ptr), DIMENSION(:), POINTER :: stkmx_nodearr

STKMX_getChildElementNodes only takes one argument, stkmx_any, a pointer
to the parent node (TYPE(stack_minixml)) to scan. It then returns

« a NULL pointer if stkmx_any does not have any children;

e a NULL pointer if stkmx_any does not have any child nodes that are
element nodes;

e a 1D-array of TYPE(stkmx_ptr) containers with pointers to the child
nodes of stkmx_any that are element nodes, if there are any of them.

3.3.10 FUNCTION STKMX_getPCDatacntt

STKMX_getPCDatacntt retrieves pointers to the data contents of all PCDATA
child nodes of a given STKMX node.

FUNCTION STKMX_getPCDatacntt(stkmx_any) &
RESULT (stkrc_datacntt)

TYPE(stack_minixml), POINTER :: stkmx_any
TYPE(stkrc_ptr), DIMENSION(:), POINTER :: stkrc_datacntt

STKMX_getPCDatacntt only takes one argument: stkmx_any, a pointer to
the parent node (TYPE(stack_minixml)) to scan. It then returns

e a NULL pointer if stkmx_any does not have any children;
e a NULL pointer if stkmx_any does not have any PCDATA child nodes;

e a 1D-array of TYPE(stkrc_ptr) containers with pointers to the data
content of all the PCDATA child nodes of stkmx_any, by order of ap-
pearance, if there are any of them.

Notice that, unlike STKMX getChildElementNodes, STKMX getPCDatacntt
does not provide pointers to the PCDATA child nodes themselves, but directly
to their data content, which they store in a STKRC list.

22

3.3.11 FUNCTION STKMX_getCDatacntt

Similarly to STKMX_getPCDatacntt, STKMX getCDatacntt retrieves data con-
tents of all CDATA child nodes of a given STKMX node.

FUNCTION STKMX_getCDatacntt(stkmx_any) &
RESULT (stkrc_datacntt)

TYPE(stack_minixml), POINTER :: stkmx_any
TYPE(stkrc_ptr), DIMENSION(:), POINTER :: stkrc_datacntt

The results of STKMX_getCDatacntt are completely analogous to those of
STKMX_getPCDatacntt, except that they are for CDATA instead of PCDATA.
3.3.12 FUNCTION STKMX_getElementName

The STKMX_getElementName function retrieves the name of an element node
that is part of an STKMX tree.

FUNCTION STKMX_getElementName (stkmx_any) &
RESULT (stkrc_eltname)

TYPE(stack_minixml), POINTER :: stkmx_any
TYPE(stack_recchunks), POINTER :: stkrc_eltname

As an argument, STKMX_getElementName takes stkmx_any, a pointer to the
node for which the name information is requested. It

o triggers an error and aborts if stkmx_any is not associated;

e returns the name of the XML element that the node stkmx_any relates
to, if any;

« returns a NULL pointer if stkmx_any does not point to an element node
(i. e., if it points to a PCDATA or a CDATA node, or if it is onlly pre-
initialised).

3.3.13 FUNCTION STKMX_getAttIdxByName

STKMX_getAttIdxByName returns the index of an attribute stored in an ele-
ment node of an STKMX tree.

INTEGER FUNCTION STKMX_ getAttIdxByName(stkmx node, &
str_attname)

23

TYPE(stack_minixml), POINTER :: stkmx_node
CHARACTER (LEN=%) , INTENT(IN) :: str_attname

As arguments, STKMX _getAttIdxByName takes a TYPE(stack _minixml) pointer
to the element node to analyse and the name of the attribute to search for.
It then returns

« —1if stkmx_node is not an element node (only element nodes can have
attributes);

o 0 if stkmx node is an element node, but does not have any attribute
named str_attname (or no attributes at all);

o the index of the attribute named str_attname in the attribute arrays
linked to the node if it exists.
3.3.14 FUNCTION STKMX_getAttcnttByIdx

Once the index of an attribute is known, STKMX_getAttcnttByIdx can be
used to retrieve its contents.

FUNCTION STKMX_ getAttcnttByldx(stkmx node, i_att) &
RESULT (stkrc_attcntt)

TYPE(stack_recchunks), POINTER 11 stkrc_attcntt
TYPE(stack_minixml), POINTER :: stkmx_node
INTEGER, INTENT(IN) :: i_att

As arguments, STKMX _getAttcnttByldx takes a TYPE(stack_minixml) pointer
to the element node whose attributes are requested, and the index of the at-
tribute whose content is required. It returns

e a NULL pointer if stkmx_node does not point to an element node;

e a NULL pointer if stkmx_node points to an element node, but does not
have any attribute with index i_att;

« a pointer of TYPE(stack_recchunks) (an STKRC list) to the content of
attribute i_att of the node pointed to by stkmx_node.

3.4 Others
3.4.1 PROGRAM CONFIGURE MODMXM

This small standalone program (source code in configure_modmxm.F90) is
used during the make process to generate the modmxm_general.h header file

24

that is #include’d in modmxm_general .F90. configure_modmxm determines
the I0OSTAT status values that the Fortran READ command returns upon suc-
cessful reading, encountering an end-of-record (EOR) marker, and end-of-file
(EOF) marker, or when trying to continue to read even past an EOF marker.
The obtained status values are used to set up PARAMETER declaration state-
ments that are then written to modmxm_general.h.

3.4.2 MODULE MODMXM_GENERAL

The MODMXM_GENERAL module centralises file related parameter values (logical
unit numbers for common usage of all of the uXML related subroutines and
functions; IOSTAT return values from READ commands). MODMXM_GENERAL
also holds the central PARAMETER that defines the chunk length of the STKRC
chunks.

Finally, MODMXM_GENERAL contains a subroutine called READ NEXTCHUNK
that is extensively used in the XMLSTRUCT and XMLLOAD subroutines in the
MODMXM_STRUCTLOAD module.

3.4.3 MODULE MODMXM_STKXE

The MODMXM_STKXE module contains nine sub-programs (functions and sub-
routines), that are, however, only useful within the XMLSTRUCT and XMLLOAD
subroutines from the MODMXM_STRUCTLOAD module. For common usage, is
only necessary to use for the TYPE stack_xmlevents definition required to
call these two subroutines :

INTEGER, PARAMETER :: p_ndescs = 6

TYPE stack_xmlevents
INTEGER, DIMENSION(p_ndescs) :: idesc
TYPE(stack_xmlevents), POINTER :: prev
TYPE(stack _xmlevents), POINTER :: next
END TYPE

3.4.4 MODULE MODMXM_TASKS

The MODMXM_TASKS module is only used by the XMLSTRUCT subroutine from
the MODMXM_STRUCTLOAD module. It provides the task management system
for that subroutine.

25

4 Limitations

The functionality of uXML remains fairly basic at this stage. Any stan-
dard conforming XML document can be reliably read in. The processing is
currently limited by the fact that only the most basic character encoding
(us-ascii) is supported[l| Standard conforming comments are correctly rec-
ognized and filtered out; syntax and nesting errors are detected. Attribute
content can be delimited by simple or by double quotes. CDATA and PCDATA
sections are recognized. Entity processing is, however, not yet supported (as
of SVN revision 38 of yXML), not even for the five predefined entities " ;
("), ' ('), & (&), &1t; (<) and > (>). It is nevertheless planned
to introduce the processing of these five in the future. For the common us-
age of XML that is currently made of XML (code generation of the sediment
model MEDUSA), not even these are indispensable. Entity processing in XML
is unfortunately a recursive process requiring a lot of overhead.

Finally, uXML does not provide any XML writing functionality, although
this should be rather straightforward to implement (if visual formatting is
deemed of secondary importance).

IThis limitation is to some extent due to the limited support of more extensive character
sets by Fortran 95. Actually, although Fortran 2003 now provides the intrinsic commands
(such as SELECTED_CHAR_KIND()) for managing international character sets and even re-
serves specific keywords (such as >IS0_10646), compilers are not required to support any
character sets besides the DEFAULT’ one. Even the Fortran 2008 standard does not yet
require this.

26

	Introduction
	Getting, Building and Installing XML
	Prerequisites
	Getting the source code
	Possible customizations
	Building the library
	Installing the library and MOD files

	Library Overview
	MODMXM_STRUCTLOAD
	MODMXM_TASKS
	MODMXM_STKRC
	MODMXM_GENERAL
	MODMXM_STKXE
	MODMXM_STKMX

	Module reference
	MODULE MODMXM_STRUCTLOAD
	FUNCTION XMLSTRUCT
	FUNCTION XMLLOAD

	MODULE MODMXM_STKRC
	TYPE definitions
	SUBROUTINE STKRC_createRoot
	SUBROUTINE STKRC_createNext
	SUBROUTINE STKRC_deallocateStkrc
	SUBROUTINE STKRC_compactStkrc
	SUBROUTINE STKRC_copyStkrcToStr
	SUBROUTINE STKRC_writeStkrc
	SUBROUTINE STKRC_dumpStkrc
	SUBROUTINE STKRC_lentrim
	FUNCTION STKRC_STKRC_EQ_STKRC
	FUNCTION STKRC_STKRC_EQ_STR
	FUNCTION STKRC_createCopyStkrc
	FUNCTION STKRC_createSplitCopyStkrc
	SUBROUTINE STKRC_createSplitCopyStr
	FUNCTION STKRC_ncountSections

	MODULE MODMXM_STKMX
	TYPE definitions
	SUBROUTINE STKMX_CREATE_ROOT
	SUBROUTINE STKMX_ADD_CHILD
	SUBROUTINE STKMX_DEALLOCATE
	SUBROUTINE STKMX_INFO_NODE
	FUNCTION STKMX_getRootElement
	FUNCTION STKMX_getElementNodeByName
	FUNCTION STKMX_getUniqueChildEltByName
	FUNCTION STKMX_getChildElementNodes
	FUNCTION STKMX_getPCDatacntt
	FUNCTION STKMX_getCDatacntt
	FUNCTION STKMX_getElementName
	FUNCTION STKMX_getAttIdxByName
	FUNCTION STKMX_getAttcnttByIdx

	Others
	PROGRAM CONFIGURE_MODMXM
	MODULE MODMXM_GENERAL
	MODULE MODMXM_STKXE
	MODULE MODMXM_TASKS

	Limitations

