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Simulating nationwide realistic individual movements with a detailed geograph-8

ical structure is urgently needed to optimize public health policies. However,9

existing tools have limited resolution or can only account for a limited num-10

ber of agents. We introduce Epidemap, a new framework that can capture11

the daily movement of more than 60 million people in a country at a building-12

level resolution in a realistic and computational-efficient way. By applying13

it to the case of an infectious disease spreading in France, we uncover hith-14

erto neglected effects, such as the emergence of two distinct peaks in the daily15

number of cases or the importance of local density in the timing of arrival of16

the epidemic. Finally, we show that the importance of super-spreading events17

strongly varies over time.18
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A major limitation to the applicability of mathematical models is that they need to resort to21

strong assumptions. In the case of infectious disease epidemiology, for instance, it is easy to22

point out that the canonical Susceptible-Infected-Recovered model (1) neglects stochasticity,23

misses spatial structure or ignores contact patterns. Although these aspects, and many others,24

can be incorporated with the appropriate hypotheses and techniques (2–4), the resulting models25

usually remain too abstract to help improve local policies.26

Agent-Based Simulation (ABS), where individuals are modelled explicitly, represent a seduc-27

ing option to achieve a high degree of realism, from a biological and environmental point of28

view (5), but their routine use in public health faces three major limitations. First, ABS are29

very computationally demanding (6), which restrains the total number of agents that can be30

simulated. The second limitation comes from the model dimensionality and the introduction31

of numerous parameters, many of which are poorly informed and set in an ad hoc manner,32

to capture individual heterogeneity. A third limit resides in the way geographic structure is33

implemented into the simulation (but see (7)).34

Here, we introduce Epidemap, a novel numerically efficient agent-based method that addresses35

the current limitations of ABS platforms. Epidemap simulates infectious diseases epidemic36

scenarios at the scale of a whole country by combining detailed geographical structure, de-37

mographic information, and mobility statistics. Practically, this is achieved by using High-38

Performance Computing (HPC) techniques, high-resolution spatial data from the OpenStreetMap39

(OSM) project (8), and sophisticated mobility models (9). Overall, these simulations only re-40

quire 8 parameters (see Supplementary Methods).41

To illustrate the power and flexibility of the platform, we study the transmission dynamics of42

an (uncontrolled) epidemic of respiratory infections in France. The biological features of the43

epidemiological model originate from a discrete-time SARS-CoV-2 transmission model param-44

eterised with national hospital data (10). We analyse the output of 100 stochastic simulations45
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from epidemic emergence to extinction, i.e. approximately one year. A typical simulation gen-46

erates daily mobility patterns for 65 million individuals at the scale of buildings and lasts less47

than 2 hours on a 12-core AMD Ryzen 9 CPU, with less than 64 GB of RAM.48

In the simulation (Figure 1), each individual is assigned to a residency building following the49

national density estimates at the district level, the French ‘canton’ level (11). Every day, we50

assume that individuals visit 0, 1, or 2 buildings other than their own residence (12). These51

buildings are chosen at random based on a distance kernel. If more than one individual vis-52

its the building the same day, transmission can occur with a probability b = 6% (13), which53

is weighted by the number of days since the onset of the infection in the donor host. As in54

previous studies, this weight is based on the SARS-CoV-2 serial interval (10, 14). The simula-55

tion tracks the age of the individuals, which is distributed geographically according to national56

demographics data (15). For infected individuals, disease progression follows that described57

in (10) and a fraction θ of infected individuals develop severe symptoms requiring hospitalisa-58

tion, which is simulated by moving them to the nearest hospital building from their residence.59

For all recovered individuals, we assume perfect immunity for the duration of the simulation.60

All simulations are initialised with 15 infected individuals in Paris to avoid premature random61

epidemic extinction.62

Figure 2 shows the output of the dynamics at the national level for 100 stochastic simulations.63

For optimal readability, the dates are aligned based on the day where ICU-occupancy reaches64

a value of 700. With our minimal parameterisation, we see that the basic reproduction number,65

which is denoted (R0) and corresponds to the average number of secondary infections caused66

by an infected individual (16), is in the order of 3, which is consistent with estimates for the67

French epidemic (10, 17). Note that this value is here computed directly at the individual level,68

by counting how many infections an individual causes. Furthermore, the daily estimates for69

the temporal reproduction number calculated in the same manner are very similar to those esti-70
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mated using the daily case incidence data (dashed blue curve) and the method from (18). These71

uncontrolled epidemics last 308 days (95% confidence interval (CI): [286;345] days) and the72

final total epidemic size is q = 61.1% (95%CI [60.1%;61.9%]) of the initial susceptible popu-73

lation. As described by earlier studies (19), this proportion is lower than the prediction from a74

mean-field model that is given by the well-known equation qR0 + log(1 − q) = 0 (1), which75

yields 93% for R0 = 3. This shows that geographical structure greatly impacts the unfolding of76

the epidemic.77

The national prevalence data uncovers a bimodal structure of the epidemic, which can be under-78

stood by moving to the regional scale (Figure 2b). The first peak corresponds to the spread in the79

region where the outbreak emerges (here the Ile-de-France), whereas the second corresponds80

to the sum of the epidemic peaks in the other regions. This bimodal structure is particularly81

pronounced given the population density in the region of origin but it is a direct consequence of82

the detailed geographical information in the simulation platform.83

The resolution of the Epidemap simulations allows us to perform analyses at the district level84

(see Supplementary Videos 1 and 2). In Figure 3a, we show that the date of onset of the epi-85

demic in an area strongly depends on its distance from the origin (here assumed to be Paris).86

Furthermore, there is an additional effect of density such that denser areas are infected first.87

Interestingly, at the departmental level, these trends are not significant, further showing the im-88

portance of a fine-grain simulation level. Furthermore, the total proportion of inhabitants of a89

district who have been infected at the end of the epidemic strongly increases with density. The90

pandemic propagation velocity also increases with time. This can be explained by the fact that,91

when incidence is high, long-distance dispersion events are not rare anymore, which biases the92

mean distance of contamination towards higher values. For densely-populated districts (Figure93

3b), this proportion converges towards the mean-field prediction from well-mixed models men-94

tioned above (1). However, if the population density is low, this proportion is more variable95
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showing the limit of classical assumptions.96

The individual-based nature of our simulations allows us to follow transmission chains (Supple-97

mentary Video 3), which has direct applications. For instance, we can count, at the end of each98

infection, how many secondary infections were caused. The distribution of these individual re-99

production numbers is particularly important in the context of emerging epidemics because the100

more disperse, the more the spread relies on super-spreading events (20). Early in the epidemic,101

the distribution is tightly centred around the R0 value (Figure 4a). As the epidemic unfolds, the102

distribution changes with a mode that decreases towards 0, and a wider dispersal. This pattern103

can be formalised by assuming that the distribution of individual reproduction numbers follows104

a negative binomial distribution (20). In Figure 4b, we show that the mean of this distribution105

(in blue) follows the pattern estimated in Figure 2a. The dispersal parameter (k) indicates that106

super-spreading events reach a peak at the end of the first national epidemic wave. During the107

end of the epidemic, stochasticity is strong but there is a general trend towards a decrease in108

super-spreading events. Note that in these simulations we do not introduce host heterogeneity,109

which means we only capture the dimension of superspreading that originates from spatial het-110

erogeneity. This is already sufficient to show that studies attempting to quantify the importance111

of superspreading events should account for the stage of the epidemic they analyse.112

Simulating the daily activity of millions of individuals at a build-level resolution with a realistic113

mobility model significantly improves our understanding of how epidemics unfold. Early stages114

appear to be consistent with stochastic and deterministic mean-field models. However, once115

local saturation effects cannot be neglected anymore, Epidemap reveals striking patterns with116

an unprecedented resolution. First, we show that at a national level, a two-waves epidemic117

pattern is to be expected, largely because of a wide regional structure. Second, we find that118

districts are affected by the epidemic depending on how far they are from the epicentre, but also119

depending on their density. The latter effect is absent at the departmental level, which shows the120
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added value of a detailed geographical structure. Furthermore, we show that, as expected, the121

simplistic estimate of the final epidemic size as a function of R0 does not apply at the national122

level. However, we also show that it does yield relevant results at the district level if the density123

is sufficiently high. Finally, individual follow-ups allow us to show how super-spreading events124

becoming increasingly important as the epidemic unfolds, but that their role decrease as the role125

of stochastic processes increases.126

Being able to perform these detailed simulations for so many agents at a national scale has to be127

traded-off against some simplifying assumptions. The major one is that individual movements128

are based on a distance kernel centred in their residency home. As shown by earlier work on129

influenza dynamics, although this assumption is relevant for France, it might be too simplistic130

for countries like the United States, where air traffic represents a greater proportion of the131

travels (21). A second limitation is that, because of the lack of relevant data, we assumed all132

individuals to have the same average behaviour, e.g. in terms of the number of buildings visited133

per day. However, it can readily be made a function of the age of infection status (or of the134

individual) in the simulations.135

These results have immediate applications for public health. For instance, they allow authorities136

to derive a risk-factor per district to help control an epidemic and prevent outbreaks. This can137

also be instrumental to optimise vaccine coverage, or other control strategies (mask-wearing,138

lockdown, vaccination). Many insights can also the gained from the ability to follow individual139

trajectories and transmission chains (Supplementary Video 3), and superspreading events. Fur-140

ther developments in Epidemap will incorporate building meta-data, for instance, to simulate141

children attending the closest school from the residency home or study the local saturation of142

hospital emergency care services. Finally, we focused here on SARS-CoV-2 but an asset of143

this platform is its versatility. It can readily be deployed to study other infectious agents to144

investigate a variety of control scenarios with high resolution at a national level.145
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Figure 1: Outline of the Epidemap simulation framework. A) The 65 millions inhabitants
of metropolitan France are explicitly mapped to housing buildings following cartographic and
demographic data. B) At each time point of the simulation, the number of infected individuals
in each building of the country is recorded, as well as the time past since each got infected (the
panel shows the Paris area).C) Every day, individuals can randomly move from their home to
other buildings according to a mobility kernel and meet other people. If an infected individual
encounters a susceptible host, a transmission event can occur. D) The contagiousness of a
infected individuals varies depending on the time since infection. E) A small fraction θ of
infected individuals develop a critical form of the disease that requires their hospitalisation to
the nearest facility.
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Figure 2: Epidemiological dynamics at the national (a) and regional (b) level. a) The daily
prevalence (number of infected individuals) is in red, the temporal reproduction number (Rt) in
blue, and the cumulative number of recovered individuals in green. Shaded areas show the 95%
sample quantiles of 100 stochastic simulations. The dashed line shows the medianRt calculated
on the case incidence data. b) Each color shows the prevalence in a French region.
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Figure 3: Epidemic arrival date and size at the district level. a) Effect of the distance from
the epicentre on the number of days until the epidemic begins in a district. The color indicates
the population density in the district (number of inhabitants divided by the district’s surface). b)
District final epidemic size as a function of the characteristic distance between two individuals
normalised by the average dispersal distance. The later is computed as 2E[X]

√
density, where

X is the log-normal distribution of daily individual covered distance. Both panels show the
value for 35,234 French districts and 100 stochastic simulations.
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Figure 4: Individual reproduction number dynamics. a) Distribution obtained over the whole
population on 4 different days post outbreak. b) Daily variation of the mean (in blue) and
dispersion (in orange) of the distribution of individual reproduction numbers, which is assumed
to follow a Negative Binomial distribution (20). Shaded areas show the 95% CI.
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