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Abstract

At first glance the existence of altruism in nature seems paradoxical.
In displaying an altruistic act, an individual incurs some cost to its own
fitness. Natural selection favours the fittest individuals and one would
expect that genes promoting altruism would be selected against. This
report investigates the mechanisms that facilitates the evolution of al-
truism. Game theory is widely applied in the study of the evolution of
altruism and cooperation. We review game theory concepts which oc-
cur regularly in the literature and which are important in the study of
the evolution of cooperation. The Prisoner’s Dilemma game captures
the essence of altruism and is a model often employed in the theoretical
study of cooperation.

The best strategy for both players in the single round Prisoner’s
Dillema (PD) game is to defect, but having repeated rounds can lead
to the evolution of cooperation. The mechanism by which cooperation is
established in this scenario is known as direct reciprocity. Another mech-
anism which promotes the evolution of cooperation is the non-random
interaction of players, called assortment. A couple of factors could influ-
ence the assortment of players, one of which is the spatial distribution of
players.

A model is constructed in which the players in the PD are placed on
a lattice. Each player adopts one of two strategies, pure cooperation or
pure defection. The players propagate and die out in proportion to how
well they do in playing the PD against their neighbours. The model is
used to investigate the spatial dynamics of the players and the level of
assortment achieved. A simple movement strategy is introduced, whereby
players move if they encounter a defector. The effect of this movement
on the assortment is investigated.

Our results show that by placing the players in the PD on lattice,
enough assortment can be gained to allow the persistence of cooperation.
An increase in the dispersal parameter leads to a decline in the success
of cooperators and a loss in assortment. This suggests that the best
movement strategy for cooperators is to have low dispersal rates, while
defectors gain a big benefit from higher dispersal rates.
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1 Introduction

1.1 Biological Background

Altruism is a phenomenon that is witnessed throughout the natural world.
Altruism is defined as the behaviour of an organism that benefits another
organism, with some cost to the benefactor [19]. The cost and benefit are
measured in the contribution that is made to the organism’s inclusive fitness.

At face value altruism seems to contradict the principles of Darwinian
evolution. Evolution is the gradual change of organisms over many genera-
tions. Darwin proposed natural selection as the mechanism driving evolution:
nature acts on pre-existing differences selecting the best adapted inheritable
traits and passing these on to the next generation. The evolutionary fitness
of an individual is measured by its ability to reproduce and pass on its genes.
From a gene’s point of view, in order to persist, it has to give its carrier some
advantage over other individuals, allowing its carrier to be more successful at
reproducing copies of itself. It seems that genes promoting altruism hold a
cost to the bearer and should therefore be selected against, but, paradoxically,
we find many examples of altruism being expressed in nature [19].

There are many cases of cleaning symbiosis in the ocean where one organ-
ism cleans another of ectoparasites, sometimes entering the gills and mouth of
the host. There are more than 45 species of fish and six shrimp species known
to be cleaners with many species of fish serving as hosts. It would seem the
most beneficial to a host to be cleaned, and then make a meal of the cleaner
once it has finished. However, host fish avoid eating cleaners, even going to
great lengths to do so with a cost to itself.

Birds have calls designed to warn others against the presence of predators.
The caller is incurring a cost to itself by exposing its location to any potential
predators, whether detected or not. Nearby birds benefit from the caller’s
presence since their chances of escaping from predators are increased.

Many cases of altruism exist in humans: helping others in danger, sharing
food, helping the vulnerable, sharing implements and sharing knowledge.

With ample evidence of altruism scientists have proposed a number of theo-
ries to explain these occurrences of altruism. Nowak and Sigmund [16] explore
five current theories in good detail, namely kin selection, direct reciprocity,
indirect reciprocity, graph selection and group selection.

Kin Selection: This theory was first proposed by Hamilton [8]. Kin selec-
tion occurs when evolution is driven by the interaction between related
individuals. Cooperation occurs when a donor pays a cost, c, for a re-
cipient to get a benefit, b. It is possible for natural selection to favour
kin selection if the coefficient of genetic relatedness is greater than the
cost/benefit ratio, r > c/b. Related individuals are more likely to have
many genes in common. An act of cooperation while having a cost to
one individual, may still benefit the set of genes.

Direct Reciprocity: Put forward by Trivers [19] as an alternative to kin
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selection, direct reciprocity can explain cooperative situations where or-
ganisms are not related. The Prisoner’s Dilemma (PD) is used as a tool
for studying this kind of cooperation. Direct reciprocity is discussed
further later on in this report.

Indirect Reciprocity: Nowak and Sigmund explain it as follows [16]: “Whereas
direct reciprocity embodies the idea of you scratch my back I scratch
yours, indirect reciprocity suggests that you scratch my back I scratch
someone else’s.” Reputation plays a part in enforcing cooperation. In-
dividuals are not directly punished in their act of defection, but may be
punished later by a third party for a previous defection.

Group Selection: Selection not only acts on individuals but also on groups.
A group of cooperators may be more successful than a group of defectors.
Group selection is a controversial theory [14].

Graph Selection: Populations demonstrate a network-like structure with
certain individuals interacting more with some than with others. Graph
theory can be used to study the effect of this spatial structure on the
emergence of cooperation.

An important tool for studying the evolution of cooperation is game theory.
In the next section some background is given with regard to game theory and
games that regularly occur in the study of the evolution of cooperation.

1.2 Mathematical Background

Game theory is widely applied in the investigation of the evolution of altruism
and cooperation. Described very generally game theory is concerned with the
behaviour of decision makers (players) whose decisions affect each other [4].
These interactions are analysed from a rational point of view. Fields where
game theory is applied include economics, political science, tactic and strategic
military problems, computer science and, as in this case, evolutionary biology.
Games in game theory are played between two or more players where the score
attained by each player is affected by the strategies of the other players and
the player’s own strategy. A very famous concept in game theory is the Nash
Equilibrium.

Definition 1. Nash Equilibrium In a game played by two or more players,
a set of strategies is a Nash equilibrium if no player can do any better by
changing its strategy while the other players keep the same strategy.

Other areas where game theory have been applied in biology is the evolu-
tion of fighting behaviour in animals [18] and signalling interactions [7]. An
important concept originally developed by Maynard Smith and Price [18], in
evolutionary game theory is that of an evolutionary stable strategy or ESS.
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Definition 2. Evolutionary Stable Strategy (ESS). An ESS is a strategy
which, if adopted by a population of players, renders them immune to invasion
by a rare mutant strategy.

Let S and T be two strategies and E(S, T ) the pay-off strategy S receives
after playing against strategy T . Then S is an ESS if either

E(S, S) > E(T, S) or
E(S, S) = E(T, S) and E(S, T ) > E(T, T )

is satisfied.
ESS is a refinement of the Nash equilibrium. All ESSs are Nash equilibiria,

but a Nash equilibrium could exist which is not an ESS.
Next I introduce three games that are regularly applied in biology and the

theory of evolution of cooperation. For each game the Nash equilibrium is
given together with an example of an ESS. Although all three these games are
closely related, each can be used as an analogy for a different set of interactions
as witnessed in nature.

1.3 The Prisoner’s Dilemma and Direct Reciprocity

The Prisoner’s Dilemma (PD) is a game played by two players. Each player
has the option to cooperate or defect. If both players cooperate, each player
receives the reward, R. If both players defect they receive the punishment,
P . If one player defects and the other cooperates, the cooperator receives the
sucker’s pay-off, S, and the defector receives the temptation, T . The pay-off
is ranked T > R > P > S. Suppose you are playing the PD against an
opponent whom you expect to defect, the best strategy is to defect also and
minimize your loss, since P > S. Assuming that your opponent is going to
cooperate, you can gain the maximum pay-off by defecting, since T > R. The
best rational strategy and also the Nash equilibrium in the PD is for both
players to defect, each getting reward P . If both players cooperated, they
could have achieved a higher pay-off, R, and this is where the dilemma lies.
The pay-off structure is also often represented in matrix form:

C D
C R,R S,T
D T,S P,P

If one considers a cooperating act by a player as a contribution to its
opponent’s fitness, b, with a cost c to its own, then the PD pay-off is given by
the pay-off matrix

C D
C b-c -c
D b 0
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omitting the second entry since the scores are symmetric. To fulfil the pay-off
structure of the PD it is required that c < b.

The PD with repeated rounds is known as the Iterated Prisoner’s Dilemma
(IPD). By having repeated rounds of the PD with players having to interact
more than one round, it is possible for cooperation to develop [2]. In the
IPD a player’s strategy defines what his action will be in a particular round:
defect or cooperate. In the case where the number of rounds are known, it is
best to defect in the last round. But then, expecting your opponent to defect
in the ultimate round, it is best to defect in the penultimate round. Then,
by induction, its best to defect every round. The investigation proceeds to a
case where cooperation can emerge: the IPD where the number of rounds is
unknown with the probability of having another round given by w.

Like in altruistic behaviour, in the one-round PD a player gains most by
not being an altruist and defecting. The defectors exploits others exhibiting
altruism, the cooperators. The PD is therefore a good analogy for investigating
cooperation and establishing under which conditions cooperation could evolve.

For a strategy to be evolutionary viable, it has to meet all three of the
following criteria [2] [1]:

� Robustness: Can the strategy survive in an environment with a variety
of more or less complicated strategies?

� Stability: Once established in a population, can the strategy resist inva-
sion by another mutant strategy?

� Initial viability (invasiveness): Can the strategy get a foothold in a non-
cooperative environment?

Axelrod and Hamilton [2] set up a tournament to investigate how well
strategies fared when competing in a mixed population of different strate-
gies, playing the IPD. Professional game theorists were invited to submit
their strategies into the competition. In the tournament each strategy played
against every other strategy round-robin style. The strategy scoring the high-
est average over all the rounds was the winner. The results from the tourna-
ment were used to establish that Tit for Tat (TFT) is indeed a evolutionary
viable strategy, fulfilling all three requirements.

Tit for Tat

A player using Tit for Tat cooperates on the very first round
and on subsequent rounds merely mirrors its opponent’s move
on the previous round. If its opponent cooperated in the pre-
ceding round then Tit for Tat will cooperate in the current
round and a defection the preceding round will be met with a
defection in the current round.

The tournament showed Tit for Tat’s success, winning the round robin
style tournament by out competing 14 other strategies. In a second tour-
nament with 62 entries Tit for Tat was once again the winner. To test the
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robustness of TFT, an alternative version of the tournament was tested, where
strategies advance to the next round in proportion to how well they did. Tit
for Tat out-competed all the other strategies. Can TFT survive in a world of
meanies? Axelrod and Hamilton [2] discuss how kin selection and clustering
can help to get Tit for Tat established in a non-cooperative environment. Once
established, TFT can resist intrusion by clusters of other strategies. Although
IPD is not strictly an evolutionary stable strategy, it can resist invasion by a
large variety of strategies [12].

Axelrod [1] calls a strategy collectively stable if the conditions E(S, S) ≥
E(T, S) is satisfied. This is a relaxation of Maynard Smith’s [14] requirements
for a strategy to be an ESS. Axelrod [1] proved the following theorem.

Theorem 1. Tit for Tat is a collectively stable strategy in the Iterated Pris-
oner’s Dilemma provided that

w ≥ max
(
T −R
R− S

,
T −R
T − P

)
with w the probability that the interaction between two players will continue to
another round of the IPD.

This demonstrates that it is possible for cooperation to emerge as direct
reciprocity.

1.4 Hawk Dove

The Hawk-Dove game, also called the chicken or the snowdrift game is similar
to the PD but with a different pay-off structure. The game is played between
two players. A player can use one of two strategies: it can be a hawk and fight
for the resource, or merely use threat displays, playing ’dove’. If both players
play hawk they fight until one is injured. When a hawk plays a dove the dove
backs off and the hawk gains the resource. Two doves reach a tie and share
the resource. The pay-off is structured T > R > S > P with pay-off matrix

Hawk Dove
Hawk P,P T,S
Dove S,T R,R

If one’s opponent plays hawk then it is best to play dove, and if your
opponent plays dove it is best to play hawk. The hawk-dove game has two Nash
equilibrium states (H,D) and (D,H). If both players play different strategies
a player can’t improve his outcome by switching strategies while the other
stays the same. The ESS for the Dove Hawk game is a mixed strategy where
each player chooses either strategy with some probability. The hawk dove
game arises when the cost, c, associated with a cooperating act outweighs the
benefit b (c > b).
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1.5 Public Goods

Again there are two possible strategies, cooperate (C) or defect(D). The Public
Goods game is played by N players. A cooperative act by a player contributes
a benefit b to the public with a cost c to the player itself, it is usually assumed
that the contribution to the public good exceeds the cost, b > c. A defection
by a player adds nothing to the public good with no cost to itself. At the
end of the round the total contribution of all the players is then redistributed
equally among all the players in the group. In a group with k cooperators
and N − k defectors the pay-off for a cooperator is kb/N − c and a defector
kb/N . Defectors receive a higher pay-off than cooperators, which is the basic
dilemma of altruism. Only one evolutionary stable strategy exists, and that
is to defect.

Meerkats take turns to stand guard while other members of the group
forages, an example of the Public Goods game in nature.

1.6 Assortment

Assortment has come forward as an important factor in the evolution of coop-
eration. [5] [17] [6]. In a well mixed population cooperation has little chance of
succeeding, but if the encounters between players are non-random and strat-
egy tend to interact more with strategies of their own kind, cooperation is
capable of becoming fixed in a population.

1.6.1 Generalised Assortment

A framework for investigating assortment was created by Eshell and Cavalli-
Sforza [5]. Two strategies S1 and S2 are considered. The expected pay-off for
a strategy occurring with frequency x is given by Vi(x) and Vij represents the
pay-off received by strategy i after encountering strategy j. The probability
that an individual with strategy Si encountering an individual with strategy
Sj is given by uij .

The expected pay-off an individual with strategy Si will receive is given
by

Vi(x) = ui1(x)Vi1 + ui2(x)Vi2 (1.1)

Assuming that the expected number of encounters per individual is inde-
pendent of its strategy we have that the proportion of encounters of which
the second individual is using strategy S1 is equal to the frequency of that
strategy:

xu11 + (1− x)u21 = x

This together with the fact that ui1 + ui2 = 1 allows us to write all the
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probabilities uij in terms of u11

u11 =
x(1− u11)

1− x
u12 = 1− u11

u22 =
1− 2x+ xu11

1− x

as long as x 6= 1. Substituting these back into the payment functions (1.1):

V1(x) = V12 + (V11 − V12)u11(x)

V2(x) = V22 + (V21 − V22)
x

1− x
(1− u11(x))

To study the evolutionary viability of a strategy it is assumed that the
frequency of a strategy in the next generation is proportional to the success
it achieved in the previous generation. If the frequency of strategy S1 was x
this generation, then in the next generation its frequency is given by

x′ =
xV1

xV1 + (1− x)V2
(1.2)

Eshell and Cavalli Sforza introduced a simple method for measuring as-
sortment. Let m denote the proportion of the population that meets the same
strategy and 1 − m the proportion of the population that meets randomly.
The frequency of meetings between individuals who both have strategy S1 is
given by

P11 = (1−m)x2 +mx

and the probability that an individual with strategy S1 meets another
individual practising the same strategy is given by

u11 =
P11

x
= m+ (1−m)x (1.3)

Note that in the case where strategies meet randomly, the probability of
meeting a certain strategy is given by its frequency ui1 = x, ui2 = x−1, which
is equivalent to setting m = 0 in equation 1.3 and substituting back for the
other probabilities.

By doing a stability analysis for equation (1.2) at the fixed point x = 0 it is
possible to find the requirements for a strategy S1 to be viable and evolutionary
stable. The details of the linear stability analysis is shown on page 8. The
results show that

mV22 + (1−m)V21 > V11 (1.7)

is a sufficient requirement for a strategy S1 to be evolutionary stable and the
requirement

mV11 + (1−m)V12 > V22 (1.8)

is sufficient for S1 to establish itself in a population dominated by another
strategy S2, which reduces to V22 < V12 in the absence of assortment, m = 0.
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Stability Analysis

x′ = f(x) (1.4)

f(x) =
xV1

xV1 + (1− x)V2

f ′(x) =
V1V2 − x(1− x)(V ′1V2 − V1V

′
2)

(xV1 + (1− x)V2)2
(1.5)

A fixed point is a point, x∗, such that f(x∗) = x∗. There exist at least
two fixed points in equation (1.4) namely; x = 0 and x = 1. For a
fixed point to be linear stable it is required that |f ′(x)| < 1.

x=0
Substituting x = 0 into (1.5) we have f ′(0) = V 1

V 2 . Thus for the fixed
point x = 0 to be linearly stable it is required that V1(0) < V2(0). For
random encounters this simplifies to

V12 < V22

Taking assortment into account we have

V1(0) = V11 + (1−m)V12

V2(0) = V22

and the requirement for stability becomes

mV11 + (1−m)V12 < V22 (1.6)

At the point x = 0 the population consist entirely of strategy S2. If
the point x = 0 is linearly stable it implies that strategy S2 is an
evolutionary stable strategy and cannot be invaded by strategy S1. If
the inverse of inequality (1.6) is satisfied, then the frequency of S1 will
initially increase in a population consisting of mostly S2. We did not
assume any difference between strategy S1 and S2, therefore by simply
renaming the strategies in (1.6) we can find the condition for S1 to be
an ESS. For S1 to be viable and ESS the two in inequalities must be
satisfied

mV11 + (1−m)V12 > V22(Initial viability)
mV22 + (1−m)V21 > V11 (ESS)

Table 1
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In the Prisoner’s Dilemma let S1 be the strategy that always cooperates
and S2 the strategy which always defects. Using the pay-off values for the PD
as introduced in section 1.3 and scaling the values to ensure they are positive
results in

V21 = b+ c

V11 = b

V22 = c

V12 = 0

with b > c > 0. It is clear that V22 > V12 and hence it is impossible for
cooperation to increase in a population dominated by defectors in the ab-
sence of assortment. Using the pay-off values with equation 1.7 results in the
requirement mb > c for cooperation to be an ESS. This rule is similar to
the Hamiltonian rule for kin selection but with m the measure of assortment
replacing relatedness parameter r.

1.6.2 Assortment in the Public Goods game

Fletcher [6] explores how assortment leads to the evolution of altruism in the
Public Goods game.

Consider a group of N interacting players. In section 1.5 we have shown
that it is not possible for a cooperator to do better than a defector. The solu-
tion can be found by considering the entire population consisting of interacting
groups each of size N [6].

Let eC donate the average number of cooperators in the N − 1 interacting
partners in the interacting group of a focal C individual. The pay-off a C
individual receives from his group is eCb/N , adding the benefit from its own
act of cooperation, b/N − c, results in the total pay-off eCb/N + b/N − c.
Similarly let eD be the average nummber of cooperators in the interacting
environment of a focal D individual. The average pay-off received by a D
individual is eD ∗ b/N . For strategy C to be evolutionary viable it is required
that

(eC + 1)b
N

− c > eDb

N
(1.9)

Rearranging this equation the relative assortment necessary for the evolu-
tion of altruism is given by

eC − eD >
cN

b
− 1 (1.10)

Lets assume that interacting groups are formed at random from a large
population with the frequency of cooperators in the population given by p.
The distribution of different compositions of interacting groups is given by the
binomial. It follows that eC = eD = p(N − 1). From this and (1.10) it follows
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that cooperators will do better than defectors if b/N − c > 0. Rearranging
equation 1.9 generates a Hamilton rule for the Public Good game

eC − eD + 1
N

b > c

The role of ’relatedness’ is played by r =
(

eC−eD+1
N

)
. In the case of extreme

assortment each cooperator is interacting only with cooperators and a defector
only with defectors, thus eC = N−1 and eD = 0 and we have r = 1. In the case
of negative assortment cooperators are spread through the entire population
so that ec = 0 and eD = 1 with r = 0. If b > c altruism will always evolve
if r = 1 and never evolve if r = 0. This treatment of r does not require
that individuals are related, but rather here r is interpreted as a measure of
assortment.

1.6.3 Assortment and the Iterated Prisoner’s Dilemma

How can assortment be applied to direct reciprocity? Rankin and Toborsky
[17] investigated the effect of assortment using the IPD as the analogy for
cooperation. The model considers an infinite population with three strategies:
pure defectors, pure cooperators and generalised reciprocators. General recip-
rocators cooperate if they where helped in the previous round, and defect if
their opposite player defected in the previous round. A generalised recipro-
cator can therefore be considered to be in one of two states at any particular
time, either cooperative or defecting. Assortment is specified in the same man-
ner as by Eshell and Cavalli-Sforza [5]. The parameter m is the proportion of
interactions of a strategy with its own type. The proportion of random inter-
actions is given by 1−m and the probability that a specific strategy interacts
with its own type is given by P = m+ x(1−m), where x is the frequency of
the strategy in the population.

1.7 Aims

In this report we investigate the conditions under which cooperation can
evolve. Cooperation does not fare well in well mixed populations, assortment
has been shown to promote the evolution of cooperation. Here we investigate
the contribution to assortment by spatial structure. We address the questions:
How much assortment does the spatial PD game achieve? What is the effect
of movement on assortment?

10
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Figure 1: Nowak and May’s [15] version of the spatial PDG. a) The game is played
on a 99 by 99 lattice, each site playing against itself and its eight neighbours. We set
b = 1.9. Blue represents cooperators, red defectors, yellow and green represents sites
that are changing. A yellow site is a cooperator in this round, but was a defector the
previous. A green site is a cooperator which was previously a defector. Initially the
entire lattice is inhabited by cooperators except for a single defector site in the centre
of the lattice. The results are interesting chaotic patterns, a snapshot shown here after
round 400. b) The frequency of cooperators for a lattice with sites initially being C or
D at random with equal probability. The value tends to 0.318.

2 Mathematical Models

In this section we present two mathematical models. The first model incor-
porates spatial dynamics into PD. This model shows that cooperators can
persist for the certain parameter values. The second model demonstrates how
the PD can be incorporated in a metapopulation model with the colonisation
and extinction rates of local populations proportional to the pay-off received
after playing the PD against neighbouring populations.

2.1 Deterministic Spatial Games

Nowak and May [15] took the players in the PD and put them on a lattice,
introducing a spatial dimension to the PD. Players have no memory and can
choose only one of two strategies, it either cooperates or defects regardless of
previous interactions. Each round the player at a site plays the PD against
each of its neighbours. A player’s neighbourhood could include itself. The
scores of these games are summed to give a player its score for that round. The
next round a player adopts the strategy that fared the best in that player’s
neighbourhood. The scoring is simplified so that T = b, R = 1, S = 0 and
P = 0. Nowak and May [15] found that even in this simplistic situation
cooperation can persist. The qualitative behaviour of the system depends on
the value of b. For certain values the spatial distribution of cooperators and
defectors undergo chaotic behaviour, never reaching a steady state (see Figure
1a).
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2.2 Levins Model

The Nowak and May Model has some limitations. The model does not take
local extinction into account and neglects how the PD game affects population
dynamics. As a result we introduce the spatial PD game into a well defined
structured (metapopulation) model.

The Levins model captures the idea of a metapopulation’s persistence as a
stochastic balance between local extinctions and recolonisation of empty habi-
tat patches. A good description of the model is given in [9] which I summarise
here. The metapopulation is considered as a population of local population
inhabiting an infinitely large patch network The metapopulation size, P (t),
is measured as the fraction of habitat patches occupied at time t. Each local
population in the metapopulation has identical dynamics. Extinctions occur
independently at each patch at a rate e. The existing populations contribute
equally to the pool of migrants at a rate c. The migrants spread out across the
entire patch network and colonise empty patches in proportion to how many
empty patches there are. The rate of change in P is given by

dP

dt
= cP (1− P )− eP

The system has a non trivial equilibrium at P = 1 − e/c. The model as-
sumes that colonisation is not affected by distance and that there are infinitely
many patches. This seems contradictory as movement of most organisms are
restricted in space. What the model in fact assumes is that all patches are
equally connected to other patches, also known as the mean-field assumption.
The mean-field approximation of interactions assumes that the players are
well mixed. Hui and McGeoch [10] presented a spatial PD model based on
Levins’ [11] patch occupancy model. Each site in the patch occupancy model
is considered to be player in the PD. Players can be considered or popula-
tions. A simplified PD game with T = b, R = 1, U = −1 and S = −b(b > 1)
is used. PC is the fraction of patches occupied by cooperators and PD the
fraction occupied by defectors and the total fraction occupied is then given by
P = PC + PD. The colonisation rate and the extinction rates are considered
to be correlated to the pay-off received in the PD to reflect the gain or loss in
an entity’s fitness due to the outcome of the PD. Each player is equally likely
to play with any other player, therefore the mean pay-off for a cooperator is
wC = PC − bPD and wD = bPC − PD for a defector. The colonisation rate is
positively correlated to the pay-off and the extinction rate negatively:

cΩ = α
b+ wΩ

2b
and e = β

b− wΩ

2b
The parameters α and β represents the maximum colonisation and extinction
rates and Ω takes on the value C or D.

12



The differential equations

dPC

dt
= cCPC(1− P )− ePC (2.1)

dPD

dt
= cDPD(1− P )− ePD (2.2)

describe the system. Substituting all the variables back and solving for the
steady states, one can calculate the non-trivial steady state

PC = 0

PD =
1
2

β
α

+ b+ 1−

√(
β

α

)2

+ 4b
(
β

α
− 1
)

The mean field approximation fails to show the persistence of coopera-
tion, contrary to the findings using a cellular automaton model. Clearly the
distribution of cooperators and defectors must be important.
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3 A Spatially Explicit Model

In order to demonstrate the importance of spatial dynamics we construct spa-
tially explicit model. We use the model to investigate the assortment achieved
by placing players on a spatial grid. Movement is incorporated and its effect
on assortment studied.

3.1 Model Description

The model constructed is a stochastic cellular automaton model. The PD is
played on a square lattice occupied by cooperators and defectors. A site’s
neigbourhood is taken as the classic Von Neumann neighbourhood, the four
adjacent sites. Each site on the lattice can be in one of three states: 1) it is
occupied by a cooperator - C, 2) it is occupied by a defector - D or 3) the
cell is empty - E. During one iteration (or generation) of the simulation each
site on the lattice is visited and updated according to a set of transition rules,
Figure 2. During an iteration the sites are vistied in a random order, known
as asynchronous updating. Updating the lattice asynchronously captures the
effect of continuous time. Periodic boundary conditions are used in order to
minimise the effect of boundary conditions on the dynamics of the system.
Large lattices with periodic boundaries approximate an infinite lattice.

The transition rules for a site occupied by a player is set out by the fol-
lowing steps:

1. The PD is played against a random neighbour, the opponent. A player’s
fitness is determined by the pay-off.

2. The player goes extinct with probability e. If a player goes extinct step
3 and 4 are skipped and the simulation continues to the next site.

3. If the opponent is a defector the player moves with probability v to a
random empty site in its neighbourhood.

4. Each neighbouring cell is colonised with probability u/4

In the next section these rules are described in more detail and the method
for calculating the colonisation and extinction rates u and e are given.

3.1.1 Transition Rules

If the site is occupied by a player, the player the PD against one of its neigh-
bours chosen randomly from its neighbourhood. The score attained in the
PD is used to determine the occupant’s fitness. The pay-off scheme used is
T = b, R = b− c, P = 0, S = −c or represented in matrix form:

C D
C b-c -c
D b 0
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Current Site 

Colonise  

Extinct? 

Play PD 

against 

neighbour 

 

Shift with probability v 
Lose 

Empty 

Occupied 

Next Site 

Yes 

No 

Win 

Figure 2: A flow diagram of the simulation at a single site. A ’lose’ in the PD refers
to a player playing against a defector. A ’win’ represents a player playing against an
empty site or a cooperator. During an iteration of the simulation each site on the
lattice is visited in a random order.
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The colonisation and extinction rates, c and u, are taken to be proportional
to the pay-off in the PD game with maximum colonisation and extinction rates
α and β. For variables we let subscript i take on value C or D. The pay-off,
Vi, a player receives has the bounds −c < V < b. To ensure that 0 < ui < α
while being proportional to Vi, we scale Vi so that

ui = α
c+ Vi

b+ c

The extinction rate is negatively correlated to the pay-off

ei = β(1− c+ Vi

b+ c
)

= β
b− Vi

b+ c

We let NC and ND indicate the strategy of the opponent. If the opponent
is a cooperator we have NC = 1 and ND = 0 and visa versa for a defector.
When the opponent is an empty cell NC = ND = 0. The colonisation and
extinction rates are given by

uC = α
c+ (b− c)NC − cND

b+ c

eC = β
b− (b− c)NC + cND

b+ c

uD = α
c+ bNC

b+ c

eD = β
b− bNC

b+ c

Next it is determined whether or not the player goes extinct, a player
goes extinct with probability ei. If the player goes extinct the simulation
continues to the next site. If the occupant does not go extinct, it colonises its
neighbouring sites. Each neighbouring site is colonised with probability ui/4.
The parameter u can thus be interpreted as the average number of offspring
a site will generate.

To apply movement a win-stay lose-move principle is applied. If a site
player plays against a defector it will try and move away. After playing against
a defector a player will move with probability v before colonising its new
neighbouring sites. Movement is in a random direction to an empty cell. If
a player played against a cooperator it will stay where it was and colonise its
neighbours. Whether or not a player move is independent of its own strategy,
it only depends on its opponent’s strategy.

The model is developed using MATLAB [13], the code for the model and
simulations can be found in Appendix B.

3.2 Methods of Analysis

Let PC and PD represent the fraction of sites occupied by cooperators and de-
fectors respectively. The total fraction of sites occupied, or population density,
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is given by P = PC + PD. Sensitivity analysis is done by varying parameters
values and measuring the effect on the steady-state values of PC and PD. The
starting state of the lattice is such that each site on the lattice is in one of
the three states with equal probability, cooperators and defectors are thus
distributed randomly across the lattice.

To measure the equilibrium values of PC and PD the model is run for a
number of generations and the average is taken over the last 100 generations.
Initially it was thought that 300 generations was sufficient for equilibrium to
be reached, but upon later investigation it was found that it could take up
to 700 generations before equilibrium is reach, Figure 5. The consequence is
that most measurement were done from generation 350 to 450 with the ex-
ception of later results, Figure6, which was measured from generation 700 to
800. The running time of the model for 800 generations is between two and
three minutes, making analysis over a wide range of parameter values time in-
tensive. The assortment of cooperators, QCC , is measured as the probability
that a randomly chosen neighbour of cooperator is also a cooperator and sim-
ilarly QDD is the assortment of defectors. Large population densities causes
an increase in the measured assortment. To correct for the contribution to as-
sortment by population size we measure the relative assortment Rii = Qii/Pi,
i = C,D which is a measure of the degree of clustering in the population.
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4 Results

4.1 Habitat Size

The equilibrium values where examined to determine the effect that lattice size
has on the dynamics of the system. The steady state values of the fraction of
sites occupied by cooperators is measured for different lattices, Figure 3. The
parameter values were set to α = 0.8, β = 0.2, b = 2 and c = 1. For these
parameter values square lattices with size less than 50× 50 are very sensitive
to stochastic effects and don’t reach equilibrium but have fluctuating numbers
of cooperators and defectors. Lattices of size 100 exhibit similar steady state
values. From these results it was decided to run all further analyses for lattices
of size 100 × 100. The size of the lattice has a big influence on the running
time of simulation, the chosen value is a compromise between efficiency in
modelling time and minimising boundary effects.
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Figure 3: a)The steady state values for the fraction of cooperators occupying lattices
of different sizes. b) Lattices smaller than 50x50 are susceptible to stochastic effects
and don’t reach equilibrium, but rather display chaotic characteristics. Lattices of size
100× 100 and greater reached similar equilibrium points.

4.2 Spatial Dynamics

Cooperators score well when interacting with other cooperators. Cooperators
organise themselves into cluster, maximising their pay-off. Defectors do best
when they are surrounded by cooperators. Starting with a random grid, coop-
erators do not fare well and their numbers decrease drastically. Aggregation of
cooperators tend to do better, and small clusters of cooperators will survive.
These clusters will then grow until the system has reached equilibrium.
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Figure 4: The spatial dynamics of the stochastic model. Blue sites indicate coopera-
tors, red sites defectors and white sites are empty patches. The probability of moving
after playing against a defector, v, is varied from 0.1 to 0.6 and snapshots of the
lattices are taken after 0, 50, 150 and 300 iterations. Other parameter values are
c = 0.4, b = 1, α = 0.7 and β = 0.2
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Figure 5: The fraction of cooperators and defectors over time. The green line in-
dicates the assortment, QC/C , the probability that a randomly chosen neighbour of a
cooperator is also a cooperator. The other parameter values are b = 1.8, c = 1, v =
0, α = 0.6 and β = 0.2.

4.3 Temporal Dynamics

In an environment with randomly spaced cooperators and defectors, coopora-
tors do not fare well, Figure 5. Initially there is a small rise in the number of
defectors as they exploit cooperators. But as the number of cooperators dwin-
dle, defectors fare worse since less of their interactions are with cooperators
and more are with empty sites and other defectors. Isolated cooperators will
tend to die out, while clustered cooperators will survive, and cluster size will
increase. At point a balance is reached between the exploitation of cooperators
by defectors and the fitness gain of clustering by cooperators. Depending on
the parameters set there are four possible equilibrium states: no survival by
either the cooperators or the defectors, defectors die out and cooperators per-
sist, cooperators die out and defectors persist, both cooperators and defectors
persist together.

4.4 Sensitivity Analysis

Considering the colonisation rate, when α = 0 no colonisastion takes place,
when α = 1 each player can at best reproduce 1 copy of itself. For the
extinction rate when β = 0 players don’t die out, but when β = 1 every round
every player will certainly go extinct. Figure 6 shows the result of varying α
in the bound (0 1) and β (0 0.4). Only a narrow region in the parameter space
allows for the existence of cooperators. Defectors perform better by being able
to survive over a wider region. The size of the total population forms a ridge
in the area where cooperators do well. A larger population can be maintained
when cooperators are doing well, even for low parameter values. In contrast
cooperators require a large colonisation rate and small extinction to maintain
the same population size when defectors outnumber cooperators.

The values for the PD game also play a big role on the steady state dy-

20



β

α

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

β

α

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

β

α

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0
0.1

0.2
0.3

0.4

0

0.5

1
0

0.2

0.4

0.6

0.8

1

β
α

(d)

Figure 6: A contour plot showing how the fraction of a) cooperators and b) defectors
at steady state vary for different values of α and β. Fixed parameter values are
b = 2, c = 1, v = 0. c) Increasing v = 0.2 has no effect on the result for defectors
but reduces the parameter space where cooperation is feasible. d) The total population
density.
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Figure 7: The influence of pay-off values in the PD on a)cooperator density PC

and b) defector density PD. The values of cost c and benefit b are varied while other
parameter are fixed: α = 0.6, β = 0.2 and v = 0.

namics as shown in Figure 7 and 8. The cost-benefit ratio determines how
much a cooperator loses out when being exploited by a defector. If the cost of
cooperating is small when compared to the benefit, defectors gain very little
by exploiting cooperators. But if the cost associated with cooperating is large,
defectors gain a big advantage exploiting cooperators. In Figure 7 it is clear
that as b/c increases cooperators do better. The contour lines seem to have
equations b = a c with a some constant. Examining the model with move-
ment we see that increase in b/c increases PC at steady state, while increase
movement probability v reduces the success of cooperators, Fgure 8.

4.5 Assortment

In the previous section on assortment it has been shown that enough assort-
ment can lead to cooperators out-competing defectors. Starting from a random
lattice one witnesses cooperators forming clusters, Figure 4. Small clusters of
cooperators that arose by chance due to the starting grid, can do quite well
relative to defecting neighbours and isolated neighbours. The isolated coop-
erators, easily exploited by defectors, will die out. The small clusters persist
and grow leading to an increase in assortment over time, Figure 5.

Introducing movement influences the assortment of cooperators and defec-
tors. With an increase in dispersal ability, v, results in a decrease in assort-
ment, Figure 9b. Increasing v results in a lower number of cooperators and
an increase in defectors. Defectors thus gain the most from increases dispersal
ability, this becomes clear when one plots the relative assortment Rii, Figure
9c.

A defector wants to move a away from other defectors as quickly as pos-
sible since they could gain more by finding and playing against cooperators.
Cooperators gain the most from forming large clusters. Once a cooperator is
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Figure 8: Varying the cost-benefit ratio b/c and the probability of moving v and their
influence on PC . Here α = 0.6 and β = 0.2.

in a cluster, it will lose by moving away. Its best strategy is to stay put. De-
fectors gain from low dispersal, offspring staying close to their parent and then
playing the PD against each other, whereas defectors gain from high dispersal
abilities.

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v

F
ra

ct
io

n 
of

 s
ite

s 
oc

cu
pi

ed

Population density

Cooperators
Defectors

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

v

Assortment

QCC

QDD

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Q
D

D
/P

D

v

Relative Assortment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4
Q

C
C
/P

C

(c)

Figure 9: The effect of v, the probability of moving, on the survival of cooperators. a)
The fraction sites occupied by cooperators and defectors at steady state as a function of
v. b) Assortment of cooperators, QCC , decreases as v increases, QCC is the probability
that a randomly chosen neighbour of a cooperators is also a cooperator. c) The relative
assortment measured as Qii/PC .
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5 Discussion

Even though at first glance altruism seems to contradict natural selection and
evolution, upon deeper investigation one can find mechanisms that promotes
the evolution of altruism. It is necessary to first describe an altruistic situation
formally before analysis can take place. Game theory has emerged as the
leading framework for studying cooperation. Here three games were presented
that resemble interactions in nature: the Prisoner’s Dilemma, Hawk-Dove,
and Public Goods game. In the single round versions of these games the best
rational strategy is for players to defect, or the case of Hawk-Dove to play a
mixed strategy. Players could have attained a higher score if they cooperated.

Trivers [19] constructed a model for altruism based on the IPD and used
his model to show that direct reciprocity favours the evolution of cooperation.
Having repeated rounds of the PD makes it possible for cooperation to evolve
as long as the probability of having another round is large enough. In the IPD
Tit for Tat is a very successful strategy. It can resist invasion by a mutant
strategy and fares well in a population with a mixture of strategies [2]. Tit for
Tat also encourages other players to cooperate, because it is quick to punish
defecting moves and rewards cooperative ones. A strategy cannot do any
better than Tit for Tat and is better off cooperating from the start.

In the PD, Hawk-Dove and Public Goods games, when interactions among
strategies are random, cooperative strategies fare poorly [5] [17] [6]. Eshell
[5] considered a population consisting of players that could adopt one of two
strategies. The frequency of each strategy increased or decreased in the pop-
ulation according to its success. It was shown that under an altruistic pay-off
strategies can’t exist in the population in the absence of assortment. But if
a large enough proportion of a players interaction is with players with the
same strategy, altruism can evolve. The same principle can be applied to the
public goods game, Fletcher and Doebeli [6] does a similar analysis for the
public goods game and again find that with enough assortment cooperation is
a viable strategy.

What mechanisms promote assortment? Spatial structure makes it possi-
ble for strategies to assort. Playing the PD on a square lattice showed how
assortment arises through the self organisation of cooperators. Clusters of
cooperators have a higher pay-off and are able to out compete-defectors. In
nature animals and organisms tend to move around unless it is prevented by
some barrier. In nature populations tend to occupy their maximum possible
range, individuals migrate between populations, whole populations migrate
with season, all examples of movement and dispersal. It therefore makes sense
to include movement in modelling the population dynamics. Here we included
a simple win-stay, lose-shift type movement, where after losing movement takes
place with some probability. This type of movement decreases the assortment
of cooperators and defectors and negatively affects the success of cooperators.
Defectors gain more from increased dispersal. This leads to the question:
What would be the optimal movement strategy for a player to adopt? The
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results suggest that it is best for cooperators to have low dispersal, ensuring
cooperators stay densely clustered. While defectors gain fitness when adopt-
ing a high dispersal rate, spreading out and reducing interaction with other
defectors while increasing the likelihood of meeting a cooperator.

There are other factors that could lead to assortment. Populations are
often structured, with individuals interacting more with some individuals than
others. The ability of players to discriminate between different strategies and
actively searching out other players with similar strategies would also increase
assortment.

5.1 Limitations and Future Directions

There remains a number of unexplored dynamics and extension one could
consider for the model we constructed:

� We only investigated two strategies, pure defectors and pure coopera-
tors. One could consider more complex strategies. An example is the
generalised reciprocator as modelled by Rankin et. al. [17].

� The additive pay-off matrix where cooperators contribute some benefit
b with a cost c was chosen for the PD. One could consider other pay-off
matrices and explore how it affects the dynamics.

� The influence of different lattice structures and neighbourhoods.

Many theories and examples have been proposed in the literature to explain
altruism, there is a need to unify these theories and tease apart the differences
and similarities as done by Fletcher and Doebelli [6]. They present assortment
as a more generalised theory for the evolution of cooperation.

Our model showed that a specific dispersal strategy does not benefit all
players equally, therefore a increase in dispersal rate we saw a decrease in the
survival of cooperators. What would be the optimal strategy for a player to
adopt? In the study of evolution of dispersal strategies [3] one could consider
the effect that cooperative games have on the success of different strategies.

Defectors have an element of predators to them, seeking out and exploiting
cooperators, the prey. Could one gain some understanding by incorporating
models for cooperation with predator-prey models?

5.2 Conclusions

In this report we showed that even though altruism seems to contradict the
principles of evolution by natural selection, there are mechanisms which makes
the evolution of altruism possible, direct reciprocity as an example. Assort-
ment has recently come forward as strong contender as a generalised theory
explaining the evolution of cooperation. We showed that by placing players
in PD on a lattice enough assortment can be gained for cooperation to persist
and even out compete defectors. A simple win-stay, lose-shift strategy gave
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defectors and advantage, indicating that higher dispersal rate benefit defectors
while low dispersal rates favour cooperators.
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Appendices

A Acronyms

ALLD The strategy in the Iterated Prisoner’s Dilemma which defect every
round.

ALLC The strategy in the Iterated Prisoner’s Dilemma which cooperates
every round.

ALT The strategy in the Iterated Prisoner’s Dilemma which alternates de-
fection and cooperation.

C The strategy where the player cooperates in the game being considered.
Usually paying some cost.

CA Cellular automaton

D The strategy where the player defects in the game being considered. The
defector usually pays no cost, but gains the benefit when another player
cooperates.

IPD Iterated Prisoner’s Dilemma.

PD Prisoner’s Dilemma.

TFT A strategy in the Iterated Prisoner’s Dilemma. The strategy cooperates
on the first round and on subsequent rounds plays the same strategy its
opponent played in the previous round.
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B Code

All source code was developed in MATLAB [13] specifically for this project.
The programme is divided among three files: PDCAmove.m, assortment.m
and run.m. The essence of the CA model is contained in in the function PD-
CAmove. This function calls the function ’assortment ’ to calculate assortment
of cooperators and defectors on the lattice. The script file run.m generates
the results and figures for the CA model used in this report.

Core programme

function [fracCoop, fracDefect, assort] = PDCAmove(b,c,v,time,N,...
alpha,beta,frame)

startTime = clock;

%CA value definitions
%%%%%%%%%%%%%%%%%%%%%%
% 0 − empty %
% 1 − Cooperator %
% −1 − Defector %
%%%%%%%%%%%%%%%%%%%%%

%Initialise some paramters
%%%%%%%%%%%%%%%%%%%%%%%%%%
assort = 0;
dim1 = N + 2;
dim2 = N + 2;
total = Nˆ2;
if ¬exist('alpha','var'), alpha = 0.7; end
if ¬exist('beta','var'), beta = 0.2; end
drawLattice = false;

%Payoff Structure
T = b;
R = b−c;
P = 0;
S = −c;

%Initial Conditions
%%%%%%%%%%%%%%%%%%%
%Random
M = rand(dim1,dim2);
GAME = zeros(dim1,dim2);
GAME = GAME − 1 * (M < 0.333);
GAME = GAME + 1 * (M > 0.666);

%GAME = −1* ones(dim1,dim2);
%GAME(20:26,20:26) = 1;
%GAME(70:76,70:76) = 1;
%Boundary conditions
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%%%%%%%%%%%%%%%%%%%%%%
GAME(:,1) = GAME(:,dim2−1);
GAME(:,dim2) = GAME(:,2);
GAME(1,:) = GAME(dim1−1,:);
GAME(dim1,:) = GAME(2,:);
%%%%%%%%%%%%%%%%%%%%%%

if drawLattice
%Show starting state:
currentFrame =frame*4 − 3;
subplot(4,1,currentFrame);
cMap = [1 0 0;1 1 1;0 0 1;];
colormap(cMap);
image(GAME + 2* ones(dim1,dim2));
axis image;
set(gca,'XTickLabel',{})
set(gca,'YTickLabel',{})
ylabel(['v = ', num2str(v)])
%movieM = getframe;
%im = rgb2ind(movieM.cdata,256,'nodither');
%title('time = 0')

end

for t = 1:time
%Capture movie
%movieM(t) = getframe;
%im(:,:,1,t) = rgb2ind(movieM(t).cdata,cMap,'nodither');

randSort = randperm(total);

for pos = randSort
i = mod(pos−1,N) + 2;
j = ceil(pos/N)+ 1;

if GAME(i,j) 6= 0

neighbours = [GAME(i−1,j),GAME(i+1,j),GAME(i,j−1),...
GAME(i,j+1)];

index = [i−1,i+1,i,i;j,j,j−1,j+1];

%Choose random neighbour
opp = randperm(4);
k = index(1,opp(1));
l = index(2,opp(1));
numCoop = (GAME(k,l) == 1);
numDef = (GAME(k,l) == −1);
%Determine each site's fitness
if GAME(i,j) == 1

pay = (S*numDef + R*numCoop);
else

pay = (P*numDef + T*numCoop);
end
e = beta * (b − pay) / (b + c) ;
u = alpha * (pay + c) / (b + c);

if rand < e
GAME(i,j) = 0;

32



%Colonise Neighbours
else

%Test wether to move on or not
%Win stay, lose shift principle
if numDef == 1 && v > 0

if rand < v
for m = 2:4

if neighbours(opp(m)) == 0
temp = GAME(i,j);
GAME(i,j) = 0;
i = index(1,opp(m));
j = index(2,opp(m));
switch i

case 1
i = N+1;
break;

case N + 2
i = 2;
break;

end

switch j
case 1

j= N+1;
break;

case N+2
j = 2;
break;

end
GAME(i,j) = temp;
m = 5;

end
end

end
end
neighbours = [GAME(i−1,j),GAME(i+1,j),GAME(i,j−1),...

GAME(i,j+1)];

for m = 1:4
if neighbours(m) == 0

if rand < u / 4
GAME(index(1,m),index(2,m)) = GAME(i,j);

end
end

end
end

end
end

%Boundary conditions
%%%%%%%%%%%%%%%%%%%%%%
GAME(:,1) = GAME(:,dim2−1);
GAME(:,dim2) = GAME(:,2);
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GAME(1,:) = GAME(dim1−1,:);
GAME(dim1,:) = GAME(2,:);
%%%%%%%%%%%%%%%%%%%%%%

%Calculate output values
fracCoop(t) = sum(sum(GAME(2:(N+1),2:(N+1)) == 1))/total;
fracDefect(t) = sum(sum(GAME(2:(N+1),2:(N+1)) == −1))/total;
[assort(1,t),assort(2,t)] = assortment(GAME);

if drawLattice
if t == 100 | | t == 500 | | t == 999

currentFrame = currentFrame + 1;
subplot(4,1,currentFrame)
cMap = [1 0 0;1 1 1;0 0 1;];
colormap(cMap);
image(GAME + 2* ones(dim1,dim2));
axis image;
set(gca,'XTickLabel',{})
set(gca,'YTickLabel',{})
%title(['time = ',num2str(t)])
end

end
end

endTime = clock;
duration = endTime − startTime
%imwrite(im,cMap,'test.gif','DelayTime',0,'LoopCount',inf)
end

Measuring assortment

function [vC vD] = assortment(GAME)
temp = size(GAME);
N = temp(1);
Cplayers = 0;
Dplayers = 0;
coopNeigh = 0;
defNeigh = 0;

for i = 2:(N−1)
for j = 2:(N−1)

if GAME(i,j) == 1
Cplayers = Cplayers + 1;
neighbours = [GAME(i−1,j),GAME(i+1,j),GAME(i,j−1),

...GAME(i,j+1)];
coopNeigh = coopNeigh + sum(neighbours == 1);

end
if GAME(i,j) == −1

Dplayers = Dplayers + 1;
neighbours = [GAME(i−1,j),GAME(i+1,j),GAME(i,j−1),

...GAME(i,j+1)];
defNeigh = defNeigh + sum(neighbours == −1);

end
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end
end
if Cplayers == 0

vC = 0;
else

vC = coopNeigh / (Cplayers * 4);
end
if Dplayers == 0

vD = 0;
else

vD = defNeigh / (Dplayers * 4);
end

end

Model Analysis

%Author: Martijn van der Merwe
%The Evolution of Cooperation
%Model Analysis

clc
clear all
c = 1;
b = 2;
v = 0;
time = 450;
PDCAmove(b,c,v,time,N);

%Testing lattice size
size = [25 50 75 100 125 150]
for i = 1:6

i
N = size(i);
[fracCoop fracDefect] = PDCAmove(b,c,v,time,N);
result(i,:) = fracCoop(350:450);
resultMean(i) = mean(fracCoop(350:450));
resultStd(i) = std(fracCoop(350:450));

end

figure
errorbar(size,resultMean,resultStd)
xlabel('Lattice Size')
ylabel('Fraction Cooperators')

%Spatial dynamics
N = 100;
v = [0.1 0.2 0.4 0.6];
i = 1;
for i = 1:4
[fracCoop fracDefect] = PDCAmove(b,c,v(i),time,N,i);

end

%Sensitivity
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%alpha beta
c = 1;
b = 2;
v = 0;
time = 800;
N = 100;
alphaA = 0.05:0.05:1;
betaA = 0.025:0.025:0.4;

for i = 1:length(alphaA)
for j = 1:length(betaA)

[fracCoop fracDefect] = PDCAmove(b,c,v,time,N,...
alphaA(i),betaA(j));

resultC(i,j) = mean(fracCoop(700:800));
resultD(i,j) = mean(fracDefect(700:800));

end
end

[X,Y] = meshgrid(betaA,alphaA);
contour(X,Y,resultC,'LineWidth',2)
xlabel('\beta')
ylabel('\alpha')
axis equal
axis square
figure
contour(X,Y,resultD,'LineWidth',2)
xlabel('\beta')
ylabel('\alpha')
axis equal
axis square
save('sensAlphaBetaV0')

%Sensitivity
%b c %
N = 100;
alpha = 0.6;
beta = 0.2;
bA = 0.5:0.5:4
cA = 0.5:0.5:4
v = 0;
time = 450;

for i = 1:length(bA)
for j = 1:length(cA)

bA(i)
cA(j)
[fracCoop fracDefect] = PDCAmove(bA(i),cA(j),v,time,...

N,alpha,beta);
resultC(i,j) = mean(fracCoop(350:450))
resultD(i,j) = mean(fracDefect(350:450));

end
end

[X,Y] = meshgrid(cA,bA);
contourf(X,Y,ones(size(resultD))−resultC,'LineWidth',2)
colormap('hot')
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xlabel('c')
ylabel('b')
title('Cooperators')
figure
contourf(X,Y,ones(size(resultD))−resultD,'LineWidth',2)
colormap('hot')
xlabel('c')
ylabel('b')
title('Defectors')

%Sennsitivity b/c versus v
N = 100;
alpha = 0.6;
beta = 0.2;
c = 1;
bA = 1:0.2:3
vA = 0:0.1:1;
time = 450;

for i = 1:length(bA)
for j = 1:length(vA)

bA(i)
vA(j)
[fracCoop fracDefect] = PDCAmove(bA(i),c,vA(j),time,N,...

alpha,beta);
resultC(i,j) = mean(fracCoop(350:450))
resultD(i,j) = mean(fracDefect(350:450));

end
end

[X,Y] = meshgrid(vA,bA);
contourf(X,Y,ones(size(resultD))−resultC,'LineWidth',2)
colormap('hot')
xlabel('v')
ylabel('b')
title('Cooperators')
figure
contourf(X,Y,ones(size(resultD))−resultD,'LineWidth',2)
colormap('bone')
xlabel('v')
ylabel('b/c')
title('Defectors')

%Temporal Dynamics
N = 100;
alpha = 0.6;
beta = 0.2;
c = 1;
b = 1.6;
v = 0;
time = 1000;
[fracCoop fracDefect, assort] = PDCAmove(b,c,v,time,N,alpha,beta,1);

figure
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hold on
plot(1:time,fracCoop,'b','LineWidth',2)
plot(1:time,fracDefect,'r','LineWidth',2)
legend('cooperators','defectors ')
title(['Parameters: b = ', num2str(b),', c = ',num2str(c) ,', v = ',...

num2str(v),', \alpha = ', num2str(alpha),', \beta =',num2str(beta),...
', Size: ',num2str(N),'x', num2str(N)])

xlabel('Time')
ylabel('Fraction of sites occupied')
figure
plot(1:time,assort,'g','LineWidth',2);
xlabel('Time');
ylabel('Assortment');
save('temporalDynamics')

% %Assortment as a function of v
N = 100;
alpha = 0.6;
beta = 0.2;
c = 1;
b = 2;
time = 1000;
vA = 0:0.05:1;
for i = 1:length(vA)

vA(i)
[fracCoop fracDefect, assort] = PDCAmove(b,c,vA(i),time,N,...

alpha,beta);
resultC(i) = mean(fracCoop(800:1000));
resultD(i) = mean(fracDefect(800:1000));
resultAssortC(1,i) = mean(assort(1,800:1000));
resultAssortC(2,i) = std(assort(1,800:1000));
resultAssortD(1,i) = mean(assort(2,800:1000));
resultAssortD(2,i) = std(assort(2,800:1000));

end

m = (resultAssortC(1,:) − resultC) ./ (1 − resultC);

figure
[AX H1 H2] = plotyy(vA,resultAssortC(1,:),vA,m);
set(H1,'LineStyle','none','Marker','o','LineWidth',2,'MarkerSize',8,...

'Color','g');
set(H2,'LineStyle','none','Marker','x','LineWidth',2,'MarkerSize',8,...

'Color','k');
set(AX(1),'YColor','g');
set(AX(2),'YColor','k');
set(get(AX(1),'Ylabel'),'String','Q {CC}')
set(get(AX(2),'Ylabel'),'String','m')
xlabel('v')
figure
hold on
plot(vA,resultC,'ob','LineWidth',2,'MarkerSize',10)
plot(vA,resultD,'xr','LineWidth',2,'MarkerSize',10)
xlabel('v');
legend('Cooperators','Defectors')
ylabel('Fraction of sites occupied')
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save('sens2V')
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